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Abstract

In offline reinforcement learning, the challenge
of out-of-distribution (OOD) is pronounced. To
address this, existing methods often constrain
the learned policy through policy regularization.
However, these methods often suffer from the is-
sue of unnecessary conservativeness, hampering
policy improvement. This occurs due to the in-
discriminate use of all actions from the behavior
policy that generates the offline dataset as con-
straints. The problem becomes particularly notice-
able when the quality of the dataset is suboptimal.
Thus, we propose Adaptive Advantage-Guided
Policy Regularization (A2PR), obtaining high-
advantage actions from an augmented behavior
policy combined with VAE to guide the learned
policy. A2PR can select high-advantage actions
that differ from those present in the dataset, while
still effectively maintaining conservatism from
OOD actions. This is achieved by harnessing
the VAE capacity to generate samples matching
the distribution of the data points. We theoreti-
cally prove that the improvement of the behavior
policy is guaranteed. Besides, it effectively mit-
igates value overestimation with a bounded per-
formance gap. Empirically, we conduct a series
of experiments on the D4RL benchmark, where
A2PR demonstrates state-of-the-art performance.
Furthermore, experimental results on additional
suboptimal mixed datasets reveal that A2PR ex-
hibits superior performance. Code is available at
https://github.com/ltlhuuu/A2PR.
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1. Introduction
Reinforcement learning has made substantial breakthrough
advancements over the past decades, such as chess
games (Silver et al., 2016; Schrittwieser et al., 2020; Li
et al., 2023), video games (Perolat et al., 2022; Vinyals
et al., 2019), robotics (Hwangbo et al., 2019; Andrychowicz
et al., 2020; Rajeswaran et al., 2017) and so on. Specifically,
RL employs a trial-and-error approach, iteratively refining
its performance through interactions with the environment
in an online fashion (Sutton & Barto, 2018). However, the
trial-and-error paradigm poses significant challenges to the
seamless integration of RL into real-world applications such
as autonomous driving, healthcare, and other tasks. The
impracticality of trial-and-error in scenarios where active
interaction with the environment is unfeasible renders each
training run unrealistic. In recent times, offline RL has gar-
nered considerable attention for its potential to exclusively
learn from pre-collected datasets, eliminating the need for
real-time interaction during training (Levine et al., 2020).

In offline RL, a key challenge is addressing the overesti-
mation of Q-values caused by out-of-distribution (OOD)
actions. Commonly, techniques rely on incorporating the
dataset’s behavior policy to tackle this challenge, constrain-
ing the learned policy through policy regularization meth-
ods (Levine et al., 2020). These regularization methods
introduce an extra term to calculate divergence metrics be-
tween the learned policy and the behavior policy, employ-
ing widely-used metrics such as behavior clone (Fujimoto
& Gu, 2021; Ran et al., 2023), Kullback-Leibler (KL) di-
vergence (Jaques et al., 2019; Wu et al., 2019), fisher di-
vergence (Kostrikov et al., 2021a), and Maximum Mean
Discrepancy (MMD) (Kumar et al., 2019). To some ex-
tent, these methods alleviate overestimation from OOD ac-
tions (Levine et al., 2020). However, existing policy reg-
ularization methods are unnecessarily conservative (Hong
et al., 2023b) since they force the learned policy to closely
mimic actions of the behavior policy, even if those actions
are suboptimal. Such unnecessary conservatism hampers
policy performance, especially in datasets dominated by
low-return trajectories with sparse high-return instances.

To address the issue of unnecessary conservatism (Hong
et al., 2023b), we introduce an Adaptive Advantage-
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Guided Policy Regularization (A2PR) method for offline
RL. This approach combines policy regularization with high-
advantage actions and efficiently guides the learned policy
toward improvement. In A2PR, a Variational Autoencoder
(VAE) enhanced by an advantage function generates high-
advantage actions by combining them with those from the
dataset for policy regularization. This process is similar
to directing the learned policy with sensible behavior from
an augmented behavior policy. A2PR has the flexibility to
select high-advantage actions differing from those in the
dataset due to the augmented behavior policy. Additionally,
it inherently exhibits a natural level of conservatism since
the VAE generates samples from the same distribution as
the data points. In contrast to prior methods that force the
learned policy to closely mimic all data, A2PR promotes
policy improvement while being guided by superior actions
from the augmented behavior policy. It eases the constraint
when encountering poorer data, alleviating the pessimistic
issues associated with overly conservative constraints. Con-
sequently, A2PR establishes a more effective and adaptive
policy constraint.

A2PR can integrate into existing actor-critic offline RL al-
gorithms. In our study, we implement a practical algo-
rithm based on TD3 (Fujimoto et al., 2018), chosen for
its straightforward and efficient implementation that yields
remarkable performance. Subsequently, we perform a theo-
retical analysis investigating the performance improvement
of the behavior policy. Our findings illustrate a reduction
in the overestimation problem, substantiated by quantifying
a bounded performance gap concerning the learned policy.
The experimental results show that our proposed method
attains state-of-the-art performance on the D4RL standard
benchmark (Fu et al., 2020) for offline RL. Furthermore,
we assess the method’s performance on supplementary low-
quality datasets, comprised of 99% random policy datasets.
Our approach exhibits noteworthy performance improve-
ments, particularly evident in the additional suboptimal or
low-quality datasets.

2. Preliminaries
This section provides a concise introduction to the back-
ground and introduces some key notation. Offline RL, also
referred to as batch RL or data-driven RL (Levine et al.,
2020), constitutes a specialized category within RL. It op-
erates within the framework of Markov decision processes
(MDPs) denoted as (S,A, P, r, γ) (Sutton & Barto, 2018),
where S represents the state space, A denotes the action
space, P (·|s, a) characterizes the transition probability dis-
tribution function, γ is the discount factor, and r(s, a) cor-
responds to the reward function for (s, a). Throughout, we
consider ∀(s, a) ∈ S ×A, γ ∈ (0, 1], |r(s, a)| ≤ Rmax,
and a ∈ [−A,A]. The objective is to identify a policy π∗

that maximizes the expected return, commencing from any
state s ∈ S: π∗ = argmaxπ Eπ [

∑∞
t=0 γ

tr(st, at)].

Offline RL involves learning policies from a predetermined
dataset D{(s, a, r, s′)} gathered in advance through an un-
known behavior policy πβ . This approach enhances sample
efficiency by leveraging pre-collected data without requiring
extensive direct interaction with the environment. Offline
RL holds notable significance, especially in situations where
interaction entails risks or incurs high costs. Consequently,
the difference between the learned policy and the behavior
policy often gives rise to OOD actions, leading to extrapola-
tion error.

The Q-function Q(s, a) signifies the expected discounted
return starting from any state s ∈ S. The advantage function
of the action a is defined as: A(s, a) = Q(s, a) − V (s),
where V (s) represents the value function. For each policy
π, there exists a corresponding Q-function obtained through
the Bellman operator T , defined as:

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

]
,

(T Qπ)(s, a) = r(s, a) + γEs′∼P (·|s,a),
a′∼π∗(·|s′)

[Q(s′, a′)].

(1)

Subsequently, the expected discounted reward J(π) of pol-
icy π can be expressed as J(π) = 1

1−γEs∼dπ(s)[r(s)]. The
discounted state distribution of a policy π, also known
as the occupancy measure dπ: S → R, is defined as
dπ(s) =

∑∞
t=0 γ

tp(st = s|π), where p(st = s|π) rep-
resents the probability of state st being s under policy π.

The objective values utilized in Bellman backups for policy
evaluation originate from actions sampled from the learned
policy π. However, the Q-function is exclusively trained
using actions sampled from the behavior policy πβ , re-
sponsible for generating the dataset D. As π is optimized
to maximize Q-values, a potential bias towards OOD ac-
tions may exist, resulting in inaccurately overestimated Q-
values. We define δerror as the overestimation error (Fu-
jimoto et al., 2019), representing the disparity between an
approximate estimate Q̃π and the true Q-value function Qπ:
δerror = Q̃π(s, a)−Qπ(s, a).

