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ABSTRACT

Low-rank recurrent neural networks (RNNs) have recently gained prominence as a
framework for understanding how neural systems solve complex cognitive tasks.
However, interpreting these networks remains an important open problem. Here
we address this challenge by adopting a view of low-rank RNNs as parametrizing a
low-dimensional ordinary differential equation (ODE) using a set of nonlinear basis
functions. Through this perspective, which arises from an approach known as the
“neural engineering framework”, we show that training a low-rank RNN to imple-
ment a particular dynamical system can be formalized as least-squares regression
in a random basis. This allows us to propose a new method for finding the smallest
RNN capable of implementing a dynamical system using a variant of orthogonal
matching pursuit. More generally, our perspective clarifies the universal function
approximation capabilities of low-rank RNNs (modulo constraints inherited from
general RNNs, like only expressing odd symmetric functions in the absence of per
neuron inputs/biases), via a geometric interpretation of the network parameters
in constructing a flow-field. We further delve into the role of inputs in shaping
network dynamics and show that RNNs can produce identical trajectories using
a wide variety of static or time-varying dynamics; this highlights the importance
of perturbations for inferring dynamics from observed neural trajectories. Finally,
we highlight the usefulness of our framework by comparing to RNNs trained us-
ing backprop-through-time on neuroscience-inspired tasks, showcasing that our
method achieves faster and more accurate learning with smaller networks than
gradient-based training.

1 INTRODUCTION

Recurrent neural networks (RNNs) provide a popular tool for analyzing the computational capabilities
of neural populations and the mechanisms that enable them to carry out complex cognitive tasks
(Miller et al., 2003}, |Barakl, 2017 [Mastrogiuseppe & Ostojicl 2018} Schaeffer et al., 2020; |Duncker &
Sahanil, 2021} Dubreuil et al.}|2022). A substantial literature focuses on “goal-driven” or “task-driven”
approaches in which an RNN is trained to perform a particular cognitive task of interest, and then
analyzed to determine what dynamics it uses to solve the task Mante et al.|(2013); Sussillo|(2014);
Kanitscheider & Fiete| (2017); [Pollock & Jazayeri| (2020); [Turner et al.|(2021)). However, both the
training and the interpretation of such networks are noteworthy problems of interest.

A wide variety of methods have been proposed for training RNNs on cognitive tasks, including:
(1) reservoir computing methods, in which a fixed set of random recurrent weights generate a high-
dimensional nonlinear dynamics, and training is applied only to output weights (Jaeger, 2001} |Maass
et al.,2002); (2) FORCE training, in which a set of random recurrent weights are adjusted using
iterative low-rank updates via recursive least-squares |Sussillo & Abbott| (2009)); DePasquale et al.
(2018); and (3) methods that adjust all recurrent weights using deep-learning inspired approaches such
as back-propagation-through-time (BPTT) [Pearlmutter| (1990); Sussillo & Barak| (2013)); Lillicrap &
Santoro| (2019). Although recent literature has focused primarily on this latter class of gradient-based
training methods, they face a variety of challenges, including high computational cost, sensitivity to
initialization and hyper-parameters (e.g., learning rate, network size), and susceptibility to vanishing
and exploding gradients (LukoSevicius & Jaeger, 2009;|Schuessler et al.,|2020; Langdon & Engel,
2022; |Liu et al., [2023)).
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Even once they are trained (via any of the above methods), interpreting RNNs to gain insight
into task performance remains challenging. Common approaches tend to rely on finding fixed or
“slow” points and then using dimensionality reduction methods to visualize projected flow fields
Sussillo & Barakl (2013); Mante et al.| (2013). However, fixed-point finding algorithms are difficult to
apply to high-dimensional systems, and it often unclear how accurately low-D projections reflect a
network’s true dynamics. Previous work has shown that task-trained RNNs with similar performance
can nevertheless exhibit different dynamics, raising the question of whether their solutions reveal
universal features of task computations (Barak, |[2017; |Williams et al.||[2021).

One recent advance that overcomes many of these difficulties is a theory of low-rank RNNs (Mas-
trogiuseppe & Ostojic, [2018f; |Beiran et al., 2021; [Dubreuil et al.| [2022; [Valente et al.| [2022). Rather
than training a high-dimensional network and then attempting to visualize its behavior using low-D
projections, this literature has shown that a wide variety of tasks can be implemented directly in
RNNs with intrinsically low dimension, where the dimensionality is set by the rank of the recurrent
weight matrix plus input dimensions.

