
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HYBRID CONTRASTIVE TRANSFORMER FOR VISUAL
TRACKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Visual object tracking is a research hotspot in the field of computer vision, and
has been widely applied in video surveillance, human-computer interaction, un-
manned driving and other fields. At present, the object trackers based on Trans-
former have good performance, but they still face the challenge of confusing target
and background in the feature extraction process. To address this issue, we pro-
pose a Hybrid Contrastive Transformer Tracker (HCTrack) in this paper, which
combines contrastive learning to improve the ability of distinguishing the target
and the background in video. Furthermore, a hybrid feature interaction module
is presented to realize multi-level information exchange between the features of
template and search regions and capture the target-related semantic information of
the search frames comprehensively. Additionally, we design a redundant informa-
tion pruning module to adaptively eliminate the redundant backgrounds according
to the global scene information, thereby reducing the interference of the back-
ground to the target feature. HCTrack achieves superior tracking accuracy on the
GOT-10k and TrackingNet datasets compared to other state-of-the-art trackers,
while maintaining fast inference speed, as the contrastive learning strategy is only
adopted during training model.

1 INTRODUCTION

Object tracking aims to locate the target in each frame of a continuous video sequence while pro-
viding scale and position information. It plays a pivotal role in understanding and analyzing various
moving objects of videos, and has been widely applied in video surveillance, human-computer inter-
action, unmanned driving, and so on. However, tracking object in the real-world scenarios presents
numerous challenges such as lighting variations, scale adjustments, motion blur, and interference
from similar objects within complex scenes.

In recent years, there were a great many deep learning-based trackers, which could be broadly cat-
egorized into two groups: trackers based on Siamese network and trackers based on Transformer.
SiamFC(Bertinetto et al., 2016) firstly integrated Siamese network into object tracking by utilizing
a convolutional neural network (CNN) to extract the feature of the search frame and the template.
SiamRPN++(Li et al., 2019a) and SiamDW(Zhang & Peng, 2019) enhanced the feature representa-
tion capability of model to improve the tracking performance. Subsequently, anchor-based(Fu et al.,
2021a; Li et al., 2018; Zhu et al., 2018) trackers and anchor-free(Han et al., 2021; Xu et al., 2020;
Zhang et al., 2020) trackers employed different target scale regression strategies to enhance adapt-
ability to the scale change of target. In addition, some template update strategies(Fu et al., 2021b;
Yang et al., 2023; Wang et al., 2023) were introduced to accommodate variations in the appearance
of the target during tracking. However, due to the limited local receptive field of CNN, it is difficult
to obtain global information of samples, so that the Siamese-based trackers are unable to accurately
locate the targets in the complex scenarios such as occlusion, motion blur, and background interfer-
ence.

In contrast, as the core module of Transformer, attention mechanism can effectively capture the
global contextual information of video. Currently, the existing Transformer-based object tracking
methods could be divided into two-stage and single-stage Transformer-based trackers. The two-
stage Transformer-based trackers(Chen et al., 2021; Yan et al., 2021) still struggle to accurately
extract the target- specific feature during the feature extraction, which could lead to a loss of some
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effective detail information. The single-stage Transformer-based trackers(Chen et al., 2022; Song
et al., 2023; Wu et al., 2023; Zhao et al., 2024) utilized a Transformer-based backbone to interact
with the template feature and the features of search frames, and directly extract the target-related
information of search frames in the process of extracting feature. However, the existing Transformer-
based trackers tended to confuse the target with the background due to their premature interaction,
which would result the misclassification.

Contrastive learning is a learning method by comparing the similarity between different samples,
which can enhance the discriminability of model by distinguishing between the positive and negative
samples. Similar to contrastive learning, object tracking requires maximizing the similarity among
the same objects in different frames of the same video sequence and the difference among differ-
ent objects. Therefore, we propose a Transformer-based tracker incorporating contrastive learning,
called as a hybrid contrastive Transformer tracker (HCTrack), to guide the model to accurately track
the objects in this paper. Firstly, we develop a contrastive learning strategy, which constructs the pos-
itive and negative sample pairs and utilizes their semantic label information to effectively improve
the similarity among same-class targets and the dissimilarity among different-class targets. Further-
more, considering that most existing tracking methods using synchronous or asynchronous feature
extractors only could extract limited target information, we present a hybrid feature interaction style
involving a semantic self-association module and a cross-layer semantic association module (CSA).
CSA associates the template features across multiple layers during the deep feature extraction of
search frame to accurately capture the target-related semantic information. Additionally, in order to
reduce the focus of the model on the background region, we devise a redundant information prun-
ing (RIP) module, which adaptively prunes the redundant background region features based on the
scene complexity. Additionally, in order to reduce the focus of the model on the background region,
we devise a redundant information pruning (RIP) module, which adaptively prunes the redundant
background region features based on the scene complexity. The experimental result of HCTrack
on GOT-10k and TrackingNet datasets demonstrates that HCTrack has competitive performance in
comparison to other state-of-the-art object tracking methods. The main contributions of this paper
are as follows:

(1) In order to mitigate the confusion between the target and the background, we introduce the
contrastive learning into the transformer-based tracker, and propose a hybrid contrastive transformer
tracker (HCTrack). Our designed contrastive learning strategy can enhance the ability of model
to discriminate the targets and backgrounds in the process of objects tracking by using the label
information of the constructed positive and negative samples.

