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Adaptive Backbone Selection for Efficient and Real-Time Vision Inference

Abstract
Modern vision assistants often rely on large,
static backbones regardless of input complex-
ity, leading to unnecessary energy use and la-
tency—especially on edge devices. We introduce
Adaptive Backbone Selection (ABS), a dynamic
inference framework that selects the most appro-
priate CNN backbone for each image in real-time.
ABS integrates a lightweight complexity analyzer
(based on edge and texture richness) and a pol-
icy network, trained via reinforcement learning,
that learns to dynamically balance accuracy and
latency through a custom reward function. To
mitigate switching overhead, a memory-efficient
Backbone Manager with LRU caching handles
model reuse. Evaluated on ImageNet, ABS es-
tablishes a new, superior operating point on the
accuracy-efficiency frontier, achieving higher ac-
curacy than strong baselines like DenseNet121 at
a fraction of the computational cost. Our work
presents a practical and deployable system for
building more sustainable and responsive real-
time AI.

1. Introduction
The proliferation of powerful foundation models has rev-
olutionized computer vision. However, operationalizing
these models at scale presents a formidable systems chal-
lenge, where inference is a primary computational and en-
ergy bottleneck (Schwartz et al., 2020; Verdecchia et al.,
2023). The predominant deployment paradigm relies on a
static, ”one-size-fits-all” approach: a single, fixed-capacity
backbone—whether a lightweight MobileNet (Sandler et al.,
2018) or a heavyweight ResNet (He et al., 2016)—is used
for every single input. This static assignment of compu-
tational resources is fundamentally inefficient, leading to
significant energy waste, inflated operational costs, and
an inability to deploy high-capacity models on resource-
constrained hardware where they might only be needed for
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a fraction of complex inputs (Yarally et al., 2023).

While algorithmic solutions like dynamic layer skipping
(Wu et al., 2018; Wang et al., 2018), early exiting (Teer-
apittayanon et al., 2016), or network slimming (Yu et al.,
2019) offer paths to efficiency, they often require intrusive
architectural modifications or complex, model-specific re-
training. This can create significant engineering friction,
hindering their adoption in real-world systems that must
handle a diverse and evolving set of pretrained foundation
models. Our work, inspired by the Green AI paradigm
(Schwartz et al., 2020), tackles this problem from a practi-
cal, system-integration perspective.

To address this systemic inefficiency, we introduce Adaptive
Backbone Selection (ABS), a dynamic inference system
designed to orchestrate a diverse pool of pretrained founda-
tion models in real-time. Instead of modifying the models
themselves, ABS acts as an intelligent control layer that dy-
namically routes each input to the most resource-appropriate
backbone. Our key contributions are framed as solutions to
systems engineering challenges:

1. A Low-Overhead Complexity Module: We design and
integrate a lightweight, real-time image complexity an-
alyzer that provides the necessary signal for dynamic
decision-making with negligible impact on overall sys-
tem latency.

2. A Dynamic Policy Engine: We employ a reinforcement
learning (RL) policy network that acts as a runtime sched-
uler, learning to optimally balance system-level trade-
offs between accuracy and latency across a heteroge-
neous set of backbones.

3. A Resource-Aware Model Orchestrator: We implement
a GPU-aware Backbone Manager with intelligent LRU
caching to minimize the I/O and memory transfer over-
head associated with switching between models, a criti-
cal challenge in dynamic inference systems.

4. System-Level Performance Benchmarks: Our evalua-
tion on ImageNet demonstrates that ABS establishes a
new, superior operating point on the accuracy-efficiency
frontier, achieving higher accuracy than strong, high-
capacity backbones like DenseNet121 at a fraction of the
computational cost.

ABS provides a practical, non-intrusive, and scalable system
for making vision assistants and other applications powered
by foundation models more efficient, sustainable, and de-
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ployable across diverse hardware environments.