A parallel arm of research has focused on developing methods to embed low-dimensional quantities
into high-dimensional network activity (Eliasmith & Anderson, 2003} |Stewartl 2012} |Abbott et al.,
2016; Boerlin et al., 2013} |Alemi et al., |2018). Of particular relevance to our work is the Neural
Engineering Framework (NEF), which formalizes encoding a stimulus into neuron action potentials
using basis functions, and learning an appropriate linear decoder via regression. This learning
approach (like FORCE, teacher-forcing methods and neural ODE regression frameworks [Sussillo
& Abbott (2009); [Heinonen et al|(2018); [Bhat et al.| (2020); Hess et al|(2023)) alleviates gradient
based training issues (in cases with known dynamics). Additionally, while [Beiran et al.|(2021) use
such a regression framework, there is no interpretational geometric insight through the use of basis
functions.

In this work, we propose an NEF approach to provide an alternate view to low-rank RNNs which
addresses interpretabiltiy issues of such models. Specifically, we develop flexible representations
through the construction of a randomized basis spanned by the low-dimensional dynamical system.
These basis functions are used as regressors to embed a target non-linear ODE in the low-rank RNN
using least-squares regression. Second, using this framework we provide empirical and theoretical
evidence regarding the representational limits of low-rank RNNs. In particular, we emphasize
the necessity of neuron-specific inputs for embedding odd-symmetric dynamics (a constraint also
observed in general RNNs) through a geometric interpretation of basis functions. Third, using a
variant of orthogonal matching pursuit we derive the smallest RNN that can implement any target
ODE. Fourth, we offer novel insights on the influence of time-varying inputs in embedding both
autonomous and non-autonomous ODEs. Using this, we provide empirical evidence on validating
theories such as, how similar trajectories can arise from significantly different dynamical systems,
and underscoring the necessity of perturbations for differentiating between these systems. Lastly,
we also apply our method to learn simulated ODEs which arise from a neuroscience binary decision
making task, thereby proving the effectiveness of our method.

2 BACKGROUND: RECURRENT NEURAL NETWORKS (RNNS)

Consider a population of d rate-based neurons, with membrane potentials x = [z1,--- ,74] and
firing rates denoted by ¢(x) = [p(z1),...,d(2zq)] T, where ¢(-) is a scalar function mapping the
membrane potential to firing rate (e.g., sigmoid, hyperbolic tangent, or ReLU). The dynamics of a

generic RNN are given by the vector ordinary differential equation and a linear output:

x=—x+Jo(x)+ Iu(t) (1)
z = We(x), 2

where J is a d x d recurrent weight matrix, [ is a d x d;, matrix of input weights, u(¢) is a d;;,-
dimensional input signal, and x = [%, cee dg—td]—r denotes the vector of time derivatives of x. To
describe behavioral outputs, the model contains a mapping from network activity to an output variable

z: where W denotes a d,,+ X d matrix of readout weights.
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Figure 1: Two equivalent views of low-rank RNNs. (A) Standard view of rank-1 RNN with 8
neurons x and 1 latent dimension z. (B) Alternate view of the same network, now framed in terms
of the dynamics of latent z. This shows that a low-rank RNN is equivalent to a neural ODE with a
single hidden layer (Chen et al.,[2018). (C) Basis functions obtained by sampling slope parameters
m; ~ N (0, 1), but without input (v, = 0). (D) Attempting to fit an example ODE using this basis
recovers only the odd-symmetric component, since all basis functions are odd symmetric. (E) Adding
inputs allows basis functions have random horizontal offsets. Here we sampled the input weights
I; ~ N(0,1) and set input v; = 1. (Note that this could also be obtained by using per-neuron
“biases”). (F) Least squares fitting of n using the basis from (E) provides good fit to the target ODE.

2.1 LOW-RANK RNNSs

This network model described above becomes a low-rank RNN if the recurrent weight matrix J has
reduced rank r < d, which implies it can be factorized as:

J=MNT = Zmz . 3)

Here m; and n; represent the columns of the d x r matrices M and N, respectively. In this case, the
state vector x(¢) will evolve in a subspace of at most r + d;,, dimensions (Mastrogiuseppe & Ostojic,
2018 Dubreull et al.||2022). Activity in the remaining dimensions will decay to zero due to the decay
term (—x) in (eq. (1| '

In this setting, the network state x can be re-written as
x(t) = Mk(t) + Iv(t), 4

where k is a so-called “latent” vector representing activity in the r-dimensional recurrent subspace,
and v(t) represents the low-pass filtered input signals u(¢) [Dubreuil et al.| (2022); [Valente et al.
(2022). Finally, the low-dimensional recurrent dynamics can be represented in terms of a differential
equation: kK = F'(k,u), where F' is a nonlinear function of the latent state x and input u.

3 AN ALTERNATE VIEW OF LOW-RANK RNNS

In the framework described above, training a low-rank RNN to produce a desired output z(t) from
an input u(t) requires learning the model parameters { N, M, I, W'}, which is typically carried out
using back-propagation through time [Valente et al.|(2022). Here we present a different approach to
low-rank RNNs, which provides a more intuitive portrait of the network’s dynamical capabilities.