(2) A semantic self-association module and a cross-layer semantic association module are presented,
which make full use of multi-level template features and guide model to accurately learn the target-
related feature.

(3) A redundant information pruning module is established for pruning the redundant background
information, thereby reducing on the impact of a large number of complex backgrounds on the target
during tracking .

2 RELATED WORK

2.1 SIAMESE-BASED TRACKERS

Siamese network has received a lot of attention in the field of target tracking because of their strong
scalability and dual advantages in speed and accuracy. After SiamFC (Bertinetto et al., 2016) intro-
ducing siamese network into the object tracking is proposed, numerous improved tracking methods
have been derived from it. DSiame(Guo et al., 2017) handled changes of the target over time through
online update, and inspired a series of approaches(Zhang et al., 2019; Li et al., 2019b; Zheng et al.,
2023; Zhao et al., 2024) that utilized spatio-temporal relationship. SiamMDM(Yang et al., 2023)
developed a dynamic template update module and a score-based model for predicting target motion
trajectory. (Wang et al., 2023) proposed a dynamic template updating strategy based on spatio-
temporal information and designed a tracking confidence network to decide whether to update.

Later, inspired by the object detection methods, SiamRPN(Li et al., 2018) introduced region pro-
posal network(Girshick, 2015) into object tracking, improving the adaptability of model to scale
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variations. On the basis of SiamRPN, Ren et al. proposed a classical structure Faster-RCNN(Ren
et al., 2016) and Cai & Vasconcelos gave a cascading structure Cascade R-CNN(Cai & Vasconcelos,
2018). SiamRPN++(Li et al., 2019a) and SiamDW(Zhang & Peng, 2019) applied deep backbone
networks in the object tracking framework to improve the model’s ability to represent features more
effectively. Meanwhile, some methods introduced anchor-free networks to adapt to the changing
shape of the target. SiamFC++(Xu et al., 2020) removed anchor priors and utilized a quality as-
sessment branch to refine the target localization results of the classification branch. Although the
Siamese network-based object tracking methods perform well, it is difficult to obtain global informa-
tion from video sequences due to the limited receptive field of CNN. Consequently, these methods
face the challenges in accurately locating targets with significant appearance changes in complex
scenarios such as occlusion, motion blur, and background interference.

2.2 TRANSFORMER-BASED TRACKERS

Inspired by the significant success of Transformer(Vaswani, 2017) architecture in various
tasks(Dosovitskiy, 2020; Zhang et al., 2024; Zong et al., 2023; Venkataramanan et al., 2023), schol-
ars began applying it in the field of object tracking. At present, the Transformer-based object track-
ing methods can be broadly categorized into two types: two-stage and single-stage Transformer-
based tracking methods.

The two-stage Transformer-based object tracking methods mainly contains a feature extraction mod-
ule and a feature fusion module. TransT(Chen et al., 2021) extracted the features of template and
search frames in the feature extraction stage, and then interacted them by a Transformer structure
in the feature interaction stage, thus capturing the target-related information in the search features.
Yan et al. introduced a spatiotemporal Transformer network, named STRAK(Yan et al., 2021),
which extended the traditional Transformer encoder-decoder framework to capture spatiotemporal
features of video. Cao et al. proposed a Hierarchical Feature Transformer (HiFT)(Cao et al., 2021),
which integrated multi-level features to efficiently learn the global dependency relationship among
different levels of features. Videotrack(Xie et al., 2023) leverages the self-attention mechanism to
simultaneously process both the spatial and temporal dimensions of videos, effectively enhancing
its ability to capture features over long sequences. Afterwards, some two-stage Transformer-based
object tracking methods utilized Transformer structure not only in the feature fusion stage but also
as a backbone of feature extraction stage, such as SwinTrack(Lin et al., 2022). Since the feature
extraction and fusion process are separated, the feature of search area could not perceive the tar-
get information during the feature extraction, so the two-stage Transformer tracking models tend to
overlook target-related detail information.