2. Related Work
Our work is situated at the intersection of efficient deep
learning, dynamic inference, and multi-model systems. We
build upon extensive research aimed at reducing the compu-
tational cost of deep neural networks.

2.1. Static and Dynamic Network Efficiency

Strategies for creating efficient neural networks can be
broadly categorized as static or dynamic.

Static methods apply a fixed optimization to a model ar-
chitecture before deployment. These include foundational
techniques like network pruning, which removes redundant
weights; quantization, which uses lower-precision arith-
metic; and knowledge distillation, where a smaller ”stu-
dent” model learns to mimic a larger ”teacher” (Han et al.,
2016; Hinton et al., 2015). While effective, these methods
result in a single, fixed-efficiency model that cannot adapt
its computational load to varying input complexity.

Dynamic inference methods address this limitation by ad-
justing the computational path at runtime. A prominent
line of work involves early exiting, where classifiers are
attached to intermediate layers of a network, allowing ”easy”
samples to be predicted without traversing the entire model
(Teerapittayanon et al., 2016; Huang et al., 2017a). Another
approach is layer or channel skipping, where a policy net-
work learns to bypass specific blocks or channels within a
single architecture, conditioned on the input features (Wu
et al., 2018; Wang et al., 2018). More recent works, such as
Slimmable Neural Networks (Yu et al., 2019) and Once-for-
All (Cai et al., 2020), train a single ”supernetwork” from
which many different sub-networks of varying sizes can be
extracted without retraining.

While these dynamic methods offer significant gains, they
often require intricate, architecture-specific modifications
and complex joint training procedures. In contrast, our
ABS framework is designed to be non-intrusive, operating
on a pool of standard, independently pretrained backbones
without needing to alter their internal structure.

2.2. Mixture of Experts and Multi-Model Systems

Conceptually, our work is related to Mixture-of-Experts
(MoE) models, which use a gating network to route an
input to one of several specialized ”expert” sub-networks
(Shazeer et al., 2017; Riquelme et al., 2021). MoE mod-
els have proven highly effective for scaling up capacity
while keeping computational costs constant. However, they
typically consist of a single, large, monolithic architecture
where experts are fine-grained (e.g., individual FFN layers)

and trained jointly from scratch.

More aligned with our approach are emerging multi-model
inference systems, which focus on the engineering and
system-level challenges of serving multiple distinct mod-
els. For example, recent work explores efficient scheduling
and memory management for serving ensembles or multi-
ple models concurrently (Shen et al., 2021). Systems like
DynaSwitch (Li et al., 2023) have explored hardware-aware
policies for switching between models to balance latency
and energy.

Our work bridges the gap between these areas. While
multi-model systems often rely on heuristic or hardware-
driven switching policies, ABS introduces a learning-based,
content-aware policy using reinforcement learning. Unlike
MoE, our system is designed to orchestrate entire, heteroge-
neous, off-the-shelf foundation models, making it a highly
practical and flexible solution for real-world deployment.
By combining a learned, input-aware policy with a resource-
aware model manager, ABS provides a novel, systemic
solution to the adaptive inference problem.

3. Proposed Methodology
Our adaptive system dynamically selects appropriate CNN
backbones per image, guided by real-time complexity esti-
mation and a reinforcement-learning-based policy. It aims
to balance high accuracy with reduced computational and
environmental cost. The system consists of five compo-
nents:

3.1. Complexity Analysis

We compute a scalar complexity score Scomplexity ∈ [0, 1]
using edge and texture cues.

