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Abstract

Generative diffusion models and many stochastic models in science and engineering
naturally live in infinite dimensions before discretisation. To incorporate observed
data for statistical and learning tasks, one needs to condition on observations. While
recent work has treated conditioning linear processes in infinite dimensions, con-
ditioning non-linear processes in infinite dimensions has not been explored. This
paper conditions function-valued stochastic processes without prior discretisation.
To do so, we use an infinite-dimensional version of Girsanov’s theorem to condition
a function-valued stochastic process, leading to a stochastic differential equation
(SDE) for the conditioned process involving the score. We apply this technique to
do time series analysis for shapes of organisms in evolutionary biology, where we
discretise via the Fourier basis and then learn the coefficients of the score function
with score matching methods.

1 Introduction

When modelling finite-dimensional data, such as temperature or speed, there are well-known methods
for incorporating observations into stochastic or probabilistic models, for example, those based on
Gaussian-process regression [Rasmussen and Williams, 2005]. For non-linear models, techniques
like Doob’s h-transform can be used [Rogers and Williams, 2000, Chapter 6]. But for data that is
function-valued (and thus infinite-dimensional) with non-linear models, conditioning is still an open
problem. This paper introduces a way of conditioning infinite-dimensional diffusion processes by
introducing an infinite-dimensional version of Doob’s h-transform. We then discretise the conditioned
process and sample from it; that is, we condition and then discretise rather than discretising and then
conditioning.

We present methods to condition a process to hit a specific set at the end time, also known as bridges.
This method covers the case of conditioning strong solutions to Hilbert space-valued stochastic
differential equations (SDEs). For the conditioning, we consider two scenarios. The first is that the
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Figure 1: We condition an SDE between two curves, representing two butterfly species, (starting
from red dashed and ending at green dashed). Each time point of the trajectory represents a shape.
Row 1: We take the mean over 20 trajectories. Row 2: We plot the 20 individual trajectories, used in
the mean calculation.

transition operators of the SDE solution are smooth, which is generally not obvious [Goldys and
Maslowski, 2008]. In the second scenario, we condition on observations with Gaussian noise. This
technique can be applied whenever the solution to the SDE is sufficiently differentiable. To condition,
we use the infinite-dimensional counterparts of Itô’s lemma and Girsanov’s theorem, enabling us to
define a Doob’s h-transform analogously to finite dimensions. We then use score-matching techniques,
allowing us to sample from the conditioned process. We do this by training on the coefficients of the
stochastic process, represented in the Fourier basis.

One specific use case is modelling changes in morphometry (i.e. shapes) of organisms in evolutionary
biology. The morphometry of an organism can be modelled as points, curves or surfaces embedded
in Euclidean space. Felsenstein [1985] suggests using Wiener processes to model changes in
morphometry, for example, height. Sommer et al. [2021] propose extending this methodology to
whole shapes by using stochastic flows to define diffeomorphisms on Euclidean space [Kunita, 1997].
Then, changes of the shapes are modelled deterministically as diffeomorphisms on Rd that act on the
embeddings [Younes, 2019]. Recent work has generalised this to the stochastic setting by considering
diffusion bridges between shapes [Arnaudon et al., 2019, 2022]. However, they first discretise the
shapes and then find a diffusion bridge between the discretised shapes. In this work, we condition,
and then we discretise. In doing so, we show that as the number of points goes to infinity, the bridge
is still well-defined. Moreover, we may use other discretisations for shapes such as Fourier bases.

2 Related work and contributions

2.1 Related work
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Figure 2: A stochastic process between
two butterfly outlines (Papilio polytes in
red, Parnassius honrathi in blue).

In finite dimensions, methods have been developed to
approximate non-linear bridge processes of the form Equa-
tion (6). When conditioning on an end point y at time
T , the conditioned process contains an intractable term
∇x log p(t, x;T, y), called the score term. This term can
be replaced with ∇x log p̃(t, x;T, y), where p̃ is the transi-
tion function from another SDE with a known closed form,
such as Brownian motion or other linear processes [De-
lyon and Hu, 2006, van der Meulen and Schauer, 2022].
Then we can sample from the approximation instead, and
use Monte Carlo methods using the ratio given by the
Radon-Nikodym derivative as a likelihood ratio, thereby
sampling from the true path distribution [van der Meulen
and Schauer, 2022].

Recently, Heng et al. [2021] adapted the score-matching
methods of Vincent [2011], Song and Ermon [2019], Song et al. [2021] to learn the score term for
non-linear bridge processes. To do so, they introduce a new loss function to learn the time reversal of
the process. They then learn the time reversal of the time reversal, which gives the forward bridge.
Our work uses their method to learn the score term after discretising the SDE via truncated sums
of basis elements. Phillips et al. [2022] also consider using truncated sums of basis elements for
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discretising SDEs, however, only for infinite-dimensional Ornstein-Uhlenbeck processes, which are
linear.

Recent work on generative modelling has investigated score matching for infinite-dimensional
diffusion processes [Pidstrigach et al., 2023, Franzese et al., 2023, Bond-Taylor and Willcocks, 2023,
Hagemann et al., 2023, Lim et al., 2023]. This problem is similar to our task of conditioning an SDE,
but not the same: The main difference is that our SDEs are fixed, known a priori, and potentially
nonlinear, whereas in generative modelling the SDE can be chosen freely. Hence, generative
modelling often uses linear SDEs because the transition densities are known in closed form. In this
sense, our problem relates to generative modelling but has a different setup.

In shape space, there is interest in defining stochastic bridges between shapes [Arnaudon et al.,
2023]. Shapes are represented in the LDDMM framework [Younes, 2019], where they are modelled
as embeddings in Euclidean space, e.g. curves and surfaces or sets of landmarks approximating a
curve or surface. The deterministic image registration problem of matching two shapes is solved
by finding a “minimum energy” mapping. More specifically, for two shapes s0, s1 : Rd → Rd, we
find a diffeomorphism f : [0, T ]× Rd → Rd such that f(0, ·) = s0(·) and at f(T, ·) = s1(·) and f
optimises a given energy functional [Bauer et al., 2014].

We employ a stochastic version of the LDDMM framework for our experiments. Instead of direct
paths from f0 to fT that optimise an energy functional, we define stochastic paths of diffeomorphisms
between two shapes. For infinite-dimensional shapes such as curves, stochastic shape analysis was
the focus of [Trouvé and Vialard, 2012, Vialard, 2013, Arnaudon et al., 2019], where stochastic
processes are defined in the LDDMM framework. However, these do not explore the problem of
conditioning the defined processes. In [Arnaudon et al., 2022], bridges between finite-dimensional
shapes are derived. This is the first work to bridge between infinite-dimensional shapes.