We begin by considering the problem of embedding an arbitrary low-dimensional dynamical system
into a low-rank RNN. Specifically, suppose we wish to set the model parameters so that z obeys the
dynamics of an particular nonlinear ODE:

z = g(z), )
for some function g. We will then identify this output with the latent vector defining the network’s
activity in the recurrent subspace: z(t) £ k(t). This implies that the dimensionality of the output is
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equal to the rank of the network, » = d,,;, and constrains the output weights to be the projection
operator onto the column space of M, that is, W = M (M ™ )_1. We are then left with the problem
of setting the weights M, N, and [ so that the latent vector, which we now refer to as z(t), evolves
according to (eq.[5). (Note however the model output need match the dimensionality of the latent
variable; in cases where desired output is lower-dimensional than z, the output can be expressed
as z' = Az, where A is some fixed matrix of output weights that, for example, selects only one
component of z.)

For simplicity, we begin with the case of a scalar z. This corresponds to an RNN with rank-1 recurrent
weight matrix J = mn ", which is simply an outer product of weight vectors m and n. Assume that
the input is also scalar, and that the input vector I is orthogonal to m (although we can relax this
constraint later). Following previous work (Beiran et al., 2021; Dubreuil et al.} [2022; |Valente et al.,
2022) (eq.[), the network state can be decomposed as a time-varying linear combination of m and I:

x(t) = mz(t) + Iv(t), (6)

where v (t) represents the low-pass filtered input, resulting from the linear dynamical system v =
—v + u(¢). The fact that m and I are orthogonal means that we can write the dynamics governing
the latent variable explicitly as:

z2=—z+n ¢(mz+ Iv(t)) @)

a result shown previously in|Valente et al.|(2022), and which is schematized in Fig. E} Given this
expression, our goal of embedding an arbitrary ODE z = ¢(z) into the network can be viewed as
setting the model parameters so that

9(z) +2z ~ n'¢(mz + I'v(t)) (®)

To achieve this, note that the right-hand-side can be viewed as a linear combination of terms
¢(miz + I;v(t)) with weights n;, for i € {1,...,d}. Each of these terms can be viewed as a basis
function in z for representing the target g(z) + z. More specifically, if ¢ is the hyperbolic tangent
function, each such term is a shifted, scaled tanh function in z, where m; is the slope and I;v(t)
is the offset. This means that we can view the problem of embedding ¢(z) into a low-rank RNN
as the problem of setting m and [ to build an appropriate set of basis functions, and setting n so
that the linear combination of basis functions approximates g(z) 4 z. This approach formalizes the
connection between low-rank RNNs and the NEF (Eliasmith & Anderson, 2003} |Barak & Romanil,
2021)), and shows that a low-rank RNN corresponds to a neural ODE with a single hidden layer (Chen
et al., 2018} |Pellegrino et al., [2023} |Pals et al., [2024)).

Already, this perspective makes an important limitation clear: if the inputs v(¢) are zero, the basis
functions are all odd-symmetric (that is, g(m;z) = —g(—m;z) for all z), crossing the origin only at
zero. (see Fig.[T[C). Because —z is also odd-symmetric, and the linear combination of odd-symmetric
functions is odd-symmetric, this means that in the absence of inputs, the network can only capture the
odd-symmetric component of g(z). A low-rank RNN is therefore not a universal approximator unless
it has inputs, or equivalently, different biases or offsets to each neuron (similar to general RNNs). If
the ¢ is instead taken to be ReLu, the problem is even more severe: each basis function is a linear
function with non-zero slope on either z > 0 or z < 0. Thus the network can only approximate g(z)
that are piecewise linear functions broken at the origin. (See SI Fig. [SI-1).

If we set the filtered input to be the constant v = 1, we see that the problem of embedding an arbitrary
ODE in a low-rank RNN amounts to fitting the ODE in a basis of shifted and scaled basis functions
in z. To achieve this, we propose to sample the scales (elements of m) and offsets (elements of ) to
obtain a random basis, and then fit n by least-squares regression, namely:

n= (¢(Zgr7ime + IT)T¢(ng'me + IT))71¢(Zgrime + IT)T (g(zgrid) + ng’d)a 9)

where z,,.;4 denotes a grid of points at which we wish to fit g(z). Note that we could use weighted
least squares if we care more about accurately approximating certain regions of g(z), or add a small
ridge penalty if the design matrix (whose columns are given by the basis functions evaluated at zy,;4)
is ill-conditioned.

