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ABSTRACT

Stochastic Gradient Descent (SGD) has become a cornerstone of neural network
optimization due to its computational efficiency and generalization capabilities.
However, the noise introduced by SGD is often assumed to be uncorrelated over
time, despite the common practice of epoch-based training where data is sampled
without replacement. In this work, we challenge this assumption and investi-
gate the effects of epoch-based noise correlations on the stationary distribution of
discrete-time SGD with momentum. Our main contributions are twofold: First,
we calculate the exact autocorrelation of the noise during epoch-based training
under the assumption that the noise is independent of small fluctuations in the
weight vector, revealing that SGD noise is inherently anti-correlated over time.
Second, we explore the influence of these anti-correlations on the variance of
weight fluctuations. We find that for directions with curvature of the loss greater
than a hyperparameter-dependent crossover value, the conventional results for un-
correlated noise are recovered. However, for relatively flat directions, the weight
variance is significantly reduced, leading to a considerable decrease in loss fluc-
tuations compared to the constant weight variance assumption. Furthermore, we
demonstrate that training with these anti-correlations enhances test performance,
suggesting that the inherent noise structure induced by epoch-based training plays
a crucial role in finding flatter minima that generalize better.

1 INTRODUCTION

Initially developed to address the challenges of computational efficiency in neural networks, stochas-
tic gradient descent (SGD) has exhibited exceptional effectiveness in managing large datasets com-
pared to the full gradient methods (Bottou, 1991). It has since garnered widespread acclaim in
the machine learning domain (LeCun et al., 2015), with applications spanning image recognition
(Krizhevsky et al., 2012; Simonyan & Zisserman, 2015; He et al., 2016), natural language pro-
cessing (Sutskever et al., 2014; Brown et al., 2020), and mastering complex games beyond human
capabilities (Silver et al., 2017). Alongside its numerous variants (Duchi et al., 2011; Kingma & Ba,
2015; Schmidt et al., 2021), SGD remains the cornerstone of neural network optimization.

SGD’s success can be attributed to several key properties, such as rapid escape from saddle points
(Ge et al., 2015) and its capacity to circumvent "bad" local minima, instead locating broad minima
that generally lead to superior generalization (Hochreiter & Schmidhuber, 1997; Keskar et al., 2017;
Jastrzębski et al., 2018; Smith & Le, 2018; Xie et al., 2021; Wojtowytsch, 2024). This is often as-
cribed to anisotropic gradient noise (Hoffer et al., 2017; Sagun et al., 2018; Zhang et al., 2018; 2019;
Zhu et al., 2019; Li et al., 2020; Ziyin et al., 2022). Nonetheless, recent empirical research posits
that even full gradient descent, with minor adjustments, can achieve generalization performance
comparable to that of SGD (Geiping et al., 2022).

To deepen our understanding of neural network training dynamics, several studies have investigated
the limiting behavior of network weights during the later stages of training (Yaida, 2019; Kunin
et al., 2023). Of particular interest is the behavior of weight fluctuations near a minimum of the loss
function (Mandt et al., 2017; Jastrzębski et al., 2018; Liu et al., 2021). Empirical evidence suggests
that the covariance matrix C associated with SGD noise is proportional to the Hessian matrix H
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of the loss function (Sagun et al., 2018; Zhang et al., 2018; 2019; Zhu et al., 2019; Thomas et al.,
2020; Xie et al., 2021), although this proportionality may not hold under certain conditions (Ziyin
et al., 2022). Consequently, theoretical analyses predict that the stationary covariance matrix of the
weights, Σ, becomes isotropic when the learning rate is sufficiently small (Jastrzębski et al., 2018;
Liu et al., 2021; Kunin et al., 2023). However, recent empirical studies (Feng & Tu, 2021) have
identified significant anisotropy in Σ.

In this work, we present both theoretical and empirical analyses of weight fluctuations during the
later stages of training, accounting for the emergence of anti-correlations in the noise produced
by SGD, which stem from the prevalent epoch-based learning schedule. As a result of these anti-
correlations, we discover that the covariance matrix Σ displays anisotropy and is smaller than ex-
pected in a subspace of weight directions corresponding to Hessian eigenvectors with small eigen-
values, while maintaining the isotropy of Σ in directions associated with Hessian eigenvectors pos-
sessing large eigenvalues. Our theoretical predictions are validated through the analysis of a neural
network’s training within a subspace of its top Hessian eigenvectors.

In addition, we demonstrate that for a small convolutional network trained on CIFAR10 the anti-
correlations in SGD noise described above significantly increase the test accuracy. By linking this
result to a previous study on artificially added anti-correlated noise and its benefits (Orvieto et al.,
2022), we argue that the anti-correlations in SGD noise suppress diffusion in flat directions, and in
this way contribute to finding flatter minima with better test accuracy.

OUR CONTRIBUTIONS

• We uncover generic anti-correlations in SGD noise that result from the common practice of draw-
ing training examples without replacement. We calculate the autocorrelation function of SGD
noise under the assumption that the noise is independent of small fluctuations in the weight vector
over time. The anti-correlations arise because the noise sums to zero over an epoch where each
example is presented once.

• Using the computed autocorrelation function, we develop a theory that elucidates the rela-
tionship between variances along different Hessian eigenvectors. The weight space partitions
into two groups based on Hessian eigenvalues: for eigenvectors with eigenvalues exceeding a
hyperparameter-dependent crossover value λcross, the isotropic variance prediction holds; for those
with smaller eigenvalues, the variance is proportional to the eigenvalue and is smaller than the
isotropic value. This theory accounts for the discrete nature of SGD, avoids continuous-time ap-
proximations, and incorporates heavy-ball momentum.

• For each Hessian eigenvector, there exists an intrinsic correlation time of update steps, introduced
by the loss landscape and proportional to 1/λi, where λi is the corresponding Hessian eigenvalue.
Additionally, there is a fixed, direction-independent noise correlation time τSGD on the order of
one epoch. The smaller of these two timescales determines the actual correlation time τi for the
update steps along a given eigenvector. Since weight variances are proportional to τi, this leads to
the emergence of two distinct variance-curvature relationships.

• We validate our theoretical predictions by analyzing the training of a neural network within a sub-
space spanned by its top Hessian eigenvectors. Utilizing Hessian eigenvectors offers advantages
over principal component analysis of the weight trajectory, as used in a previous empirical study
(Feng & Tu, 2021), where finite-size effects introduced significant artifacts.

• We investigate how the proposed weight variance affects the training error. Using a quadratic
loss model, we demonstrate that noise anti-correlations significantly reduce loss fluctuations. For
the distribution of the 5,000 largest Hessian eigenvalues derived from our LeNet case study, we
observe a 62% reduction in loss fluctuation compared to models with constant weight variance,
highlighting the importance of a broader range of Hessian eigendirections in training optimization.

• We observe that drawing examples without replacement during training leads to higher test ac-
curacy compared to drawing with replacement. By linking our findings to a prior study (Orvieto
et al., 2022) on artificially added anti-correlated noise, we propose that the higher test accuracy is
connected to the anti-correlated noise inherent in the without-replacement sampling, which may
encourage convergence to flatter minima.
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2 BACKGROUND

We consider a neural network characterized by its weight vector, θ ∈ Rd. The network is trained on
a set of N training examples, each denoted by xn, where n ranges from 1 to N . The loss function,
defined as L(θ) := 1

N

∑N
n=1 l(θ, xn), represents the average of individual losses incurred for each

training example l(θ, xn).

It is common practice to add some kind of momentum to the SGD algorithm when training a net-
work as it leads to faster convergence, has a smoothing effect, and helps in escaping local minima.
Therefore, to keep the analysis general, we consider a training process that employs stochastic gradi-
ent descent augmented with heavy-ball momentum. This approach updates the network parameters
according to the following rules:

gk(θ) =
1

S

∑
n∈Bk

∇l(θ, xn) , vk = −ηgk(θk−1) + βvk−1 , θk = θk−1 + vk . (1)

Here, k signifies the discrete update step index, η is the learning rate, and β is the momentum
parameter. The stochastic gradient at each step is computed with respect to a batch of S ≪ N
random examples. Each batch is denoted by Bk = {n1, . . . , nS}, where nj ∈ {1, . . . , N}. The
training process is structured into epochs. During each epoch, every training example is used exactly
once, implying that the examples are drawn without replacement and do not recur within the same
epoch.

In the realm of SGD as opposed to full gradient descent, we introduce noise, denoted as δgk(θ) :=
gk(θ) − ∇L(θ), with a covariance matrix C(θ) := cov

(
δgk(θ), δgk(θ)

)
. The noise covari-

ance matrix is known to be proportional to the gradient sample covariance matrix C0(θ) :=
1

N−1

∑N
n=1 ∇ [l(θ, xn)− L(θ)]∇⊤ [l(θ, xn)− L(θ)]. A detailed derivation of this relation, par-

ticularly for the case of drawing without replacement, is provided in Appendix D.

As in previous studies, our primary theoretical focus is on the asymptotic – or limiting – covariance
matrix of the weights, denoted by Σ := cov

(
θk,θk

)
. This means we are interested in the covariance

computed over an infinite run of SGD optimization, rather than the covariance at a fixed update step
k computed over multiple runs of SGD (see Appendix A).

To better understand the behavior of the weight variances, we further examine the covariance matrix
of the velocities, Σv := cov

(
vk,vk

)
. We then explore the ratio of the weight variance to the

velocity variance in any given direction, which we denote as τi. Under general assumptions, this
ratio equates to the velocity correlation time of the corresponding direction (see Section 4.2).

3 RELATED WORK

3.1 HESSIAN AND GRADIENT SAMPLE COVARIANCE

The assumption of a strong alignment between the gradient sample covariance C0 and the Hessian
matrix of the loss function H is widely used in the literature (Jastrzębski et al., 2018; Zhang et al.,
2019; Liu et al., 2021). Various theoretical arguments suggest that when a neural network’s output
closely matches the example labels, these two matrices should be similar (Jastrzębski et al., 2018;
Sagun et al., 2018; Zhang et al., 2018; Zhu et al., 2019; Martens, 2020). However, as highlighted
by Thomas et al. (2020), even slight deviations between network predictions and labels can theoret-
ically disrupt this relationship. Nevertheless, empirical observations often reveal a strong alignment
between the gradient sample covariance and the Hessian matrix near a minimum.

Zhang et al. (2019) investigated this assumption numerically. They analyzed both matrices in a spe-
cific basis that exhibits varying curvature across different directions. Their findings showed a close
correspondence between curvature and gradient variance along a given direction in a convolutional
image recognition network, and a reasonably good relationship in a transformer model. Similarly,
Thomas et al. (2020) provided both theoretical arguments and empirical evidence across different
image recognition architectures. While they did not find an exact match between the two matri-
ces, they observed a proportionality indicated by a high cosine similarity. Xie et al. (2021) also
explored this relationship using an image recognition network. In the eigenspace of the Hessian
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matrix, they plotted entries within a specific interval against corresponding entries from the gradient
sample covariance and observed a close match.

