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Abstract

Recent advances in computer vision take advantage of adversarial data augmentation to
ameliorate the generalization ability of classification models. Here, we present an effective
and efficient alternative that advocates adversarial augmentation on intermediate feature
embeddings, instead of relying on computationally-expensive pixel-level perturbations. We
propose Adversarial Feature Augmentation and Normalization (A-FAN), which (i) first
augments visual recognition models with adversarial features that integrate flexible scales
of perturbation strengths, (ii) then extracts adversarial feature statistics from batch nor-
malization, and re-injects them into clean features through feature normalization. We
validate the proposed approach across diverse visual recognition tasks with representative
backbone networks, including ResNets and EfficientNets for classification, Faster-RCNN for
detection, and Deeplab V3+ for segmentation. Extensive experiments show that A-FAN
yields consistent generalization improvement over strong baselines across various datasets for
classification, detection and segmentation tasks, such as CIFAR-10, CIFAR-100, ImageNet,
Pascal VOC2007, Pascal VOC2012, COCO2017, and Cityspaces. Comprehensive ablation
studies and detailed analyses also demonstrate that adding perturbations to specific modules
and layers of classification/detection/segmentation backbones yields optimal performance.
Codes are fully provided in the supplement.
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Figure 1: Overview of adversarial feature augmentation
and normalization ( A-FAN) for enhanced image clas-
sification (left), object detection (center) and seman-
tic segmentation (right). We take ResNets (He et al.,
2016), Faster RCNN (Ren et al., 2016), and DeepLab
V3+ (Chen et al., 2018) pipelines as examples. Our
proposed A-FAN mechanisms are plugged into back-
bone networks and/or ROI/decoder modules for clas-
sification/detection/segmentation, respectively.

Adversarial vulnerability is a critical issue in the
practical application of neural networks. Various
attacks have been proposed to challenge visual
recognition models of classification, detection and
segmentation (Szegedy et al., 2013; Goodfellow
et al., 2014; Li et al., 2018c;b; Lu et al., 2017; Liu
et al., 2018a; Lu et al., 2017; Xie et al., 2017; Wei
et al., 2018; Arnab et al., 2018; Shen et al., 2019).
Such susceptibility has motivated abundant stud-
ies on adversarial defense mechanisms for training
robust neural networks (Schmidt et al., 2018; Sun
et al., 2019; Nakkiran, 2019; Stutz et al., 2019;
Raghunathan et al., 2019; Hu et al., 2019; Chen
et al., 2020; 2021; Jiang et al., 2020), among which
adversarial training based methods (Madry et al.,
2017; Zhang et al., 2019a), leveraging augmented
adversarial examples, have achieved consistently
superior robustness than others. However, crafting
high-quality adversarial examples is computation-
ally costly, and such adversarial training often
results in a negative impact on performance over clean data (Zhang et al., 2019a).

1



Under review as submission to TMLR

Interestingly, a few advanced studies turn to investigate the possibility of ameliorating networks’ generalization
ability via adversarial training. Recent progress shows that using adversarial perturbations to augment
input data/embedding can effectively alleviate overfitting issues and lead to better generalization in multiple
domains, including image classification (Xie et al., 2020), language understanding (Wang et al., 2019; Zhu
et al., 2020), and vision-language modeling (Gan et al., 2020). However, it still suffers from expensive
computational cost due to the generation of pixel-level perturbations when applied to image classification.
We raise the following natural, yet largely open questions:

Q1: Can adversarial training, as data augmentation, broadly boost the performance of various visual
recognition tasks on clean data, not only image classification, but also object detection, semantic segmentation
or so?

Q2: If the above answer is yes, can we have more efficient and effective options for adversarial data
augmentation, e.g., avoiding the high cost of finding input-level adversarial perturbations?

In this paper, we propose A-FAN (Adversarial Feature Augmentation and Normalization), a novel algorithm
to improve the generalization for visual recognition models. Our method perturbs the representations
of intermediate feature space for both task-specific modules (e.g., Classifiers for ResNets, ROI for Faster
RCNN, and Decoder for Deeplab V3+) and generic backbones, as shown in Figure 1. Specifically, A-FAN
generates adversarial feature perturbations efficiently by one-step projected gradient descent, and fastly
computes adversarial features with other perturbation strengths from weak to strong via interpolation. This
strength-spectrum coverage allows models to consider a wide range of attack strengths simultaneously, to
fully unleash the power of implicit regularization of adversarial features.

Furthermore, A-FAN normalizes adversarial augmented features in a “Mixup" fashion. Unlike previous
work (Zhang et al., 2017; Li et al., 2020) that fuses inputs or features from different samples, we amalgamate
adversarial and clean features by injecting adversarial statistics extracted from batch normalization into clean
features. Such re-normalized features serve as an implicit label-preserving data augmentation, which smooths
the learned decision surface (Li et al., 2020). Our main contributions are summarized as follows:

• We introduce a new adversarial feature augmentation approach to enhancing the generalization
ability of image classification, object detection, and semantic segmentation models, by incorporating
scaled perturbation strength from weak to strong simultaneously.

• We also propose a new feature normalization method, which extracts the statistics from adversarial
perturbed features and re-injects them into the original clean features. It can be regarded as implicit
label-preserving data augmentation that smooths the learned decision boundary (illustrated in
Figure 3 later on).

• We conduct comprehensive experiments to verify the effectiveness of our proposed approach over
diverse tasks (CIFAR-10, CIFAR-100, ImageNet for image classification; Pascal VOC2007 and
COCO2017 for object detection; Pascal VOC2007, Pascal VOC2012 and Cityspaces for semantic
segmentation). The substantial and consistent performance lift demonstrates the superiority of our
A-FAN framework.