Fig.|I|shows an illustration of this approach for an example ODE, here chosen to be a cubic polynomial
with two stable fixed points and one unstable fixed point. Note that the network cannot approximate
g(z) when the inputs are set to zero (Fig. —D), but can do so with near-perfect accuracy when both
the m vector and the (constant) inputs /v are drawn from a Gaussian distribution (Fig. -F)).
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Figure 2: Embedding a 2-dimensional nonlinear ODE into a rank-2 RNN. (A) Example basis functions
obtained by sampling M and I coefficients from a zero-mean Gaussian, producing randomly oriented,
scaled, and shifted hyperbolic tangent functions. (B) A target two-dimensional nonlinear dynamical
system, containing a stable limit cycle on a circle of radius one, represented as a flow field (left), or
by its component functions g1 (z) = d—zl and go(z) = d—22 (right). (C) Least squares fitting of weight
vectors n; and ny produces a near perfect match to the target flow field, and functions g; and gs.
(D) Output firing rates phi(z;) for 10 example units (i.e i € {1,...,10}) during the red example
trajectory shown in panel C. (E) Simulated trajectories from the true ODE (blue trace in panel B)
and latent variable of the fitted RNN (red trace from panel C), plotted as a function of time, showing
good agreement between the target ODE and the RNN output. Note that fitting was closed-form, and
did not require backprop-through-time.

3.1 MULTI-DIMENSIONAL DYNAMICAL SYSTEMS

We can apply this same regression-based approach to higher-dimensional nonlinear dynamical
systems, where rank » = dim(z) > 1. In two dimensions, the basis functions are given by
¢(maiz1 + maiza + I;), which are scaled, shifted tanh functions with a random orientation (see
Fig. 2JA). Approximating a 2D dynamical system with a rank-2 RNN can then be written as the
problem of fitting two different nonlinear functions ¢;(z) and g2(z) using two different linear
combinations of the same 2D basis functions:

_ gl(z) ~ _ |*1 anﬁ(MZ—l—I) 10

o= [ote] =[] - st ] <>
where M = [m;my] is a d x 2 matrix whose columns define the slope and orientation of each basis
function, I is once again a column vector of offsets, and we have assumed constant input (v = 1).
Note once again that if we do not include inputs, the basis functions are all radially odd-symmetric

around the origin. Thus, once again, the RNN will only be able to capture radially odd-symmetric
9(z), and is not a universal approximator unless we include nonzero offsets Iv # 0.

To embed a given multi-dimensional ODE ¢(z) into a low-rank RNN, we once again generate a
random basis by sampling the elements of M/ € R4*2 and I € R? from a Gaussian distribution. The
problem factorizes into learning each column vector n; for each dimension of the g, we have:

n; = ((b(ZgridMT + IT)T¢(ZgridMT + IT))_I(b(ZgridMT + IT)T(g(Zgrid) + Zg’r‘id)v (11)

for ¢ = 1,2. This differs from the 1D case above only in that Zg,.;4 is now a r-column matrix of
grid points, where each row contains the coordinates of a single point in z. Note that these grid
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points need not be uniformly sampled; we could sample them from an arbitrary distribution, or use a
collection of points from simulating the ODE from a variety of starting points.

Fig.[2]shows an application to an example 2-dimensional nonlinear ODE, in this case containing a
stable limit cycle. Note that this 2D system is highly nonlinear and not radially odd-symmetric, so
once again (Section[A.2), embedding the system in a low-rank RNN fails if we do not include inputs
(or per-neuron biases).

4 FINDING THE SMALLEST RNN FOR A GIVEN DYNAMICAL SYSTEM

We now turn to the question of finding the smallest RNN that can accurately implement a known
nonlinear dynamical system, g(z), focusing on a scalar z. In other words we aim to determine the
minimum number of neurons (d’ << d) needed by the network to approximate the function g(z). Our
goal is thus to solve an optimization problem that imposes a sparsity constraint on the dimensionality
of our basis set B(m, I), while still solving for an appropriate linear weighting n.

More formally, this implies selecting the best d’ entries from B(m, I), to create a basis:

¢(mi1 z+ Ii1 )

¢(mi2Z+Ii2) . .

By(m,I) = ) ,  where {i1,49,...,i¢} C{1,2,...,d}.

¢(mid/z + Iid/ )

Then, a linear weighting [ng n’] is learned using least squares regression, where:
g9(z) ~ —ngx 2+ n’TBd/(m,I) where {n’ = 1 x d’ vector} (12)

To achieve the desired optimization of approximating g(z), we begin with a large enough B(m, I)
obtained by sampling from a uniform grid of values for m, /. We then follow an iterative approach,
wherein at each iteration ¢, we greedily pick a basis function 7; that has the highest alignment to
the current residual estimate of g(z). This can be observed as an adaptation of the well-established
orthogonal matching pursuit (OMP) framework. A more detailed description of this process is
provided below in Algorithm It is worth noting, changing the original basis set B(m, I) to
B'(m, I), could result in the algorithm converging to a different minima (global minima in B’(m, I)
could be different from global minima in B(m, I)). However, if the basis sets are equivalent we
observe similar performance across simulations (Fig [ST-9)).