Subsequently, researchers developed single-stage Transformer-based object tracking approaches,
which integrated the feature extraction and fusion phases. Cui et al. proposed Mixformer(Cui et al.,
2022), which introduced a hybrid attention module to extract discriminative target-related feature
and facilitate information exchange between the template and search area. A unified framework
OSTrack(Ye et al., 2022) was proposed for the feature extraction and relationship modeling, which
contained an candidate elimination module to discard irrelevant spatial features, thereby improving
the inference speed of model. (Song et al., 2023) introduced a compact Transformer-based tracker
(CTTrack), which employed an asymmetric hybrid attention mechanism to strengthen feature. Pro-
ContEXT(Lan et al., 2023) synergistically utilized the spatial and temporal contextual information,
and (Wu et al., 2023) introduced a masked auto-encoder into the Transformer-based object track-
ing. LiteTrack(Wei et al., 2024) aimed to enhance tracking speed and made the Transformer-based
tracking model applicable to resource-constrained devices. (Zhang et al., 2023) leveraged semantic
information from language to compensate for the instability of visual information, and proposed a
language-based evaluation tracking method for selecting high-quality target samples. (Song et al.,
2023) added a lightweight masked encoder to the single-stage tracking framework, guiding the en-
coder to capture invariant features. (Gao et al., 2023) proposed a generalized relationship model
by adaptively selecting template and search area tokens for more flexible interactions. (Kang et al.,
2023)designed a bridging module which integrated the high-level semantic information from deep
features into the shallow high-resolution features to ensure high accuracy while maintaining fast
operation on different devices.

The single-stage Transformer-based object tracking models often suffer from insufficient feature
extraction capability, leading to potential confusion between the target and background during the
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Figure 1: The training framework of HCTrack. B (batch) represents the number of sample pairs,
Nt denotes the number of template feature tokens and dynamic template feature tokens, and Ns

indicates the number of search area feature tokens.

interaction of template and search area.Therefore, we introduce contrastive learning to mitigate this
issue in this paper.

2.3 CONTRASTIVE LEARNING

Contrastive learning(Oord et al., 2018; Khosla et al., 2020; Seo et al., 2024) is to learn feature
representation of samples by comparing the similarities or differences among different samples.
Recently, contrastive learning has also been applied in the object tracking.(Wu et al., 2021) proposed
a progressive unsupervised object tracking learning framework, which distinguished between target
and background regions in video sequences through contrastive learning. (Pi et al., 2022) proposed
an instance-aware module to enhance the separability among instances and the compactness within
instances through using contrastive learning mechanisms. (Zeng et al., 2023) employed contrastive
learning to learn discriminative representation of targets in the drone object tracking. (Bhat et al.,
2019) applied contrastive learning to improve object-background discriminability in visual tracking,
enabling the tracking model to learn a robust object-specific appearance model online.

However, the number of positive samples is relatively small and all of them are based on CNN in the
aforementioned methods. In this paper, we introduce contrastive learning into the Transformer-based
object tracking method, which leverages contrastive learning in a simple yet effective manner to
enhance the discriminability of model, thereby improving tracking accuracy without compromising
inference speed.

3 PROPOSED METHOD

3.1 OVERVIEW

To enhance the ability of model to distinguish between the target and the background, we propose a
Hybrid Contrastive Transformer Tracker (HCTrack) in this paper, as illustrated in Figure 1. HCTrack
consists of a hybrid feature extraction and interaction module (HFEI), a contrastive head (Contr
Head), and a prediction head (Pred Head) including score, bias and scale head.

As shown in Figure 1 , the input of HCTrack comprises multiple sample pairs from video sequences.
Each sample pair consists of a template image (T), a dynamic template image (DT) and a search
frame image (S), where the sample pairs from the same video sequence are considered positive sam-
ples, while those from different video sequences are treated as negative samples. Then, the middle
features of the template image, the dynamic template image and the search frame image are ob-
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Figure 2: The structure of hybrid feature interaction module in HCTrack. S represents the feature
separation operation. C represents the cascade operation.

tained through a hybrid feature extraction and interaction module. Subsequently, these intermediate
features are respectively fed into three contrastive heads sharing weights for feature mapping, thus
generating feature vectors of the template, dynamic template, and search area. After these feature
vectors from the same video sequence are cascaded and reshaped, they are divided into positive and
negative sample feature vectors to calculate the contrastive learning loss function. Meanwhile, the
search area feature is fed into the score head, offset head and scale head to predict the bounding box
of target, with the prediction process being supervised by classification and regression loss func-
tions. It is worth noting that the contrastive head is only used during training and therefore does not
affect the inference speed of model.

3.2 HYBRID FEATURE EXTRACTION AND INTERACTION MODULE

In HCTrack, we construct a hybrid feature extraction and interaction module to extract the features of
templates and search frames and realize their information interaction. Figure 2 shows the structure of
HFEI, which contains several semantic self-association (SSA) modules, several cross-layer semantic
association (CSA) modules, and a redundant information pruning (RIP) module. SSA consists of a
multi-head self-attention, a skip connection and a multilayer perceptron.