2 Related Work

Adversarial Attacks and Defenses. When presented with adversarial samples, which are maliciously
designed by imperceptible perturbations (Goodfellow et al., 2014; Kurakin et al., 2016; Madry et al., 2017),
deep neural networks often suffer from severe performance deterioration, e.g., Szegedy et al. (2013); Goodfellow
et al. (2014); Carlini & Wagner (2017); Croce & Hein (2020) for classification models and Li et al. (2018c;b);
Lu et al. (2017); Liu et al. (2018a); Xie et al. (2017); Wei et al. (2018); Zhang et al. (2020); Arnab et al. (2018);
Shen et al. (2019) for detection/segmentation models. To address this notorious vulnerability, numerous
defense mechanisms (Zhang et al., 2019a; Schmidt et al., 2018; Sun et al., 2019; Nakkiran, 2019; Stutz et al.,
2019; Raghunathan et al., 2019) have been proposed, such as input transformation (Xu et al., 2017; Liao
et al., 2018; Guo et al., 2017; Dziugaite et al., 2016), randomization (Liu et al., 2018c;b; Dhillon et al., 2018),
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Figure 2: The pipeline of A-FAN, which contains adversarial feature augmentation and adversarial feature
normalization. From top to bottom, a series of adversarial feature perturbations with different strengths are
generated to augment the intermediate clean features. Then, the statistics (i.e., µadv and σadv) of perturbed
features fadv are extracted and re-injected into the original clean features fclean. In the end, the normalized
features fmix are taken as inputs by the rest of the network, and optimized by LA−FAN with standard (Lclean)
and adversarial (Ladv) training objectives.

and certified defense approaches (Cohen et al., 2019; Raghunathan et al., 2018). Among these, adversarial-
training-based methods show superior robustness in defending state-of-the-art adversarial attacks (Goodfellow
et al., 2014; Kurakin et al., 2016; Madry et al., 2017). Although adversarial training substantially enhances
model robustness, it usually comes at the price of compromising the standard accuracy Tsipras et al. (2019),
which has been demonstrated both empirically and theoretically (Zhang et al., 2019a; Schmidt et al., 2018;
Sun et al., 2019; Nakkiran, 2019; Stutz et al., 2019; Raghunathan et al., 2019).

Adversarial Training Ameliorates Generalization. It is unexpected, but reasonable that recent
works (Xie et al., 2020; Zhu et al., 2020; Wang et al., 2019; Gan et al., 2020; Wei & Ma, 2019) present an
opposite perspective: adversarial training can be leveraged to enhance models’ generalization if harnessed in
the right manner. For example, Xie et al. (2020) shows that image classification performance on the clean
dataset can be improved by using adversarial samples with pixel-level perturbation generation. Zhu et al.
(2020) and Wang et al. (2019) apply adversarial training to natural language understanding and language
modeling, both successfully achieving better standard accuracy. Gan et al. (2020) achieves similar success on
various vision-and-language tasks. Parallel studies (Wei & Ma, 2019; Ishii & Sato, 2019) employ handcrafted
or auto-generated perturbed features to ameliorate generalization. However, adversarial training in latent
feature space as a more efficient and effective alternative has, to our best knowledge, not been studied in
depth, even for classification tasks. Our work comprehensively explores this possibility not only for image
classification, but also for object detection and semantic segmentation which are more challenging prediction
tasks and usually require a much more sophisticated model structure, posing obstacles to easily exploit
adversarial information for enhanced generalization.

Feature Augmentation and Normalization. Pixel-level data augmentation techniques have been widely
adopted in visual recognition models,e.g., Simard et al. (1993); Schölkopf et al. (1996); Cubuk et al. (2018);
Hendrycks et al. (2019) for classification, Girshick et al. (2018); Liu et al. (2016); Zoph et al. (2019) for
detection and segmentation. They are generic pipelines for augmenting training data with image-level
information. Adversarial samples can also serve as a data augmentation method (Xie et al., 2020). However,
feature space augmentations have not received the same level of attention. A few pioneering works propose
generative-based feature augmentation approaches for domain adaptation (Volpi et al., 2018), imbalanced
classification (Zhang et al., 2019b), and few-shot learning (Chen et al., 2019).

Feature normalization plays an important role in neural network training (Ioffe & Szegedy, 2015; Li et al.,
2020; Montavon et al., 2012; Li & Zhang, 1998). Ioffe & Szegedy (2015) proposes batch normalization to
remove biases in the dataset, which can substantially improve model generalization ability. Xie et al. (2020)
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utilizes dual batch normalization to calculate statistics of adversarial and clean samples separately, therefore
obtaining promising standard accuracy. Recent investigations (Ba et al., 2016; Ulyanov et al., 2016; Wu &
He, 2018; Li et al., 2019; 2020) devote a particular attention to normalizing features of each training instance
individually. As an illustration, Li et al. (2020) leverages the first and second-order moments of extracted
features and re-injects these moments into features from another instance by feature normalization. Different
from them, we propose to utilize feature normalization techniques to combine adversarial and clean features
to smooth the learned decision surface and improve model generalization.

3 Preliminaries

3.1 Rationale of A-FAN

Theoretical Insights. For linear classifiers, a large output margin, the gap between predictions on the
true label and the next most confident label, implies good generalization (Bartlett & Mendelson, 2002;
Koltchinskii et al., 2002; Hofmann et al., 2008; Kakade et al., 2008). Although this relationship is less clear
for non-linear deep neural networks, Wei & Ma (2019) establishes a similar generalization bound associated
with the “all-layer margin" which depends on Jacobian and intermediate layer norms. Furthermore, Wei &
Ma (2019) derives theoretical analyses that appropriately injecting perturbations to intermediate features
encourages a large layer margin and leads to improved generalization. A parallel study (Wang et al., 2019)
presents theoretical intuitions from a new perspective that introducing adversarial noises encourages the
diversity of the embedding vectors, mitigates overfitting, and improves generalization for neural language
models. These observations make the main cornerstone for our A-FAN approach valid.

Empirical Evidences. There exist advanced studies (Xie et al., 2020; Zhu et al., 2020; Wang et al., 2019;
Gan et al., 2020; Wei & Ma, 2019) revealing that appropriately utilizing adversarial perturbations ameliorates
generalization ability of deep neural networks on diverse applications. Note that these designed approaches
are not defense mechanisms for adversarial robustness; instead, they serve as a special data augmentation
for improved performance on clean samples. Different from input perturbations (Xie et al., 2020), our
work leverages adversarial perturbation in latent feature space. To further unleash the power of adversarial
augmented features, we asymmetrically fuse them with clean features, which allows the model to capture and
smooth out different directions of the decision boundary (Li et al., 2020). Accordingly, A-FAN-augmented
models obtain flatter loss landscape (i.e., smaller norms of Hessian with respect to model weights) and
improved generalization ability, as supported in Table 1 and Figure 3.

Table 1: Performance and Hessian properties of
ResNet-56s with or without A-FAN on CIFAR-10.
A smaller spectral norm or trace of Hessian indicates
a flatter loss landscape w.r.t. model weights.