3. Related Work
3.1. Offline RL with policy regularization.

Policy regularization is pivotal research in offline RL, ad-
dressing distribution shift challenges to mitigate OOD ac-
tions. TD3+BC (Fujimoto & Gu, 2021) enhances policy im-
provement by integrating a straightforward behavior cloning
term, providing a clear estimate of the learned policy. Nu-
merous divergence penalties compel the learned policy to
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stay close to the behavior policy, including Maximum Mean
Discrepancy (MMD) (Kumar et al., 2019), Fisher diver-
gence (Kostrikov et al., 2021a), KL divergence (Jaques
et al., 2019; Wu et al., 2019; Nair et al., 2020), and Wasser-
stein distance (Wu et al., 2019). BEAR (Kumar et al.,
2019) employs MMD with a Gaussian kernel as diver-
gence regularization for policy improvement but relies
heavily on the approximate nature of low-sampled MMD.
Advantage-weighted (Peng et al., 2019) regression utilizes
supervised regression as learning subroutines to enhance
the learned policy while concurrently enforcing an implicit
KL-divergence constraint. BCQ (Fujimoto et al., 2019) and
LAPO (Chen et al., 2022) implement the modeling of the
behavior policy using Conditional VAE (Sohn et al., 2015),
achieving proximity between the learned and behavior poli-
cies through an implicit constraint. SPOT (Wu et al., 2022)
explicitly pre-trains a VAE to model the support set of the
behavior policy, directly using behavior density to constrain
the learned policy. OAP (Yang et al., 2023) utilizes com-
plex RankNet pseudo-queries to select actions with higher
Q-values for policy constraints from the current policy and
dataset. PRDC (Ran et al., 2023) employs KD-tree (Bentley,
1975) to index potential actions corresponding to the current
state from the entire dataset. However, it’s worth noting
that the use of KD-tree introduces a high computational
complexity. Unlike PRDC, our methods use a simple and
effective VAE to generate more potential high-advantage
actions for policy regularization.

3.2. Data reweighting

In offline RL, ReDs (Singh et al., 2023) focuses on reweight-
ing the data distribution solely for CQL (Kumar et al., 2020),
aiming to achieve an approximate support constraint formu-
lation. RB-CQL (Jiang et al., 2023) specializes in the con-
text of CQL by incorporating a retrieval process that recalls
past related experiences. AW (Hong et al., 2023a) reweights
trajectories based on their returns, a process that necessi-
tates the consideration of entire trajectories. DW (Hong
et al., 2023b) emulates sampling from an alternate dataset
through importance sampling, where the weighting function
can be interpreted as the density ratio between the alterna-
tive dataset and the original one. OPER (Yue et al., 2023)
adopts a priority function to prioritize a dataset for the en-
hancement of the learned policy. In the realm of offline
imitating learning (IL) (Kim et al., 2021; Ma et al., 2022;
Xu et al., 2022), the focus is on training an expert policy
from a dataset that comprises a limited set of expert data
along with a substantial amount of random data. These
methods aim to train a model to learn a policy that closely
aligns with the expert data, necessitating the separation of
expert data from random data. In contrast, our methods
solely require the advantage of selecting actions without the
need for separable data.

4. Method
In this section, we present the A2PR algorithm. We com-
mence by introducing elevating positive behavior learning in
Section 4.1, aiming to procure more high-advantage actions
with the support of the dataset. Subsequently, in Section 4.2,
we delve into the adaptive advantage policy constraint, de-
signed to reinforce policy improvement by prioritizing ac-
tions with higher advantages. The practical implementation
details of the algorithm are outlined in Section 4.3. Finally,
in Section 4.4, we provide theoretical analyses elucidating
the performance improvement guarantee over the behav-
ior policy and a bounded performance gap, addressing the
overestimation issue.

4.1. Elevating Positive Behavior Learning

In offline RL, the sampled probability of actions remains
fixed due to the unchanging nature of the pre-collected
dataset. Notably, existing offline RL methods (Hong et al.,
2023a) demonstrate that reweighting datasets based on tra-
jectory return or episode advantage effectively regulates
the implicit behavior policy, resulting in enhanced perfor-
mance. This approach serves to provide a more favorable
starting performance for the learned policy. Motivated by
these findings, it is intuitive to consider that augmenting
the probability of high-advantage actions can contribute to
the improvement of the implicit behavior policy. Further-
more, we delve into a theoretical analysis guaranteeing the
enhancement of the behavior policy.
Proposition 4.1. Suppose that Aπβ (s, a)(π̂β(a|s) −
πβ(a|s)) ≥ 0. Then, we have

J(π̂β)− J(πβ) ≥ 0, (2)

where π̂β is another behavior policy, πβ is the original be-
havior policy of the dataset. The proof is deferred to Ap-
pendix A.1.

Using a VAE as the density estimator for the dataset (Kumar
et al., 2019; Wu et al., 2022) proves to be a straightforward
and effective method for learning the behavior policy. In this
regard, we propose a specific approach to optimize the VAE
output action in conjunction with the advantage function. In
the realm of offline RL, where A(s, a) represents the addi-
tional reward achievable by taking action a rather than the
expected return, it serves as a quality indicator for actions.
This information can be effectively incorporated with the
reconstruction component of the VAE. Motivated by this
insight, we introduce elevating positive behavior learning
(EPBL) utilizing a VAE enhanced by the advantage func-
tion. The EPBL can be optimized jointly with the following
evidence lower bound (ELBO):

log pψ(a|s) ≥ Eqφ(z|a,s) [f(A(s, a) > ϵA) log pψ(a|z, s)]
− KL [qφ(z|a, s) ∥ p(z|s)] ,

(3)
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where f(A(s, a) > ϵA) represents w1 ∗ 1(A(s, a) > ϵA),
w1 is a hyperparameter. A(s, a) represents the advantage
of action a, log pψ(a|z, s) signifies the likelihood mea-
sure of the reconstructed action from the decoder, and
KL [qφ(z|a, s) ∥ p(z|s)] represents the KL-divergence be-
tween the encoder output and the prior of z. ϵA is an ad-
vantage threshold. This threshold serves to constrain the
quality of the reconstructed action. Restricting the recon-
struction process to actions with a higher advantage from
the dataset is achieved by introducing a simple constraint
1(A(s, a) > ϵA) before the reconstruction loss. This con-
straint ensures the reconstruction of actions with a higher
advantage. As a result, the enhanced behavior policy π̂β
assigns a greater density ratio to high-advantage actions
compared to the behavior policy πβ .

4.2. Adaptive Advantage Policy Constraint

A2PR faces the challenge of reconciling two conflicting ob-
jectives (Yang et al., 2023): policy improvement and policy
constraint. An overly strict policy constraint within a subop-
timal dataset may impede the policy’s enhancement beyond
the behavior policy. Conversely, a lax constraint might lead
to distributional shift, causing the learned policy to fail in
OOD actions. Achieving a balance between these aspects
is imperative. By incorporating a policy constraint that pri-
oritizes actions with a higher advantage, alongside policy
improvement considerations, A2PR enables the learned pol-
icy to assimilate knowledge from the augmented behavior
policy. These dual approaches of policy improvement and
policy constraint can be expressed generically through the
following equation:

max
ϕ

Es∼D[Qθ(s, πϕ(s))] =⇒ Policy improvement,

s.t. ||πϕ(s)− a|| < ϵ0 =⇒ Policy constraint,
(4)

where Qθ represents the state-action value function, πϕ(·)
denotes the learned policy, and || · || stands for a norm. Se-
lecting high-advantage actions from the augmented behavior
policy is pivotal for policy regularization:

ã = argmax
ȧ∈{a,π̂β(s)}

A(s, ȧ), (5)

where ã represents the high-advantage action, chosen be-
tween a and the generative high-advantage actions π̂β(s).