2.2 Contributions

1. We derive Doob’s h-transform for infinite-dimensional non-linear processes, allowing
conditioning without first discretising the model.

2. We detail two models: one for direct conditioning on data and the second for assuming some
observation error.

3. We use score matching to learn the score arising from the h-transform by training on the
coefficients of the Fourier basis.

4. We demonstrate our method in modelling the changes in the shapes of butterflies over time.

3 Problem Statement

We assume that the data lives in a separable Hilbert space (H, ⟨·, ·⟩) and let (Ω,F ,P) be a probability
space with natural filtration {Ft} and take B(H) to be the Borel algebra. We take a Wiener process
W on a separable Hilbert space U (where U can equal H) with covariance given by Q. We then
consider Hilbert space-valued SDEs of the form

dX(t) = (AX(t) + F (X(t)))dt+B(X(t))dW (t), X(0) = ξ0 ∈ H, (1)

where A : D(A) ⊂ H → H is the infinitesimal generator of a strongly continuous semigroup, and
F : [0, T ] × H → H, B : [0, T ] × H → HS(Q1/2(U), H), where HS(Q1/2(U), H) denotes the
Hilbert-Schmidt operators from Q1/2(U) to H , and Q1/2 is the unique, non-negative symmetric,
linear operator on U satisfying Q1/2 ◦Q1/2 = Q (see Röckner and Claudia [2007, Proposition 2.3.4]
for details). Note that F and B can depend non-linearly on X(t), so other methods, such as Gaussian
process regression, cannot be used to incorporate data. We also need the following assumptions about
Equation (1):
Assumption 3.1. Equation (1) has a unique strong Markov solution denoted X(t, ξ0).
Assumption 3.2. The solution X(t, ξ) is twice Fréchet differentiable with respect to the initial value
ξ, with derivatives continuous on [0, T ]×H .

Assumption 3.1 is strong, but is satisfied when A is bounded and F and B satisfy certain Lipschitz
continuity and boundedness conditions. With some extra Fréchet differentiability conditions on F
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and B, Assumption 3.2 will also be satisfied. See Da Prato and Zabczyk [2014, Part II] for details
on solutions. Under the above setup, we consider two problems in conditioning the model on given
observational data. First, we tackle the exact matching problem:
Problem 3.1. (Exact matching) Condition X such that X(T, ξ0) ∈ Γ where Γ ⊆ H is a set with
nonzero measure.

More precisely, we define a new probability measure, under which the expectation equals the
original expectation conditioned on the event that X(T, ξ0) ∈ Γ: Enew[·] = E[· | X(T, ξ0) ∈ Γ].
Section 5.2.1 discusses this. To solve this, we also require an extra assumption:
Assumption 3.3. The transition operator P (ξ, t,Γ) := E[δΓ(X(t, ξ))] is twice Fréchet differentiable
with respect to ξ, and once with respect to t with continuous derivatives.

In infinite dimensions Assumption 3.3 is a strong assumption; however, we will study some specific
sets Γ for which this is satisfied in Sec. 5.3. Moreover, with extra conditions on A and Q, there are
also SDEs that satisfy this assumption for any nonzero measure Borel set. See Da Prato and Zabczyk
[2014, Theorem 9.39 and Theorem 9.43] and Cerrai [2001, Section 6.5 and Section 7.3] for examples.
The inexact matching problem does not require Assumption 3.3 and allows us to consider observation
noise:
Problem 3.2. (Inexact matching) Condition X so that X(T, ξ0) is “near” an observed function V .

Exact matching could be rephrased as conditioning such that at time T , the distance betweenX(T, ξ0)
and a set Γ is equal to 0. For the inexact matching, we instead condition such that the distance
between X(T, ξ0) and a target set Γ (or target function V ) is Gaussian with mean 0. More generally,
we can also take any differentiable radial basis function on the distance instead of a Gaussian.

For both problems, we show that the process X(t, ξ0) conditioned to exhibit the wanted behaviour at
time T , will be a process Xc(t, ξ0) satisfying the SDE{

dXc(t) = [AXc(t) + F (Xc(t))]dt+B(Xc(t))dW (t)
+B(Xc(t))B(Xc(t))∗∇ log h(t,Xc(t))dt

Xc(0) = ξ0,
(2)

where ∇ξ log(h(t, ξ)) is a score function. For the exact matching problem, we will see that h(t, ξ) =
P(X(T ) ∈ Γ | X(t) = ξ) = E[δΓ(X(T − t, ξ))]. For the inexact matching problem, we will instead
set h(t, ξ) = E[∥f(X(T − t, ξ)− V ∥H ; 0, σ)], for f a Gaussian function, and V a target function.
The SDE in Equation (2) is analogous to the case of conditioning in finite dimensions, so the form
may not be surprising. However, it is not obvious that this should work for non-linear equations in
infinite dimensions.

4 Background

4.1 Strong Markov solutions

We consider Hilbert space-valued SDEs of the form Equation (1) for W a Q-Wiener process in
a Hilbert space U , where Q can be the identity operator. We only consider strong solutions to
Equation (1). An H-valued predictable process X is a strong solution of Equation (1) if ∀t ∈ [0, T ]
it satisfies a well-defined integral

X(t) = ξ +

∫ t

0

[AX(s) + F (s,X(s))]ds+

∫ t

0

B(s,X(s))dW (s). (3)

We refer to Da Prato and Zabczyk [2014] for a discussion on the existence of strong solutions (and
more general solutions). However, when F,B satisfy some Lipschitz and linear growth conditions,
and when A is bounded, Equation (1) has a unique strong solution. Since this is true for any initial
value ξ, we use the notation X(t, ξ) to mean the unique solution of Equation (1) with initial value ξ.
This solution is a Markov process and for f : H → R a bounded function, measurable with respect
to the Borel algebra the transition operators Ptf(ξ) = E[f(X(t, ξ))] satisfy the Markov condition:

E[ψ(X(t, ξ)) | Fs] = E[ψ(X(t− s,X(s, ξ)))] = E[ψ(X(t, ξ)) | X(s, ξ)]. (4)
This says that the expected value of the solution at a time t from a starting value ξ, given all the
information from some previous time s, is the same as the expected value of the solution started at
value X(s, ξ) at time t− s.
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4.2 Doob’s h-transform in finite dimensions

In order to give more intuition for the infinite-dimensional Doob’s h-transform, we present an
informal introduction to the topic. This is all well-known, and the details can be found, for example,
in Rogers and Williams [2000, Chapter 6]. Doob’s h-transform in finite dimensions is a useful theory
for conditioning stochastic differential equations. For example, suppose we have an SDE in Rd

x(t) = f(t, x(t))dt+ σ(t, x(t))dW (t), x(0) = x0 ∈ Rd (5)
and we want to condition this SDE to hit y at time T . This corresponds to finding a measure
Q such that EQ[x(t)] = E[x(t) | x(T ) = y]. Doob’s h-transform allows us to define such a
measure using so called h-functions. Let p(t, y; t+ s, y′) be the transition density of xt, defined as
E [x(t+ s) ∈ A | x(t) = y] =

∫
A
p(t, y; t+ s, y′)dy′. Let h : [0, T ]× Rd → (0,∞) be a function

satisfying h(t, x) =
∫
h(t + s, y)p(t, x; t + s, y)dy, such that for z(t) := h(t, x(t)), E[z(T )] = 1.