Ziyin et al. (2022) emphasized the importance of considering the conditions under which the approx-
imation of proportionality between the two matrices is valid, noting that the approximation may be
questionable otherwise. However, the conditions they specify – particularly being near a minimum
with low loss – are consistent with our empirical setup (see Section 5.1 and Appendix H).

3.2 LIMITING DYNAMICS AND WEIGHT FLUCTUATIONS

Several studies have examined the limiting dynamics of SGD, often modeling it as a stochastic
differential equation (SDE). Researchers such as Mandt et al. (2017) and Jastrzębski et al. (2018)
commonly approximate the loss near a minimum as a quadratic function, representing the SDE as a
multivariate Ornstein-Uhlenbeck (OU) process. This process suggests a stationary weight distribu-
tion with Gaussian fluctuations. Jastrzębski et al. (2018) further assume that the gradient covariance
is proportional to the Hessian, observing under these conditions that the weight fluctuations are
isotropic. Kunin et al. (2023), who also incorporate momentum into their analysis, predict and
empirically verify isotropic weight fluctuations. Chaudhari & Soatto (2018) investigate the SDE
without assuming a quadratic loss or equilibrium, gaining insights via the Fokker-Planck equation.

Alternatively, some studies derive relationships from a stationarity assumption rather than a
continuous-time approximation (Yaida, 2019; Liu et al., 2021; Ziyin et al., 2022). Yaida (2019)
assumes that the weight trajectory follows a stationary distribution and derives general fluctuation-
dissipation relations from this premise. Liu et al. (2021) go further by assuming a quadratic loss
function, enabling them to derive exact relations for the weight variance of SGD with momentum. If
the gradient covariance is additionally assumed to be proportional to the Hessian, their results also
predict that the weight variance is approximately isotropic, except in directions where the product
of the learning rate and the Hessian eigenvalue is significantly large.

These computed weight variances are explicitly applied in various contexts, such as calculating the
escape rate from a minimum or assessing the approximation error in SGD – which captures the
additional training error attributed to noise (Liu et al., 2021).

Feng & Tu (2021) present a phenomenological theory based on their empirical findings, which,
unlike Kunin et al. (2023), also accounts for flat directions. They describe a general inverse variance-
flatness relationship by analyzing the weight trajectories of different image recognition networks via
principal component analysis. They discovered a power law relationship between the curvature of
the loss and the weight variance σ2

θ,i in any given direction, where higher curvature corresponds to
higher variance. They also observed that both the velocity variance σ2

v,i and the correlation time τi
are larger for higher curvatures.

In our approach, we avoid the continuous-time approximation and instead base our results on the
assumption that the weights adhere to a stationary distribution near a quadratic minimum.

4 THEORY

4.1 AUTOCORRELATION OF THE NOISE

We consider the correlation between two noise terms arising from different SGD update steps.
Specifically, when examples are sampled without replacement while keeping the weight vector θ
constant, inherent anti-correlations emerge in the noise. Below, we provide a conceptual motivation
for this phenomenon and refer the reader to Appendix D for a detailed derivation.

Suppose the ratio M := N/S is an integer, where N is the total number of examples and S is
the batch size. This ensures that each epoch consists of M batches, with every example presented
exactly once per epoch. For a fixed weight vector θ, the mean of the gradients computed over one
epoch, gk(θ), equals the total gradient ∇L(θ). Consequently, the sum of the noise components
δgk(θ) = gk(θ) − ∇L(θ) over one epoch must be zero. This implies that if a noise term points
in a particular direction at the beginning of an epoch, subsequent noise terms within the same epoch
are constrained to partially cancel it out, leading to anti-correlations.
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Figure 1: Autocorrelations of the SGD noise observed over a span of 20 epochs, equivalent to 20,000
update steps. This data is collected from a later phase in the training process. The autocorrelation
is projected onto 5,000 Hessian eigenvectors, and the result is averaged. The theoretical prediction
Equation (2) is also displayed along with a 2σ-interval, where σ represents the expected standard
deviation of the SGD noise. The zero-point correlation is omitted as it is inherently equal to one.

Therefore, the anti-correlation between two noise terms within the same epoch can be expressed as
a negative correlation proportional to the equal-time correlation, scaled by a factor of 1

M−1 , where
M is the number of batches per epoch. Next, we consider the probability that two batches k and
k + h, separated by h update steps, belong to the same epoch. This probability is given by M−|h|

M
for |h| ≤ M , and zero otherwise. Combining this with the anti-correlation derived above, we arrive
at the correlation formula:

Theorem 4.1. If the total number of examples N is an integer multiple of the batch size S and
the parameters θ of a network are kept fixed, then the autocorrelation formula for the gradient
noise of an epoch-based learning schedule, where the examples for one epoch are drawn without
replacement, is given by

cov
(
δgk(θ), δgk+h(θ)

)
= C(θ) ·

(
δh,0 − 1{1,...,M}(|h|)

M − |h|
M(M − 1)

)
, (2)

where M := N/S signifies the number of batches per epoch.

In the above theorem 1A(k) represents the indicator function over the set A, which is one for k ∈
A and zero otherwise and δi,j represents the Kronecker delta. The actual noise autocorrelation
is illustrated in Figure 1, with the experimental details elaborated in Section 5.2. The complete
calculation is available in Appendix D, highlighting the relationship C(θ) = (1/S) · (1 − S/N) ·
C0(θ) with the gradient sample covariance matrix C0.

Strictly speaking, the formula derived above applies only to a static weight vector. During training,
the weights change with each update step, potentially altering this relationship. However, if the
weights remain relatively constant over one epoch, this correlation approximately holds. Empiri-
cally, we find that in the later stages of training, the theoretical prediction given by Equation (2)
closely matches the actual training dynamics, as evidenced by the strong agreement with the data
shown in Figure 1.

When we sample the examples with replacement during training, there are no anti-correlations (see
Appendix G). Further numerical investigations show that also in the case where N is not an integer
multiple of S, the later derived relations for the variances still hold (see Appendix I).

4.2 CORRELATION TIME DEFINITION

To gain a more comprehensive understanding of the weight variance behavior, we additionally ex-
amine the velocity variance and the ratio between them. We label this ratio, scaled by a factor of
two, as the correlation time τi (see Equation (3)). This definition aligns with that of the velocity
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correlation time, hence justifying the nomenclature. The equivalence stands under general assump-
tions, such as a sufficiently fast decay of the weight correlations, cov

(
θk,θk+n

)
, which are satisfied

in our problem setup described in Section 4.3 (see Appendix B.4), where the weight correlations
will even decay exponentially fast.

Theorem 4.2. Under general assumptions, stated in Appendix C and satisfied by the problem setup
described in Section 4.3, it holds that

τi :=
2σ2

θ,i

σ2
v,i

=

∑∞
n=1 n · cov

(
vk,i, vk+n,i

)∑∞
n=1 cov

(
vk,i, vk+n,i

) , (3)

justifying the label correlation time for this variance ratio.

Here, σ2
θ,i and σ2

v,i represent the variances of the weights and velocities, respectively, in a given
direction pi, where θk,i := θk · pi and vk,i := vk · pi. If the covariance matrices Σ and Σv

commute, they can be simultaneously diagonalized, allowing us to choose shared eigenvectors pi. In
this case, σ2

θ,i and σ2
v,i become the corresponding eigenvalues. The detailed derivation is presented

in Appendix C.

4.3 VARIANCE FOR LATE TRAINING PHASE

Given the autocorrelation of the noise calculated earlier, we aim to present the expected variances of
the weights and velocities during the later stages of training. To characterize the conditions of this
phase, we make the following assumptions.

Assumption 1: Quadratic approximation We assume that we have reached a minimum
point of the loss function, which can be adequately represented with a quadratic form as
L(θ) = L0 +

1
2 (θ − θ∗)

⊤H(θ − θ∗). Without loss of generality, we set L0 = 0 and θ∗ = 0,
simplifying the expression to L(θ) = 1

2θ
⊤Hθ .

Assumption 2: Anti-correlated noise We assume that the covariance of the SGD noise is static
and that its autocorrelation follows the relation previously calculated in Equation (2), even when the
weight vector is not static.

While the noise generally exhibits state dependence, it is reasonable to assume a constant covariance
during the later stages of training and within the time frame of our analysis. As described by Ziyin
et al. (2022), state dependence enters the noise through the value of the training loss. Since we
observe only minimal changes in the loss during our analysis period (see Appendix H), assuming a
static noise covariance is justified.

Assumption 3: Hessian and noise covariance commute We assume that the covariance of the
noise commutes with the Hessian matrix, [C,H] = 0.

This assumption is not strictly necessary, but it simplifies the analysis. The theory predicts a vari-
ance reduction in the eigenspace of the Hessian with relatively small eigenvalues without requiring
commutativity (see Appendix L). However, when [C,H] ̸= 0, the calculated weight and veloc-
ity variances are no longer exact eigenvalues of their respective covariance matrices; instead, they
represent variances along the directions of the Hessian eigenvectors. As long as C and H approx-
imately commute – as discussed in Section 3.1 – these variances provide a good approximation
of the actual eigenvalues. For further discussion, we refer to Appendix L, where we demonstrate
that although [C,H] = 0 is not strictly satisfied in our empirical investigation, the eigenbasis of
H remains a reasonable approximation for the eigenbasis of C. Moreover, due to finite sample
sizes, the actual eigenvalues of the empirically recorded weight covariance matrix Σ are inherently
skewed. Therefore, analyzing the weight variance in the eigenbasis of H is beneficial, as we explain
in Appendix E.

Additionally, we assume that 0 ≤ β < 1 and 0 < ηλi < 2(1 + β) for all eigenvalues λi of H. If
these conditions are not met, the weight fluctuations would diverge.

Calculation for one eigenvalue With the previously stated assumptions in place, the covariance
matrices Σ and Σv commute with C, H, and with each other (see Appendix B.1). As a result,
they all share a common eigenbasis pi, with i = 1, . . . , d, which facilitates the computation of
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the expected variance. We will outline the most important steps here, while details can be found
in Appendix B.2. For a given common eigenvector pi we project the relevant variables onto this
vector. This yields the projected weight θk,i := pi · θk, velocity vk,i := pi · vk, and noise term
δgk,i := pi · δgk at the update step k. Correspondingly, we define the eigenvalues for the common
eigenvector pi as λi for H, σ2

θ,i for Σ, σ2
v,i for Σv, and σ2

δg,i for C. We denote the number of
batches per epoch as M = N/S, presuming it is an integer.