To be more specific, if the actions adhere to the condition
A(s, ã) ≥ ϵA, the policy will be constrained in proximity
to ã. Conversely, when the condition A(s, ã) ≥ ϵA is not
satisfied, the current policy should self-learn, indicating the
necessity for a robust constraint. The advantageous action ā
is dynamically determined by the following equation:

ā =

{
ã, A(s, ã) ≥ ϵA
πϕ(s), A(s, ã) < ϵA,

(6)

Once the advantageous action ā is determined, the learned
policy can adaptively achieve policy constraint, and the
objective transforms to:

L(ϕ) = E s,a∼D,
ā∈{ã,πϕ(s)}

[
−λQθ(s, πϕ(s)) + (πϕ(s)− ā)2

]
,

(7)
where λ represents a hyperparameter. A2PR steers the
learned policy toward actions with high advantage, foster-
ing improvement. Simultaneously, it dynamically balances
the interplay between enhancing policy and imposing con-
straints. Consequently, A2PR safeguards the learned policy
against the influence of suboptimal actions.

4.3. Practical Implementation

Our algorithm framework builds upon TD3+BC. The pa-
rameters θ1, θ2, ϕ, ψ pertain to two Q-networks, the policy
network, and the value network, respectively. Addition-
ally, θ

′

1, θ
′

2, ϕ
′

correspond to the parameters of the target
Q-networks and the target policy network. To achieve a
more balanced integration of Q-value and regularization, we
formalize the Q-value within the policy loss as follows:
L(ϕ) = E s,a∼D,

ā∈{ã,πϕ(s)}

[
−λQθ(s, πϕ(s)) + (πϕ(s)− ā)2

]
.

Here, λ = αN∑
si,ai

Q(si,ai)
, where α is a hyperparameter

and N represents the batch size (Fujimoto & Gu, 2021).

To derive the advantage function, our approach draws inspi-
ration from IQL (Kostrikov et al., 2021b), which focuses
on learning exclusively within the dataset’s support to miti-
gate overestimation issues related to OOD actions. We have
similarly customized the learning processes for both the
Q-function and the Value-function. Initially, the parame-
ter θ undergoes optimization by minimizing the following
temporal difference (TD) error:

LQ(θi) = E(s,a,s′)∼D,a′∼h(s′)[(r(s, a)

+γmin
i
Qθ′i

(s′, a′)−Qθi(s, a))2],
(8)

where Qθ′i
represents a target Q-value function,

and h(s′) = clip(πϕ′(s′) + ϵ0,−A,A), ϵ0 ∼
clip(N (0, σ̂2),−c, c)3, i ∈ 1, 2. Here, c and σ̂ de-
note two hyperparameters for exploration. A distinct value
function is employed to approximate an expectile solely
concerning the Q-function, leading to the ensuing loss:

LV (ε) = E(s,a)∼D[(Qθi(s, a)− Vε(s))2], (9)

where Vε represents the value function. This design ensures
the avoidance of excessive conservatism. Subsequently, the
equation for the advantage function is derived as:

A(s, a) = Qθi(s, a)− Vε(s). (10)
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Algorithm 1 Adaptive Advantage-Guided Policy Regular-
ization (A2PR)

Input: Replay buffer D, hyper-parameters α, batch size
N , target network update rate τ .
Initialize two Q networks with θ1, θ2, policy network with
ϕ and value function network with ε, target Q and target
policy network with θ

′

1 ← θ1, θ
′

2 ← θ2, ϕ
′ ← ϕ, VAE

networks with Gψ,φ = {Eφ, Dψ}.
for t = 1 to T1 do

Sample mini-batch of transitions (s, a, r, s′) ∼ D
Advantage-guide VAE update:
µ, σ = Eφ(s, a), â = Dψ(s, z), z ∼ N (µ, σ)
Update it by minimizing Equation (3)

Q-function and value-function update:
Update Q-value by minimizing Equation (8)
Update Value function by minimizing Equation (9)

Adaptive Advantage Policy update:
Update policy network by minimizing Equation (7)

Update Target Networks:
θ
′

i ← τθ + (1− τ)θ′

i, i = 1, 2
end for

Consequently, the policy can take superior actions in states
that go beyond the limitations of the dataset, alleviating
undue pessimism associated with suboptimal or low-return
behaviors arising from unnecessary policy constraints.

4.4. Theoretical Analysis

We provide theoretical validation for the effectiveness of
A2PR. Proposition 4.3 indicates that the high-advantage ac-
tion, chosen by the maximum advantage function from the
augmented behavior policy, allows for a superior behavior
policy to guide the learned policy towards improvement.
With adaptive advantage policy regularization, Theorem 4.4
illustrates that A2PR can alleviate the Q-value overestima-
tion problem arising from OOD actions. Additionally, The-
orem 4.5 highlights a performance gap between the optimal
policy and the learned policy facilitated by A2PR.

Assumption 4.2. Supposed that Q(s, a) and P (s′|s, a) are
Lispchitz continuous w.r.t a, then

||Q(s, a1)−Q(s, a2)|| ≤ LQ||a1 − a2|| (11)
||P (s′|s, a1)− P (s′|s, a2)|| ≤ LP ||a1 − a2|| (12)

for all (s, a1), (s, a2) ∈ S ×A. LQ and LP represent the
Lipschitz constants. Equation (11) is frequently employed
in the theoretical analysis of RL (Saxena et al., 2023; Gouk
et al., 2021). Equation (12) has received substantial attention
in theoretical RL research (Dufour & Prieto-Rumeau, 2013).

Proposition 4.3 (Behavior Policy Improvement Guarantee).
Given the accurate state-action value function Q(s, a), the
high-advantage actions from the improved VAE and the

dataset own accurate advantage A(s, a). Then, we have

J(π̃β)− J(πβ) ≥ 0, (13)

where denote the augmented behavior policy combined the
dataset with the improved VAE as π̃β , the original behavior
policy of the pre-collected dataset as πβ .

The proof is provided in Appendix A.2. Proposition 4.3 im-
plies that A2PR can acquire an augmented behavior policy
to effectively constrain the learned policy, thereby ensuring
a performance guarantee for the learned policy (Hong et al.,
2023b).

Theorem 4.4. With policy constraint, we have ||πϕ(s) −
ā|| ≤ ϵ0. Then based on Equation (6), let ||ā−πβ(s)|| ≤ ϵ1
due to high-advantage actions from the augmented behavior
policy of A2PR. With Assumption 4.2, then we have

||Q(s, πϕ(s))−Q(s, πβ(s))|| ≤ LQ(ϵ0 + ϵ1), (14)

for any s ∈ S.

The proof is provided in Appendix A.3. For an accu-
rate estimation of the true Q-function Qπ(s′, π(s′)), an
approximately correct estimate Q̂π(s′, π(s′)) is required.
With a sufficiently large number of samples, Q̃π(s′, π(s′))
will converge to Qπ(s′, π(s′)), causing the overestima-
tion error δerror to approach zero (Fujimoto et al., 2019),
δerror = Q̃π(s, a) − Qπ(s, a). Both Q̃π(s′, π(s′)) and
Qπ(s′, π(s′)) satisfy Assumption 4.2. Therefore, with The-
orem 4.4, we have

||Qπ(s′, πϕ(s′))−Q̃π(s′, πβ(s′))|| ≤ 2LQ(ϵ0+ϵ1)+δerror,
(15)

The detailed proof is provided in Appendix A.3. In conclu-
sion, A2PR demonstrates its effectiveness in mitigating the
problem of overestimation in value estimation.