Then, z(t) is a martingale and there exists a measure Q such that dQ
dP |Ft

= zt. Moreover, under this
measure Q, x(t) satisfies a new SDE

dxc(t) = f(t, xc(t))dt+ σσ⊤(t, xc)∇x log h(t, x
c(t))dt+ σ(t, xc(t))dW (t), xc(0) = x0.

(6)

The SDE in Equation (6) can be thought of as a conditioned version of the original SDE in Equation (5).
For example, consider what happens when we take h(t, x) := p(t,x;T,y)

p(0,x0;T,y) . Then for a function f

EQ[f(x(t))] =

∫
f(z)

p(t, z;T, y)

p(0, x0;T, y)
p(0, x0; t, z)dz = E[f(x(t)) | x(T ) = y]. (7)

This is one example of Doob’s h-transform but other h functions can also be defined, for example, to
condition xt to stay within certain bounds, or not to go above a certain value for a certain time period.

For h(t, x) := p(t,x;T,y)
p(0,x0;T,y) , as in conditioning on an end point, there is, in general, no closed form

solution for h. Different methods to learn the bridge exist [Delyon and Hu, 2006, Schauer et al., 2017].
More recently, score-based learning methods were proposed to learn the term ∇x log p(t, x;T, y)
[Heng et al., 2021], which we will adapt to the infinite-dimensional setting.

5 Method

We are interested in conditioning the stochastic process to exhibit a particular behaviour at the end
time T . We consider two scenarios. The first is exact matching: we condition such that given a set
Γ ⊂ H , then X(T, ξ0) ∈ Γ. The second is inexact matching: for some Y ∈ H we condition such
that as t approaches T , X(t, ξ0) becomes “close” to Y .

We proceed as follows. First, we show that we can define a new probability measure given an
appropriate random variable. When we have shown that this is possible, we will discuss options for
the random variable. We will give specific variables, show that they fit some necessary conditions,
and solve Problem 3.1 and Problem 3.2.

5.1 Doob’s h-transform in infinite dimensions

Here, we suppose that we already have an appropriate function h which we show that we can use to
rescale our original probability distribution, giving us a conditioned probability.
Theorem 5.1. Let h : [0, T ]×H → R>0 be a continuous function twice Fréchet differentiable with
respect to ξ ∈ H and once differentiable with respect to t, with continuous derivatives. Suppose X is
the strong solution to the stochastic differential equation in Equation (1). Moreover, we assume that
Z(t) := h(t,X(t)) is a strictly positive martingale, with Z(0) = 1, and E[Z(T )] = 1.

Then dP̂ := Z(T )dP defines a new probability measure. Moreover, X satisfies the SDE

X(t) =X(0) +

∫ t

0

B(X(s))B(X(s))∗∇ log h(s,X(s))ds

+

∫ t

0

[AX(s) + F (X(s))]ds+

∫ t

0

B(X(s))dŴ (s),

(8)
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where Ŵ is the Wiener process with respect to the measure P̂.

Proof. First, we show that Z(t) := h(t,X(t)) defines a continuous martingale and apply an infinite-
dimensional Itô’s theorem followed by Doléans exponential to rewrite Z. We then may apply the
infinite-dimensional Girsanov’s theorem, and rewrite the original SDE in terms of the resulting
Wiener process Ŵ . See Theorem C.1 for full details.

5.2 Defining the transforms

Previously, we showed that given a function h satisfying certain conditions, we can use this to weight
the probability measure, giving us a new conditioned probability measure. Now, we address which
h functions to use and the properties of the resulting processes. In infinite dimensions, there is
no measure that satisfies all properties of the usual finite-dimensional Lebesgue measure and so
it does not make sense to consider transition densities. However, transition operators of the form
Ptf(ξ) = E[f(X(t, ξ))] exist and satisfy the Markov property in Equation (4), so we opt to use these
instead. For a strictly positive, bounded Borel function ψ : H → R, we take functions of the form

h(t, ξ) = CT · E[ψ(X(T − t, ξ))]. (9)

where CT = 1/E[ψ(X(T, ξ0)] is a normalising constant. Consider, for example, when the function
ψ is the Dirac delta function of some set A with non-zero measure. Then h(t, ξ) is the probability
that at the end time, the process will be in the set Γ, given that at the current time, the process is
equal to ξ. Functions of the form Equation (9) satisfy some of the necessary assumptions on h for
Theorem 5.1: they are positive martingales, with Z(0) = 1 and E[Z(T )] = 1.
Lemma 5.2. Let X be as in Equation (1), satisfying Assumption 3.1. Given a function h : [0, T ]×
H → R satisfying Equation (9), Z(t) := h(t,X(t, ξ0)) is a strictly positive martingale such that
Z(0) = 1 and Z(T ) = CT · ψ(X(T, ξ0)).

Proof. Apply the tower property and check the assertions hold. See Lemma C.3 for full details.

The other necessary condition on h is differentiability. For this, we consider the specific functions
with different ψ’s separately for the exact and inexact matching cases.

5.2.1 Exact matching

Let Γ ∈ H be Borel measurable, and suppose that Assumption 3.3 holds. For some instances where
this holds, see Da Prato and Zabczyk [2014, Chapter 9], or Sec. 5.3. Then we define

h(t, ξ) := E[δΓ(X(T − t, ξ))]/E[δΓ(X(T, ξ0))]. (10)

The proof that this h-transform does solve Problem 3.1 is similar to the finite-dimensional version.
Note that h(T,X(T )) = δΓ(X(T, ξ0))/E[δΓ(X(T, ξ0))]. Hence, for some random variable Y we
see:

Ê[Y ] =

∫
Ω

Y dP̂ = P({X(T, ξ0) ∈ Γ})−1

∫
{X(T )∈Γ}

Y dP = E[Y | X(T, ξ0) ∈ Γ]. (11)