Settings ResNet-56s ResNet-56s + A-FAN
Standard Accuracy 93.59 94.82
Spectral Norm of Hessian 23.34 12.66
Trace of Hessian 246.24 211.94

ResNet-56s ResNet-56s + A-FAN

Figure 3: Loss landscape (Li et al., 2018a) of ResNet-
56s with or without A-FAN on CIFAR-10.

3.2 Notations

Our proposed A-FAN framework includes two key components: (i) adversarial feature augmentation; and (ii)
adversarial feature normalization, as shown in Figure 2. Note that we introduce adversarial perturbations in
the intermediate feature space, instead of manipulating raw image pixels as in common practice.

Let D = {x, y} denotes the dataset, where x is the input image and y is the corresponding ground-truth
(e.g., one-hot classification labels, bounding boxes or segmentation maps). Let f(x; θ) with θ = (θb, θt)
represent the predictions of neural networks, where θb and θt are the parameters of the backbone networks
and task-specific modules, respectively. For example, θt denotes the parameters of ResNets’ classifiers; or the
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parameters of RPN, ROI, and classifier in Faster RCNN; or the parameters of ASPP and Decoder in Deeplab
V3+. Adversarial training (Madry et al., 2017) can be formulated as follows:

min
θ

E(x,y)∈D

[
max

∥δ∥p≤ϵ
Ladv(f(x + δ, θ); y)

]
, (1)

where δ is the crafted adversarial perturbation constrained within a ℓp norm ball centered at x with a radius ϵ.
The radius ϵ is the maximum magnitude of generated adversarial perturbations, which roughly indicates the
strength of perturbations (Madry et al., 2017). E(x,y)∈D takes the expectation over the empirical objective
over the dataset D. The perturbation δ can be reliably created by multi-step projected gradient descent
(PGD) (Madry et al., 2017) (taking ∥ · ∥∞ perturbation for example):

δt+1 = Π∥δ∥∞≤ϵ [δt + α · sgn(∇xLadv(f(x + δt, θ); y)] , (2)

where α is the step size of inner maximization, sgn is the sign function, and Ladv is the adversarial training
objective calculated over perturbed images.

3.3 Adversarial Feature Augmentation

In this section, we present the proposed adversarial feature augmentation mechanism. Specifically, pertur-
bations are generated in the intermediate feature space via PGD (taking features from backbone θb for
example):

min
θ

E(x,y)∈D

[
Lclean + λ max

||δ||∞≤ϵ
Ladv(f(x, θb) + δ; θt; y)

]
, (3)

where the type of Lclean = L(f(x, θ); y) and Ladv are determined by tasks (e.g., detection models adopt
regression and classification loss). λ is a hyperparameter to control the influence of adversarial feature
augmentation. Perturbations δ are generated by PGD, as shown in Equation 2, but on the features f(x, θb)
from the backbone network (θb) rather than on raw input images. Note that the formulation in Equation 3
only considers single perturbation strength.

To fully unleash the powerful of adversarial augmentation in the feature space, we propose an enhanced
technique that utilizes a series of adversarially perturbed features with strength from weak to strong
simultaneously. In particular, we integrate the adversarial training objective with respect to the feature
perturbation strength ϵ on an interval instead of a single point, depicted as follows:

L =
∫ E

0
max

||δ||∞≤ϵ
Ladv(f(x, θb) + δ(ϵ); θt; y)dϵ, (4)

where [0, E ] is the integral interval for perturbation strength ϵ, and δ(ϵ) is the crafted feature perturbation
dependent on ϵ. In a similar way, we can generate adversarial augmented features for the task-specific modules
θt in classification, detection and segmentation models.

Approximation. Unfortunately, the integral in Equation 4 is intractable due to the lack of an explicit
functional representation for deep neural networks. We provides an approximate solution by uniformly
sampling {ϵ(1), · · · , ϵ(k)} ∈ [0, E ] and subsequently generating augmented features {f

(1)
adv, · · · , f

(k)
adv}, as shown

in Figure 2. Specifically, ∫ E

0
max

||δ||∞≤ϵ
Ladv(f(x, θb) + δ(ϵ); θt; y)dϵ (5)

≈
k∑

i=1
max

||δ||∞≤ϵ(i)
Ladv(f(x, θb) + δi(ϵ(i)); θt; y),

where f
(i)
adv = f(x, θb) + δi(ϵ(i)) is the adversarial augmented feature embedding.
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3.4 Adversarial Feature Normalization

In this section, we introduce the proposed adversarial feature normalization. Inspired by Zhang et al. (2017);
Yun et al. (2019); Li et al. (2020), we fuse clean (fclean) and adversarially (fadv) perturbed features for
each training sample. Specifically, normalized features fmix are crafted by normalizing clean features with
adversarial feature moments. This asymmetric composition across clean and adversarial features assists
networks to smooth out decision boundaries and obtain improved generalization (Li et al., 2020).

Let µclean and µ
(i)
adv denote the first-order moment of clean feature and the i-th augmented adversarial

feature. Similarly, σclean and σ
(i)
adv denote the corresponding second-order moment. Their feature statistics

are calculated in the routine of batch normalization (Ioffe & Szegedy, 2015). Note that the statistics can also
derive from other normalization approaches (Ba et al., 2016; Ulyanov et al., 2016; Wu & He, 2018; Li et al.,
2019), such as instance-norm. The detailed formulation is defined as follows:

f
(i)
mix := σ

(i)
adv

fclean − µclean

σclean
+ µ

(i)
adv, (6)

where i ∈ {1, 2, · · · , k} and k are the number of augmented features. Normalized features f
(i)
mix are fed to the

networks and computed as the adversarial training objective L(i)
adv.

3.5 Overall Framework of A-FAN

As presented in Figure 2, we first generate a sequence of adversarial perturbations with diverse strengths
to augment the intermediate features. Then, we inject perturbed feature statistics into clean features by
feature normalization. In the end, the augmented and normalized features f

(i)
mix together with clean features

fclean are both utilized in the network training. In this way, adversarial training can be formulated as an
effective regularization to improve the generalization ability of visual recognition models. The full algorithm
is summarized in Algorithm 1.

Algorithm 1 Adversarial Feature Augmentation and Normalization (A-FAN).
1: Initialize: f(x, θ) is the visual recognition model, where θ = (θ1, θ2). f(x, θ1) are intermediate features.

2: # Generate adversarial augmented features
3: Uniformly sample k different perturbation strength {ϵ(1), · · · , ϵ(k)} from [0, E ].
4: Generate adversarial perturbations δ1(ϵ(1)) with PGD, according to Equation 2 and 3.
5: Apply δ1(ϵ(1)) to the intermediate features and obtain adversarial features f

(1)
adv.