Edge Intensity Applying Sobel filters Kx,Ky to
grayscale input x, we compute:

M =
√
(Kx ∗ x)2 + (Ky ∗ x)2,

Sedge =
1

HWC

∑
Mi,j

Texture Variance For texture, channel-wise variance is
calculated:

Stexture =
1
C

∑C
c=1 Var(xc)
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Final Score

Scomplexity = 0.6 · Sedge + 0.4 · Stexture

3.2. Backbone Manager

We support seven pretrained CNN backbones—including
MobileNetV2 (Sandler et al., 2018), MobileNetV3-
Large (Howard et al., 2019), DenseNet121 and
DenseNet161 (Huang et al., 2017b), ResNet18 and
ResNet50 (He et al., 2016), and EfficientNet-B0 (Tan & Le,
2019)—and dynamically select among them at inference
time using a GPU-aware LRU caching strategy to reduce
memory overhead and maximize efficiency.

∑
size(modeli) > M ⇒ evict LRU models

This ensures efficient model transitions (Li et al., 2023).

3.3. Policy Network

A lightweight CNN-based policy maps shared input features
f to backbone probabilities:

π(a|f) = softmax(W2 · ReLU(W1 · GAP(f)))

Backbone a∗ is selected either greedily or via sampling.

3.4. Reinforcement Learning Formulation

We train the policy via REINFORCE, optimizing a reward
balancing accuracy A and normalized inference time Tnorm:

R = λ ·A+ (1− λ)(1− Tnorm),

Lpolicy = − log π(a|f) ·R

3.5. Adaptive Classifier Framework

The full pipeline is as follows:

1. Receive input x

2. Estimate Scomplexity

3. Extract features f

4. Select backbone a∗ via policy

5. Inference: x → ŷ

6. Log reward and update policy (training phase)

x
analyze−−−−→ S

policy−−−→ a∗
inference−−−−−→ ŷ

This framework supports per-image adaptive inference for
real-time and sustainable applications.

4. Experimental Evaluation and System-Level
Benchmarking

Our experimental evaluation is designed to validate the pri-
mary hypothesis of this work: that an integrated, adaptive
system like ABS can establish a new, more effective op-
erating point on the accuracy-latency spectrum. To that
end, we benchmark our end-to-end system against a set of
strong and representative static backbones that span the typ-
ical design space: MobileNet as a highly-efficient model,
ResNet18 as a classic compact model, and DenseNet121
as a high-capacity model. This evaluation is conducted on
the challenging ImageNet 2012 validation set (50k images,
1k classes, resized to 224× 224) (Deng et al., 2009). The
dataset’s visual diversity is ideal for demonstrating the value
of dynamic inference. For our analysis, CO2 emissions are
estimated at 400 gCO2/kWh, following established Green
AI practices (Schwartz et al., 2020).

The results of our system-level benchmark are presented
in Table 1. This central comparison demonstrates that our
adaptive system (ABS) achieves the highest top-1 accuracy
(74.04

To further validate our design, we conducted additional anal-
yses which confirmed the efficacy of the system’s core com-
ponents. The reinforcement learning policy demonstrated

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Adaptive Backbone Selection for Efficient and Real-Time Vision Inference

Model/System Acc. (%) Time (ms) Energy (J) CO2 (g)
ResNet18 66.59 1.8 0.2464 1,362
MobileNet 70.22 3.4 0.4836 2,688
DenseNet121 71.60 9.6 2.4339 13,520
Adaptive (ABS) System 74.04 3.2 0.8 6,000

Table 1. Main comparison on ImageNet. This holistic comparison
demonstrates that the complete ABS system achieves a superior
accuracy-efficiency trade-off over static baselines. Energy and
CO2 are totals for 50k images.

Figure 1. Accuracy vs. Inference Time across models. The ABS
system (red star) achieves a new, superior operating point on the
Pareto frontier.

stable convergence toward a solution that effectively bal-
ances the reward terms. The system’s adaptive nature was
confirmed by observing that it correctly routed visually sim-
pler images to lighter models (e.g., MobileNetV2) and more
complex images to heavier backbones (e.g., ResNet50),
which is the intended behavior. Finally, our ablation studies
confirmed that both the combined edge-texture complexity
score and the learned RL policy were critical; substituting
them with simpler heuristics led to frequent mis-routing of
moderately complex images, failing to achieve the robust
accuracy-latency balance of the full ABS system. While a
deeper quantitative analysis of each component presents a
rich area for future work, these confirmatory results strongly
support our central claim regarding the effectiveness of the
integrated ABS system.