5.2.2 Inexact matching

In addition to the exact matching problem, we can solve the inexact matching problem by conditioning
the process such that, at the end time, it approximates some behaviour. This has two advantages.
Firstly, we do not need Assumption 3.3 and instead use Assumption 3.2. Assumption 3.2 is satisfied
when F and B satisfy Fréchet differentiable conditions. The second advantage is that this allows
us to account for observation noise in models. We condition on the Gaussian distance between the
endpoint and some target point or observation by defining a function ψ : H → R that is twice Fréchet
differentiable. Then under Assumptions 3.1 and 3.2 i.e. X(t) is a strong solution, a Markov process
and is twice differentiable with respect to the initial value, the function h(t, ξ) := E[ψ(X(T − t, ξ))]
will satisfy the necessary conditions given at the start of Section 5.1:
Lemma 5.3. Let ψ : H → R be a continuous function, twice Fréchet differentiable, with continuous
derivatives. Then h(t, ξ) := E[ψ(X(T − t, ξ))] is twice Fréchet differentiable in ξ and once
differentiable in t, with continuous derivatives.
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Apply Itô’s formula to h and use properties of expectation to differentiate. See Lemma C.4 for the
details.

One such function satisfying Lemma 5.3 is the Gaussian kernel function k : H ×H → R,

kσ(V,X) =
1√
2πσ

exp

(
− 1

2σ
∥X − V ∥2H

)
. (12)

Here, we fix an observation V ∈ H and parameter σ ∈ R and vary X ∈ H . The function k
is twice Fréchet differentiable in each argument, with continuous derivatives; hence the function
h(t, ξ) = E[kσ(V,X(t, ξ))] satisfies the requirements of Lemma 5.3. Moreover, this gives us a
method of including observation noise in our model. In finite dimensions, to model inexact matching
for a stochastic process x(t) ∈ Rd, one can take the function

h(t, x) :=

∫
fd(v; y,Σ)p(t, x;T, y)dy, (13)

where v ∈ Rd is a target value, p(t, x;T, y) is the transition density of the Rd-valued stochastic
process and fd(·;µ,Σ) is the density of the normal distribution on Rd with mean µ ∈ Rd and
covariance Σ ∈ Rd×d. See Arnaudon et al. [2022, Section 3.1] for more details. To compare, for
f1(·; 0, σ) the density of the one-dimensional normal distribution with mean 0 and variance σ ∈ R,
and P (T − t, ξ,Γ) = P[X(T ) ∈ Γ | X(t) = ξ], we set

h(t, ξ) := E[kσ(V,X(t, ξ))] =

∫
H

f(∥γ − V ∥2H ; 0, σ)P (T − t, ξ,dγ). (14)

Defining the function in this way means we condition on a distance betweenX(T ) and our observation.
It also means we can change the distance function to another similarity measure. For example, when
the functions represent shapes, we could use another norm that measures the dissimilarity of shapes
as in Pennec et al. [2020, Chapter 12].

5.3 Sampling from infinite-dimensional h-transforms

Thus far, we have shown that in infinite dimensions, we can condition stochastic processes either
exactly or inexactly, and the conditioned process has form Equation (2). We now turn our attention to
sampling from these conditioned processes. For this we discuss how to discretise.

For an orthonormal basis {ei}∞i=1 of a separable Hilbert space H , let HN = span({ei}Ni=1) ⊂ H .
Let X(t, ξ) be a strong solution to Equation (1), with X(0) = ξ. Since strong solutions are also
weak solutions [Da Prato and Zabczyk, 2014, Chapter 6.1], we can write X(t, ξ) as a sum of finite
dimensional SDEs, with each finite SDE satisfying

⟨X(t), ei⟩ = ⟨ξ, ei⟩+
∫ t

0

⟨AX(s) + f(X(s)), ei⟩ds+
∫ t

0

⟨ei, B(X(s))dW (s)⟩. (15)

Using Equation (15), we can define an SDE XN as XN
i (t) := ⟨X(t), ei⟩, where XN

i is the ith

component of XN ∈ RN . For finite dimensional sets Γi ⊂ R we look at the problem of conditioning
on cylindrical sets of the form

ΓN = {φ ∈ H | φi ∈ Γi, 1 ≤ i ≤ N}, (16)

for ϕi = ⟨ϕ, ei⟩.
Lemma 5.4. Let ΓN be as in Equation (16) and h : [0, T ] × HN → R be defined by h(t, Y ) :=

E[δΓN
(X(T − t, Y ))]. Moreover, define g : [0, T ]× RN → R by g(t, y) := E[

∏N
i=1 δΓi

(XN
i (T −

t, y))]. Then ⟨∇ log h(t, Y ), ei⟩ = [∇ log g(t, (Yi)
N
i=1)]i.

Proof. It follows by noting that E[δΓN
(Y )] = E[

∏N
i=1 δΓi

(Yi)]. See Lemma C.5 for details.

Since h(t, Y ) = g(t, (Yi)
N
i=1), the sets ΓN satisfy Assumption 3.3 as long as the sets Γi do in finite

dimensions. We have shown that conditioning on sets only depending on the first N eigenvalues is
equivalent to conditioning the N dimensional projection of the SDE onto the first N basis elements.
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Table 1: A comparison of the trained score of the Brownian motion process.
Fourier (num. bases) Landmarks (num. pts)

8 16 32 8 16 32

RMSE 5.09 6.66 10.54 7.95 6.08 10.79
Time (s) 105.1 201.8 949.4 95.9 104.8 183.0
Epochs 100 150 300 100 100 100

With this discretisation onto finite dimensions, we can adapt a finite-dimensional algorithm to sample
from the finite-dimensional bridges. For this we opt for using the algorithm in Heng et al. [2021],
since it can be easily applied to Problems 3.1 and 3.2 and we can scale up to higher dimensions
by using a different network architecture. Here, they leverage the diffusion approximation (in this
case, Euler-Maruyama) and score-matching techniques to first learn the time reversal of the diffusion
process. Applying the algorithm again on the time reversal, started at the proposed end point, gives
the forward-in-time diffusion bridge.

6 Experiments

We consider two main setups. Firstly we look at Brownian motion between shapes and use this
to evaluate our method, since for Brownian motion we have a closed form solution for the score
function. We then apply this to problems from the shape space literature. There, they are interested in
stochastic bridges between shapes which has applications within medical imaging and evolutionary
biology [Gerig et al., 2001, Arnaudon et al., 2017, 2023]. We expand on that body of work, by
allowing shapes to be treated as infinite-dimensional objects when bridging, as in the non-stochastic
case [Younes, 2019]. Until now, this was impossible for stochastic shape paths, since the theory for
this was missing.

The code used for our training and experiments can be found at https://github.com/
libbylbaker/infsdebridge and further details on experiments can be found in Appendix B.