6: for ϵ(i) ∈ {ϵ(2), · · · , ϵ(k)} do
7: Generate other augmented features f

(2)
adv, · · · , f

(k)
adv via the efficient implementation in Section 3.3.

8: end for
9: # Generate adversarial normalized features

10: Calculate the feature statistics µclean, σclean and {µ
(i)
adv, σ

(i)
adv}k

i=1 with batch normalization (Ioffe &
Szegedy, 2015).

11: for i ∈ {1, 2, · · · , k} do
12: Inject adversarial feature statistics µ

(i)
adv, σ

(i)
adv into clean features fclean via the normalization, and

obtain normalized features f
(i)
mix, according to Equation 6.

13: end for
14: Feed normalized features to the model and compute the complete objective of A-FAN in Equation 7.
15: Return Training objective LA−FAN

After incorporating adversarial feature augmentation and normalization, the complete training objective of
A-FAN can be computed as follows:

fA−FAN := Lclean + λ
∑k

i=1L(i)
adv , (7)

where λ = 1 is tuned by grid search.
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4 A-FAN on Image Classification

Datasets and Backbones. We consider three representative datasets for image classification: CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009), and ImageNet (Deng et al., 2009). In our experiments, the original
training datasets are randomly split into 90% training and 10% validation. The early stopping technique
is applied to find the top-performing checkpoints on the validation set. Then, the selected checkpoints are
evaluated on the test set to report the performance. The hyperparameters are tuned by grid search, which
are quite stable from validation to test sets based on our observations, including PGD steps, step size α, the
layers to introduce adversarial perturbations, and the number of perturbations with different strength levels.
We evaluate large backbone networks (ResNet-18/50/101/152 (He et al., 2016), EfficientNet-B0 (Tan & Le,
2019)) on ImageNet, and test smaller backbones (ResNet-20s/56s) as well on CIFAR-10 and CIFAR-100.

Training Details and Evaluation Metrics. For network training on CIFAR-10 and CIFAR-100, we adopt
an SGD optimizer with a momentum of 0.9, weight decay of 5 × 10−4, and batch size of 128 for 200 epochs.
The learning rate starts from 0.1 and decays to one-tenth at 50-th and 150-th epochs. We also perform a
linear learning rate warm-up in the first 200 iterations. For ImageNet experiments, following the official
setting in Pytorch repository,1 we train deep networks for 90 epochs with a batch size of 512, and the learning
rate decay at 30-th and 60-th epoch. The SGD optimizer is adopted with a momentum of 0.9 and a weight
decay of 1 × 10−4. We evaluate the generalization ability of a network with Standard Testing Accuracy (SA),
which represents image classification accuracy on the original clean test dataset.

Table 2: Standard testing accuracy (SA%) of ResNet-
20s/56s on CIFAR-10 and CIFAR-100. Baseline de-
notes the standard training without A-FAN. ↑ in-
dicates the improvement over SA compared to the
corresponding baseline in standard training.

Settings CIFAR-10 CIFAR-100
Baseline A-FAN Baseline A-FAN

ResNet-20s 91.25 92.52 (↑ 1.27) 66.92 67.89 (↑ 0.97)
ResNet-56s 93.59 94.82 (↑ 1.23) 71.22 72.36 (↑ 1.14)

Table 3: Standard testing accuracy (SA%) of ResNet-
18/50/101/152 and EfficientNet-B0 on ImageNet.

Settings ImageNet
Baseline Baseline + A-FAN

ResNet-18 69.38 70.25 (↑ 0.87)
ResNet-50 75.21 76.33 (↑ 1.12)
ResNet-101 77.10 78.14 (↑ 1.04)
ResNet-152 78.31 78.69 (↑ 0.38)

EfficientNet-B0 77.04 77.50 (↑ 0.46)

CIFAR and ImageNet Results. We apply PGD-5 and PGD-1 to augment the feature embeddings in
the last block with adversarial perturbations for CIFAR and ImageNet models, respectively. A series of
adversarial augmented features are crafted with three different strengths uniformly sampled from [0,α], where
the step size α = 0.5/255. Table 2 and Table 3 present the standard testing accuracy of diverse models on
CIFAR-10, CIFAR-100 and ImageNet. Comparing the standard training (i.e., Baseline) with our proposed
A-FAN, here are the main observations:

• A-FAN obtains a consistent and substantial improvement over standard accuracy, e.g., 1.27% on
CIFAR-10 with ResNet-20s, 1.14% on CIFAR-100 with ResNet-56s, 1.12% and 0.46% on ImageNet
with ResNet-50 and EfficientNet-B0. This suggests that training with augmented and normalized
features generated by A-FAN effectively enhances the generalization of deep networks. We hypothesize
that it is because adversarial perturbed features are treated as an implicit regularization, leading to
better solutions for network training.

• Shallow ResNets benefit more from A-FAN than deep ResNets (e.g., 1.12% on ResNet-50 vs. 0.38%
on ResNet-152). A possible reason is that the performance of standard trained deep ResNets is
already saturated, leaving little room for improvement.

Furthermore, we notice that A-FAN advocates different steps of PGD to achieve superior performance on
diverse datasets. More ablation analyses can be found in Section 7. Meanwhile, although the robust testing
accuracy is not the focus of A-FAN, we report it for completeness in Section B.1.

1https://github.com/pytorch/examples/tree/master/imagenet
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Table 5: Details of training and evaluation. We use the standard implementations and hyperparameters
in Ren et al. (2015); Chen et al. (2018). The evaluation metrics are also follow standards in Ren et al. (2015);
Chen et al. (2018). Linear learning rate warm-up for 100 iterations is applied.

Datasets Detection Segmentation
Pascal VOC2007 COCO2017 Pascal VOC2007 Pascal VOC2012 Cityspaces

Batch Size 8 8 4 4 4
Iterations 11, 250 180, 000 10, 000 30, 000 30, 000

Init. Learning Rate 0.008 0.01 0.01 0.01 0.1
Learning Rate Decay ×0.1 at 6, 250, 8, 750 ×0.1 at 120, 000, 160, 000 Polynomial w. power 0.9 Polynomial w. power 0.9

Optimizer SGD with momentum 0.9 and weight decay 5 × 10−4 SGD with momentum 0.9 and weight decay 1 × 10−4

Eval. Metric mAP AP, AP50, AP75 mIOU mIOU mIOU

Table 4: Running time per epoch and standard testing
accuracy (SA%) comparison across Baseline, AdvProp,
and A-FAN.