Theorem 4.5 (Performance Gap of A2PR). Consider-
ing Equation (6), suppose ||ā − π̃β(s)|| ≤ ϵ̃1 and
maxs∈S |π∗(s)− π̃β(s)| ≤ ϵ̃∗, conditions that can be satis-
fied by A2PR. Then we have

|J(π∗)− J(π)| ≤ CLPRmax
1− γ

(ϵ0 + ϵ̃1 + ϵ̃∗), (16)

where C is a positive constant, and ϵ̃1 represents the extent
of difference between the high-advantage actions and the
actions from the original behavior policy.

The detailed proof is deferred to Appendix A.4. According
to Theorem 4.5, the performance gap is influenced by ϵ̃1
and ϵ̃∗. The high-advantage actions originate from both
the improved VAE and the dataset. Considering VAE as a
straightforward and effective method for learning the be-
havior policy (Wu et al., 2022; Zhou et al., 2021; Fujimoto
et al., 2019), the high-advantage actions exhibit minimal
deviation from the behavior policy.
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In the standard approach without the advantage-guided
method, the distance between the average action ā and the
behavior policy πβ(s) is constrained by ||ā− πβ(s)|| ≤ ϵ1.
However, in our advantage-guided approach, the modi-
fied behavior policy π̃β(s) results in a smaller distance,
||ā− π̃β(s)|| ≤ ϵ̃1. The behavior policy πβ(s) is typically
used for generating datasets like the original medium-replay
dataset. In contrast, our method enhances the behavior
policy by selectively incorporating data that demonstrates
a higher advantage. The actions produced by π̃β(s) not
only exhibit a higher average advantage but also maintain
a closer proximity to the high-advantage actions ā. Con-
sequently, this leads to a reduced distance measure, where
ϵ̃1 ≤ ϵ1. This tighter bound implies that our advantage-
guided method facilitates a more precise alignment with
desirable actions, thereby enhancing the overall efficacy of
the behavior policy.

Our method optimizes this training process by focusing
primarily on high-advantage data from the datasets. This
approach effectively filters out less beneficial initial data,
while concurrently generating a refined behavior policy,
denoted as π̃β(s). This improved behavior policy is more
closely aligned with the optimal policy π∗(s), resulting in a
reduced error measure, where ϵ̃∗ ≤ ϵ∗. In the context of the
original behavior policy πβ(s), the performance bound is
given by |J(π∗)− J(π)| ≤ CLPRmax

1−γ (ϵ0 + ϵ1 + ϵ∗). With
our advantage-guided approach, we refine this bound to ϵ0+
ϵ̃1+ϵ̃∗ ≤ ϵ0+ϵ1+ϵ∗. This demonstrates that our method can
effectively narrow the performance gap between the learned
policy and the optimal policy. By selectively focusing on
high-advantage data, our method not only enhances the
quality of the behavior policy but also contributes to more
efficient learning outcomes.

5. Experiments
In this section, we begin by detailing the experimental setup
in Section 5.1. Following that, we present the primary
results on the D4RL benchmark dataset in Section 5.2. Sub-
sequently, A2PR undergoes evaluation on supplementary
low-quality datasets to assess its generalization capabilities
in Section 5.3. We then investigate its effectiveness in miti-
gating the overestimation issue in Section 5.4. Lastly, we
conduct a comprehensive ablation study in Section 5.5.

5.1. Setup

Datasets We conduct our evaluations on two task domains
from the D4RL benchmark (Fu et al., 2020): Gym and
AntMaze. All datasets used are of the ”v2” version. The
Gym-MuJoCo locomotion tasks serve as widely recognized
standard benchmarks for assessment, encompassing three
diverse environments (halfcheetah, hopper, and walker2d).
These environments feature a multitude of trajectories and

possess inherently smooth reward functions. The AntMaze
tasks, on the other hand, present challenging scenarios with
sparse rewards. These tasks require the agent to navigate
through mazes, piecing together sub-optimal trajectories to
reach specified goals. The AntMaze environment includes
various maze layouts (umaze, medium, large), each present-
ing diverse challenges for an 8-DoF Ant robot.

Baselines We conduct a comparative analysis of our
method against several robust baselines, incorporating three
state-of-the-art algorithms: AW (Hong et al., 2023a), OAP
(Yang et al., 2023), and PRDC (Ran et al., 2023). AW uti-
lizes trajectory returns to reweight the dataset for policy
improvement, relying solely on the return of entire trajec-
tories without additional interaction data. OAP introduces
different policy constraints by leveraging query preferences
between pre-collected and learned policy. PRDC, on the
other hand, constrains the policy by searching the dataset
for the nearest state-action sample. Further details on the
baseline algorithms are available in Appendix B.1.

5.2. Main results on benchmark

In this section, we present the results of A2PR and compet-
ing baselines on D4RL datasets, as summarized in Table 1.
The baseline results are directly sourced from their respec-
tive papers. For our method, A2PR is trained for 1 million
steps with 5 random seeds. The experimental outcomes
showcase the superiority of our approach, outperforming
other baselines and achieving state-of-the-art performance
in 16 out of 18 tasks. Beyond the D4RL dataset performance
in Table 1, we provide a more comprehensive evaluation
of the algorithms introduced by (Tarasov et al., 2022), as
depicted in Figure 2(a). The statistical robustness offered by
the results in Figure 2(a) complements the findings in Table
1, robustly affirming the effectiveness of our method. Addi-
tional implementation details can be found in Appendix B.1.

5.3. Evaluation on additional low-quality datasets

Multiple target maze We investigate a maze task with
continuous actions in a 2D space. The observation com-
prises the agent’s location and velocities, and the action is
represented as a ∈ [−1, 1], indicating the linear force ap-
plied to the agent in the x and y directions. The environment
features three destinations, each associated with a unique
reward (r = 4, 2, 1), located at (1, 1), (6, 1), and (1, 6) on
the map, respectively. The goal in this task is to navigate
from a predefined starting location to the position that offers
the highest reward. In this section, we formulate an offline
dataset D = (si, ai, ri, di)

M
i=1 with M = 100, 000. The

dataset comprises trajectories targeting different positions.
Specifically, the robot trajectory dataset is designed to reach
positions (1, 1), (6, 1), and (1, 6), accounting for 5%, 45%,
and 50% of the dataset, respectively.
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Table 1. The performance of A2PR and competing baselines on D4RL datasets (Gym, AntMaze). The results for A2PR correspond to the
mean and standard errors of normalized D4RL scores over the final 10 evaluations and 5 random seeds.

Task Name TD3+BC BCQ BEAR CQL IQL AW OAP PRDC A2PR(ours)

halfcheetah-random 11.0 8.8 15.1 20.0 11.2 16.3 24.0± 1.6 26.9± 1.0 31.77± 0.63
hopper-random 8.5 7.1 14.2 8.3 7.9 7.9 8.8± 1.8 26.8± 9.3 31.55± 0.29
walker2d-random 1.6 6.5 10.7 8.3 5.9 4.8 5.1± 5.1 5.0± 1.2 5.0± 1.1

halfcheetah-medium 48.3 47.0 41.0 44.0 47.4 46.5 56.4± 4.3 63.5± 0.9 68.61± 0.37
hopper-medium 59.3 56.7 51.9 58.5 66.2 67.7 82.0± 6.6 100.3± 0.2 100.79± 0.32
walker2d-medium 83.7 72.6 80.9 72.5 78.3 81.3 85.6± 1.2 85.2± 0.4 89.73± 0.60

halfcheetah-medium-replay 44.6 40.4 29.7 45.5 44.2 44.7 53.4± 1.9 55.0± 1.1 56.58± 1.33
hopper-medium-replay 60.9 53.3 37.3 95.0 94.7 97.0 98.5± 2.5 100.1± 1.6 101.54± 0.90
walker2d-medium-replay 81.8 52.1 18.5 77.2 73.8 78.1 84.3± 2.7 92.0± 1.6 94.42± 1.54

halfcheetah-medium-expert 90.7 89.1 38.9 91.6 86.7 89.8 83.4± 5.3 94.5± 0.5 98.25± 3.20
hopper-medium-expert 98.0 81.8 17.7 105.4 91.5 104.6 85.9± 6.6 109.2± 4.0 112.11± 0.32
walker2d-medium-expert 110.1 109.5 95.4 108.8 109.6 109.4 111.1± 0.6 111.2± 0.6 114.62± 0.78