Firstly, the three types of images pass through a block embedding layer respectively to attain tem-
plate feature token, dynamic template feature token, and search feature token, as shown in Figure 2.
Then, the template feature token and dynamic template feature token are concatenated and processed
by nine SSA modules for the template feature extraction, where the output of the sixth SSA module
is separated as the middle template feature token tm , and dynamic template feature token dm. The
final template feature token to and dynamic template feature token do obtained by last SSA module
are used for the feature extraction of search area.

For the feature extraction of the search area in Figure 2, the middle search feature token sm is
attained by six SSA modules before the feature interaction. Subsequently, the middle search feature
token sm, the current template feature token tm, the current dynamic template feature token dm , the
final template feature token to , and the final dynamic template token do are fed into a CSA module
to achieve the interaction between the template and the search area. This process is repeated three
times to produce the final search area feature so.
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Figure 3: The structure of cross-layer semantic association module

3.3 CROSS-LAYER SEMANTIC ASSOCIATION MODULE

Most existing methods only utilized the current template features or the deep layer template features
to guide the model in extracting target information from the search features, but the appearance of
target in the search area is likely to differ significantly from that in the template, making it difficult
to accurately locate the changing target by relying on single-layer template features solely. To
better extract target semantic information from the search area, we design a Cross-layer Semantic
Association (CSA) Module, which is applied to the deep layers of the search area branch in HFEI
module. The structure of this module is shown in Figure 3, and its relationship with other modules
in the HCTrack model can be referred to in Figure 1. Figure 3 shows the structure of CSA, which
is composed of Multi-head Cross-Attention (MHCA), Layer Normalization (LN), and Multi-Layer
Perceptron (MLP). For the MHCA operation, the current search feature token si is first mapped to
the query vector q . Then, the search area feature token si ,the final template feature token to ,the
final dynamic template token do , the current layer template feature token ti ,and the current layer
dynamic template token di are concatenated together to generate the key vector k and value vector
v for MHCA by key mapping and value mapping respectively.

3.4 REDUNDANT INFORMATION PRUNING MODULE

In order to further highlight the foreground target, we present a redundant information pruning (RIP)
module to remove redundant background information. It is placed in the back of last CSA in HFEI
module to prune the search area feature tokens acquired by the final layer of CSA module. The
energy of each search token is first calculated, and then the top tokens with the most significant
energy are retained.

Energy Calculation. Considering that the template includes some background information; we
only retain the core template features and the attention weights for each search token to ensure
the accuracy of pruning. Specifically, the similarity matrix between the search feature si and the
corresponding token in the central area of the template is averaged pooled to obtain the energy ei
for each search token (1 ⩽ i ⩽ Ns , where Ns is the number of tokens in the search area).

Pruning. Afterwards, a proportion of the total energy θ of all search feature tokens is taken as
an energy threshold, where the proportion is defined as the energy retention ratio ρ (0 < ρ < 1).
Next, the tokens are arranged in descending order according to their energy. Finally, the top m
tokens tokens with the highest energy that is greater than the energy threshold are retained, and the
remaining tokens are discarded. The pruning calculation process after sorting is formularized as
follows:

θ =

Ns∑
i=1

ei, (1)
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argmin
m

(
m∑
i=1

ei

)
⩾ ρ · θ. (2)

The redundant information pruning module prunes the spatial features of the search area according
to the similarity between the template center area and the search area. The smaller the similarity, the
more redundant the corresponding position. In addition, the background information in the search
area is adaptively discarded according to the complexity of the image to reduce the model’s exces-
sive attention to the background area, thereby improving the discrimination ability of the MCTrack
model.

RIP module prunes the spatial features of the search area according to the similarity between the
template center area and the search area. The smaller the similarity, the less possibility the corre-
sponding features including the target information. In addition, the background in the search area is
adaptively discarded according to the scene complexity, which can reduce the excessive attention to
the background area, thereby improving the discrimination ability of HCTrack.

3.5 CONTRASTIVE LEARNING MODULE

Contrastive learning mainly mines the similarity among samples, which brings the same sample
and its augmented data closer in the embedding space, and pushes the different samples farther
apart, thereby enhancing the discriminability among samples. Therefore, we combine the contrastive
learning with the Transformer-based object tracking to assist in training the model. Specifically, the
contrastive learning strategy in this paper involves three key components: construction of positive
and negative samples, contrastive head, and contrastive loss function.

Construction of positive and negative samples. In general, the positive samples are from the
same image through data augmentation, and negative samples come from different images in self-
supervised contrastive learning method. However, applying this approach directly to object tracking
may ignore the temporal characteristics of video, potentially resulting in samples from the same
video being treated as negative samples. To address this issue, we adopts a different way that the
template images, the dynamic template images, and the search frame images from the same video
sequence are treated as positive samples. These images contain the same target with richer vari-
ations, compared to the positive samples generated through data augmentation, which makes the
model more robust. Meanwhile, the negative samples are drawn from other video sequences, which
prevent the samples containing the same target from being misclassified as negative samples.