Settings ResNet-18 on CIFAR-10 EfficientNet-B0 on ImageNet
SA Time SA Time

Baseline 94.30 23s 77.00 2628s
AdvProp 94.52 (↑ 0.22) 123s 77.60 (↑ 0.60) 13352s
A-FAN 94.67 (↑ 0.37) 56s 77.50 (↑ 0.50) 6237s

A-FAN vs. AdvProp. We compare A-FAN
with AdvProp (Xie et al., 2020) on CIFAR-10 with
ResNet-18, and on ImageNet with EfficientNet-
B0 (Tan & Le, 2019), as presented in Table 4.
CIFAR-10 models are trained on a single GTX1080
Ti GPU. ImageNet (batch size 256) experiments
are conducted on 2× Quadro RTX 6000 GPUs
with 24G×2 memory in total. Since for generating
feature-level perturbations, only a partial backpropagation to the target intermediate layer is needed which
brings computational saving. The results also confirm our intuition that proposed A-FAN as an effective
and efficient alternative for pixel-level adversarial augmentations (e.g., AdvProp), achieves competitive
performance with much more less computational cost (i.e., less running time).

5 A-FAN on Object Detection

Datasets and Backbones. We evaluate A-FAN on Pascal VOC2007 (Everingham et al., 2010) and
COCO2017 (Lin et al., 2014) for object detection. COCO2017 is a large-scale dataset with more than ten
times of data than Pascal VOC2007. Specifically, in Pascal VOC2007, we use the train and validation sets
for training, and evaluate on test set; in COCO2017, we train models on the train set and evaluateon the
validation set. All other implementation and hyperparameters are provided in Table 5. Our experiments
choose the widely-used framework, Faster RCNN (Ren et al., 2015), for detection tasks. It is worth mentioning
that the proposed A-FAN approach can be directly plugged into other detection frameworks without any
change, which is left to future work. We conduct experiments with both ResNet-50 (He et al., 2016) and
ResNet-101 (He et al., 2016) as backbone networks.

Pascal VOC and COCO Results. Results are presented in Table 6. All hyperparameters of A-FAN
are tuned by grid search, including PGD steps, step size α, the layers to introduce adversarial feature
augmentations, and the number of perturbations with different strength levels. We find that utilizing PGD-1
to generate adversarial feature perturbations in the last layer of backbone and ROI networks of Faster RCNN,
achieves the most promising performance. We adopt α = 0.3/255 for Pascal VOC2007 and α = 0.5/255
for COCO2017. For both datasets, a series of adversarial augmented features are crafted with five different
strengths uniformly sampled from [0,α]. To evaluate the robustness (i.e., robust AP) of detection model (Li
et al., 2018c; Xie et al., 2017), PGD-10 attack with α = 0.3/255 and ϵ = 2.0/255 is applied.

Table 6 summarizes the results of the baseline (i.e., standard training) and A-FAN. More results with different
training settings are provided in Section B.2. Comparing standard training with our proposed A-FAN
mechanism, several major observations can be drawn:

• A-FAN consistently achieves substantial performance improvement across multiple backbones on di-
verse datasets. Specifically, A-FAN gains 0.65%/0.84% AP with ResNet-50/ResNet-101 on COCO2007,
and 1.42%/1.39% mAP with ResNet-50/ResNet-101 on Pascal VOC2007. This demonstrates that
training with adversarially augmented and normalized features crafted via A-FAN significantly boosts
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Table 6: Performance of object detection on Pascal VOC2007 and COCO2017 datasets. Faster RCNN
is equipped with ResNet-50/ResNet-101 backbone networks, respectively. Robustness is evaluated on the
adversarial perturbed images (Li et al., 2018c; Xie et al., 2017) via PGD-10.

COCO2017 ResNet-50 ResNet-101
Baseline A-FAN Baseline A-FAN

AP (%) 33.20 33.85 36.21 37.05
AP50 (%) 53.92 54.73 56.90 57.31
AP75 (%) 35.83 36.54 39.40 40.22
Robust AP (%) 0.00 0.50 0.20 0.66

Pascal VOC2007 ResNet-50 ResNet-101
Baseline A-FAN Baseline A-FAN

mAP (%) 73.96 75.38 74.32 75.71
Robust mAP (%) 0.86 2.43 1.71 3.85

the generalization of detection models. A possible reason is that utilizing adversarially perturbed
features as an implicit regularization for training leads to better generalization.

• Detectors trained on small-scale dataset benefits more from A-FAN. For example, Faster RCNN with
ResNet-50 backbone obtains an almost double mAP2 boost (i.e., 1.42% vs. 0.81%) on VOC2007
than on COCO2017. It comes as no surprise that adversarially augmented and normalized features
can be regarded as data augmentation in the embedding space and therefore perform more effectively
on small-scale datasets (Shorten & Khoshgoftaar, 2019). We also notice that Faster RCNN with
both shallow and deep ResNets gets a similar degree of improvement.

• Besides the enhanced generalization ability, detectors trained with A-FAN also receive better ro-
bustness, improved by 0.46% ∼ 0.50% robust AP on COCO2017 and 1.57% ∼ 2.14% robust mAP
on Pascal VOC2007. Although the improved robustness still cannot hold a candle to adversarially
trained models (Dai et al., 2016; Ren et al., 2016; Lin et al., 2017), it is an extra bonus from A-FAN.

• A-FAN can achieve similar improvements, compared to other previous/identical data augmentations
(e.g., (Zoph et al., 2019)).

Table 7: Performance of object detection on Pascal
VOC2007 datasets. Faster RCNN is equipped with
ResNet-101 backbone networks. Robustness are eval-
uated on the adversarial perturbed images (Li et al.,
2018c; Xie et al., 2017) via PGD-10 with α = 0.3/255
and ϵ = 2.0/255.