Algorithm 1 OMP for finding smallest RNN

1: Select a grid of values z.

Create global basis set B using uniformly sampled m, [ values.

Initialize n weights using linear decay term only: ng = —(z'z) 'z ' g(z).

Initialize residual: ro = g(z) — ng * (—2)

At each iteration ¢:

Find basis vector with highest correlation with residual: i; = arg max; ||BY r;_1|||
Add new entry to the solution basis, B; + B;

Solve to find new linear weights n} using Eqn@]

Compute the updated residual: r; = g(z) — n,’fTBt

Check for termination based on a predefined sparsity threshold d’ = len(B;)

Nh R =

In Fig[3] we apply this method to a simulated 1D ODE, with two stable fixed points and one unstable
fixed point. The first row shows the greedily-added basis functions, multiplied by their corresponding
learned linear weightings. The bottom row shows their linear combination against the true underlying
ODE. Through this iterative process, we observe with just 5 neurons our network almost perfectly
reconstructs the target ODE.

It is worth noting, previous work (e.g.,|/Luo et al.|(2023); Valente et al.[(2022)) have similar dynamics
which are learned using BPTT with much larger networks (typically 512 neurons). Our method
instead provides an empirical framework to find the minimum number of neurons needed to fit
dynamics within estimated margins of error. Furthermore, we believe this could be used to provide
insights on hyper-parameter values (such as number of neurons) for neural ODE models or other
artificial networks.
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Figure 3: Finding the smallest RNN for a particular nonlinear dynamical system using orthogonal
matching pursuit (OMP). (A) Scaled basis functions selected after 1, 3, 5, and 10 iterations of OMP,
along with the linear decay term —x for an example ODE (shown below). (B) Target ODE (black)
and RNN fit after each step of OMP. (C) Mean squared error (MSE) between target ODE and RNN
approximation as a function of the number of RNN neurons added by OMP.

5 NEW INSIGHTS INTO THE ROLE OF INPUT DYNAMICS

In Sec. 3, we demonstrated the importance of the presence of inputs in basis functions, B(m, I) =
¢(mz + Iv(t)). Now, we highlight the influence of the type of inputs (constant or time-varying), in
representing arbitrary ODEs. Specifically, our framework so far shows how autonomous ODEs (g(z))
are embedded via constant filtered inputs represented as v = 1, that do not evolve over time. Here we
extend our framework to embed non-autonomous ODEs (¢(z, t)) by introducing a dynamical system
that governs the evolution of v(t).

Recent work has suggested an identifiability issue in uncovering underlying low-dimensional dynam-
ics from high-dimensional neural activity, however the role inputs play in this hasn’t been explored
(Turner et al.| 2021} [Langdon & Engell, 2022} |Liu et al., 2023} [Qian et al., |2024). Furthermore,
previous work on time varying inputs (Rajan et al., |2016; Remington et al., 2018 |Galgali et al.,
2023a) has focused primarily on whether observed trajectories were input driven or dynamics driven .
We note here that this latter category can be subdivided into cases where the dynamics themselves are
fixed in time or fluctuating due to inputs.

In Fig. @ we illustrate using our framework to train low-rank RNNs that produce an identical
trajectories (blue, red lines in the bottom row) through vastly different dynamical systems (quiver
plots in bottom row). In all cases shown, the input dimension [ is orthogonal to the dynamics
subspace m. Specifically, we demonstrate the following cases:

1. Autonomous ODE: Following the general treatment in Sec. 3 above, we embed an ODE of the
form z = g(z). The quiver plot (bottom row of panel A) represents the autonomous ODE flow-field
illustrated through arrows of the same length across time, for each value of z. Note, this embedding
is achieved through inputs that are fixed in time (v = 1). Additionally in the bottom row of panel A,
the true trajectory (blue - computed using Euler integration), and the low-rank RNN (red - trained
using Eqn[J), both start at the unstable fixed point (z = —6), and eventually converge to the stable
fixed point (z = +6). The almost perfect overlap indicates the efficacy of our method.

2. Non-Autonomous ODE: In panels B,C,D we embed time-varying dynamics of various kinds into
different low-rank RNNs. Our training objective was to create time-varying flow fields that produce a
trajectory identical to the autonomous ODE case. The existence of time-varying dynamics can be
observed by noting arrows of different lengths across time bins (i.e each row of quiver plot).