Contrastive head. HCTrack employs three contrastive heads with shared weights, which process
the search area feature token sm , the template feature token tm and the dynamic template feature
token dm respectively, as shown in Figure 1. The contrastive heads are composed of region of in-
terest pooling, a 3×3 convolution, a Rectified Linear Unit (ReLU), a 1×1 convolution, and batch
normalization. Additionally, the output template feature vector, dynamic template feature vector,
and search area feature vector are concatenated and reorganized. The feature vectors from the same
video are grouped together as positive samples, while feature vectors from different videos are classi-
fied as negative samples. The positive and negative samples are then used to compute the contrastive
learning loss function.

Contrastive loss function. In this paper, we give an improved contrastive learning loss function
based on Info Noise Contrastive Estimation (InfoNCE) (Oord et al., 2018). The InfoNCE loss
function is as follows:

LNCE = − log
exp

(
x·k+

τ

)
N∑
i=0

exp
(
x·ki

τ

) , (3)

where x represents the original sample, k+ represents the only positive sample, ki represents any
sample, N represents the total number of samples, and τ is the temperature coefficient. In the
formula (9), the numerator represents the similarity between the original sample and the positive
sample, and the denominator represents the similarity between the original sample and all samples.
This loss function learns the relationship among samples by maximizing the similarity of positive
samples and minimizing the similarity with negative samples.
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In InfoNCE loss function, the positive sample is unique, which may lead to insufficient coverage of
the variations of target during training due to the limited number of positive samples. To address
this issue, we propose an improvement to InfoNCE by increasing the number of positive samples.
This enhancement promotes HCTrack to better learn the feature representation of the same target,
thereby improving tracking accuracy. The improved InfoNCE loss function is as follows:

Lcl = − log

n+
cl∑

i=0

exp
(
x
k+
i

τ

)
n+
cl∑

i=0

exp
(
x
k+
i

τ

)
+

n−
cl∑

i=0

exp
(
x
k−
i

τ

) , (4)

where, n+
cl is the number of positive samples, n−

cl is the number of negative samples, k+i is the
positive sample, and k−i is the negative sample.

During training, the similarity among targets within the same video sequence and the dissimilarity
between the target and other objects are strengthened gradually by minimizing the improved In-
foNCE loss function. This process can help HCTrackaccurately capture the target information in the
search area.

3.6 LOSS FUNCTION

HCTrack utilizes a scoring head, a bias head, and a scale head for the bounding box prediction,
which predicts the probability score of the central position of target, the discretization error, and the
scale of target respectively. Additionally, a contrastive head is employed to compute the contrastive
loss function.

Therefore, the total loss function of HCTrack consists of the contrastive loss function Lcl , the
weighted focal loss classification Lcls , the L1 loss functionL1reg , and the GIOU loss function
Lgiou , which is as follows:

L = λclLcl + λclsLcls + λL1 regL1reg + λgiouLgiou, (5)

4 EXPERIMENTS

4.1 IMPLEMENT DETAILS

Model. HCTrack utilizes the first 9 encoder layers of ViT-Base(Dosovitskiy, 2020) as the backbone
network and is initialized by using MAE(He et al., 2022) pre-trained parameters. The search region
image size is 256×256, and after passing through the patch embedding layer, the token length in the
backbone network is 256 with a channel dimension of 768. The template image size is 128×128,
and after passing through the patch embedding layer, the token length in the backbone network is 64
with a channel dimension of 768. The redundancy pruning module retains 90% of the energy.

Training. For the tests on GOT-10k and TrackingNet datasets, the training datasets of HCTrack
are different. To obtain the tracking result on GOT-10k test set GOT-10k dataset is only used for
training according to GOT-10k protocol. For TrackingNet test set, a combination of COCO2017,
TrackingNet, LaSOT, and GOT-10k datasets is used for training, which is consistent with most
methods. The preprocessing process of the training data is same as that of OSTrack(Ye et al., 2022),
including image cropping and data augmentation. The model is performed for 300 epochs, where
6× 104 image pairs are processed in each epoch. Every image pair includes a static template image,
a dynamic template image, and a search image. In addition, ADAM optimizer with a weight decay
of 1× 10−4 is used, and the learning rate is initially set to 2× 10−4 and dropped to 2× 10−5 at
240 epochs.

Inference. At the beginning of testing, the first frame is set as both the initial static template and the
dynamic template. The dynamic template is updated with the image that has the highest confidence
score in an interval of 200 frames, where the confidence of each image is determined by the value
output by the score head.
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Table 1: The performance comparison of HCTrack with other methods on GOT-10k and Track-
ingNet datasets. The models are named according to the format ‘method name resolution’. The
best results are indicated in bold, and the second-best results are underlined. ‘-’ represents that the
information is not given.