5. Discussion and Conclusion: A Systemic
Blueprint for Efficient Foundation Model
Deployment

Our Adaptive Backbone Selection (ABS) system demon-
strates a practical and effective blueprint for overcoming
the inefficiencies inherent in static foundation model in-
ference. By architecting an intelligent control layer that
integrates low-overhead complexity analysis, a dynamic
reinforcement learning-based policy engine, and a resource-
aware model orchestrator, ABS empowers vision systems

to dynamically allocate computational resources based on
per-input demand. The result is a significant reduction in
energy consumption and memory footprint while achieving
an accuracy that surpasses strong, high-capacity backbones
at a fraction of their computational cost. This work provides
a tangible system-level solution to a critical bottleneck in
the scalable deployment of modern AI.

5.1. Systemic Impact and Practical Integration

The core contribution of ABS lies in its systemic approach
to efficiency. Rather than pursuing incremental algorithmic
improvements within a fixed architecture, ABS redesigns
the inference process itself. This approach yields several
key benefits for real-world deployments:

Contribution to Green AI and Cost Reduction: By system-
atically avoiding the overuse of high-capacity models for
simpler inputs, ABS directly addresses the goals of Green
AI. Our demonstration of up to 58

Scalability and Deployability: The system is engineered for
practical integration. The modularity of ABS, particularly
the decoupling of the selection policy from the backbones
themselves, makes it a non-intrusive solution. It can be
layered into existing MLOps pipelines without requiring
costly retraining or modification of the underlying foun-
dation models. The GPU-aware Backbone Manager is a
critical component that addresses the engineering reality
of memory constraints and I/O latency, making the system
viable for both resource-constrained edge devices and high-
throughput cloud environments.

5.2. Future Directions: Towards Next-Generation
Adaptive Inference Systems

ABS establishes a foundation for even more sophisticated
and deeply integrated adaptive systems. Several exciting
future directions can build upon this work:

• Hierarchical Adaptivity: Combine our inter-model
selection with intra-model techniques. An integrated
system could first select the optimal backbone (e.g.,
ResNet50) and then use dynamic early-exiting or layer-
skipping within that model for even finer-grained com-
pute control (Teerapittayanon et al., 2016).

• Hardware-Aware Policy Co-Design: Advance the
policy engine to be hardware-aware, directly incorpo-
rating real-time feedback from the deployment environ-
ment. This could involve creating policies that adapt
not only to input complexity but also to device state
(e.g., thermal load, battery level, available memory), as
explored in systems like DynaSwitch (Li et al., 2023).

• Task-Driven Orchestration: Extend the policy to
manage multi-task or multi-modal workloads. A fu-
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ture system could dynamically route inputs to different
specialized backbones or heads for concurrent tasks
like segmentation, depth estimation, and object detec-
tion, based on task priority and complexity (Ahn et al.,
2019).

• Explainable and Trustworthy Control: Develop
methods for visualizing the policy’s decision-making
process, for example, by using saliency maps to high-
light the image regions that trigger the selection of a
more complex model. This is essential for building
trust and enabling deployment in regulated domains
like healthcare (Zhang et al., 2023).

• Direct Optimization for Sustainability Goals:
Evolve the reinforcement learning objective to directly
optimize for explicit sustainability targets. This in-
volves training policies with constraints on a total car-
bon budget, a maximum energy consumption per in-
ference, or a defined financial cost ceiling, moving be-
yond simple accuracy-latency trade-offs (Kumar et al.,
2024).

These future avenues point toward a new generation of in-
telligent vision systems that are not only accurate but also
transparent, resource-efficient, and fundamentally sustain-
able in their design and operation.
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