We first discuss how to embed such dynamics into the low-rank RNN. Intuitively, because the dynamic
being approximated represents a different function over time, the basis functions also need to evolve
in time. To achieve this embedding, we modeled inputs v(¢) with an exponential decay given by
v = —v. This decay results in time-varying basis functions, as different v(¢) values are computed at
each Euler time-step when defining ¢(mz + Iv(¢)).
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Figure 4: Creating indistinguishable time-varying dynamical systems with time-varying inputs. We
show four different time-varying dynamical systems that give rise to the same (blue) target trajectory.
(A) Top: we defined a target ODE defined by an inverted quadratic function (top), then embedded
into an RNN with constant input (following the methods in Sec. 3). Bottom: we then simulated
a trajectory that starts just right of the unstable fixed point and converges to the stable fixed point.
Here the flow field dynamics do not vary in time. A perturbed input into the RNN (orange) follows
the same trajectory, but shifted downward (earlier) in time. (B) We trained an RNN to produce a
dynamic flow field using time varying basis functions, whose offsets shifted in time after clamping
on an input u at time zero. Here we set the target to be a time-varying linear dynamical system with a
single stable fixed point that moved from left to right. Note that the RNN latent (red) still follows the
target trajectory (blue). However, the same perturbation shown in A now converges back to the target
trajectory. (C) Network trained to produce the same target trajectory using a moving unstable fixed
point. (D) Network trained to produce the same target trajectory using no fixed points. Note however
that the trajectory arising from a perturbed initial point (yellow) varies wildly across these models.

Below, we expand on the specific dynamical system governing ODEs that can be approximated using
such time-varying basis functions.

1. Moving fixed points: As already highlighted, the dynamical system of the target ODE is of
the form z = ¢(z, t). Panels B, C present specific cases, where this dynamic represents an
underlying flow-field which arises due to the diffusion of a single stable or unstable fixed
point.

In other words, our target ODE represents the trajectory of a moving fixed point, modelled
through a linear dynamic term in z -

z=g(zt)—ax(z —z(t)) -7 (13)
The above equation clearly highlights the systems’ state depends on both {z’,¢'}, repre-
senting a coarse spacing and a corresponding Euler time bin respectively. First, the term
a * (z' — z(t')) introduces a linear time-varying correction which moves the fixed point of
this system z’ to z(t') with a rate «, as shown in the top rows. Second, o must be positive
for panel B (to move a single stable fixed point), and negative for panel C (to move a single
unstable fixed point). Third, while the fixed point dynamic described above is linear, the
system still evolves non-linearly due to the function g, as shown by the quiver plots. Lastly,
in the absence of these dynamics the system decays to the fixed point defined by z’.

2. No fixed points: Similar to the moving fixed point case, we can define a system with no
fixed points during the movement from -6 to +6. In this case, the target ODE is defined by
the non-linear evolution of z(¢) with a time-invariant shift given as

z=g(z(t') -2 (14)

In the bottom row of panels B,C,D the true trajectory (blue) and RNN approximated trajectory (red)
overlap. Critically, they are all identical, and in fact match the trajectories observed in the bottom row
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of panel A. However, as discussed above, they all represent dramatically different target flow-fields,
also showcased via their quiver plots.

Our results provide insight into how non-autonomous dynamics can be embedded into low-rank
RNNSs through time-varying inputs. It is worth noting that most current methods typically interpret
low-dimensional dynamics post-training. One specific method that has gained popularity is the
zero-finding method, which relies on finding fixed points (Sussillo & Barak, 2013 |Smith et al., 2021)).
Our discussion on non-autonomous dynamics suggests, how similar trajectories can be observed in
the presence of dynamical fixed points/ no fixed points at all. This presents a possible failure mode for
such techniques. Additionally, we consider the effects of perturbations in the initial point (orange line
in bottom row) for these different systems. As observed, while the learned RNN trajectory (black) is
identical across all panels, small perturbations in the initial point lead to wildly different trajectories
in different models, validating that observations of fixed trajectories are generally not sufficient to
uniquely identify the underlying dynamical system |Galgali et al.| (2023b)).

6 COMPARISON WITH BPTT FOR NEUROSCIENCE TASKS

Finally, we apply our framework on two neuroscience inspired tasks (Wong & Wang, [2006; |Sussillo
& Barak, [2013}; [Luo et al.| 2023) and compare our networks against RNN models trained with
backprop-through time. Specifically, we implement:

1. 3-bit flip-flop task: The network receives a series of bits (-1 or +1) in 3 registers, and must
store the polarity of the most recent bit in each register (Sussillo & Barak||[2013)).

2. Binary decision-making: Following previous literature, we model a sensory evidence
accumulation task using bi-stable attractors (Wong & Wang, 2006). Sensory inputs drive the
system from an unstable fixed point towards one of two stable fixed points, each associated
with a different choice (see Appendix [B]for details).