Gym Average 698.5 615.9 450.5 724.1 717.5 748.1 778.5 869.5 944.27

antmaze-umaze 91.3 0.0 73.0 84.8 88.2 77.3 90.4± 5.2 98.8± 1.0 99.20± 1.60
antmaze-umaze-diverse 54.6 61.0 61.0 43.3 66.7 36.0 75.0± 19.0 90.0± 6.8 84.80± 4.49
antmaze-medium-play 0.0 0.0 0.0 65.2 70.4 10.7 62.0± 10.0 82.8± 4.8 85.60± 9.75
antmaze-medium-diverse 0.0 0.0 8.0 54.0 74.6 6.0 54.5± 23.3 78.8± 6.9 85.60± 4.63
antmaze-large-play 0.0 6.7 0.0 18.8 43.5 1.3 0 54.8± 10.9 71.20± 5.74
antmaze-large-diverse 0.0 2.2 0.0 31.6 45.6 2.0 9.4± 8.4 50.0± 5.4 52.80± 9.77

Antmaze Average 145.9 69.9 142.0 297.7 389.0 133.3 291.3 455.2 478.2
Total Average 844.4 685.8 592.5 1021.8 1106.5 881.4 1069.8 1324.7 1422.47

To evaluate the effect of fixed policy constraints on low-
quality trajectory datasets, we conducted a comparative
study of A2PR and TD3+BC. Both methods underwent
training for 500,000 steps to ensure sufficient convergence.
Figure 1 illustrates all trajectories as well as those from the
final 100,000 steps for both A2PR and TD3+BC. Notably,
the policy derived from TD3+BC demonstrates limitations,
as it remains confined to suboptimal performance levels and
fails to converge towards the optimal target, as highlighted
in Figure 1(c). In contrast, A2PR exhibits less susceptibility
to the influence of suboptimal data, successfully generat-
ing trajectories that converge on the high-return target, as
depicted in Figure 1(d). The unnecessary conservative pol-
icy constraint in TD3+BC compels the learned policy to
incorporate all actions within a given state from the fixed
dataset. This constraint, combined with the behavior policy,
assigns greater density to lower-quality data. Consequently,
the trajectories produced by TD3+BC are relatively homoge-
nous and repetitive. In contrast, the trajectories generated
by A2PR are diverse, containing broad high-return trajecto-
ries. This variation primarily stems from A2PR’s capacity
to generate a larger number of high-advantage actions. By
leveraging an enhanced Variational Autoencoder (VAE),
A2PR distinguishes these actions from those in the dataset
more effectively. This enhancement significantly improves
the behavior policy, which in turn, provides more accurate
guidance for the learned policy towards optimal actions.

Mixed random policy lower-quality dataset In this sec-
tion, we aim to validate the generalization capabilities of
A2PR on lower-quality datasets that consist of a substantial
proportion of low-quality demonstrations. To achieve this,
we evaluate A2PR alongside two strong baselines, TD3+BC
and IQL, on mixed policy datasets comprising a combina-
tion of random data and expert data. The results are pre-
sented in Figure 3(a). The mixed policy dataset comprises
100,000 state-action pairs, mirroring the size of each task in
the D4RL dataset. Comprising 99% random policy data and
1% expert policy data, this dataset is designed to assess the
algorithms’ performance on mixed-quality data.

The results indicate A2PR’s superior performance compared
to TD3+BC and IQL on mixed policy datasets. A substan-
tial performance gap exists between A2PR and TD3+BC,
IQL, which exhibit notably poorer performance. A2PR
demonstrates improved generalization, achieving remark-
able normalized scores, particularly on the halfcheetah task,
even in the presence of low-quality datasets. These findings
underscore A2PR’s ability to mitigate the over-constraint
issue associated with poorer data.

5.4. Value estimation

Value overestimation poses a significant challenge in offline
RL, and we assess the comparative performance of vari-
ous methods in addressing this issue using the halfcheetah-
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(a) TD3+BC: all trajectories (b) A2PR: all trajectories

(c) TD3+BC: trajectories of
final 100,000 step

(d) A2PR: trajectories of final
100,000 step

Figure 1. All trajectories and the trajectories from the final
100, 000 steps of the trained policy for both A2PR and TD3+BC.
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Figure 2. The performance profiles of reliable evaluation on D4RL
based on 18 tasks and 5 random seeds for each task and the com-
parison between estimated Q-value and true Q-value of different
methods.

medium-v2 dataset. True Q-values are determined through
Monte-Carlo rollouts (Sutton & Barto, 2018). Over the
1M training steps, we randomly sample 10 states from the
initial distribution, predict actions using the current policy,
and interact with the environment for evaluation every 5k
steps. To evaluate value estimation error, we conduct 10
final evaluations with 5 random seeds, estimating Q-values
and comparing them with true Q-values across different
methods. The results, depicted in Figure 2(b), highlight our
method’s ability to achieve higher true Q-values and lower
value estimation error, indicating a smaller disparity be-
tween estimated and true Q-values compared to other meth-
ods. Therefore, our proposed adaptive policy regularization
approach, grounded in behavior optimization, effectively
mitigates the value overestimation problem.
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Figure 3. The performance of different methods in the mixed pol-
icy datasets and the comprehensive ablation study of A2PR on
halfcheetah-medium-v2 with different components.

5.5. Ablation Study

In this section, we perform an ablation study to assess the
contributions of the main components in our algorithm. We
compare normalized scores on the halfcheetah-medium-v2,
as depicted in Figure 3(b). Variants of A2PR include one
without the elevated positive behavior learning (EPBL) com-
ponent, denoted as w/o EPBL, and another incorporating a
standard VAE instead of the improved version, referred to as
base VAE. Additionally, a version of A2PR without adaptive
advantage policy constraint is labeled as w/o AAPC. This
analysis allows us to understand the individual impact of
these components on the algorithm’s performance.

Ablating the improved VAE leads to inferior outcomes, em-
phasizing the critical role of policy regularization with addi-
tional high-advantage actions from the augmented behavior
policy. The convergence performance of the base VAE
method experiences a slight decline, highlighting the im-
portance of ensuring that generated actions have a higher
likelihood of being high-advantage actions. Although w/o
AAPC exhibits faster learning before 0.1M steps, the final
performance also diminishes. This underscores the signifi-
cance of selecting high-advantage actions for constraining
the learned policy and guiding it toward effective policy
improvement. Overall, these results underscore that A2PR
achieves superior convergence performance with a swift
learning pace and a high final score.

6. Discussion
A2PR aims to constrain the learned policy through high-
advantage actions. Our initial idea aims to employ an en-
hanced behavior policy to restrict the learned policy, miti-
gating issues arising from unnecessary conservativeness to-
wards inferior actions and preventing potential local optima
or degraded policies. While using VAE appears intuitive for
learning the behavior policy from the dataset, its effective-
ness is hindered when the dataset itself contains more poor
data. This is because VAE lacks a metric to distinguish good
from bad state-action pairs during implicit variable learning,
leading to an indiscriminate inclusion of all data. To address
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this, we leverage the advantage function in RL as a metric
to evaluate state-action pairs’ quality. Motivated by this,
we combine VAE with the advantage function, using the
latter to guide VAE in learning from the offline dataset with
higher advantages. In a given state, the improved VAE gen-
erates higher advantage actions, and we utilize these actions,
alongside those from the dataset, for policy regularization.
It mitigates the issue of unnecessary conservativeness by
striking a suitable balance between policy improvement and
policy constraint.