By introducing the vector xk,i :=
(
θk,i θk−1,i

)⊤
that contains not only the current weight variable

but also the weight variable with a one-step time lag we can write the update equation as:

xk,i = Dixk−1,i − ηδgk,ie1 , (4)

where e1 :=
(
1 0

)⊤
and the matrix Di governs the deterministic part of the update. Together with

its explicit expression, we further define a correlation term:

Di :=

(
1 + β − ηλi −β

1 0

)
, Ei := Di cov (xk−1,i, δgk,ie1) . (5)

The term Ei encapsulates the correlation between the current weight variable and the noise term of
the next update step. Typically, noise terms are assumed to be temporally uncorrelated, which would
render Ei null. However, given the anti-correlated nature of the noise, we find a non-zero Ei. An
explicit expression of Ei can be found in Appendix B.2.

Theorem 4.3. With the above assumptions and definitions, the following relation for the weight and
velocity variances holds: (

σ2
θ,i

σ2
v,i

)
= η2σ2

δg,iFi

[
e1 −

(
Ei +Ei

⊤
)
e1

]
, (6)

where the matrix Fi is explicitly expressed as:

Fi =
1

(1− β)
(
2(1 + β)− ηλi)

) ( 1+β
ηλi

2β(ηλi−1−β)
ηλi

2 2(ηλi − 2)

)
. (7)

The calculations can be found in Appendix B.2. The exact relation Equation (6) can be easily evalu-
ated numerically but it can also be approximated by assuming that M ≫ 1/(1− β), which implies
that the correlation time induced by momentum is substantially shorter than one epoch. Conse-
quently, two distinct regimes of Hessian eigenvalues emerge, separated by λcross := 3(1−β)/(ηM).
For each of these regimes, specific simplifications apply. Notably, at λcross, both approximations
converge.

Figure 2: Relationship between Hessian eigenvalues and the variances of weights and velocities,
as well as correlation times. The mean velocity of the weight trajectory has been subtracted (see
Section 5.3). In the left panel, we present the variances of weights and velocities. The solid lines
signify the regions utilized for a linear fit. The exponents resulting from the power law relationship
are 1.077± 0.012 for weight variance and 1.066± 0.002 for velocity variance, with a 2σ-error. Our
theory suggests these exponents should be equal to one. The right panel showcases the correlation
time together with the theoretical prediction resulting from Equation (6).
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Corollary 4.4. Relations for large Hessian eigenvalues: For Hessian eigenvectors with eigen-
values λi > λcross and when M ≫ 1/(1 − β), the effects of noise anti-correlations are minimal.
Consequently, we can use the following approximate relationships, which also hold true in the ab-
sence of correlations and, therefore, also when drawing examples with replacement:

σ2
θ,i ≈

η2σ2
δg,i

(1− β)
(
2(1 + β)− ηλi

) · 1 + β

ηλi
, σ2

v,i ≈
η2σ2

δg,i

(1− β)
(
2(1 + β)− ηλi

) · 2 , (8)

and τi ≈ 1+β
ηλi

. The detailed derivation of these formulas is presented in Appendix B.3.

It is frequently the case that the product ηλi is considerably less than one, enabling us to further
simplify the prefactor of the variances. Assuming the noise covariance matrix is proportional to
the Hessian matrix, such that σ2

δg,i ∝ λi, we derive the following power laws for the variances:
σ2
θ,i ∝ const. and σ2

v,i ∝ λi. As a result, in the subspace spanned by Hessian eigenvectors with
eigenvalues λi > λcross, our theory predicts an isotropic weight variance Σ.

Corollary 4.5. Relations for small Hessian eigenvalues: In the case of Hessian eigenvectors as-
sociated with eigenvalues λi < λcross and under the condition that M ≫ 1/(1 − β), the noise
anti-correlation significantly modifies the outcome. We can express the approximate relationships
as follows:

σ2
θ,i ≈

η2σ2
δg,i

2(1− β)(1 + β)
· M
3

1 + β

1− β
, σ2

v,i ≈
η2σ2

δg,i

2(1− β)(1 + β)
· 2 (9)

and τi ≈ M
3

1+β
1−β =: τSGD . Therefore, the weight variance is reduced by a factor of Mηλi

3(1−β) compared
to the case without anti-correlations. The derivation of these formulas is provided in Appendix B.3.

If we once again assume that the noise covariance matrix is proportional to the Hessian matrix, such
that σ2

δg,i ∝ λi, we obtain the following power laws for the variances: σ2
θ,i ∝ λi and σ2

v,i ∝ λi.
This implies that in the subspace spanned by Hessian eigenvectors with eigenvalues λi < λcross, the
weight variance Σ is not isotropic but proportional to the Hessian matrix H. It is noteworthy that
the correlation time τi ≈ M

3
1+β
1−β =: τSGD in this subspace is independent of the Hessian eigenvalue.

Moreover, τSGD is equivalent to the correlation time of the noise M/3, up to a factor that depends
on momentum.

5 NUMERICS

5.1 ANALYSIS SETUP

In order to corroborate our theoretical findings, we have conducted a small-scale experiment. We
have trained a LeNet architecture, similar to the one described in (Feng & Tu, 2021), using the
CIFAR10 dataset (Krizhevsky, 2009). LeNet is a compact convolutional network comprised of two
convolutional layers followed by three dense layers. The network comprises approximately 137,000
parameters. Here we present results for a single seed and specific hyperparameters. However, we
have also performed tests with different seeds and combinations of hyperparameters, all of which
showed comparable qualitative behavior (see Appendix I). Furthermore, in Appendix K we studied
a ResNet architecture (He et al., 2016), a more modern network, where we obtained similar results.

The training parameters together with the schedule are described in Appendix H and result in a
thousand minibatches per epoch, M = 1,000. The setup achieves 100% training accuracy and
63% testing accuracy. We compute the variances right after the initial schedule over a period of 20
additional epochs, equivalent to 20,000 update steps. Throughout this analysis period, a constant
learning rate is maintained and the recorded weights are designated by θk, with k = K, . . . ,K + T
and T = 20,000. Given the impracticability of obtaining the full covariance matrix for all weights
over this period due to the excessive memory requirements, we limit our analysis to a specific sub-
space. Employing the resource-efficient Pearlmutter trick (Pearlmutter, 1994), we approximate the
5,000 largest eigenvalues and their associated eigenvectors of the Hessian matrix H(θK) at the
beginning of the analysis period, drawn from the roughly 137,000 total. The eigenvectors of the
Hessian matrix are represented by pi, and the projected weights by θk,i = θk · pi. The variances
are computed exclusively for these particular directions. The distribution of the approximated 5,000
eigenvalues is illustrated in Appendix F.

8
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5.2 NOISE AUTOCORRELATIONS

We scrutinize the correlations of noise by recording both the minibatch gradient gk(θk) and the
total gradient ∇L(θk) at each update step throughout the analysis period, enabling us to capture
the actual noise term δgk(θk). All these are projected onto the approximated Hessian eigenvectors.
The theoretical prediction for the anti-correlation of the noise is proportional to the inverse of the
number of batches per epoch, which, in our case, is on the order of 10−3. To extract the predicted
relationship from the fluctuating data, we compute the autocorrelation of the noise term for each
individual Hessian eigenvector. We then proceed to average these results across the 5,000 approxi-
mated eigenvectors. Figure 1 provides a visual representation of this analysis, showcasing a strong
alignment between the empirical autocorrelation of noise and the prediction derived from our theory.

5.3 VARIANCES AND CORRELATION TIME

Previous studies have observed that network weights continue to traverse the parameter space even
after the loss appears to have stabilized (Hoffer et al., 2017; Feng & Tu, 2021; Kunin et al., 2023).
This behavior persists despite the use of L2 regularization and implies that the recorded weights,
θk, do not settle into a stationary distribution. Notably, however, over the course of the 20 epochs
under scrutiny, the weight movement, excluding the SGD noise, appears to be approximately linear
in time. This suggests that the mean velocity v̄ := ⟨vk⟩ is substantial compared to the SGD noise.
To isolate this ongoing movement and uncover the underlying structure, we redefine θk and vk by
subtracting the mean velocity. This results in θ(s)

k := θk− v̄ ·k and v(s)
k := vk− v̄. We then compute

the variances of these redefined values, θ(s)
k and v(s)

k , which exhibit a more stationary distribution.

Again, we limit our variance calculations to the directions of the 5,000 approximated Hessian eigen-
vectors. In the two different regimes of Hessian eigenvalues, either greater or lesser than the
crossover value λcross, the weight and velocity variance closely follow the respective power law
predictions from our theory (see left panel of Figure 2). The slight discrepancy, where the predicted
exponent of one does not lie within the error bars, may arise from minor deviations in the noise
covariance from the approximation C ∝ H. The calculated correlation time, derived from the ratio
between the weight and velocity variance, aligns reasonably well with our theoretical predictions
(see right panel of Figure 2). This correlation time prediction remains independent of the exact
relation between C and H, thereby providing a more general result.

6 LIMITATIONS

As highlighted in Section 5.3, the weight distribution is not entirely stationary; the weights exhibit a
finite mean drift. To fully understand the underlying weight variances, it is essential to account for
this mean velocity. However, for time windows extending beyond the measured 20 epochs, the mean
velocity’s variability increases. This change can cause the average weight movement to deviate from
linearity, potentially leading to higher variances in flat directions than predicted.

In general, the late phase of training under scrutiny may not be representative of the entire training
process. However, we argue that exploring such a regime, especially where a quadratic approxi-
mation of the loss seems feasible, can provide important insights into the dynamics of SGD, and
in particular its stability around a minimum. Furthermore, it is an important starting point for our
research, since such a situation can be treated analytically.

7 DISCUSSION

We provide an intuitive interpretation of our results by examining the correlation times associated
with different Hessian eigenvectors, which we also corroborate empirically. Although the 20-epoch
analysis period may influence the observed correlation times – since it is comparable to the maxi-
mum predicted correlation time τSGD – we observe considerable differences when we sample exam-
ples without replacement during training (see Appendix G). This suggests that the observed corre-
lation time behavior arises from the correlations introduced by sampling without replacement.

Throughout our analysis, we primarily focus on the weight covariance matrix Σ, considering the
correlation time τi and the velocity covariance Σv as auxiliary variables. Our results indicate that

9
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the velocity covariance Σv is directly proportional to the noise covariance C. However, the behavior
of the weight covariance Σ is more intricate due to the autocorrelation time, which connects the two
variances. Specifically, for a single eigendirection, this relationship is given by σ2

θ,i = 1
2τiσ

2
v,i.