In Sec. 4, we find the smallest low-rank (r = 1) network (N = 10 neurons) that almost perfectly
fits a bi-stable attractor ODE. Here, we compare our model against networks of the same size (and
rank) trained using BPTT (both trained and tested against a set of trajectories simulated from task
specific ODEs). As shown, our method provides a closed form solution in one step, as compared to
networks trained with BPTT which take an order of one/two more magnitudes to converge. In Fig.[5]
panels B,C depict loss curves across a wide range of RNN models trained with BPTT. Consistent
with previous findings we observe lower training loss for larger networks, although they take longer
to converge. Additionally, low-rank networks (r = 1, panel C) have comparable performance for
tasks with lower dimensionality. Second, our method qualitatively has better reconstruction of test
trajectories (panel A). More importantly, our model significantly outperforms networks (order of
magnitude lower test mean-squared error) of the same size (and rank) on a set of test target trajectories
(panel D), thereby proving the efficacy of our method.

7 DISCUSSION

In this paper, we present an alternative view on low-rank RNNs that emphasizes interpretability and
highlights the representational capacity of such networks. The focus of our work lies in defining
a randomized basis which is used to embed an arbitrary non-linear dynamical system. Through a
geometric portrait, we demonstrate that inputs are essential for capturing odd-symmetric functions.
This extends previous work [Valente et al.| (2022)); |Dubreuil et al.| (2022); |Beiran et al.| (2021)) and
offers clarifying insights into when such models behave as universal function approximators (similar
to general RNNs). While previous work discusses universal approximation [Beiran et al.| (2021) for
such networks, we believe we're the first to provide a geometric basis function interpretation.

Furthermore, our formulation allows learning the parameters of this RNN in closed form with
regression. By directly modeling the low-dimensional activity and transforming to neural activity
space via a fixed linear projection, we reduce the number of parameters needed to be learnt. We
achieve this by presenting an NEF approach |[Eliasmith & Anderson| (2003)) to train low-rank RNNs
(a result also highlighted in|Beiran et al.|(2021))). Our novelty lies in directly providing an intuition
on the role each neuron plays in the low-rank RNN while also overcoming gradient-based training
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A 3-bit flip-flop task: test predictions for 1 bit
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Figure 5: Comparisons to RNNs trained using backprop-through-time (BPTT) for neuroscience
inspired tasks. (A) Target and trained RNN model outputs for one bit in the “3-bit flip-flop task”. Our
model (left) achieves near perfect accuracy using only 3 neurons and a rank-3 weight matrix; low
rank and full rank networks trained using BPTT do not achieve nearly the same level of accuracy. (B)
Training loss as a function of number of training epochs for different networks. (Our network, which
is trained in one step using least-squares regression is shown in purple for comparison). (C,D) Train
and test error for RNNs trained to perform a binary decision-making task using bi-stable attractor
dynamics (Wong & Wang, [2006; |Luo et al., [ 2023).

issues (in cases with known/estimated ODEs), similar to vector-field regression or teacher forcing
algorithms Heinonen et al. (2018); Bhat et al.| (2020); Hess et al.|(2023)). Our framework can thus
be used as an alternative to task-training in neuroscience, to model novel behavioral tasks. Another
exciting finding of our work is using OMP to approximate the smallest RNN (from a basis set), which
could be used to drive insights on hyper-parameter values for such models. Together, this presents a
promising future direction for studying how perturbing connectivity relates to unstudied behavioral
outputs, or guiding experimentalists on capturing neurons with characteristic neural profiles (using
OMP) for specific tasks.

We also present novel findings on the influence of input driven dynamics. Specifically, we directly
link how non-autonomous ODEs can be embedded in low-rank RNNs through time-varying basis
functions. Empirically, we demonstrate that identical trajectories can be generated from trajectories
of moving fixed points, no fixed points or stationary target ODEs. The presence of dynamics in fixed
points suggests a potential failure mode in current methods for interpreting such networks’ dynamics
Sussillo & Barak|(2013); |Smith et al.|(2021). Furthermore, we link the RNN connectivity to these
target ODEs through dynamics along the input dimension. A potential future direction would be to
guide causal perturbation experiments needed to uncover such dynamics. Additionally, although not
explored here, the conversion of non-autonomous dynamics to autonomous dynamics could play a
critical role in neuroscientific insight. Lastly, we prove the efficacy of our method by applying it to
various neuroscience inspired tasks. We note our method outperforms models of similar size/rank
trained with BPTT.