Limitation However, there remain several limitations that
require further refinement in future work. Sampling a single
action using a VAE can sometimes lead to instability in
learning, as the quality of a single sampled action is difficult
to ensure. This variability can adversely impact the learning
of the Q-function and, consequently, the policy learning
process. Moving forward, selecting a more stable sampling
method from the generative model will be crucial. There-
fore, we need a more accurate indicator of the quality or the
stability of the sampled actions. Additionally, the expressive
capability of the behavior policy model is also important.
A more expressive behavior policy model can more accu-
rately identify high-advantage actions, thereby facilitating
better policy improvement. Therefore, having a better be-
havior policy to guide the learned policy is crucial in the
context of offline RL. In future research endeavors, we aim
to explore advanced methodologies, such as the diffusion
model, a more strong expressive generative model. This
exploration is geared towards achieving even more effective
policy improvement.

7. Conclusion
We introduce an innovative policy regularization approach,
named Adaptive Advantage-Guided Policy Regularization
(A2PR), designed for offline RL. To our knowledge, A2PR
represents the first method to integrate VAE and the ad-
vantage function, providing a straightforward and efficient
means to enhance the behavior policy. By leveraging the
augmented behavior policy, A2PR effectively guides the
learned policy to achieve policy improvement, mitigating
the impact of suboptimal or out-of-distribution data. This ap-
proach introduces a region constraint, addressing the global
constraint issues seen in prior policy regularization meth-
ods, which confined learned policies to actions within a
specific state in the dataset. A2PR emerges as a promising
solution within the realm of Offline RL, offering a robust
and theoretically grounded strategy to counter unnecessary
conservativeness and overestimation challenges. It attains
state-of-the-art performance on the D4RL benchmark, show-
casing its efficacy across diverse tasks and datasets. A2PR
stands as a valuable contribution to the field, signaling po-
tential advancements in Offline RL methodologies.
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A. Theoretical Proofs
A.1. Proof of Proposition 4.1

We first start with a lemma considering the behavior policy improvement as follows:

Lemma A.1. Given any two policies π1 and π2.

J(π1)− J(π2) =
∫
s

dπ1
(s)(Qπ2

(s, π1(s))− Vπ2
(s)) ds (17)

=

∫
s

dπ1
(s)

∫
a

π1(a|s)Aπ2(s, a) dads. (18)

Proof. The deviation of Equation (17) in Lemma A.1 is related to (Yang et al., 2023; Kakade & Langford, 2002).

The deviation of Equation (18) in Lemma A.1 is related to (Yue et al., 2023).

Proposition A.2. proposition1 Suppose that Aπβ (s, a)(π̂β(a|s)− πβ(a|s)) ≥ 0. Then, we have

J(π̂β)− J(πβ) ≥ 0, (19)

Proof. Based on Equation (3), it holds that ∀s ∈ S, Aπβ (s, a)(π̂β(a|s)− πβ(a|s)) ≥ 0.

J(π̂β)− J(πβ) =
∫
s

dπ̂β
(s)

∫
a

π̂β(a|s)Aπβ (s, a) dads

≥
∫
s

dπ̂β
(s)

∫
a

πβ(a|s)Aπβ (s, a) da ds

= 0.

(20)

Incorporating the advantage property
∫
a
πβ(a|s)Aπβ (s, a) da = 0, the above final derivation is as follows. So it follows that

J(π̂β)− J(πβ) ≥ 0. Theorem 4.4, suggests that the preference density estimator achieves policy improvement compared to
behavior policy.

A.2. Proof of Proposition 4.3

Behavior Policy Improvement Guarantee.

Proof. According to Equation (17) in Lemma A.1, it follows that

J(π̃β)− J(π) =
∫
s

dπ̃β
(s)(Q(s, π̃β(s))− V (s)) ds (21)

J(πβ)− J(π) =
∫
s

dπβ
(s)(Q(s, πβ(s))− V (s)) ds. (22)

Combining Equation (21) and Equation (22), we have

J(π̃β)− J(πβ) = J(π̃β)− J(π) + J(π)− J(πβ) (23)
= (J(π̃β)− J(π))− (J(πβ)− J(π)) (24)

=

∫
s

dπ̃β
(s)(Q(s, π̃β(s))− V (s)) ds−

∫
s

dπβ
(s)(Q(s, πβ(s))− V (s)) ds (25)

(i)
≈

∫
s

dπβ
(s)(Q(s, π̃β(s))−Q(s, πβ(s))) ds, (26)

(i) represents dπ̃β
≈ dπβ

because our method only updates policies for a finite set of states in the continuous state space at
each iteration, the measure of these states in the entire state space is zero. More precisely, the probability of the measure
of non-overlapping states between π̃β and πβ being zero is one. Hence, assuming that the original policy and the updated
policy have approximately equal state visitation probabilities (Schulman et al., 2015).
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Based on Equation (5), we have A(s, π̃β(s)) ≥ A(s, πβ(s)). With Equation (10), we have Q(s, π̃β(s)) ≥ Q(s, πβ(s)).
Then,

J(π̃β)− J(πβ) ≈
∫
s

dπβ
(s)(Q(s, π̃β(s))−Q(s, πβ(s))) ds

≥ 0.

(27)

The proof of Proposition 4.3 is finished.

A.3. Proof of Theorem 4.4

We first start with two lemmas as follows:

Lemma A.3 (Triangle inequality). For any x ∈ Rn, y ∈ Rn,, it holds that,

||x+ y|| ≤ ||x||+ ||y||. (28)

Lemma A.4. With Assumption 4.2, it holds that,∫
s

|dπϕ
(s)− dπβ

(s)|ds ≤ CLP max
s∈S
||π(s)− πβ(s)||, (29)

where C is a positive constant.

Proof. The proof of Lemma A.4 can be found in the appendix of (Xiong et al., 2022).

Next, we will provide the proof of Theorem 4.4.

Based on Lemma A.3 and Equation (6), the left side of Equation (14) can be expanded as below

||Q(s, πϕ(s))−Q(s, πβ(s))|| = ||Q(s, πϕ(s))−Q(s, ā) +Q(s, ā) +Q(s, πβ(s))||
≤ ||Q(s, πϕ(s))−Q(s, ā)||+ ||Q(s, ā) +Q(s, πβ(s))||
≤ LQ(||πϕ(s)− ā||+ ||ā− πβ(s)||)
≤ LQ(ϵ0 + ϵ1).

(30)

The proof of Theorem 4.4 is finished.

Proof. Next, we will demonstrate that A2PR effectively mitigates the value overestimation issue.

With the overestimation error (Fujimoto et al., 2019) and Assumption 4.2, then we have

δerror = Q̃π(s′, πβ(s
′))−Qπ(s′, πβ(s′)), (31)

||Qπ(s′, πϕ(s′))−Qπ(s′, πβ(s′))|| ≤ LQ(ϵ0 + ϵ1), (32)

||Q̃π(s′, πϕ(s′))− Q̃π(s′, πβ(s′))|| ≤ LQ(ϵ0 + ϵ1). (33)

Combining Equation (31), Equation (32) and Equation (33), then with Lemma A.3 we have that

||Q̃π(s′, πϕ(s′))−Qπ(s′, πϕ(s′))|| = ||Q̃π(s′, πϕ(s′))− Q̃π(s′, πβ(s′)) + Q̃π(s′, πβ(s
′))−Qπ(s′, πϕ(s′))||

= ||Q̃π(s′, πϕ(s′))− Q̃π(s′, πβ(s′)) +Qπ(s′, πβ(s
′)) + δerror −Qπ(s′, πϕ(s′))||

≤ ||Q̃π(s′, πϕ(s′))− Q̃π(s′, πβ(s′))||+ ||Qπ(s′, πϕ(s′))−Qπ(s′, πβ(s′))||+ δerror

≤ 2LQ(ϵ0 + ϵ1) + δerror.
(34)

The proof of mitigating the value overestimation issue has been completed.
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A.4. Proof of Theorem 4.5

Proof. With Lemma A.3, it follows that

|J(π∗)− J(π)| = |J(π∗)− J(π̃β) + J(π̃β)− J(π)|
≤ |J(π∗)− J(π̃β)|+ |J(π)− J(π̃β)|.