Metrics ResNet-101 on Pascal VOC2007
Baseline Baseline + A-FAN LDA

mAP (%) 76.00 79.66 78.70
Robust mAP (%) 2.59 5.05 -

Comparison with Learned Data Augmenta-
tion (LDA) for Object Detection. A recent
work (Zoph et al., 2019) presents learned, specialized
data augmentation policies to improve generalization
performance for detection models. Although it is
independent of our proposed feature-level adversarial
augmentation, we still provide comparison experi-
ments for a comprehensive investigation, as shown in
Table 7. Note that, for a fair comparison, we follow
the exact same setting as Zoph et al. (2019)’s. In
addition to the detailed parameters, we combine the
training sets of Pascal VOC 2007 and Pascal VOC 2012, and test the trained models on the Pascal VOC
2007 test set (4953 images). From Table 7, we observe that both A-FAN and LDA obtain performance
improvements by 3.66% mAP and 2.70% mAP, respectively. Achieved superior performance further validates
the effectiveness of our proposed A-FAN.

6 A-FAN on Semantic Segmentation

Datasets and Backbones. We validate the effectiveness of A-FAN on Pascal VOC2007 (Everingham
et al., 2010), Pascal VOC2012 (Everingham et al., 2015), and Cityspaces (Cordts et al., 2016) for semantic
segmentation. Among these commonly used datasets, Cityspaces is a large-scale datasets with more than ten
times of data than Pascal VOC2007/2012. Specifically, in Pascal VOC2007, we use the train and validation
sets for training, and evaluate ontest set; in Pascal VOC2012 and Cityspaces, we train models on the train set
and evaluate on the validation set. All other implementation and hyperparameters are provided in Table 5.

2AP50 shares the same meaning as mAP in VOC datasets (Zhang et al., 2020)
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Table 8: Performance of object detection on Pascal VOC2007 and COCO2017 datasets. Faster RCNN is
equipped with ResNet-50/ResNet-101 backbone networks. Robustness is evaluated on adversarially perturbed
images (Shen et al., 2019) via PGD-10.

Pascal VOC2012 ResNet-50 ResNet-101
Baseline A-FAN Baseline A-FAN

mIOU (%) 71.20 72.21 73.65 74.91
Robust mIOU (%) 10.84 12.07 9.75 11.01

ResNet-50 Pascal VOC2007 Cityspaces
Baseline A-FAN Baseline A-FAN

mIOU (%) 61.51 62.83 76.00 76.43
Robust mIOU (%) 6.77 7.06 0.51 1.11

Our experiments adopt the popular framework DeepLab V3+ (Chen et al., 2018) with ResNet-50 (He et al.,
2016) and ResNet-101 (He et al., 2016) as backbone networks, for segmentation tasks. Note that A-FAN can
also be directly plugged into other segmentation frameworks without any change, which is left to future work.

Pascal VOC and Cityspaces Results. Results are collected in Table 8. We adopt PGD-1 to craft
adversarially augmented features with three different perturbation strengths (sampled from [0,α]) in the
last layer of backbone and the decoder networks of DeepLab V3+ with α = 1.0/255, 0.4/255, 0.3/255 for
Pascal VOC2007, Pascal VOC2012 and Cityspaces, respectively. All hyperparameters are tuned by grid
search. PGD-10 with α = 1.0/255 and ϵ = 8.0/255 is employed to measure robustness (i.e., Robust mIOU)
of segmentation models (Shen et al., 2019).

From the results in Table 8, we observe that Deeplab V3+ gains substantial performance improvement from A-
FAN, which is consistent with the observations on detection models. First, A-FAN enhances the generalization
of segmentation models by 1.01%/1.26% mIOU with ResNet-50/ResNet-101 on Pascal VOC2012, 1.32% with
ResNet-50 on Pascal VOC2007, and 0.43% mIOU with ResNet-50 on Cityspaces. Second, A-FAN improves
Deeplab V3+ more on Pascal VOC2007/2012 than on Cityspaces (i.e., 1.01% ∼ 1.32% vs. 0.43%), where
the former two datasets only have one-tenth amount of data compared to Cityspaces. Third, Training with
A-FAN yields moderate robustness improvement (i.e., 0.29% ∼ 1.25% robust mIOU) for segmentation models.

7 Ablation Study and Analyses

Table 9: Ablation study of A-FAN on CIFAR-10 with
ResNet-56s. AFA: adversarial feature augmentation;
AFN: adversarial feature normalization (i.e., A-FAN =
AFA + AFN). ↑ indicates performance improvement
compared to the baseline on corresponding dataset.

Settings Classification
Standard Accuracy (%)

Baseline 93.59
+ AFA 94.45 (↑ 0.86)
+ AFA + AFN 94.82 (↑ 1.23)

Augmentation v.s. Normalization. To verify
the effects of adversarial feature augmentation (AFA)
and adversarial feature normalization (AFN) in A-
FAN, we incrementally evaluate each module on
CIFAR-10 for image classification, Pascal VOC2007
for object detection, and Pascal VOC2012 for seman-
tic segmentation. As shown in Table 9 and Table 10,
AFA improves the baseline by 0.86% SA/1.13%
AP/0.89% mIOU for classification, detection and
segmentation, respectively. The combination of the
two modules, AFA and AFN, gains a further perfor-
mance boost by 0.37% SA/0.29% AP/0.12% mIOU on CIFAR-10, Pascal VOC2007 and VOC2012. These
results demonstrate that each proposed component contributes to improving the generalization ability of
detection and segmentation models, and AFA plays a dominant role in boosting performance.

Effects on Backbone v.s. ROI/Decoder. In general, detection and segmentation models can be
divided into backbone and task-specific modules (e.g., RPN/ROI in Faster RCNN (Ren et al., 2016) and
ASPP/Decoder in Deeplab V3+). Our proposed A-FAN can be introduced to either or both modules as
shown in detailed ablations in Table 10. We observe that applying A-FAN to backbone networks (↑1.10%
AP/↑0.78% mIOU) gains more generalization improvement than ROI/Decoder modules (↑0.72% AP/↑0.51%
mIOU) for detection and segmentation. Incorporating A-FAN on both backbone and task-specific modules
always enjoys extra performance boost, compared to applying either one alone.
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Figure 4: Ablation study on the location and strength
of introducing A-FAN to classification models. Re-
sults are on CIAFR-10 dataset with ResNet-18. (a)
PGD steps used in the generation of adversarial per-
turbations; (b) The number of augmented features, (k
in Equation 5); (c) The location to apply A-FAN, e.g.,
B1 means that A-FAN is applied to features from the
first residual blocks in the ResNet backbone; (d) Step
size α that controls the strength of crafted perturba-
tions. The red points indicate the top performance.