Model Source FPS
GOT-10k TrackingNet

AO(%) SR0.5(%) SR0.75(%) AUC(%) Pnorm (%) P(%)
SiamFC 256 (Bertinetto et al., 2016) ECCV16 86 34.8 35.3 9.8 57.1 66.3 53.3
SiamRPN++ 256 (Li et al., 2019a) CVPR19 35 51.7 61.6 32.5 73.3 80.0 69.4

DiMP (Dosovitskiy, 2020) ICCV19 43 61.1 71.7 49.2 74.0 80.1 68.7
SiamFC++ (Xu et al., 2020) AAAI20 90 59.5 69.5 47.9 75.4 80.0 70.5
Ocean (Zhang et al., 2020) ECCV20 - 61.1 72.1 47.3 - - -

STMTrack (Fu et al., 2021b) CVPR21 28.6 64.2 73.7 57.5 80.3 85.1 76.7
STARK (Yan et al., 2021) ICCV21 31.7 68.8 78.1 64.1 82.0 86.9 -

TransT 256 (Chen et al., 2021) CVPR21 50 67.1 76.8 60.9 81.4 86.7 80.3
SimTrack (Chen et al., 2022) ECCV22 - 69.8 78.8 66.0 83.4 87.4 -
Mixformer (Cui et al., 2022) CVPR22 31 71.2 79.9 65.8 83.9 88.9 83.1

OSTrack 256 (Song et al., 2023) ECCV22 105 71.0 80.4 68.2 83.1 87.8 82.0
SwinTrack 224 (Lin et al., 2022) NIPS22 96 71.3 81.9 64.5 81.1 - 78.4
CTTrack 320 (Lan et al., 2023) AAAI2023 40 71.3 80.7 70.3 82.5 87.1 80.3

VideoTrack 256 (Xie et al., 2023) CVPR23 - 72.9 81.9 69.8 83.8 88.7 83.1
TATrack B224 (Zheng et al., 2023) CVPR23 25 73.0 83.3 68.5 83.5 88.3 81.8

GRM 256 (Gao et al., 2023) CVPR23 45 73.4 82.9 70.4 84.0 88.7 83.3
LiteTrack 256 (Wei et al., 2024) ICRA24 170 72.2 82.3 69.3 82.4 87.3 80.4

HCTrack 256 (ours) 163 73.6 84.2 69.7 82.6 87.6 80.5

4.2 PERFORMANCE COMPARISON

To measure the performance of the proposed HCTrack, we compare it with the current mainstream
target tracking algorithms on GOT-10k and TrackingNet datasets, including SiamFC, SiamRPN++,
DiMP, SiamFC++, Ocean, STMTrack, STARK, TransT, SimTrack, Mixformer, OSTrack, Swin-
Track, CTTrack, VideoTrack, TATrack, GRM and LiteTrack. Table 1 shows the experimental results
of HCTrack with other state-of-the-art models on GOT-10k and TrackingNet datasets.

GOT-10k dataset: It can be seen from Table 1 that the AO and SR0.75 scores of HCTrack is highest
than other object tracking methods, which demonstrates the favorable performance of HCTrack.
Meanwhile, FPS of HCTrack is higher than most tracking models in Table 1. It indicates that the
introduction of the contrastive learning strategy can effectively improve tracking accuracy of the
model under the condition of fast tracking.

TrackingNet dataset: It is observed that HCTrack is superior to other models except OSTrack in the
tracking accuracy, as shown in Table 1. Although AUC of HCTrack is lower than that of SimTrack,
Mixformer, OSTrack, VideoTrack, TATrack, and GRM, FPS of HCTrack is far higher than them.
Therefore, our proposed HCTrack strikes a better balance between the tracking accuracy and speed.

4.3 ABLATION STUDY

To validate the effectiveness of each module in HCTrack, we conducted a series of ablation ex-
periments on GOT-10k dataset. Table 2 shows the tracking results of different modules and their
combinations in HCTrack, where the template features of the current layer is not contained in the
input features of CSA module if CSA module is not selected in Table 2.

In Table 2, the baseline model without CSA, RIP, contrasting learning (CL) strategy and dynamic
template update (DTU) mechanism, achieves AO of 71.8%. After incorporating RIP module into
the baseline model, AO increases to 72.4%, which suggests that RIP module can effectively increase
to the focus on the targets during tracking by eliminating redundant background information. When
CSA module is added to the baseline model, AO increases to 72.5%, as shown in Table 2. This
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Table 2: The effectiveness analysis of different modules in HCTrack.