(35)

Firstly, considering |J(π)− J(π̃β)| and Lemma A.4, we have

|J(π)− J(π̃β)| = |
1

1− γ
Es∼dπϕ

[r(s)]− 1

1− γ
Es∼dπ̃β

[r(s)]|

=
1

1− γ
|
∫
s

(dπϕ
(s)− dπ̃β

(s))r(s) ds|

≤ 1

1− γ

∫
s

|dπϕ
(s)− dπ̃β

(s)||r(s)|ds

≤ Rmax
1− γ

∫
s

|dπϕ
(s)− dπ̃β

(s)|ds

≤ CLPRmax
1− γ

max
s∈S
||π(s)− π̃β(s)||

=
CLPRmax

1− γ
max
s∈S
||π(s)− ā+ ā− π̃β(s)||

≤ CLPRmax
1− γ

(||π(s)− ā||+ ||ā− π̃β(s)||)

≤ CLPRmax
1− γ

(ϵ0 + ϵ̃1).

(36)

Then, considering |J(π∗)− J(π̃β)| and Lemma A.4, we get

|J(π∗)− J(π̃β)| = |
1

1− γ
Es∼dπ∗

ϕ
[r(s)]− 1

1− γ
Es∼dπ̃β

[r(s)]|

=
1

1− γ
|
∫
s

(dπ∗
ϕ
(s)− dπ̃β

(s))r(s) ds|

≤ 1

1− γ

∫
s

|dπ∗
ϕ
(s)− dπ̃β

(s)||r(s)|ds

≤ Rmax
1− γ

∫
s

|dπ∗
ϕ
(s)− dπ̃β

(s)|ds

≤ CLPRmax
1− γ

max
s∈S
||π∗(s)− π̃β(s)||

≤ CLPRmax
1− γ

ϵ̃∗.

(37)

Finally, combining Equation (36) and Equation (37), we have that

|J(π∗)− J(π)| = |J(π∗)− J(π̃β) + J(π̃β)− J(π)|
≤ |J(π∗)− J(π̃β)|+ |J(π̃β)− J(π)|

≤ CLPRmax
1− γ

(ϵ0 + ϵ̃1 + ϵ̃∗).

(38)

The proof is finished. When not using the advantage-guided method, ||ā− πβ(s)|| ≤ ϵ1. π̃β(s) produces actions that have a
higher average advantage and a relatively smaller difference with actions ā than the behavior policy πβ(s), then ϵ̃1 ≤ ϵ1.
Our method selects data with higher advantage through advantage-guided, which is equivalent to using a better behavior
policy π̃β(s) for generating the data. Thus this better behavior policy π̃β(s) reduces the error with respect to the optimal
policy π∗(s) than the behavior policy πβ(s), so ϵ̃∗ ≤ ϵ∗. For πβ(s), |J(π∗) − J(π)| ≤ CLPRmax

1−γ (ϵ0 + ϵ1 + ϵ∗). Then,
ϵ0 + ϵ̃1 + ϵ̃∗ ≤ ϵ0 + ϵ1 + ϵ∗.Thus, our advantage-guided method can reduce this performance gap.
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Figure 4. Results of performance comparisons conducted on nine original tasks in the D4RL dataset. The lines and shaded areas indicate
the averages and standard deviations calculated over 5 random seeds, respectively.

B. More Results
B.1. Main results on benchmark

Baselines We compare our method with several strong baselines, including three state-of-the-art algorithms: AW (Hong
et al., 2023a), OAP (Yang et al., 2023), and PRDC (Ran et al., 2023). Additionally, we consider policy regularization
methods using behavior cloning, such as TD3+BC (Fujimoto & Gu, 2021); methods employing other divergences like
BCQ (Fujimoto et al., 2019) and BEAR (Kumar et al., 2019) based on maximum mean discrepancy (MMD) and Gaussian
kernel; Q-value constraint or critic penalty methods like CQL (Kumar et al., 2020), which lower-bounds the policy’s true
value with a conservative Q-value function; and implicit Q learning with expectile regression, avoiding queries to values of
OOD actions as in IQL (Kostrikov et al., 2021b).

In addition to presenting the D4RL dataset performance in Table 1, we provide a more thorough evaluation of the algorithms
implemented by (Tarasov et al., 2022), depicted in Figure 2(a). The training curves of A2PR are compared with TD3+BC,
CQL, and IQL, and the results are illustrated in Figure 4. Leveraging metrics from a reputable source (Agarwal et al., 2021)
enhances result confidence by addressing statistical uncertainty across multiple runs. Improved outcomes are indicated by
higher mean, median, and IQM scores, along with a lower optimality gap, as illustrated in Figure 5. The results robustly
confirm the superiority of our method.
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Figure 5. Reliable evaluation for statistical uncertainty on D4RL with 95% CIs based on 18 tasks and 5 random seeds for each task.

Table 2. The influence of different advantage thresholds ϵA on performance of D4RL datasets. The results for A2PR correspond to the
mean and standard errors of normalized D4RL scores over 5 random seeds.

Task Name ϵA = - 0.5 ϵA = - 0.1 ϵA = 0 ϵA = 0.1 ϵA = 0.5

Halfcheetah-medium-v2 67.45 ± 0.674 67.03 ± 2.56 68.61 ± 0.37 69.66 ± 0.52 65.71 ± 6.27
Hopper-medium-v2 100.1 ± 0.88 99.88 ± 0.07 100.79 ± 0.32 100.1 ± 2.21 95.76 ± 8.27
Walker2d-medium-v2 76.79 ± 7.72 82.41 ± 3.77 89.73 ± 0.60 88.9 ± 0.62 90.07 ± 3.30

Halfcheetah-medium-replay-v2 42.80 ± 0.89 52.12 ± 1.71 56.58 ± 1.33 52.58 ± 3.46 52.72 ± 0.75
Hopper-medium-replay-v2 101.7 ± 0.75 100.9 ± 0.5 101.54 ± 0.90 99.55 ± 1.86 101.2 ± 0.37
Walker2d-medium-replay-v2 95.92 ± 1.13 90.99 ± 7.56 94.42 ± 1.54 88.22 ± 2.83 96.31 ± 1.96

Halfcheetah-medium-expert-v2 87.06 ± 5.91 97.57 ± 2.30 98.25 ± 3.20 93.29 ± 4.38 93.5 ± 6.06
Hopper-medium-expert-v2 112.1 ± 0.28 107.54 ± 2.26 112.11 ± 0.32 105.35 ± 4.38 96.44 ± 4.58
Walker2d-medium-expert-v2 110.2 ± 2.55 112.42 ± 0.87 114.62 ± 0.78 105 ± 6.27 112.4 ± 1.25

B.2. Sensitivity on the different advantage thresholds ϵA

This section explores the impact of varying advantage thresholds, denoted as ϵA, on the performance of our policy. We
conduct experiments using the A2PR algorithm across three datasets: Hopper, HalfCheetah, and Walker2d (specifically
-medium-replay-v2, -medium-v2, -medium-expert-v2). For each dataset, the model was trained for 1 million steps across
five different seeds, as shown in Table 2. We assessed the performance of the policy with advantage thresholds set at
ϵA ∈ {−0.5,−0.1, 0, 0.1, 0.5}. The results indicate that the optimal performance is achieved when ϵA = 0. This setting
allows for a balanced approach to action selection, effectively avoiding the pitfalls of high thresholds that may exclude
potentially beneficial actions due to their sparse occurrence, as well as low thresholds that might include more suboptimal
actions. Essentially, a zero threshold maintains a healthy balance, enabling the selection of actions that contribute positively
to learning outcomes without compromising the robustness of the algorithm. Furthermore, the consistent performance across
varying thresholds suggests that our algorithm is robust to changes in ϵA. This adaptability underscores the utility of A2PR
in diverse settings, making it a reliable choice for applications requiring a stable learning process.