6.1 Brownian Motion

For Brownian motion between shapes, we look at using both discretisations via landmarks and Fourier
bases, for conditioning both exactly and inexactly and compare to the true solution. We train on a
target shape of a circle with radius 1. For the landmark discretisation, we condition such that the
landmarks of the process end at the landmarks of the target shape, and for the Fourier basis we
condition such that the chosen basis elements are equal to the Fourier basis of the circle at the end
time. In Tab. 1 we give the mean square error for different numbers of dimensions. For the Fourier
basis, we evaluate the score on 100 points, and find the error between this and the true value so
that we may compare to the landmark errors. We see that as the dimensions grow, we need a larger
training time to maintain lower errors. We note that each Fourier basis, contains two parts: the real
and imaginary. We train on batches of 50 SDE trajectories, with 40 batches per epoch. For training
details see Appendix B.1.

6.2 Experiments on shape space

Next we turn to a concrete problem: we model the change in morphometry (shapes) of butterflies
over time. Studying changes of morphometry of organisms over time is important to evolutionary
biologists. For example, for butterflies, one can ask whether the change in wing shape correlates with
a change in habitat or climate. Rather than extracting finite-dimensional information from the shapes,
such as height or a subset of chosen points, we apply the analysis to the entire shape, as suggested in
Sommer et al. [2021]. Being able to condition between shapes is a key step in phylogenetic inference,
where it will be applied to compute likelihoods of phylogenetic trees from morphological data. Until
now, it was only possible for finite-dimensional extractions of the shape. Future work will consider
extending our methods for parameter estimation of SDEs for phylogenetic inference. This is in
order to extend the Brownian motion model of trait evolution to shapes where the SDE models the
transitions over the edges in the phylogenetic tree [Felsenstein, 1985].
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6.2.1 SDEs in shape space

For SDEs in shape space we take the SDE defined in Sommer et al. [2021] as

dX(t) =

∫ t

0

Q(X(t))dW (t) (Qh)f(x) =

∫
R2

k(h(x), y)f(y)dy. (17)

where for each h ∈ H = L2(R2,R2), Q(h) : H → H is a Hilbert-Schmidt operator, and k is a
smooth kernel k ∈ L2(R2 × R2,R2).

This corresponds to a stochastic flow of diffeomorphisms on R2, with a Brownian temporal model.
For each x ∈ R2, X(t, x) models the position of x ∈ R2 at time t, and the function x→ X(t, x) is a
diffeomorphism for all t. To see this we write this in the language of stochastic flows as defined in
Kunita [1997]. Define the martingale F (t, x) := QW (t, x), where W is the Wiener process on H
and Q is defined as before. Then, we define the stochastic flow of the martingale F as

p(t, x) = x+

∫ t

0

F (p(r, x),dr), (18)

where the integral is defined in Kunita [1997, Chapter 3]. Then by Kunita [1997, Theorem 4.6.5] if
k is smooth, the map p(t, ·) is a diffeomorphism for each t. See also Da Prato and Zabczyk [2014,
Chapter 0.1] for general details of lifts of diffusion processes to infinite dimensions.

In Figure 8 we plot some example trajectories of Equation (17) for various parameters, with a circle
as the initial value. In Figure 6 we plot one trajectory for a butterfly. The trajectories are calculated in
terms of a Fourier basis and for Figure 6 we plot the trajectories of a subset of points of the shape
where we see the temporal Brownian model.

6.2.2 Results

We illustrate our method on butterfly data. To demonstrate, we first use two butterflies with somewhat
different shapes [GBIF.Org User, 2024]. One trajectory between the two butterflies is plotted in
Figure 2. In this, we can see the high correlation between neighbouring points, with a Brownian
temporal model. In Figure 1, we plot 120 butterfly trajectories, at specific time points. For t = 0.2
we see that the butterfly outlines are mostly close to the start butterfly in pink, and at time t = 0.8,
they are closer to the green target butterfly. In Appendix B, we also plot the score function over time
for varying numbers of basis elements Figure 3.

For the next experiment, we take fifty butterfly specimens across five closely related species from
the Papilio family (see Figure 5) [Kawahara et al., 2023]. The butterflies are aligned via Procrustes,
and a mean consensus shape is obtained using Geomorph [Adams and Otarola-Castillo, 2013]. More
details of the butterflies and their processing are in Appendix A. We train our model on the mean of
the butterflies to learn the time reversal from any given input, to hit the distribution at time T = 1.0,
which we plot in Figure 4.
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Figure 3: Score fields evaluated on a selection of points at different time steps. In general, the score
field is expected to “push” the shape towards the target. We show the learned score fields (black
arrows) represented by varying numbers N of base functions at different time steps, as well as the
current shape (blue curves) and the target shape (red curves).
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Ambrax Deiphobus Protenor Phestus Polytes

Figure 4: We use a dataset of 40 closely related butterflies with five different species. We find a
mean across the dataset and plot single trajectories between the mean at time t = 0 (in blue) and a
specimen from each species at time t = 1 (in red).

7 Conclusion, limitations and future work

We have proved that Doob’s h-transform can also be used in infinite-dimensions for stochastic
differential equations with strong solutions. We can condition non-linear function-valued stochastic
models on observations, either directly on data or by including observation noise. The conditioned
stochastic process satisfies a new differential equation involving a score function, which we can
approximate using score learning. However, due to the reliance on Itô’s formula, it would be hard to
generalise this proof to non-strong solutions.

To learn the score, we used the architecture detailed in Figure 7. Although this seemed to work
well for our experiments, more research could go into the network architecture which could further
increase the dimensions that we consider. Furthermore, we only do the first step in Heng et al. [2021]
and learn the time reversal since error compounds in learning the forward bridge. Future work will
consider how well the time reversal approximates the forward bridge or how to learn the forward
bridge directly. Moreover, as previously mentioned, learning Doob’s h-transform is only the first
step in phylogenetic inference for shapes of species. Future work will consider how to expand the
infinite-dimensional bridges to inference problems.
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Figure 5: The five closely related species of Papilio, from left to right; Papilio Ambrax, Papilio
Deiphobus, Papilio Protenor, Papilio Phestus and Papilio Polytes. A subset of the landmarks for each
specimen is shown underneath each corresponding image.
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A Butterfly Processing

The Lepidoptera images originate from five closely related species within the genus Papilio from
the Papilionidae family [Kawahara et al., 2023]. The images are obtained through gbif.org [gbif.org,
2023], filtering within preserved material from museum collections. The images are segmented with
the Python packages Segment Anything [Kirillov et al., 2023] and Grounding Dino [Liu et al., 2023].
The thorax’s contour is removed from the outline by localising the horizontal local minimum in the
outline on both the top and bottom sides of the thorax, corresponding to four anatomical landmarks
where the wing is mounted to the thorax. The separation landmark of the fore and hind wings is set
by identifying the vertical valley of the outline on both the left and right sides. The landmarks are
used to place 250 evenly spaced semi-landmarks by interpolating the segmentation outline for each
wing—images with incorrectly placed landmarks, specimens with broken wings, or abnormalities are
manually removed during the process.