Examining these quantities in detail provides further insights. Moreover, our findings for these
three quantities differ from those reported in a previous empirical study (Feng & Tu, 2021). In
Appendix E, we explain how the different analysis methods used in that study led to results impacted
by finite-size effects.

In this manuscript, we examine the influence of smaller Hessian eigenvalues, which are often over-
looked in discussions of minima characteristics in optimization landscapes. While prior work has
focused on larger eigenvalues, we highlight the impact of reduced weight variance in flat directions.
This observed reduction may help explain why SGD exploration predominantly occurs within a lim-
ited subspace of Hessian eigenvectors with higher curvature, as reported in previous studies (Gur-Ari
et al., 2018; Xie et al., 2021).

To further substantiate this argument, we examine the impact of weight variance on the additional
training error. In a simplified quadratic loss model, the expected loss variance for a Hessian eigen-
value λi and Gaussian weight fluctuations σ2

θ,i is lfluct,i = 1
2λiσ

2
θ,i. Although an individual flat

direction contributes relatively little to the total loss fluctuation lfluct =
∑

i lfluct,i, this is counter-
balanced by their abundance. By analyzing the 5,000 largest Hessian eigenvalues of LeNet, our
model predicts a 62% reduction in loss fluctuation compared to assuming constant weight variance.
This effect would be even stronger if all 137,000 directions were considered.

Furthermore, we argue that flat directions are crucial for generalization (see Appendix J). By decom-
posing LeNet’s network weights into the Hessian eigenbasis, we find that omitting the projection
onto the top 35 eigenvectors only reduces test accuracy from 63% to 54%, while excluding the top
5,000 eigenvectors drops it to 44%. Accuracy falls to 10% – equivalent to random guessing – only
after discarding approximately 7,000 eigenvectors. This demonstrates the importance of small Hes-
sian eigenvalues and weight fluctuations in flat directions for both loss reduction and generalization.

To further assess the impact of anti-correlations in the gradient noise, we investigated the differ-
ence in generalization performance between drawing batches in SGD with and without replacement.
We trained the network described in Section 5.1 using the same training schedule and 20 different
random seeds, considering the maximum test accuracy computed after each epoch. We found that
training without replacement yielded test accuracies that were 0.8% ± 0.2% higher than training with
replacement. Specifically, the maximum test accuracy for SGD without replacement was 64.5% on
average, compared to 63.7% for SGD with replacement.

We relate this result directly to the anti-correlations we have described by comparing it with a prior
study by Orvieto et al. (2022). In that study, the authors considered full-batch gradient descent with
artificially added noise that is anti-correlated in time. This noise was found to be beneficial for test
accuracy and led to flatter minima. While the anti-correlations they considered have a very short
correlation time, they are otherwise very similar to those inherent in SGD without replacement. We
therefore propose that the positive effects described in their study could be extended to SGD without
replacement due to these anti-correlations.

Conclusion

Our investigation of anti-correlations in SGD noise – arising from drawing examples without re-
placement – reveals a lower-than-expected weight variance in Hessian eigendirections with eigen-
values smaller than the crossover value λcross. By introducing the concepts of intrinsic correlation
time, shaped by the loss landscape, and a constant noise correlation time, we provide deeper in-
sights into the dynamics of SGD optimization. The reduced weight variance may allow gradients in
flat directions to dominate fluctuations, steering the network toward even flatter minima. Generally,
training with anti-correlated noise leads to improved generalization performance, suggesting that
our findings explain an important property of SGD that contributes to its success.

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. The code for performing
all experiments described in the manuscript, as well as for generating all figures, is provided in the
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supplementary material. All assumptions related to the theoretical analysis are clearly stated in the
main text, and detailed working out of the theoretical considerations can be found in the Appendix.
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A DEFINITION OF LIMITING QUANTITIES

When we speak of a covariance matrix or an average in the main text and in the following sections of
the appendix, we mean the limiting average or the limiting covariance, unless otherwise specified. In
other words, we are interested in the average of a quantity over one infinite run of SGD optimization,
not the mean value for a fixed update step k averaged over multiple runs of SGD optimization. With
this in mind, we define the covariance matrix of two quantities ak and bk as

cov(ak,bk) :=
〈
(ak − ⟨ak⟩k) (bk − ⟨bk⟩k)⊤

〉
k

(10)

and the limiting average is defined as

⟨ak⟩k = lim
K→∞

1

K + 1

k0+K∑
k=k0

ak . (11)

When possible, we will suppress k and denote the average as ⟨·⟩. The average is independent of the
starting value k0, therefore we can shift indices within the average, meaning ⟨ak⟩ = ⟨ak+l⟩ for any
l ∈ Z.

To see this we take any integer l ∈ Z and instead of adding it to the index k we can also subtract it
from the starting value k0 and then separate the sum into two sums,

⟨ak+l⟩ = lim
K→∞

1

K + 1

k0+K∑
k=k0

ak+l

= lim
K→∞

1

K + 1

k0−l+K∑
k=k0−l

ak

= lim
K→∞

1

K + 1

k0−1∑
k=k0−l

ak + lim
K→∞

1

K + 1

k0−l+K∑
k=k0

ak . (12)

The first sum is independent of K except for the factor 1
K+1 , so the limit of the first part is zero.

The second part of the limit can be rearranged as follows,

lim
K→∞

1

K + 1

k0−l+K∑
k=k0

ak = lim
K→∞

K − l + 1

K + 1

1

K − l + 1

k0−l+K∑
k=k0

ak

= lim
K̃→∞

1

K̃ + 1

k0+K̃∑
k=k0

ak (13)

=: ⟨ak⟩ , (14)

where we used limK→∞
K−l+1
K+1 = 1 and renamed K − l in the second to last step. All together this

gives us the desired relation ⟨ak⟩ = ⟨ak+l⟩.
If one were to consider the covariance for a fixed update step k averaged over multiple runs of SGD
optimization, it is possible that this covariance could depend on the index k, but this is not our case
of interest.

B VARIANCE CALCULATION

B.1 COMMUTATIVITY OF THE COVARIANCE MATRICES

In this section, we show that if [C,H] = 0 also Σ and Σv will commute with C, with H and with
each other. We make the assumptions one to three from Section 4.3 and therefore the SGD update
equations become

vk = −ηHθk−1 + βvk−1 − ηδgk , (15)
θk = (1− ηH)θk−1 + βvk−1 − ηδgk , (16)
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which can be rewritten by using the vector yk :=
(
θk vk

)⊤
, combining both the current weight

and velocity variable, to be

yk+1 = Xyk − zk+1 . (17)

Here, zk :=
(
ηδgk ηδgk

)⊤
contains the current noise term, and the matrix governing the deter-

ministic part of the update is defined to be

X :=

(
1− ηH β1
−ηH β1

)
. (18)

By iteratively applying Equation (17) we obtain

yk+h = Xhyk −
h∑

i=1

Xh−izk+i . (19)

Under the assumption 0 ≤ β < 1 and 0 < ηλi < 2(1 + β), for all eigenvalues λi of H, the
magnitude of the eigenvalues of X will be less than one. It is straightforward to show this relation
for the eigenvalues of X by using the eigenbasis of H. Therefore,

lim
h→∞

Xhyk = 0. (20)

As we can shift the index in the weight variance, h can be chosen arbitrarily large, which yields the
following relation for the covariance

⟨yky
⊤
k ⟩ = lim

h→∞

h∑
i,j=1

Xh−i⟨zk+iz
⊤
k+j⟩

(
Xh−j

)⊤
. (21)

Because Equation (19) together with Equation (20) implies ⟨yk⟩ = 0 and therefore ⟨θk⟩ = 0 and
⟨vk⟩ = 0, the left hand side of Equation (21) contains the covariance matrices of interest,

⟨yky
⊤
k ⟩ =

(
Σ ⟨θkv

⊤
k ⟩

⟨vkθ
⊤
k ⟩ Σv

)
. (22)

From Equation (21) we can also infer that ⟨yky
⊤
k ⟩ is finite as the magnitude of the eigenvalues of

X is less than one. Consequently, by Equation (22), the covariance matrices Σ and Σv are finite as
well. The average over the noise terms zk on the right hand side of Equation (21) is by assumption
equal to

⟨zk+iz
⊤
k+j⟩ = η2

(
δi,j − 1{1,...,M}(|i− j|)M − |i− j|

M(M − 1)

)
·
(
C C
C C

)
, (23)

from which it follows that for any finite h every matrix entry of the two by two super matrix on the
right hand side of Equation (21) is a function of C and H. Therefore, when considering the limit
h → ∞, [C,H] = 0 implies that Σ and Σv will also commute with C, with H and with each other.

B.2 PROOF OF THE VARIANCE FORMULA FOR ONE SPECIFIC EIGENVALUE

Since Σ and Σv will commute with C, with H and with each other, it is sufficient to prove the
one dimensional case. For the multidimensional case simply apply the proof in the direction of
each common eigenvector individually. The expectation values discussed below are computed with
respect to the asymptotic distributions of θ and v, since we are only interested in the asymptotic
behavior of training. We want to find σ2

θ := ⟨θkθk⟩ and σ2
v := ⟨vkvk⟩. We assume 0 ≤ β < 1 and

0 < ηλ < 2(1 + β) where λ is the Hessian eigenvalue.