B.3. Mean advantage based on the same state

A2PR aims to utilize high-advantage actions to adaptively constrain the learned policy. To examine whether A2PR has
learned actions with higher advantages from the low-quality dataset, A2PR, TD3+BC, and IQL are evaluated on the same
1,000 states randomly sampled from the halfcheetah-medium task dataset with 5 random seeds. Comparisons among the
mean advantage curves of the actions from different methods are shown in Figure 6(a). The results demonstrate that our
method selects actions with higher advantages based on the same states compared to TD3+BC and IQL. Moreover, the
mean advantage from our method is positive in all 1000 states with 5 random seeds. These findings provide additional
confirmation that A2PR has successfully acquired advantageous actions, even when exposed to a low-quality dataset.

B.4. A2PR implementation based on SAC framework

We implement the A2PR algorithm on the Soft Actor-Critic (SAC) (Haarnoja et al., 2018) framework, Which is compared
to a version based on the TD3 (Fujimoto et al., 2018) framework. Our experimental evaluation spans several datasets:
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halfcheetah-random-v2, halfcheetah-medium-v2, halfcheetah-medium-expert-v2, and halfcheetah-medium-replay-v2. The
comparative analysis indicates that while the performance of the two approaches was broadly similar, the TD3 variant
consistently outperformed the SAC variant, as shown in Figure 6(b).
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Figure 6. (a) The comparisons between the mean advantage curves of the actions of different methods on halfcheetah-medium-v2. (b) The
performance comparison of A2PR on the TD3 variant and the SAC variant.

B.5. Training time

Managing time complexity presents a significant challenge in offline RL. We conduct experiments by running our methods
and the baselines on the same dataset and machine for 1M steps. The re-training of TD3+BC, AWAC, IQL, and CQL was per-
formed on the halfcheetah-medium-v2 dataset, utilizing implementations from https://github.com/tinkoff-ai/
CORL (Tarasov et al., 2022). The re-training of PRDC was implemented using its official code from the original paper.
The results in Table 3 indicate that our method performs faster than other baselines on the halfcheetah-medium-v2 dataset,
particularly when compared to CQL and PRDC, which require KD-tree for retrieval. Thanks to the efficiency of VAE’s
powerful generation, our method demonstrates notable speed.

Table 3. The training time of the different methods

Methods TD3+BC AWAC IQL PRDC CQL A2PR

Train time 2h18m 3h40m 5h23m 6h49m 9h2m 3h59m

B.6. The generalization of A2PR on noisy datasets

We conducted experiments using the Multiple Target Maze and Mixed Random Policy Low-Quality datasets, illustrated
in Figures 1 and 3(a) in Section 5.3. These datasets differ significantly from those in the D4RL benchmark. Our results
indicate that the A2PR algorithm outperforms established baselines, demonstrating noteworthy generalization capabilities.
To further assess the robustness and generalization performance of A2PR, we introduced Gaussian noise N (0, 1) to the
state inputs during the evaluation phase. We conduct experiments using the A2PR algorithm across three datasets: Hopper,
HalfCheetah, and Walker2d (specifically -medium-v2, -medium-replay-v2, -medium-expert-v2). For each dataset, the model
was trained for 1 million steps across five different seeds. The results are shown in Figure 7. This variant, A2PR(noisy),
was compared against a similarly modified version of the TD3+BC algorithm, labeled TD3+BC(noisy), where noise was
also added to the state inputs. The findings reveal that A2PR(noisy) not only consistently outperforms TD3+BC(noisy) but
also maintains superior performance over the original TD3+BC across most tasks, despite a slight decrease in performance
compared to its noise-free version. Notably, A2PR’s performance on noisy states frequently surpasses that of TD3+BC on
noise-free states, further underscoring A2PR’s enhanced ability to generalize well under conditions of state perturbation.
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Figure 7. The performance comparison of A2PR and TD3+BC on noisy datasets.

C. Implement details
A2PR was implemented using PyTorch based on the TD3+BC implementation. The Elevating Positive Behavior Learning
(EPBL) and Adaptive Advantage Policy Constraint (AAPC) components were implemented by ourselves. The hyperparame-
ters of the algorithm are detailed in Table 4 and Table 5. To fully demonstrate the performance of A2PR and ensure fairness
in comparison with the latest state-of-the-art research, the policy update equation introduces a new hyperparameter w2 and
retains the α values from the PRDC (Ran et al., 2023) algorithm, which means retaining the same λ values.

L(ϕ) = E s,a∼D,
ā∈{ã,πϕ(s)}

[
−λQθ(s, πϕ(s)) + w2(πϕ(s)− ā)2

]
.

C.1. Hardware

We use the following hardware:

1. NVIDIA RTX 3090

2. 12th Gen Intel(R) Core(TM) i7-12900K

C.2. Software

We use the following software versions:

1. Python 3.9.19

2. D4RL 1.1 (Fu et al., 2020)

3. Mujoco 3.1.5 (Todorov et al., 2012)

4. Gym 0.23.1 (Brockman et al., 2016)

5. Mujoco-py 2.1.2.14

6. Pytorch 1.13.1 + cu11.7 (Paszke et al., 2019)

The v2 version of D4RL benchmark datasets is utilized in Gym locomotion and AntMaze tasks.
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Table 4. Hyperparameter Table

Hyper-parameters Value

TD3

Number of iterations 1e6
Target update rate τ 5e-3

Policy noise 0.2
Policy noise clipping (-0.5,0.5)

Policy update frequency 2
Discount γ for Mujoco 0.99, 0.995
Discount γ for Antmaze 0.995

Actor learning rate 3e-4
Critic learning rate for Mujoco 3e-4
Critic learning rate for Antmaze 1e-4

Network

Q-Critic hidden dim 256
Q-Critic hidden layers 3

Q-Critic Activation function ReLU
V-Critic hidden dim 256

V-Critic hidden layers 3
V-Critic Activation function ReLU

Actor hidden dim 256
Actor hidden layers 2

Actor Activation function ReLU
Mini-batch size 256

Optimizer Adam (Kingma & Ba, 2014)

A2PR
Normalized state True
α for Mujoco 40.0, 2.5
α for Antmaze {2.5, 7.5, 20.0}

ϵA 0

Table 5. Hyperparameter values for different tasks

Task name w1 w2 γ α

Halfcheetah-random-v2 1.0 1.0 0.99 40.0
Halfcheetah-medium-v2 1.0 1.0 0.99 40.0
Halfcheetah-medium-replay-v2 1.5 0.8 0.995 40.0
Halfcheetah-medium-expert-v2 1.0 15.0 0.99 40.0
Hopper-random-v2 1.5 1.5 0.995 2.5
Hopper-medium-v2 1.0 0.4 0.995 2.5
Hopper-medium-replay-v2 1.5 0.5 0.99 2.5
Hopper-medium-expert-v2 1.0 4.0 0.99 2.5
Walker2d-random-v2 1.0 1.0 0.995 2.5
Walker2d-medium-v2 1.5 1.0 0.99 2.5
Walker2d-medium-replay-v2 1.5 1.5 0.99 2.5
Walker2d-medium-expert-v2 1.0 0.8 0.99 2.5
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