Eight random images were drawn for each of the five species. In total, 40 sets of 1000 landmarks
were aligned using Procrustes alignment. The alignment and the mean consensus shape were obtained
by using the R package Geomorph v. 4.06 [Adams and Otarola-Castillo, 2013]. See Figure 5 for
examples of the five species of butterflies and a subsample of the aligned landmarks.

B Experiment details and further figures

B.1 Score Learning

Given an SDE discretised over the first N coefficients of a basis function, we learn the
score function. To do this, we use the algorithm presented in Heng et al. [2021] for find-
ing the score function of a finite-dimensional Markov process x(t) with transition function
p(x(t) | x(0)), 0 ≤ t ≤ T , given by ∇ log p(x(T ) | x(t)). Here, they leverage the
diffusion approximation (in this case, Euler-Maruyama) and score-matching techniques to
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Table 2: Training configurations for learning scores with different numbers of bases

Num. bases Input/output
dims

Time embedding
dims

Downsampling
dims

Upsampling
dims Activation

8 32 32 [64, 32, 16, 8] [8, 16, 32, 64] silu
16 64 64 [128, 64, 32, 16] [16, 32, 64, 128] silu
32 128 128 [256, 128, 64, 32] [32, 64, 128, 256] silu

first learn the time reversal of the diffusion process. Applying the algorithm again on the
time reversal, started at the proposed end point, gives the forward-in-time diffusion bridge.
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Figure 6: Sample from the SDE of Equa-
tion (17).

We found that the neural network architecture outlined in
Heng et al. [2021] did not scale well to learning higher
dimensional SDEs. We therefore used a different struc-
ture (see Figure 7). We use a U-net [Ronneberger et al.,
2015] structure with skip connections in the form of fully
connected layers to scale up the network’s capacity. The
time step information is encoded by the well-known si-
nusoidal embedding proposed in Vaswani et al. [2017]
and added element-wise to the outputs of the fully con-
nected layers. Finally, the real denoising score matching
loss function proposed in Heng et al. [2021] is computed
and the stochastic gradient descent is used to update the
network parameters.

The exact specification we used for different bases or points is given in Table 2. We used the Adam
optimiser for the training, with a starting learning rate of 0.0001 and 500 warmup steps. After
warming up, the learning rate decreases cosinely until it reaches 1e-6. All the training and evaluation
computations were done with one NVIDIA RTX 4090 GPU and one Intel(R) Xeon(R) CPU E5-2650
v4 @ 2.20GHz.

B.2 Shape Spaces

B.2.1 Discretisation

We look at both discretisations in terms of the Fourier basis, and in terms of points. For points we
take the discretisation

dxi(t) = x0,i +
∑
y∈G

k(xi(t), y)δ(y)dwy(t), (19)

where G is a set of grid point in R2, and wy(t) ∈ R2 a Wiener process. For the Fourier basis, writing
the SDE in Equation (17) into basis elements, gives

dX(t) =

∞∑
n=1

∞∑
l,m=1

⟨en, Q(X(t))(gl,m)⟩dwl,m(t)en, (20)

where en(x) = einx and gl,m(x1, x2) = eilx1+imx2 . Then, we truncate the bases to n ≤ N and
l,m ≤M elements. The values in the sum can be approximated as follows:

⟨en, Q̃(X(t))(gl,m)(x)⟩ ≈ 1

2π

∑
x∈G1

einx
∑
y∈G2

k(X(t)(x), y)gl,m(y)∆y∆x, (21)

where G1 and G2 are grids over [−π, π] and D ⊂ R2. The inner sum can be computed as a fast
Fourier transform, and the outer as a 2-dimensional, inverse fast Fourier transform. For the function
k, we use the Gaussian kernel, with varying values for the covariance. In Appendix B, we apply this
SDE, with various parameters, to a circle embedded into R2 in Figure 8, and to a butterfly in Figure 6.
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B.2.2 Further experiments

In Figure 8, we apply the unconditioned SDE in 20 to a circle, embedded into R2. The parameter σ is
the variance of the kernel k. We see that for increasing values of σ, the process becomes smoother.
This makes sense, since for each point y ∈ R2, we can associate a noise field. Larger values of σ for
the kernels, mean the noise fields are wider and therefore points are more highly correlated leading to
smoother shapes.

We see that increasing the number of basis elements used, initially leads to slightly noisier shapes
which is to be expected, since higher basis elements contain the higher frequencies and details.
However, the process seems to converge quite quickly, and there appears very little difference
between N = 16 and N = 24 basis elements.

In Figure 6, we show the process started on a butterfly, with σ = 0.1 and eight landmarks, where the
evolution starts from a fixed butterfly shape (in blue) and continues until time t = 1 (in red).

Figure 7: The neural network structure for approximating the discretised score function. A U-net
architecture with skip connections (dashed lines) is used. Each layer consists of two dense layers
activated by SiLU functions. Batch normalisation is applied to the end of layer (not shown). The time
step t is encoded using the sinusoidal embedding and added element-wise to the outputs of dense
layers.

C Proofs

Theorem C.1. (Theorem 5.1 in paper) Let h : [0, T ]×H → R>0 be a continuous function twice
Fréchet differentiable with respect to ξ ∈ H and once differentiable with respect to t, with continuous
derivatives. Suppose X is the strong solution to the stochastic differential equation in Equation (1).
Moreover, we assume that Z(t) := h(t,X(t)) is a strictly positive martingale, with Z(0) = 1, and
E[Z(T )] = 1.

Unconditional Forward Trajectories
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Figure 8: We visualise the effect of the SDE on a circle, for varying covariance of the Gaussian
kernel σ, and different numbers of basis elements N .
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Then dP̂ := Z(T )dP defines a new probability measure. Moreover, X satisfies the SDE

X(t) =X(0) +

∫ t

0

B(X(s))B(X(s))∗∇ log h(s,X(s))ds

+

∫ t

0

[AX(s) + F (X(s))]ds+

∫ t

0

B(X(s))dŴ (s),

(22)

where Ŵ is the Wiener process with respect to the measure P̂.

We split the proof into two and start with a lemma showing that Z(t) := h(t,X(t)) can be written in
terms of an exponential.
Lemma C.2. Let h : [0, T ]×H → R and Z(t) := h(t,X(t)) satisfy the assumptions of Theorem 5.1.