The equations describing SGD in one dimension are:

gk(θ) =
∂

∂θ
L(θ) + δgk(θ) (24)

vk = −ηgk(θk−1) + βvk−1 (25)
θk = θk−1 + vk . (26)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Our remaining assumptions can then be described the following way

L(θ) =
1

2
θλθ (27)

δgk(θ) = δgk (28)

⟨δgkδgk+h⟩ = σ2
δg

(
δh,0 − 1{1,...,M}(|h|)

M − |h|
M(M − 1)

)
(29)

σ2
δg := ⟨δgkδgk⟩ . (30)

With these assumptions the update equations can be described by a discrete stochastic linear equation
of second order

θk = (1 + β − ηλ)θk−1 − βθk−2 − ηδgk (31)

which can be rewritten into matrix form as follows

xk = Dxk−1 − ηδgke1 (32)

xk :=

(
θk

θk−1

)
(33)

e1 :=

(
1
0

)
(34)

D :=

(
1 + β − ηλ −β

1 0

)
. (35)

We are now interested in the following covariance matrix

Σ̃ :=
〈
xkx

⊤
k

〉
=

(
σ2
θ ⟨θkθk−1⟩

⟨θkθk−1⟩ σ2
θ

)
(36)

where the second equality is due to the fact that ⟨θkθk⟩ = ⟨θk−1θk−1⟩. As we are interested in the
asymptotic covariance, this expectation value is independent of any finite shift of the index k. By
inserting Equation (32) into

〈
xkx

⊤
k

〉
we arrive at the following equality〈

xkx
⊤
k

〉
= D

〈
xk−1x

⊤
k−1

〉
D⊤ + η2 ⟨δgkδgk⟩ e1e⊤1 − η

(
D ⟨xk−1δgk⟩ e⊤1 +

(
D ⟨xk−1δgk⟩ e⊤1

)⊤)
(37)

which can be simplified to the equivalent equation

Σ̃−DΣ̃D⊤ = η2σ2
δge1e

⊤
1 − η

(
D ⟨xk−1δgk⟩ e⊤1 +

(
D ⟨xk−1δgk⟩ e⊤1

)⊤)
. (38)

If we apply the left-hand side on the vector e1, it can be expressed as[
Σ̃−DΣ̃D⊤

]
e1 = F−1

1 Σ̃e1 (39)

F−1
1 :=

(
ηλ(2− ηλ)− 2β(1 + β − ηλ) 2β(1 + β − ηλ)

−(1 + β − ηλ) 1 + β

)
. (40)

Also notice vk = θk − θk−1 and therefore

σ2
v = 2σ2

θ − 2⟨θkθk−1⟩ , (41)

again due to the fact that the expectation value does not depend on k. Hence, the variances can then
be expressed as (

σ2
θ

σ2
v

)
= F2Σ̃e1 (42)

F2 :=

(
1 0
2 −2

)
. (43)
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We define the matrix F := F2F1. By applying both sides of Equation (38) to the vector e1, then
multiplying by the matrix F from the left and using Equations (39) and (42) we obtain(

σ2
θ

σ2
v

)
= F

[
η2σ2

δge1e
⊤
1 − η

(
D ⟨xk−1δgk⟩ e⊤1 +

(
D ⟨xk−1δgk⟩ e⊤1

)⊤)]
e1 . (44)

with

F =
1

(1− β)
(
2(1 + β)− ηλ)

) ( 1+β
ηλ

2β(ηλ−1−β)
ηλ

2 2(ηλ− 2)

)
. (45)

To simplify Equation (44) further we go back to Equation (32) and iterate it to obtain

xk = Dnxk−n − η

n−1∑
h=0

Dhe1δgk−h . (46)

We note that ⟨xk−nδgk⟩ = 0 for n ≥ M . The correlation between noise terms separated by at least
one epoch vanishes, and xk only depends on past noise terms. By setting n = M we find

⟨xk−1δgk⟩ = DM ⟨xk−1−Mδgk⟩ − η

M−1∑
h=0

Dhe1 ⟨δgkδgk−1−h⟩

= −ησ2
δg

M−1∑
h=0

Dhe1

(
−M − (h+ 1)

M(M − 1)

)
, (47)

where the assumption about the correlation of the noise terms, Equation (29), was inserted for the
last line. Equation (47) is a sum of a finite geometric series and a derivative of that which can be
simplified to

⟨xk−1δgk⟩ = ησ2
δg

DM + (1−D)M − 1

(1−D)2M(M − 1)
e1 . (48)

Substituting this result back into Equation (44) yields(
σ2
θ

σ2
v

)
= η2σ2

δgF
[
e1 −

(
E+E⊤

)
e1

]
(49)

with the definition

E := D
DM + (1−D)M − 1

(1−D)2M(M − 1)
e1e

⊤
1 . (50)

With Equation (49) we have arrived at the exact formula for the variances which can easily be
evaluated numerically.

B.3 APPROXIMATION OF THE EXACT FORMULA

It is possible to approximate the exact result for the variance assuming small or large eigenvalues,
respectively. For that, it is necessary to approximate DMe1. To do so, we will use the the following
eigendecomposition of D

D = QΛQ−1 (51)

Λ =

(
Λ+ 0
0 Λ−

)
(52)

Q =

(
Λ+ Λ−
1 1

)
(53)

Q−1 =
1

Λ+ − Λ−

(
1 −Λ−
−1 Λ+

)
(54)

Λ± =
1

2
(1 + β − ηλ± s) (55)

s :=

√
(1− β)

2 − ηλ
(
2(1 + β)− ηλ

)
(56)

It is straightforward to show that the magnitude of the eigenvalues of D is strictly smaller than one,
|Λ±| < 1, under the conditions 0 < ηλ < 2(1 + β) and 0 ≤ β < 1.
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LARGE HESSIAN EIGENVALUES

σ2
θ ≈

η2σ2
δg

(1− β)(2(1 + β)− ηλ)
· 1 + β

ηλ
(57)

σ2
v ≈

η2σ2
δg

(1− β)(2(1 + β)− ηλ)
· 2 (58)

We will show that this approximation for large Hessian eigenvalues is valid under the assumption
M(ηλ)2 ≫ 1 where M is the number of batches per epoch. However, numerical studies indicate
that these relations also hold under the previously mentioned assumptions of Mηλ

1−β ≫ 1, equivalent
to λ ≳ λcross, and M(1− β) ≫ 1.

Inserting the eigendecomposition of D into the expression DMe1 yields

DMe1 =

(
yM+1

yM

)
(59)

yM :=
ΛM
+ − ΛM

−
Λ+ − Λ−

. (60)

From the definition of yM one sees that

yM =
Λ+ + Λ−

2
yM−1 +

ΛM−1
+ + ΛM−1

−
2

, (61)

and by using |Λ±| < 1 as well as y0 = 0 one can show iteratively that

|yM | ≤ M + 1. (62)

Therefore, we have ∥∥∥DMe1

∥∥∥
∞

≤ M + 1 (63)

where ∥·∥∞ is denoting the maximum norm ∥x∥∞ := maxi |xi| for a vector x or its induced matrix
norm ∥A∥∞ := maxi

∑
j |aij | for a matrix A.

Explicit calculations show that ∥∥(1−D)−1
∥∥
∞ ≤ 4

ηλ
(64)

under the assumption that 0 ≤ β < 1 and 0 < ηλ < 2(1 + β). From here it is straightforward to
show that ∥∥∥(E+E⊤

)
e1

∥∥∥
∞

≤ c̃

M(ηλ)2
(65)

where c̃ is a factor of order unity under the constraints 0 ≤ β < 1 and 0 < ηλ < 2(1 + β). By sub-
stituting this result back into Equation (49) one directly sees that a comparison to the approximation
yields ∣∣∣∣∣1− σ2

θ

σ2
θ,large

∣∣∣∣∣ ≤ c1
M(ηλ)2

, (66)∣∣∣∣∣1− σ2
v

σ2
v,large

∣∣∣∣∣ ≤ c2
M(ηλ)2

, (67)

where c1 and c2 are again of order unity and the approximation is defined as(
σ2
θ,large

σ2
v,large

)
:= η2σ2

δgFe1

=
η2σ2

δg

(1− β)(2(1 + β)− ηλ)
·
(

1+β
ηλ

2

)
. (68)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Interestingly, one can see that the approximation for large Hessian eigenvalues is equivalent to the
result we would obtain if we assumed there was no autocorrelation of the noise to begin with.

In the case where the stricter assumption is not true, M(ηλ)2 < 1, but the numerically obtained
conditions still hold, λ ≳ λcross and M(1 − β) ≫ 1, it occurs that

∥∥∥(E+E⊤
)
e1

∥∥∥
∞

is no longer

small. But in that case, F
(
E+E⊤

)
e1 can still be neglected compared to Fe1, as numerical

experiments show.

SMALL HESSIAN EIGENVALUES

To obtain the relations for small Hessian eigenvalues, we perform a Taylor expansion with respect
to λ with the help of computer algebra. We neglect the terms which are at least of order λ. Nu-
merical study indicates that these relations hold under the mentioned assumption of λ ≲ λcross and
M(1− β) ≫ 1.

It is straightforward but lengthy to obtain the following expression using the eigendecomposition of
D (

σ2
θ

σ2
v

)
=

η2σ2
δg

2(1− β)(1 + β)
·
(

M
3

1+β
1−β +O(λ)

2 +O(λ)

)
(69)

where the zeroth order terms are simplified under approximation M(1− β) ≫ 1.

B.4 SATISFYING THE ASSUMPTIONS OF THE CORRELATION TIME RELATION

In this section we want to show that the weight and velocity variances resulting from stochastic
gradient descent as described above and in Section 4.3 satisfies the necessary assumptions (i) to
(iii) of Theorem 4.2 such that the velocity correlation time is equal to τi = 2σ2

θ,i/σ
2
v,i. Validity of

assumption (i) existence and finiteness of Σ := cov(θk,θk), Σv := cov(vk,vk), and ⟨θ⟩ can be
inferred from the calculation presented in Appendix B.1. Therefore, we concentrate on assumption
(ii) limn→∞ cov

(
θk,θk+n

)
= 0 and (iii) limn→∞ n · cov

(
θk,θk+n − θk+n+1

)
= 0. We consider

the one dimensional case, but the extension to the multidimensional case is straightforward. Addi-
tionally ⟨θ⟩ = 0 (see Appendix B.1) and, therefore, the remaining two assumptions (ii) and (iii) can
be written as limm→∞ ⟨θkθk+m⟩ = 0 and limm→∞ m

(
⟨θkθk+m⟩ − ⟨θkθk+m+1⟩

)
= 0.

We will now show that for stochastic gradient descent under the assumptions of Section 4.3 the
more restrictive relation limm→∞ m⟨θkθk+m⟩ = 0 is satisfied, from which follows (ii) and (iii).
Following Appendix B.2 and using the same notation, we have the relation

⟨xkx
⊤
k−m⟩ = D⟨xk−1x

⊤
k−m⟩ − ηe1⟨δgkx⊤

k−m⟩ , (70)

where xk :=
(
θk θk−1

)⊤
. For m > M , with M being the number of batches per epoch, the

correlation with the noise term on the right hand side of Equation (70) is equal to zero as discussed
in Appendix B.2. By iterating Equation (70), for m > M we have

⟨xkx
⊤
k−m⟩ = Dm−M−1⟨xk−m+M+1x

⊤
k−m⟩

= Dm−M−1⟨xkx
⊤
k−M−1⟩ . (71)

As described in Appendix B.2, the magnitude of both eigenvalues of D is strictly smaller than one.
This implies that there exists a matrix norm ∥·∥D such that ∥D∥D < 1 from which one can deduce∥∥⟨xkx

⊤
k−m⟩

∥∥
D

≤ ∥D∥m−M−1
D ·

∥∥⟨xkx
⊤
k−M−1⟩

∥∥
D

. (72)

Taking the limit of m → ∞ we obtain

lim
m→∞

m
∥∥⟨xkx

⊤
k−m⟩

∥∥
D

≤ const · lim
m→∞

m ∥D∥m−M−1
D

= 0 , (73)

and because

⟨xkx
⊤
k−m⟩ =

(
⟨θkθk−m⟩ ⟨θkθk−m−1⟩

⟨θk−1θk−m⟩ ⟨θk−1θk−m−1⟩

)
(74)
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we finally find

lim
m→∞

m⟨θkθk−m⟩ = 0

⇒ lim
m→∞

m⟨θkθk+m⟩ = 0 . (75)

C CALCULATION OF THE CORRELATION TIME RELATION

We want to prove Theorem 4.2, that is, the relation

2σ2
θ,i

σ2
v,i

=

∑∞
n=1 n ⟨vk,ivk+n,i⟩∑∞
n=1⟨vk,ivk+n,i⟩

, (76)

under the following three assumptions: (i) Existence and finiteness of
Σ := cov(θk,θk), Σv := cov(vk,vk), and ⟨θ⟩. (ii) limn→∞ cov

(
θk,θk+n

)
= 0.