CL DTU CSA RIP AO(%) SR0.5(%) SR0.75(%)
- - - - 71.8 81.9 68.3
- - - ✓ 72.4 82.3 68.7
- - ✓ - 72.5 82.7 69.4
✓ - - - 73.1 83.6 69.0
✓ ✓ - - 73.4 84.1 70.1
✓ ✓ ✓ ✓ 73.6 84.2 69.7

indicates that leveraging multi-layered template semantic information can enhance the ability of
model to perceive and locate the targets.

In addition, after integrating the contrastive learning strategy into the baseline model, AO increases
by 1.3% in Table 2. It suggests that our designed contrastive learning strategy can significantly im-
prove the tracking accuracy of targets through learning the differences between positive and negative
samples during training. On this basis, if the dynamic template update mechanism is also utilized
to extend the positive samples in the contrastive learning of HCTrack, AO of the model increases to
73.4%, which further confirms the effectiveness of the contrastive learning strategy. Finally, the or-
ganic combination of CSA module, RIP module, contrasting learning strategy and dynamic template
update mechanism makes sure the best performance of HCTrack in Table 2.

5 CONCLUSION

In this paper, we present a Hybrid Contrastive Transformer Tracker (HCTrack) to address the chal-
lenges of confusion of targets and backgrounds in the Transformer-based object tracking. By in-
tegrating contrastive learning with a Transformer-based tracking framework, HCTrack effectively
enhances the ability to differentiate between targets and backgrounds, thereby improving tracking
accuracy. Furthermore, a hybrid feature interaction module is constructed to realize comprehensive
information exchange between template and search regions. In addition, we design a redundant
information pruning module to reduce background interference by adaptively eliminating target-
irrelevant redundant features based on global scene information. Experimental results on the GOT-
10k and TrackingNet datasets demonstrate that HCTrack achieves competitive performance in terms
of tracking accuracy, while maintaining fast tracking speed.
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A APPENDIX

A.1 STRATEGY ANALYSIS

To validate the structure rationality of our proposed different modules in this paper, a series of
experiments on GOT-10k dataset are conducted.

(1) The structure analysis of CSA

In this paper, we design a CSA module to extract rich template characteristics by associating the
search region features with multi-level template features. The associated template features in CSA
module can be selected in different ways, as shown in Figure 4. Table 3 shows the experimental re-
sults of the model only containing CSA with different association modes corresponding to Figure 4.

The comparison of the experimental results corresponding to Figure4(a-c) in Table 3 shows that
the template feature of last layer is very important for improving the tracking accuracy. When only
the last layer of template features is used for CSA module shown in Figure4(a) , AO, SR0.5, and
SR0.75 reach 71.8%, 81.9%, and 68.3% respectively in Table 3. In contrast, if the template features
of current layer or penultimate layer are used as shown in Figure4(b) and (c), these metrics of Ta-
ble 3 decrease. This shows that deeper template features (from the last layer) can more effectively
describe the target information in the template than the shallower template features (from the cur-
rent layer or the penultimate layer), thereby better guiding the model in extracting target information
from the search area.
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(d) last layer + previous layer (e) last layer + next layer (f) last layer + current layer

(a) last layer (b) current layer (c) penultimate layer+current layer

------------ Self-associaton ------------ Cross-associaton

S
A

S
A

S
A

S
A

C
A

C
A

C
A

C
A

S
A

S
A

S
A

S
A

C
A

C
A

C
A

C
A

S
A

S
A

S
A

S
A

C
A

C
A

C
A

C
A

S
A

S
A

C
A

C
A

C
A

C
A

S
A

S
A

S
A

S
A

C
A

C
A

C
A

C
A

S
A

S
A

S
A

S
A

C
A

C
A

C
A

C
A

SA CA

S
A

S
A

Figure 4: Different template input structures of the cross-layer semantic association module.

Table 3: The influence of different association modes in CSA module.
Input template features AO(%) SR0.5(%) SR0.75(%)

Figure 4 (a) 71.8 81.9 68.3
Figure 4 (b) 70.3 80.4 66.4
Figure 4 (c) 71.4 80.9 68.0
Figure 4 (d) 71.6 81.3 67.8
Figure 4 (e) 72.0 81.7 68.7

Figure 4(f) (CSA) 72.5 82.4 69.3

Subsequently, under the premise of using the template feature of the last layerin CSA module, the
template features of the previous layer, next layer, and current layer are added into CSA module
respectively, as shown in Figure4(d-f). The corresponding tracking accuracies in Table 4 indicates
that the association mode of Figure4(f), that is “last layer+current layer”, has the best performance.
It manifests that the template feature of current layer is more suitable for guiding the extraction of
target information in the search area than the previous and next layers, resulting in better accuracy
performance.