Then Z(t) = exp
(
L(t)− [L](t)

2

)
, where

L(t) =

∫ t

0

⟨B(X(s))∗∇ log h(s,X(s)),dW (s)⟩Q1/2(U), (23)

and [L] is the quadratic variation of L.

Proof. We denote the jth Fréchet derivative with respect to the ith argument of a function f by Dj
i f .

In case j = 1, we will simply write Dif . First, we apply the infinite-dimensional Itô’s lemma
included in Theorem D.2 [Brzezniak et al., 2008]. We can do this since we assume that h and its
Fréchet derivatives D1h,D2h,D

2
2h exist and are continuous. Moreover, X is a strong solution, so

B(X(s)) is stochastically integrable, and AX(s)+F (X(s)) is integrable and adapted. Furthermore,
since we assume that h(t,X(t)) is a martingale, the drift terms arising in Itô’s lemma must disappear.
Therefore for Z(t) := h(t,X(t)),

Z(t) = h(0, X(0)) +

∫ t

0

D2h(s,X(s))B(X(s))dW (s). (24)

Now, we write Z in the form of an exponential. For this, we use Doléans exponential. Set

L(t) = logZ(0) +

∫
1

Zs
dZs. (25)

By assumption Z is continuous and strictly positive, so via the Doléans-Dade exponential [Rogers
and Williams, 2000, Chapter 3], it holds that

Z(t) = exp

(
L(t)− [L](t)

2

)
. (26)

Since we defined Z(t) = h(t,X(t)), and we assume that Z(0) = 1, we know that

L(t) =

∫ t

0

D2 log h(s,X(s))B(X(s))dW (s). (27)

By the Riesz representation theorem, there exists an element in H that we denote ∇ log h(s,X(s))
such that

D2 log h(s,X(s))(Y ) = ⟨∇ log h(s,X(s)), Y ⟩H . (28)
Hence, we get the claimed value for L(t).

Lastly, we find the quadratic variation of L. We can equivalently write L(t) as

L(t) =

∫ t

0

Φ(s)dW (t) Φ(s)(u) := ⟨∇ log h(s,X(s)), B(X(s))u⟩H , (29)

where Φ(t) ∈ HS(Q1/2(U),R), i.e. the space of Hilbert-Schmidt operators from Q1/2(U) to R.
Then Röckner and Claudia [2007, Lemma 2.4.2] states that

∥Φ(t)∥HS(Q1/2(U),R) = ∥B∗(X(s))∇ log h(s,X(s))∥Q1/2(U). (30)
Finally, by Röckner and Claudia [2007, Lemma 2.4.3], it holds that

[L]t =

∫ t

0

∥B∗(X(s))∇ log h(s,X(s))∥2Q1/2(U)ds. (31)
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The proof of the theorem is now simply an application of Girsanov’s theorem, normalising Z by
E[Z(T )] if necessary:

Proof. Let ψ(s) := B∗(X(s))∇ log h(s,X(s)). Then ψ is aQ1/2(U)-valued Ft predictable process.
By Lemma C.2 it holds that

Z(t) = exp

(∫ t

0

⟨ψ(s),dW (s)⟩Q1/2(U) −
1

2

∫ t

0

|ψ(s)|2Q1/2(U)ds

)
(32)

Hence, applying Girsanov’s theorem, we can define a new measure dP̂ := Z(T )dP, and know the
Wiener process with respect to P̂ has form

Ŵ (t) =W (t)−
∫ t

0

B(X(s))∗∇ log h(s,X(s))ds. (33)

Rewriting X as a stochastic equation with respect to P̂, we see that X satisfies

X(t) =X(0) +

∫ t

0

B(X(s))B(X(s))∗∇ log h(s,X(s))ds

+

∫ t

0

[AX(s) + F (X(s))]ds+

∫ t

0

B(X(s))dŴ (s),

(34)

giving the h-transformed process.

Lemma C.3. (Lemma 5.2 in paper) Let X be as in Equation (1), satisfying Assumption 3.1. Given
a function h : [0, T ]×H → R satisfying Equation (9), Z(t) := h(t,X(t, ξ0)) is a strictly positive
martingale such that Z(0) = 1 and Z(T ) = CT · ψ(X(T, ξ0)).

Proof. The functions of form h(t, ξ) are Markov transition operators satisfying Equation (4). Define
Z(t) := h(t,X(t)). Then Z(T ) = E[ψ(X(T, ξ0)) | X(T, ξ0)] = ψ(X(T, ξ0)). Hence, E[Z(T )] =
1. Further, by the normalisation CT , it holds Z(0) = 1. Strict positivity of Z holds since ψ is strictly
positive. To see that Z is a martingale, we use the tower property: let Y be a random variable and
H1 ⊂ H2 ⊂ F . Then

E[E[Y | H2]|H1] = E[Y | H1]. (35)

Now, for s < t, Fs ⊂ Ft, we get

E[Z(t) | Fs] = E[E[CT · ψ(X(T, ξ)) | Ft] | Fs] = Z(s). (36)

Lemma C.4. (Lemma 5.3 in paper) Let ψ : H → R be a continuous function, twice Fréchet
differentiable, with continuous derivatives. Then h(t, ξ) := E[ψ(X(T − t, ξ))] is twice Fréchet
differentiable in ξ and once differentiable in t, with continuous derivatives.

Proof. As before, we denote the jth Fréchet derivative with respect to the ith argument of a function f
byDj

i f . If f only has one argument then we will instead writeDjf . First note that by Assumption 3.2
X(t, ξ) is twice Fréchet differentiable with respect to ξ and has continuous derivatives. By our
assumption that ψ is twice Fréchet differentiable with continuous derivatives, we know that the
composition ψ(X(t, ξ)) is also twice Fréchet differentiable with second derivative

D2
2(ψ◦X)(t, ξ)(h, g) =

D2
2ψ(X(t, ξ))(D2X(t, ξ)h,D2X(t, ξ)g)

+D2ψ(X(t, ξ))(D2
2X(t, ξ)(h, g)).

(37)

This is continuous in [0, T ]×H . By Lebesgue’s dominated convergence theorem and the definition
of Fréchet differentiability, and noting that this holds for any t ∈ [0, T ], h(t, ξ) := E[ψ(X(T − t, ξ))]
is also twice Fréchet differentiable.

17



Next, we show that we can differentiate with respect to t. By Itô’s lemma and properties of expectation,
it holds that:

g(t, ξ) :=E[ψ(X(t, ξ))]

=ψ(ξ) + E
∫ t

0

(Dψ)(X(s, ξ))(AX(s, ξ) + F (X(s, ξ)))ds

+
1

2
E
∫ t

0

TrB(X(s,ξ))Q1/2(D2ψ)(X(s, ξ))ds.