(iii) limn→∞ n · cov
(
θk,θk+n − θk+n+1

)
= 0. For example, the latter two assumptions hold

true if the weight correlation function decays as cov
(
θk,θk+n

)
∝ n−2 or faster. In the

setup described in Section 4.3, the weight correlations will even decay exponentially fast (see
Appendix B.4).

We assume that that ⟨θ⟩, Σθ and Σv exist and are finite. Without loss of generality, let ⟨θ⟩ = 0.
We consider only the one-dimensional case. For the multidimensional case, simply apply the proof
in the direction of any basis vector individually. Note, that the relation still holds if [Σ,Σv] ̸= 0.
In this case, σ2

θ,i and σ2
v,i would just be the variances of the weight and the velocity in the given

direction but no longer necessarily eigenvalues of Σ and Σv.

The remaining two assumptions (ii) and (iii) of Theorem 4.2 can now be written as

lim
m→∞

⟨θkθk+m⟩ = 0 (77)

lim
m→∞

m
(
⟨θkθk+m⟩ − ⟨θkθk+m+1⟩

)
= 0 . (78)

We begin the proof with the following chain of equations

σ2
θ =

〈
θ2k
〉

=
〈
(θk − θk+J + θk+J)

2
〉

=
〈
(θk − θk+J)

2
〉
− 2

〈
θ2k+J

〉
+ 2 ⟨θkθk+J⟩+

〈
θ2k+J

〉
, (79)

which holds for any integer J . We have
〈
θ2k+J

〉
=
〈
θ2k
〉

since the expectation value cannot depend
on k. Additionally, by definition we have vk = θk − θk−1 which yields

θk − θk+J =

J∑
i=1

vk+i . (80)

Therefore, we can rewrite Equation (79) as follows

2σ2
θ = 2 ⟨θkθk+J⟩+

J∑
i,j=1

⟨vk+ivk+j⟩

= 2 ⟨θkθk+J⟩+
J∑

i,j=1

⟨vkvk+j−i⟩

= 2 ⟨θkθk+J⟩+
J−1∑
m=0

m∑
n=−m

⟨vkvk+n⟩ , (81)

where we first shifted the index within the expectation value and then restructured the sum by defin-
ing m := max(i, j) − 1 and n := j − i. We now take the limit of J → ∞ and because of
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Equation (77) and the assumption of a finite σ2
θ we have

∞∑
m=0

m∑
n=−m

⟨vkvk+n⟩ < ∞ (82)

⇒
∞∑

n=−∞
⟨vkvk+n⟩ = 0 . (83)

We note that ⟨vkvk+n⟩ = ⟨vkvk−n⟩ because we can shift the index, and the two factors commute.
Substituting this relation into Equation (83) yields

∞∑
n=1

⟨vkvk+n⟩ = −1

2
⟨vkvk⟩

= −1

2
σ2
v . (84)

For the second part of the proof we will start again with vk = θk − θk−1 and the following sum
m∑

n=1

n⟨vkvk+n⟩ =
m∑

n=1

n
(
2⟨θkθk+n⟩ − ⟨θk−1θk+n⟩ − ⟨θkθk+n−1⟩

)
= −⟨θkθk⟩+ ⟨θkθk+m⟩+m

(
⟨θkθk+m⟩ − ⟨θkθk+m+1⟩

)
, (85)

where nearly all terms cancel each other again due to the fact that we can shift the index within
the expectation value. By taking the limit m → ∞ and using the assumptions (ii) and (iii) (Equa-
tions (77) and (78)) we have

∞∑
n=1

n⟨vkvk+n⟩ = −⟨θkθk⟩ . (86)

Finally, by dividing Equation (86) by Equation (84) we arrive at the final expression
2σ2

θ,i

σ2
v,i

=

∑∞
n=1 n ⟨vkvk+n⟩∑∞
n=1⟨vkvk+n⟩

. (87)

D CALCULATION OF THE NOISE AUTOCORRELATION

We want to calculate the autocorrelation function of epoch-based SGD for a fixed weight vector θ
and under the assumption that the total number of examples is an integer multiple of the number of
examples per batch. For that we repeat the following definitions:

δgk(θ) :=
1

S

∑
n∈Bk

∇
(
l(θ, xn)− L(θ)

)
(88)

Bk = {n1, ..., nS} . . . batch of step k, sampeling without replacement within epoch (89)
nj ∈ {1, . . . , N} (90)

N . . . total number of examples (91)
S . . . number of examples per batch (92)

We can rewrite the noise terms as follows:

δgk(θ) =
1

S

∑
n∈Bk

δge(n,θ)

=
1

S

N∑
n=1

δge(n,θ)s
n
k (93)

snk := 1Bk
(n)

=

{
1 if n ∈ Bk

0 if n /∈ Bk
(94)

δge(n,θ) := ∇
(
l(θ, xn)− L(θ)

)
. (95)
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Let h ≥ 0 be fixed. The correlation matrix can be expressed as

cov
(
δgk(θ), δgk+h(θ)

)
= E

[
δgk(θ)δgk+h(θ)

⊤]
=

1

S2

N∑
n,ñ=1

δge(n,θ)δge(ñ,θ)
⊤E
[
snks

ñ
k+h

]
. (96)

The expectation value of snk = 1Bk
(n) is the probability that example n is part of batch k. Because

every example is equally likely to appear in a given batch, this probability is equal to S/N .

E [snk ] = P(snk = 1)

=
S

N
. (97)

Similarly we can calculate the desired correlation:

E
[
snks

ñ
k+h

]
= P

(
snk = 1, sñk+h = 1

)
= P(snk = 1)P

(
sñk+h = 1 | snk = 1

)
=

S

N
P
(
sñk+h = 1 | snk = 1

)
. (98)

The last term can be split up into different probabilities for different values of h. We can also
distinguish the case where the two steps k and k+h are within the same epoch (ep(k) = ep(k+h))
or in different epochs (ep(k) ̸= ep(k + h)).

P
(
sñk+h = 1 | snk = 1

)
= δh,0 · P

(
sñk = 1 | snk = 1

)
+ (1− δh,0) ·[

P
(
ep(k) = ep(k + h)

)
P
(
sñk+h = 1 | snk = 1, ep(k) = ep(k + h)

)
+

P
(
ep(k) ̸= ep(k + h)

)
P
(
sñk+h = 1 | snk = 1, ep(k) ̸= ep(k + h)

)]
.

(99)

The first term of the right hand side of Equation (99) is the probability that a given example occurs
in a batch, assuming that we already know one of the examples of that batch.

P
(
sñk = 1 | snk = 1

)
= P(snk = 1 | snk = 1) · δn,ñ + P

(
sñk = 1 | snk = 1, n ̸= ñ

)
(1− δn,ñ)

= 1 · δn,ñ +
S − 1

N − 1
(1− δn,ñ)

=
N − S

N − 1
δn,ñ + const. (100)

The second term of Equation (99) is multiplied by (1 − δh,0). Therefore, we assume h ≥ 1 for
the following argument. That is, we want to know the probabilities under the assumption that we
are comparing examples from different batches. If the two batches are still from the same epoch,
examples cannot repeat as the total number of examples is an integer multiple of the number of
examples per batch and because of that every example is shown only once per epoch. Therefore, for
h ≥ 1 holds:

P
(
sñk+h = 1 | snk = 1, ep(k) = ep(k + h)

)
= 0 · δn,ñ +

S

N − 1
(1− δn,ñ)

= − S

N − 1
δn,ñ + const. (101)

If we consider batches from different epochs, the probability becomes independent of the given
examples:

P
(
sñk+h = 1 | snk = 1, ep(k) ̸= ep(k + h)

)
=

S

N
= const. (102)
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Lastly, we need to know the probability that two given batches k and k+h are from the same epoch:

P
(
ep(k) = ep(k + h)

)
= 1{1,...,M}(h)

M − h

M
, (103)

where M = N/S is again the number of batches per epoch.

We can now combine all derived probabilities and arrive at the following relation:

E
[
snks

ñ
k+h

]
= δn,ñ

S

N

N − S

N − 1

(
δh,0 − 1{1,...,M}(h)

S

N − S

M − h

M

)
+ const.

= δn,ñ S
2

(
1

S
− 1

N

)
1

N − 1

(
δh,0 − 1{1,...,M}(h)

M − h

M (M − 1)

)
+ const. (104)

If we now also consider negative values for h, the expression depends only on the absolute value of
h due to symmetry.

By using the following two helpful relations:
N∑

n,ñ=1

δge(n,θ)δge(ñ,θ)
⊤ δn,ñ =

N∑
n=1

δge(n,θ)δge(n,θ)
⊤

=: (N − 1)C0(θ) , (105)
N∑

n,ñ=1

δge(n,θ)δge(ñ,θ)
⊤ · 1 =

(
N∑

n=1

δge(n,θ)

)(
N∑

n=1

δge(n,θ)
⊤

)
= ∇

(
L(θ)− L(θ)

)
∇⊤(L(θ)− L(θ)

)
= 0 , (106)

we can insert the expectation value E
[
snks

ñ
k+h

]
into Equation (96) and arrive at the final expression:

cov
[
δgk(θ), δgk+h(θ)

]
= cov

[
δgk(θ), δgk(θ)

]
·
(
δh,0 − 1{1,...,M}(|h|)

M − |h|
M(M − 1)

)
, (107)

cov
[
δgk(θ), δgk(θ)

]
=

(
1

S
− 1

N

)
C0(θ) . (108)

E COMPARISON WITH PRINCIPAL COMPONENT ANALYSIS

Our approach to analysis sets itself apart from that of Feng & Tu (2021) principally in the selection
of the basis {pi, , i = 1, . . . , d} used for examining the weights. While they employ the principal
components of the weight series - the eigenvectors of Σ - we use the eigenvectors of the Hessian
matrix H(θK) computed at the beginning of the analysis period.