Figure 5: Ablation study on the location and strength
of introducing A-FAN to detection models. Results
are on Pascal VOC2007 dataset. (a) PGD steps used
in the generation of adversarial perturbations; (b) The
number of augmented features, (k in Equation 5); (c)
The location to apply A-FAN, e.g., B1 means that
A-FAN is applied to features from the first residual
blocks in the ResNet backbone; (d) Step size α that
controls the strength of crafted perturbations. The
red points represent settings with top performance.

Table 10: Ablation study of A-FAN on Pascal VOC2007
and Pascal VOC2012 for detection and segmentation,
respectively. AFA: adversarial feature augmentation;
AFN: adversarial feature normalization (i.e., A-FAN
= AFA + AFN). ResNet-50 backbone is used here. ↑
indicates performance improvement compared to the
corresponding baseline. Classification is in Table 9.

Settings Detection Segmentation
AP (%) mIOU (%)

Baseline 73.96 71.20
+ AFA 75.09 (↑ 1.13) 72.09 (↑ 0.89)
+ AFA + AFN 75.38 (↑ 1.42) 72.21 (↑ 1.01)

A-FAN on Backbone 75.06 (↑ 1.10) 71.98 (↑ 0.78)
A-FAN on ROI/Decoder 74.68 (↑ 0.72) 71.71 (↑ 0.51)
A-FAN on Both 75.38 (↑ 1.42) 72.21 (↑ 1.01)

Effects of Location and Strength. The per-
formance gain from A-FAN is determined by the
location and strength of generated adversarial pertur-
bations. Figure 4, 5 and 6 illustrate a comprehensive
control study to investigate these relevant factors.
Without losing generality, these ablation experiments
and analyses are performed on backbone networks.
When studying one of the factors, we choose the best
configuration for the other factors.

To identify the proper location for A-FAN operation
we inject feature perturbations to different blocks
(e.g., B1) or some combination of blocks (e.g., B2,B3),
as presented in Figure 4 (c) for classification, 5 (c) for
detection, and 6 (c) for segmentation. We notice that
applying A-FAN to features from the last block (i.e.,
B3 or B4) obtains the best performance, while introducing A-FAN to multiple blocks degrades generalization.

Table 11: Performance comparison between adversarial
feature perturbations with the strength α and random
noise sampled from a Gaussian distribution N (0, α2).
Results are reported on CIFAR-10 (with ResNet-56s),
Pascal VOC2007, and Pascal VOC2012 for classifica-
tion, detection, and segmentation, respectively. ↑/↓
indicates performance improvement/degradation.

Settings CIFAR-10 VOC2007 VOC2012
SA (%) AP (%) mIOU (%)

Random Noise + AFN 93.36 (↓ 0.23) 73.91 (↓ 0.05) 71.23 (↑ 0.03)
AFA + AFN (i.e. A-FAN) 94.82 (↑ 1.23) 75.38 (↑ 1.42) 72.21 (↑ 1.01)

The strength of A-FAN includes the number of
PGD steps and the step size α for generating ad-
versarial features, and the number of augmented
features with different perturbation strengths (k
in Equation 5), as shown in Figure 4 (a),(b),(c)
for classification, 5 (a),(b),(c) for detection, and 6
(a),(b),(c) for segmentation. Experiments show that
{ResNet-18, Faster RCNN, Deeplab V3+} gains more
from A-FAN with {PGD-5,PGD-1,PGD-1}, step size
α = { 1.0

255 , 0.3
255 , 0.4

255 }, and {3,5,3} augmented features
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with different perturbation strength. These systematic evaluations reveal that: (i) weak (e.g., α = 0.1/255)
adversarial perturbed features contribute marginal generalization improvements; (ii) excessively strong (e.g.,
PGD-10, α = 4.0/255) A-FAN incurs performance deterioration. In summary, we observe that a proper
configuration for A-FAN usually produces high-quality augmented and normalized features, realizing enhanced
visual recognition models.
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Figure 6: The ablation study on the location and
strength of introducing A-FAN to segmentation models.
Results are on Pascal VOC2012 dataset.

Comparing A-FAN with Random Noise. One
straight-froward approach to augment feature embed-
dings is injecting random noise. Here we replace the
generated adversarial noise in our proposed mech-
anism with a randomly sampled noise from Gaus-
sian distribution N (0, α2). As shown in Table 11,
AFA+AFN (i.e., A-FAN) achieves a larger perfor-
mance gain than Random Noise+AFN, suggesting
that gradient-based crafted feature augmentation
benefits more to the generalization ability of visual
recognition models.

Visualization. Figure 7, 9 and 8 provide visual-
ization of adversarially augmented features and nor-
malized features generated by A-FAN. Features are
collected via applying A-FAN to classification, detec-
tion and segmentation models on ImageNet, Pascal
VOC2007 and VOC2012 datasets, respectively. For
better visualization, we use features from the first
block of backbone networks and further enlarge the
magnitude of adversarial perturbations by ×20 times.
We notice that normalizing features by injecting adversarial statistics into clean features, seems to neutralize
the excessively generated adversarial noise. It offers an explanation for the extra performance improvement
by adversarial feature normalization.

Input Images Clean Features Augmented Features Normalized Features

Figure 7: Visualization of adversarially augmented
and normalized features for classification models with
A-FAN, using a trained ResNet-18. The fifth and
sixth columns are normalized features of the third
and forth columns, respectively.

Input Images Clean Features Augmented Features Normalized Features

Figure 8: Visualization of adversarially augmented
and normalized features for segmentation models with
A-FAN, using a trained Deeplab V3+. The fifth and
sixth columns are normalized features of the third and
forth columns, respectively.
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Figure 9: Visualization of adversarial augmented and
normalized features for detection models with A-FAN,
using a trained Faster RCNN. The left column shows
the input image and the corresponding clean feature.
The remaining four columns, from left to right, present
features with an increased perturbation strength; from
up to bottom, it shows augmented and normalized
features alternatively.
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8 Conclusion and Discussion

In this paper, we present A-FAN, an enhanced adversarial training method to improve image classification,
object detection, and semantic segmentation. By generating a series of adversarial perturbations with
different strengths on feature embeddings, and fusing adversarial feature statistics with clean features, A-FAN
substantially boost the generalization ability of various models across multiple representative datasets, such
as CIFAR-10/100, ImageNet, Pascal VOC2007/2012, COCO2017 and Cityspaces. For future work, we would
like to extend A-FAN to more tasks and provide theoretical understanding of A-FAN.
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A, pp. 119–133, 1998.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of
neural nets. In Neural Information Processing Systems, 2018a.