(38)

Note that by assumed continuity properties of X and ψ, Equation (38) is continuous. Therefore,
using Lebesgue’s dominated convergence theorem and the fundamental theorem of calculus, we see

D1g(t, ξ) = lim
r→0

1

r
(g(t+ r, ξ)− g(t, ξ)) (39)

= lim
r→0

1

r
E
∫ t+r

t

(Dψ)(X(s, ξ))(AX(s, ξ) + F (X(s, ξ)))ds

+
1

2
E
∫ t+r

t

TrB(X(s,ξ))Q1/2(D2ψ)(X(s, ξ))ds

= E [(Dψ)(X(t, ξ))(AX(t, ξ) + F (X(t, ξ)))]

+
1

2
ETrB(X(t,ξ))Q1/2(D2ψ)(X(t, ξ)),

(40)

and so g(t, ξ) is differentiable with respect to t. Noting that h(t, ξ) = g(T − t, ξ), and t→ T − t is
differentiable, we get the result.

Lemma C.5. (Lemma 5.4 in paper) Let ΓN be as in Equation (16) and h : [0, T ] × HN → R
be defined by h(t, Y ) := E[δΓN

(X(T − t, Y ))]. Moreover, define g : [0, T ] × RN → R by
g(t, y) := E[

∏N
i=1 δΓi

(XN
i (T − t, y))]. Then ⟨∇ log h(t, Y ), ei⟩ = [∇ log g(t, (Yi)

N
i=1)]i.

Proof. First note that for any Y ∈ H ,

h(t, Y ) = E[δΓN
(X(T − t, Y ))] (41)

= E[
N∏
i=1

δΓi(⟨X(T − t, Y ), ei⟩)] (42)

= E[
N∏
i=1

δΓi(X
N
i (T − t, (Y )Ni=1))] = g(t, (Yi)

N
i=1). (43)

Now note that for any ε ∈ HN

h(t, Y + ε)− h(t, Y )

∥ε∥HN

=
g(t, (Yi)

N
i=1 + (εi)

N
i=1)− g(t, (Yi)

N
i=1)

∥(εi)Ni=1∥RN

. (44)

Hence, by the properties of the Fréchet derivative, it holds ⟨∇ log h(t, Y ), ei⟩ =
[∇ log g(t, (Yi)

N
i=1)]i.

D Further background

D.1 Infinite dimensional Itô and Girsanov

In order to condition, we rely heavily on the infinite-dimensional analogues of Itô’s lemma and
Girsanov’s theorem. We state the exact version of both that we use.

Girsanov’s theorem [Da Prato and Zabczyk, 2014, Section 10.2.1] allows us to define a change or
reweighting of the measure and also tells us what stochastic processes look like with regard to this
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new measure. Hence we can use this to get a change of measure which possesses some wanted
behaviour and then write stochastic processes with respect to this measure. If we have a martingale Z
with respect to a probability measure P, then we define a new probability measure dP̂ := Z(T )dP,
and we can write the Q-Wiener process of P̂ in terms of the original Wiener process.

Theorem D.1. Let W be a Q-Wiener process in U and let ψ(·) be a Q1/2(U)-valued Ft-predictable
process. If

Z(t) := exp

(∫ t

0

⟨ψ(s),dW (s)⟩ − 1

2

∫ t

0

|ψ(s)|2ds
)
, (45)

where the inner product and norm are in the Hilbert space Q
1
2 (U), then E[Z(T )] = 1. Then

Ŵ (t) =W (t)−
∫ t

0

ψ(s)ds t ∈ [0, T ] (46)

is a Q-Wiener process with respect to {Ft}t≥0 on (Ω,F , P̂) for dP̂ = Z(T )dP.

Another theorem we shall be relying on is the infinite-dimensional analogue of Itô’s lemma. This
is the analogue of the chain rule for Hilbert space-valued processes. The version we use is adapted
from a more general version for Banach spaces [Brzezniak et al., 2008, Theorem 2.4]. Da Prato et al.
[2019] discuss Itô’s lemma for Hilbert space-valued SDEs.
Theorem D.2. Let H and E be separable Hilbert spaces. Assume that f : [0, T ] ×H → E is of
class C1,2. Let Φ : [0, T ]×Ω → HS(Q1/2(U), H) be measurable and stochastically integrable with
respect to W , a Q-Wiener process on U . Let ψ : [0, T ]× Ω → H be measurable and adapted with
paths in L1(0, T ;H) almost surely. Let ξ0 : Ω → H be F0-measurable. Define X : [0, T ]×Ω → H
by

X(t) = ξ0 +

∫ t

0

ψ(s)ds+

∫ t

0

Φ(s)dW (s). (47)

Then almost surely for all t ∈ [0, T ],

f(t,X(t)) = f(0, ξ0) +

∫ t

0

D1f(s,X(s))ds+

∫ t

0

D2f(s,X(s))ψ(s)ds

+
1

2

∫ t

0

TrΦ(s)Q1/2D2
2f(s,X(s))ds+

∫ t

0

D2f(s,X(s))Φ(s)dW (s).

(48)

where TrΦ(s)Q1/2D2
2f(s,X(s)) is defined as∑

j≥1

D2
2f(s,X(s))

(
Φ(s)Q1/2uj ,Φ(s)Q

1/2uj

)
, (49)

for an orthonormal basis {uj}j≥1 of U .
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We list our contributions in a bullet point list in the introduction. We also state
clearly the problems we set out to solve and have separate sections for them.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We address the limitations in the final section of our paper. We list our
assumptions for Doob’s h-transform and some situations where they are met.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All theorems include all assumptions, and all full proofs are included in the
appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include all our code for experiments. We use an algorithm from another
paper which we cite, and we state the network architecture in the appendix, alongside the
hyperparameters.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We include our code with our submission. We also include a README.md
file with details on how to run.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We include this both in Appendix B.1 and in the code itself.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We only train our models once, and therefore in general we do not report error
bars. However, in Figure 1, we sample multiple trajectories from our learned bridge and
plot all of them, which serves to illustrate the variance of the learned trajectories (but not of
the learning of the score itself).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include the computer resources in Appendix B.1. We also include the exact
times taken to run the models for Brownian motion in Table 1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper does not involve human subjects and there are no data-related
concerns. We also see no potential harmful consequences to our research.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: Though our work is somewhat related to diffusion models, it does not concern
itself with data generation. We don’t see any negative societal impacts from this work, and
other than use cases of evolutionary biology or medical imaging, impacts are hard to predict.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any pretrained models, nor do our models or data have any
risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all the assets that we use for our data and code in our paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We include our code in the submission, with some documentation. Other
information is contained in the appendices.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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well as details about compensation (if any)?
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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