(2) The deployment analysis of RIP

The deployment of RIP module in different encoding layers of the backbone network can have dif-
ferent influenct on model performance. Table 4 shows the tracking accuracy of HCTrack when
RIP module is deployed in different positions of backbone network. The module was placed in
the seventh, eighth, and ninth layers of the backbone network respectively, and the corresponding
AO gradually improves, reaching 72.2%, 73.0%, and 73.6%, respectively. This indicates that the de-
ployment of RIP module on deep layer of backbone can more accurately remove the target-irrelevant
backgrounds, thereby improving the tracking accuracy of the model.

(3) The strategy analysis of positive sample selection

HCTrack samples multiple pairs of instances from the same video sequence as the positive samples,
and updates dynamic template to increase the number of positive samples. The different number
of positive samples may affect the model performance. Table 5 shows the experimental results of
HCTrack with different number of positive samples. When the number of positive sample pairs in
the same video sequence is 1, 2, 3, and 4, the corresponding AO values are 72.5%, 73.3%, 73.6%,
and 73.1%, respectively, as shown in Table 5, where the performance of model with three positive
sample pairs achieves best. This indicates that the richness of positive samples is insufficient if the
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Table 4: The influence of different deployment of RIP module.

Deployment location AO(%) SR0.5(%) SR0.75(%)
Layer 7 72.2 82.6 68.3
Layer 8 73.0 83.6 69.5
Layer 9 73.6 84.2 69.7

Table 5: The influence of different number of positive samples in HCTrack.

Number of sample pairs
in the same video

Whether to include
dynamic templates

AO(%) SR0.5(%) SR0.75(%)

1 ✓ 72.5 83.2 68.3
2 ✓ 73.3 83.6 70.2
3 73.3 84.1 70.1
3 ✓ 73.6 84.2 69.7
4 ✓ 73.1 83.7 70.2

number of positive samples in the same video is small, making it difficult to accurately learn the
core feature of the same target in different scenes. Conversely, when the number of positive samples
is too large, the proportion of positive samples relative to the total number of samples becomes
too high, resulting in relatively fewer negative samples and making the model difficult to learn the
differences between different types of targets.

Additionally, under the premise that three positive sample pairs is utilized, we analysis the impact of
dynamic templates in the positive samples on the model performance. After the dynamic template
is removed, AO decreases from 73.6% to 73.3%, which indicates that setting dynamic templates as
positive samples can increase the number of positive samples, guiding the model to better learn the
relationship between positive and negative samples.

(4) The feature selection analysis of contrast head

In HCTrack, the features of the template, the dynamic template and the search area, are used for the
contrastive learning features and fed into the contrastive head. Selecting the features from different
layers of HFEI module as the inputs of the contrastive head has different influence on the tracking
performance of HCTrack. Table 6 shows the experimental results of HCTrack when the features of
different layers in HFEI module are used as the inputs of the contrastive head. With the increase

Table 6: The influence of different input feature of the contrast head in MCTrack.

Number of feature layers 1 2 3 4 5 6 7 8 9
AO(%) 68.5 70.1 69.6 71.7 73.2 73.6 71.5 70.4 70.2

SR0.5(%) 78.4 80.0 79.6 81.0 83.1 84.2 81.8 80.2 80.0
SR0.75(%) 63.7 66.0 65.2 68.0 71.4 69.7 67.4 67.1 66.7

of the layer number of the feature used for the contrastive head, AO score goes up and then down,
where the tracking accuracy peaks when using features extracted from the 6th layer as input of the
contrastive head, achieving an AO of 73.6%. This suggests that the shallow features from earlier
layers lack the representational capacity to effectively distinguish between targets and backgrounds,
resulting in poorer tracking accuracy. On the other hand, since the deeper search features from CSA
module have contained the template information, the diffence between the positive samples and the
negative samples becomes small, resulting in performance degradation.

A.2 PARAMETER ANALYSIS

During training HCTrack, a contrastive loss function was introduced. The varying weights λcl of
this loss function have different impacts on the performance of HCTrack. When only dynamic
template updating mechanism and contrast learning are used, the experimental results of the model
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on GOT-10k dataset under different contrast loss function weights are presented in Table. 7. It
can be observed that the model achieves the best performance when λcl = 0.1 . However, AO
gradually decreases with λcl rising from 0.1 to 0.9. As the proportion of the contrastive learning
loss function increases, the corresponding proportion of regression and classification loss function
decreases, leading to a gradual decline in accuracy. It suggests that the regression and classification
are the key to the tracking task, and the contrastive learning loss function can serves as an auxiliary
component to helpg the models achieve optimal performance.

Table 7: The weight analysis of comparative loss function in HCTrack.

λcl 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
AO(%) 73.1 73.4 72.7 69.7 70.6 71.4 70.5 69.1 69.3 69.1

SR0.5(%) 82.6 84.1 82.9 79.5 80.2 81.2 80.3 78.8 79.1 78.6
SR0.75(%) 69.4 70.1 69.7 66.5 66.4 67.7 66.8 65.3 65.7 64.8
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