This choice enables us to directly create plots of variances and correlation time against the Hes-
sian eigenvalue for each corresponding direction. Feng & Tu devised a landscape-dependent flat-
ness parameter Fi for every direction pi. However, with the assistance of the second derivative

Fi ≈
(
∂2L(θ)/∂θ2i

)− 1
2 , where θi = θ · pi, this parameter can be approximated, provided this sec-

ond derivative retains a sufficiently positive value. Hence, in the eigenbasis of the Hessian matrix,
the flatness parameter can be approximated as Fi ≈ λ

− 1
2

i , facilitating comparability between our
analysis and that of Feng & Tu.

The principal component basis, as used by Feng & Tu, holds a distinct advantage. For our analysis,
we needed to eliminate the near-linear trajectory of the weights by deducting the mean velocity.
However, in Feng & Tu’s analysis, this movement is automatically subsumed in the first principal
component due to its pronounced variance. Hence, there’s no necessity for additional subtraction of
this drift in the weight covariance eigenbasis.

Yet, the weight covariance eigenbasis has a significant shortcoming: it yields artifacts. This is
because Σ is calculated as an average over a finite data set, skewing its eigenvalues from the an-
ticipated distribution. Consequently, the resultant eigenvectors may not align perfectly with the
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expected ones. This issue is further exacerbated due to the high dimensionality of the underlying
space.

The artifact issue becomes evident in Figure 3, which displays synthetic data generated through
stochastic gradient descent within an isotropic quadratic potential coupled with isotropic noise. With
2,500 dimensions, the model mirrors the scale of a layer in the fully connected neural network that
Feng & Tu investigated. The weight series comprises 12,000 steps, which correspond to ten epochs
of training this network. Analyzing this data with the weight covariance eigenbasis seemingly sug-
gests anisotropic variance and correlation time. However, if the data is inspected without any basis
change, both the variance and correlation time appear isotropically distributed as anticipated.

Figure 3: Comparison of weight and velocity fluctuations for synthetic data analyzed in two different
bases. We define the variance in weight, σ2

θ,i, as pi
⊤Σpi, and the variance in velocity, σ2

v,i, as
pi

⊤Σvpi. The correlation time, τi, is given by 2σ2
θ,i/σ

2
v,i. The synthetic data was generated by

simulating SGD for 12,000 steps within a 2,500-dimensional space featuring an isotropic quadratic
potential and isotropic noise. In the original basis analysis, both the variance and correlation time, as
expected, retain isotropy. However, when the analysis is conducted in the eigenbasis of the weight
covariance matrix, a pronounced anisotropy emerges.

To navigate around this key issue associated with the eigenbasis of Σ, we adopted the eigenvectors
of the Hessian matrix. Unlike Σ, the Hessian is not computed as an average over update steps but
can, in theory, be precisely calculated for any given weight vector. Consequently, the Hessian matrix
does not suffer from finite size effects. The difference between these two bases for actual data is
visible in Figure 4. Here, we analyzed only the weights of the first convolutional layer of the LeNet
from the main text to ensure comparability with Feng & Tu’s results. In this specific comparison,
the network was trained without weight decay. Due to this and the fact that we are only investigating
the weights of one layer, λcross is significantly larger than all Hessian eigenvalues. As a result, when
analyzing in the eigenbasis of the Hessian matrix related to this layer, both the variance and the
correlation time align well with the prediction for smaller Hessian eigenvalues.
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Figure 4: Comparison of weight and velocity variances for all 450 weights of the first convolutional
layer of the LeNet, as discussed in the main text, analyzed in two different bases. In order to facilitate
a more directly comparable analysis to Feng & Tu (2021), the network was trained without weight
decay for this specific analysis and the analysis period was limited to 10 epochs, as opposed to the
usual 20 epochs. The columns represent different bases: for the left column pi are the eigenvectors
of Σ and for the right column pi are the eigenvectors of H. The mean velocity was subtracted in
the right column. The rows illustrate the weight and velocity variance, σ2

θ,i = pi
⊤Σpi, σ2

v,i =

pi
⊤Σvpi (top row), and the correlation time τi = 2σ2

θ,i/σ
2
v,i (bottom row). The second derivative

of the corresponding direction is depicted on the x-axis, λi = pi
⊤Hpi. The top row solid lines

indicate fit regions for a linear fit. For the H eigenbasis, the respective exponent of the power law
relation is 1.018 ± 0.008 for weight variance and 1.017 ± 0.002 for velocity variance with a 2σ-
error. For the Σ eigenbasis, the corresponding exponent is 1.537 ± 0.012 for weight variance and
1.134± 0.002 for velocity variance.

However, analyzing in the eigenbasis of the weight covariance matrix, the correlation time appears
heavily dependent on the second derivative of the loss in the given direction. Additionally, the rela-
tionship between the weight variance and the second derivative shifts and more closely aligns with
Feng & Tu’s results as the power law exponent is significantly larger than one. The first principal
component, which Feng & Tu referred to as the drift mode, stands out due to its unusually long
correlation time. This is to be expected, as this is the direction in which the weights are moving at
an approximately constant velocity.
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F HESSIAN EIGENVALUE DENSITY

Figure 5: The distribution of the approximated 5,000 Hessian eigenvalues of the LeNet discussed in
the main text. The inset shows that the smallest approximated eigenvalue has a magnitude of about
0.005.

G DRAWING WITH REPLACEMENT

To confirm that the results obtained are indeed affected by the correlations present in SGD noise,
due to the epoch-based learning strategy, we reapply the analysis described in the main text. In this
instance, however, we deviate from our previous method of choosing examples for each batch within
an epoch without replacement. Instead, we select examples with replacement from the complete pool
of examples for every batch. This modification during the analysis period allows a more complete
assessment of the impact of correlations on the derived results.

Figure 6 offers clear visual proof that when examples are selected with replacement, the previously
noted anti-correlations within the SGD noise vanish. This observation confirms our hypothesis that
the anti-correlations mentioned in the main text are indeed an outcome of the epoch-based learning
technique. Consequently, we can predict that this change will influence the behaviour of the weight
and velocity variance. As previously discussed, the theoretical results we have achieved for Hessian
eigenvectors with eigenvalues exceeding λcross conform to what one would predict in the absence
of any correlation within the noise. Therefore, when examples are drawn with replacement, we
anticipate the weight variance to be isotropic in all directions, while the velocity variance should
remain unchanged.

Figure 6: Autocorrelations of the SGD noise compared for drawing examples without replacement
(left) and with replacement (right).
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Upon reviewing Figure 7, it is clear that the velocity variance stays unchanged as predicted. How-
ever, while the weight variance remains constant for a broader subset of Hessian eigenvalues, it
reduces for extremely small eigenvalues. Likewise, the correlation time is still limited for these
minuscule Hessian eigenvalues. These deviations can be attributed to the finite time frame of the
analysis period, comprising 20,000 update steps. This limited time window sets a cap on the maxi-
mum correlation time, consequently leading to a decreased weight variance for these small Hessian
eigenvalues. Despite this, it is noteworthy that this maximum correlation time is still roughly one
order of magnitude longer than the maximum correlation time induced by the correlations arising
from the epoch-based learning approach.

Figure 7: Relationship between Hessian eigenvalues and the variances of weights and velocities, as
well as correlation times. For the left column the examples are drawn in epochs without replacement
and for the right column the examples are drawn with replacement.
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H TRAINING SCHEDULE OF LENET

In order to corroborate our theoretical findings, we have conducted a small-scale experiment. We
have trained a LeNet architecture, similar to the one described in (Feng & Tu, 2021), using the
CIFAR10 dataset (Krizhevsky, 2009). LeNet is a compact convolutional network comprised of two
convolutional layers followed by three dense layers. The network comprises approximately 137,000
parameters. As our loss function, we employed Cross Entropy, along with an L2 regularization with
a prefactor of 10−4. We used SGD to train the network for 100 epochs, employing an exponential
learning rate schedule that reduces the learning rate by a factor of 0.98 each epoch. The initial
learning rate is set at 5 · 10−3, which eventually reduces to approximately 7 · 10−4 after 100 epochs.
The momentum parameter and the minibatch size S are set to 0.9 and 50, respectively, which results
in a thousand minibatches per epoch, M = 1000. This setup achieves 100% training accuracy and
63% testing accuracy. The evolution of loss and accuracy during training can be seen in Figure 8.

Figure 8: The evolution of the loss (left) and accuracy (right) during training of LeNet described in
the main text. The statistics are shown for both training and test set. For the first 100 epochs, the
exponential learning rate decay was used, and for the last 20 epochs, the learning rate was fixed at
the final value of the exponential decay.

I TESTING DIFFERENT HYPERPARAMETERS

In this section we examine the dependence of the theoretical predictions on the three hyperparam-
eters learning rate η, momentum β and batch size S. For this, we train the LeNet again for 100
epochs, using an exponential learning rate schedule that reduces the learning rate by a factor of 0.98
every epoch and afterwards we perform the numerical analysis as described in the main text.

However, we now train the network several times, always varying one of the hyperparameters while
keeping the other two fixed. If not varied, the momentum was set to 0.90 and the batch size was set
to 64. To ensure that training is always successful and 100% training accuracy is achieved, the initial
learning rate was set to 0.005 when the batch size is varied and to 0.02 when the momentum is varied.
Five different values are examined for each hyperparameter. To investigate the dependencies on the
learning rate, the values 0.005, 0.01, 0.02, 0.03, and 0.04 were used for training. For momentum,
the values 0.00, 0.50, 0.75, 0.90, and 0.95 were examined, and for batch size, the values 32, 50, 64,
100, and 128 were examined.

In addition, the training was repeated for five different seeds for each hyperparameter combination
in order to obtain reliable results. This results in a relatively high computational cost. To reduce this,
for the analysis in this section the weight and velocity variances are examined only in the subspace
of the 2,000 largest Hessian eigenvalues and associated eigenvectors.

Figure 9 shows as an example the weight and velocity variances as well as the correlation times for
different values of the batch size for one training seed each. It can be seen that the theory is not only
valid for the hyperparameter combination from the previous section, but is also generally applicable
for different hyperparameters. In particular, we see that there is still good agreement with the theory
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even if the strictly necessary condition for the theoretical derivation of the noise autocorrelation, that
the number of batches per epoch M = N/S is an integer, is not met.

Figure 9: Testing the LeNet training with different hyperparameters. Here the relationship between
the Hessian eigenvalues and the variances and correlation times for varying batch size is shown as
an example. The momentum was set to 0.90 and the initial learning rate was set to 0.005.

To further examine the predictions of the theory for the hyperparametric dependencies, we now focus
on the two quantities of the maximum correlation time τSGD and the Hessian eigenvalue crossover
value λcross and recall the theoretical predictions for these quantities:

τSGD =
N

3S

1 + β

1− β
, (109a)

λcross =
3S(1− β)

ηN
, (109b)

where N is the number of examples in the training data set.