Yuezun Li, Xiao Bian, Ming-Ching Chang, and Siwei Lyu. Exploring the vulnerability of single shot module
in object detectors via imperceptible background patches. arXiv preprint arXiv:1809.05966, 2018b.

Yuezun Li, Daniel Tian, Ming-Ching Chang, Xiao Bian, and Siwei Lyu. Robust adversarial perturbation on
deep proposal-based models. arXiv preprint arXiv:1809.05962, 2018c.

Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu, and Jun Zhu. Defense against
adversarial attacks using high-level representation guided denoiser. In CVPR, pp. 1778–1787, 2018.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, pp. 740–755. Springer, 2014.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature
pyramid networks for object detection. In CVPR, pp. 2117–2125, 2017.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexan-
der C Berg. Ssd: Single shot multibox detector. In ECCV, pp. 21–37. Springer, 2016.

Xin Liu, Huanrui Yang, Ziwei Liu, Linghao Song, Hai Li, and Yiran Chen. Dpatch: An adversarial patch
attack on object detectors. arXiv preprint arXiv:1806.02299, 2018a.

Xuanqing Liu, Minhao Cheng, Huan Zhang, and Cho-Jui Hsieh. Towards robust neural networks via random
self-ensemble. In ECCV, pp. 369–385, 2018b.

Xuanqing Liu, Yao Li, Chongruo Wu, and Cho-Jui Hsieh. Adv-bnn: Improved adversarial defense through
robust bayesian neural network. arXiv preprint arXiv:1810.01279, 2018c.

Jiajun Lu, Hussein Sibai, and Evan Fabry. Adversarial examples that fool detectors. arXiv preprint
arXiv:1712.02494, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

Grégoire Montavon, G Orr, and Klaus-Robert Müller. Neural networks-tricks of the trade second edition.
2012.

Preetum Nakkiran. Adversarial robustness may be at odds with simplicity. arXiv preprint arXiv:1901.00532,
2019.

Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. Semidefinite relaxations for certifying robustness
to adversarial examples. In NeurIPS, pp. 10877–10887, 2018.

Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John C Duchi, and Percy Liang. Adversarial training
can hurt generalization. In ICMLW, 2019.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. In NeurIPS, pp. 91–99, 2015.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. IEEE transactions on pattern analysis and machine intelligence, 39(6):
1137–1149, 2016.

15



Under review as submission to TMLR

Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry. Adversarially
robust generalization requires more data. In NeurIPS, pp. 5014–5026, 2018.

Bernhard Schölkopf, Chris Burges, and Vladimir Vapnik. Incorporating invariances in support vector learning
machines. In ICANN, pp. 47–52. Springer, 1996.

Guangyu Shen, Chengzhi Mao, Junfeng Yang, and Baishakhi Ray. Advspade: Realistic unrestricted attacks
for semantic segmentation. arXiv preprint arXiv:1910.02354, 2019.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning. Journal
of Big Data, 6(1):60, 2019.

Patrice Simard, Yann LeCun, and John S Denker. Efficient pattern recognition using a new transformation
distance. In NeurIPS, pp. 50–58, 1993.

David Stutz, Matthias Hein, and Bernt Schiele. Disentangling adversarial robustness and generalization. In
CVPR, pp. 6976–6987, 2019.

Ke Sun, Zhanxing Zhu, and Zhouchen Lin. Towards understanding adversarial examples systematically:
Exploring data size, task and model factors. arXiv preprint arXiv:1902.11019, 2019.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
arXiv preprint arXiv:1905.11946, 2019.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry. Robustness
may be at odds with accuracy. In ICLR, 2019.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing ingredient for
fast stylization. arXiv preprint arXiv:1607.08022, 2016.

R. Volpi, P. Morerio, S. Savarese, and V. Murino. Adversarial feature augmentation for unsupervised domain
adaptation. In CVPR, pp. 5495–5504, 2018.

Dilin Wang, Chengyue Gong, and Qiang Liu. Improving neural language modeling via adversarial training.
arXiv preprint arXiv:1906.03805, 2019.

Colin Wei and Tengyu Ma. Improved sample complexities for deep networks and robust classification via an
all-layer margin. arXiv preprint arXiv:1910.04284, 2019.

Xingxing Wei, Siyuan Liang, Ning Chen, and Xiaochun Cao. Transferable adversarial attacks for image and
video object detection. arXiv preprint arXiv:1811.12641, 2018.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on computer
vision (ECCV), pp. 3–19, 2018.

Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan Yuille. Adversarial examples
for semantic segmentation and object detection. In ICCV, pp. 1369–1378, 2017.

Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L Yuille, and Quoc V Le. Adversarial examples
improve image recognition. In CVPR, pp. 819–828, 2020.

Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial examples in deep neural
networks. arXiv preprint arXiv:1704.01155, 2017.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix:
Regularization strategy to train strong classifiers with localizable features. In ICCV, pp. 6023–6032, 2019.

H. Zhang, W. Zhou, and H. Li. Contextual adversarial attacks for object detection. In 2020 IEEE International
Conference on Multimedia and Expo (ICME), pp. 1–6, 2020. doi: 10.1109/ICME46284.2020.9102805.

16



Under review as submission to TMLR

Hantao Zhang, Wengang Zhou, and Houqiang Li. Contextual adversarial attacks for object detection. In
ICME, pp. 1–6. IEEE, 2020.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and Michael I Jordan.
Theoretically principled trade-off between robustness and accuracy. arXiv preprint arXiv:1901.08573,
2019a.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412, 2017.

Yinghui Zhang, Bo Sun, Yongkang Xiao, Rong Xiao, and YunGang Wei. Feature augmentation for imbalanced
classification with conditional mixture wgans. Signal Processing: Image Communication, 75:89–99, 2019b.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Goldstein, and Jingjing Liu. Freelb: Enhanced adversarial
training for natural language understanding. In ICLR, 2020.

Barret Zoph, Ekin D Cubuk, Golnaz Ghiasi, Tsung-Yi Lin, Jonathon Shlens, and Quoc V Le. Learning data
augmentation strategies for object detection. arXiv preprint arXiv:1906.11172, 2019.

17


	Introduction
	Related Work
	Preliminaries
	Rationale of A-FAN
	Notations
	Adversarial Feature Augmentation
	Adversarial Feature Normalization
	Overall Framework of A-FAN

	A-FAN on Image Classification
	A-FAN on Object Detection
	A-FAN on Semantic Segmentation
	Ablation Study and Analyses
	Conclusion and Discussion