For the evaluation of the dependence of these variables on the hyperparameters, they were deter-
mined as follows for the various hyperparameter combinations using the data from the respective
correlation time plot. For the maximum correlation time τSGD, the average of all correlation times
was taken for which the corresponding Hessian eigenvalue is smaller than the theoretical crossover
value. However, the result for the numerically determined maximum correlation time is not signif-
icantly different when simply taking the average of all determined correlation times for a hyperpa-
rameter combination, since only very few Hessian eigenvalues are larger than the crossover value.

For the numerical determination of the crossover value λcross, a linear function was first fitted to
the correlation times of the 20 largest Hessian eigenvalues in the log-log plot of the correlation
times against the Hessian eigenvalues. In this region of the first 20 values, the correlation time is
always clearly dependent on the Hessian eigenvalue and does not yet belong to the region of constant
correlation times. The intersection of the fitted line with the numerically determined maximum
correlation time τSGD is then taken as the crossover value λcross. If the numerically determined
correlation times follow the theory exactly, then the correlation times determined in this way for
τSGD and λcross would also follow the theory accurately.

And indeed, Figure 10 shows a good agreement between the theory and the numerically determined
values, although it should be noted that the deviations are larger than the random fluctuations be-
tween the different seeds.
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Figure 10: The empirically determined maximum correlation time, τSGD, and the empirically deter-
mined crossover value λcross for the training of the LeNet with different hyperparameters, averaged
over five different seeds for each set of hyperparameters. The predictions of our theory are shown
as a solid line. The fluctuations between different seeds are smaller than the marker size and are
therefore not included in the figure.

J TEST ACCURACY AND THE HESSIAN EIGENDECOMPOSITION OF THE
WEIGHT VECTOR

Recent research (Gur-Ari et al., 2018; Sabanayagam et al., 2023) suggests that the characteristics of
a minimum in a neural network’s loss landscape are largely determined by the large Hessian eigen-
values and their corresponding eigendirections. However, our findings indicate that flat directions,
which correspond to smaller eigenvalues, should not be overlooked. When we decompose a net-
work’s weight vector in the Hessian eigenbasis, it becomes evident that both the projections onto
high curvature directions and those onto relatively flat directions are important.

In Figure 11, we demonstrate this with the LeNet model. We analyzed the model’s test accuracy in
relation to the exclusion of projections onto Hessian eigenvectors, starting with those possessing the
largest eigenvalues. After calculating the top 10,000 Hessian eigenvalues and eigenvectors out of a
total of 137,000, we observed that omitting the projection onto the top 35 eigenvectors (those above
the crossover value λcross) resulted in a decline in test accuracy from 63% to 54%. Discarding
the top 5,000 eigenvectors, as analyzed in our main study, further reduced accuracy to 44%. It
was only after excluding around 7,000 eigenvectors that the accuracy plummeted to 10%, akin to
random guessing. This underscores the significance of the weight vector’s orientation relative to flat
Hessian eigendirections for maintaining test accuracy, highlighting the potential impact of weight
fluctuations in these directions.

The pronounced accuracy drop observed after removing around 6,000 eigenvectors may be attributed
to the unexpectedly large projection of the weight vector onto these eigenvectors, which is apparent
from Figure 11.
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Figure 11: The top panel shows the test accuracy of the LeNet discussed in the main text and
how it changes as we cumulatively discard projections onto more and more Hessian eigenvectors,
starting with those with the largest eigenvalues. There is a sharp drop in accuracy for the first few
eigenvectors, and then only after more than 6,000 discarded projections out of a total of 137,000 does
the accuracy drop rapidly down to 10%, which is equivalent to random guessing. For comparison,
the middle panel shows the corresponding Hessian eigenvalues and compares them to the crossover
value λcross, where the lower than expected weight variances hold only for eigendirections with
eigenvalues smaller than this crossover value. It is in the range of eigenvalues significantly smaller
than the crossover value that the accuracy drops sharply to 10%. The bottom panel shows the
decomposition of the weight vector θ in the Hessian eigenbasis. One explanation for the rapid
drop in accuracy could be that the projection of the weights onto the corresponding eigenvectors is
considerably larger than one would expect if the weight vector was a random vector. The expected
2σ interval for a random vector is displayed in red.

K DIFFERENT NETWORK ARCHITECTURE

To further confirm our theoretical predictions within trained networks, in this section we turn to a
more modern architecture. Instead of the previously used LeNet network, we examine the ResNet-20
network (He et al., 2016). It is a convolutional network with significantly more convolutional layers
than LeNet. It also uses residual blocks with residual connections, which allows for deeper network
structures. As our loss function, we again employed Cross Entropy, along with an L2 regularization
with a prefactor of 10−4 and we did not use batch normalization. The number of layers, which is
already indicated in the name with 20, is significantly higher than in the LeNet with just five layers.
With approximately 272,000 parameters, the ResNet-20 also has significantly more parameters and
the computational cost is significantly higher.

Therefore, in this section we limit ourselves to examining the weight and velocity variances in the
subspace of the 400 largest Hessian eigenvalues and associated eigenvectors. The network was
trained with SGD for 100 epochs using the same exponential learning rate schedule as before, with
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a learning rate of 5 · 10−3, a momentum parameter of 0.9, and a minibatch size of 50. This setup
achieves 100% training accuracy and 73% testing accuracy. In Figure 12 one can observe a good
agreement between the theory predictions for the variances and correlation times and the numerical
observations.

Figure 12: Relationship between Hessian eigenvalues and the variances and correlation times for a
ResNet-20 trained on CIFAR10. The mean velocity of the weight trajectory was subtracted. The
solid lines in the left panel indicate the regions utilized for a linear fit. The exponents resulting from
the power law relationship are 0.820 ± 0.099 for weight variance and 0.965 ± 0.005 for velocity
variance, with a 2σ-error. The analysis was performed for the 400 largest Hessian eigenvalues and
corresponding eigendirections.

L RELATION BETWEEN HESSIAN AND NOISE COVARIANCE

The exact variance equation of Theorem 4.3 described in Section 4.3 and the calculation shown in
Appendix B are still valid even if the previously mentioned assumption [C,H] ̸= 0 is not given.
However, the calculated weight and velocity variances are no longer eigenvalues of the correspond-
ing covariance matrices, but variances in the directions of the chosen eigenvector of the Hessian
matrix.

Assuming that C and H do not necessarily commute, we can still project the update equations onto
an arbitrary Hessian eigenvector pi with eigenvalue λi, which gives us

vk,i = −ηλiθk−1,i + βvk,i − ηpi · δgk , (110a)
θk,i = (1− ηλi)θk−1,i + βvk,i − ηpi · δgk . (110b)

Since we assume that pi ·δgk is independent of weights and velocity, these two equations are decou-
pled for each individual Hessian eigenvector. As pi · δgk still follows the proposed anti-correlation,
the calculations of Appendix B can be performed similarly. Therefore, in a case without commutativ-
ity, the theory makes predictions for the variances along the Hessian eigenvectors, σ2

θ,i := p⊤
i Σpi

and σ2
v,i := p⊤

i Σvpi, depending on the noise variance in the given direction, σ2
δg,i := p⊤

i Cpi,

with σ2
δg,i =

〈
(pi · δgk)

2
〉

. The results imply that the weight covariance restricted to the Hessian
eigenspace corresponding to eigenvalues smaller than the crossover value, λi < λcross, denoted by
Σ<, is reduced compared to a setup without anti-correlations, independent of whether C and H
commute. For example, when considering the trace of this restricted weight covariance, Tr(Σ<),
the theory predicts the following reduction,

Tr(Σ<,with anti-correlations)

Tr(Σ<,without anti-correlations)
≈

Mη
3(1−β)

∑d
i=icross

λiσ
2
δg,i∑d

i=icross
σ2
δg,i

, (111)

where icross is the index of the largest Hessian eigenvalue λi smaller than the crossover value λcross.

Furthermore, the theory prediction for the correlation time τi, defined as the ratio between the weight
and the velocity variance in the eigendirection pi of the Hessian, is also valid independently of the
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commutation relation between C and H. However, the weight and the velocity variance in the
eigendirection pi defined above are no longer eigenvalues of the covariance matrices Σ and Σv if
pi is not also an eigenvector of C. Nevertheless, these variances are still a good approximation for
the actual eigenvalues, as long as C and H commute approximately.

While empirical investigations show that C and H do not commute exactly, they show a high align-
ment and suggest that the Hessian eigenbasis is a reasonable approximation for the eigenbasis of
the noise covariance (see Section 3.1). We find such an approximate commutativity as well. We
investigated the Hessian and the covariance of the recorded noise in the approximated eigenspace of
the Hessian during the analysis period of the LeNet considered in the main text. In Figure 13 one
can see, that the actual 200 largest eigenvalues of the noise covariance align well with the variances
in the directions of the 200 Hessian eigenvectors corresponding to the largest Hessian eigenvalues,
indicating that the Hessian eigenbasis is very similar to the eigenbasis of the noise covariance.

Figure 13: Noise variance during the analysis period of the LeNet considered in the main text. We
analyzed the gradient noise recorded in the subspace of the 5,000 largest Hessian eigenvalues and
corresponding eigenvectors pH

i . We calculated the covariance matrix of the recorded noise, C,
and its eigenvectors pC

i in descending order according to their eigenvalues. We then plotted the
largest eigenvalues of the noise covariance, which is the noise variance along pC

i , together with the
noise variance along pH

i . When C and H commute, there exists a simultaneous eigenbasis for both
matrices, and the shown variances would align perfectly. We find that the variances show very good
alignment, indicating that both matrices commute approximately.

We also investigated how well the approximation of proportionality between C and H holds. For this
we calculated the cosine similarity between both matrices in the approximated Hessian eigenspace,
which is the normalized dot product between the flattened matrices. We found a cosine similarity of
0.82, which is similar to the empirical similarities found by Thomas et al. (2020) and significantly
higher than that of two random low-rank matrices. Additionally, we plotted the noise variances
along the approximated Hessian eigenvectors against the corresponding Hessian eigenvalues and
found that the two indeed follow an approximate linear relationship (see Figure 14). So, while an
exact proportionality between C and H is not satisfied, it seems to be a good approximation.
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Figure 14: Relationship between Hessian eigenvalues and the variances of the recorded noise during
the analysis period of the LeNet considered in the main text. The solid line signifies a linear fit. The
exponent resulting from the power law relationship is 1.075 ± 0.002 with a 2σ-error. If the noise
covariance were proportional to the Hessian matrix, the exponent should be equal to one.
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