We conclude by discussing some limitations of our work. Our method relies on knowing (or estimating
via finite differencing methods) the underlying latent dynamic. Additionally, the complexity of our
framework lies in defining or estimating this underlying ODE. While in Sec. 5 we provide instances
of embedding non-autonomous ODEgs, arguably extending this to other higher order systems could
be tricky. This might be especially useful while modeling multi-region brain interactions, where the
state of the target ODE depends on another complex dynamical system as well. However, overall
we believe the new insights provided by our framework outweighs its limitations and provides an
exciting set of future directions.

10
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A APPENDIX A: CHOICE OF NONLINEARITY

If we consider a network with a rectified-linear instead of a tanh nonlinearity, the restrictions on
the network’s representational capacity in the absence of inputs are even more severe (Fig. [SI-T). In
this case, the basis functions are all scaled and axis-flipped relu functions that intersect the x axis at
2 = 0. Thus they can only represent piecewise linear functions composed of two pieces with a knot
at zero. Adding inputs (or per-neuron biases) allows the network to have universal approximation
capabilities.

A Dbasis functions (no input) C basis functions (w/ input)

target ODE D
N = = fitin basis

) N\
N

dz/dt
o

dz/dt

Figure SI-1: Representational capacity of a 1D low-rank RNN with rectified-linear (relu) nonlinearity.
(A) Set of basis functions obtained by taking random coeffients m; ~ N(0,1) but without input
(v¢ = 0). (B) Attempting to fit an example ODE using this basis recovers only a piecewise linear fit
with a kink at zero. (C) By adding inputs, basis functions have random offset as well as slope. Here
we set vy = 1 and sampled the input vector coefficients I; ~ N (0, 1). (D) Least squares fitting of n
in the random basis from (C) provides a high-accuracy approximation to the target ODE.

A.1 COMPARISON OF ACTIVATION FUNCTIONS IN ESTIMATING ODESs

In this section, we explore the low-rank RNN’s ability to approximate different types of dynamics
(i.e function classes), with different activation functions (i.e basis functions). Our discussion above
highlights how relu units can approximate functions through piecewise linear components. Non-zero
inputs create basis functions which can be used to compose ODEs with "knots" at the shifted offsets.
Alternatively, through our discussion in Section[3] we note tanh units provide smooth non-linear basis
functions. The non-zero inputs create shifted basis functions, which perform a similar role, with
smooth compositions. Following this intuition, if an ODE consists of smooth non-linear components
it can be hypothesized that tanh units would have higher performance. Whereas, if the ODE consists
of piecewise linear dynamics, relu units would prove to be more optimal. To validate this, we
simulate two such ODEs in Fig. [SI-2] Trivially, in the case of large enough number of basis functions,
networks comprising of relu or tanh units can approximate any function (i.e they behave as universal
approximators). However, to assess performance, we estimate the smallest networks in both cases
that can fit the ODE within a pre-defined margin of error. As expected, the ODE with smoother
non-linearities can be fit with smaller tanh networks than relu networks (the opposite is true for
piecewise linear ODEs).
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Figure SI-2: Performance comparison of tanh v/s relu in approximating different ODEs. (A) Depicts
an ODE with two stable fixed points and one unstable fixed points. (B) Depicts an ODE with a shifted
knot and two linear components. First column represents MSE (for a network with tanh and relu
activations) as a function of the number of neurons in network. Neurons are added using OMP. Top
row shows scaled basis functions selected after 1, 3, 5 iterations of OMP, along with the linear decay
term —x. Bottom row shows target ODE (black) and RNN fit (orange) after each step of OMP.

A.2 ABSENCE OF INPUTS FOR LIMIT CYCLE

Section [3.T] depicts a limit cycle embedded into the low-rank RNN using our framework. The specific
ODE of our non-linear and non-symmetric system is give as -

di _ (1_('202+Z12>> 20 — 21 — 0.35

dt ze+ 22 +e

dt 2+ +e
where € is a small constant added for numerical stability. The constant values in each dimension
make the underlying ODE non odd-symmetric.

d<1<+>)++05

In this section we show the inability of an RNN without inputs to appropriately approximate this
function. In Fig. the first column represents contour plots of the target ODE for each dimension.
The overlayed vertical and horizontal dashed red lines depict X = z; = 0,Y = 29 = 0 respectively.
Note, there is a slight (left and upwards) shift in the contour plots, indicating the non-radial symmetry.
This is introduced by adding a constant negative decay in z; and a positive correction in 2z5. The
second column represented the fitted ODEs for an RNN with inputs, while the last column represents
fitted ODEs for an RNN without inputs. It can be observed the RNN without inputs is unable to create
offsets in any dimension, thus failing at recovering the underlying ODE. To further highlight this we
simulate a sample trajectory from the polar coordinates of a limit cycle (detailed in Section [3.I)) in
the last row of Fig.[SI-3] As expected, the low-rank RNN with inputs almost perfectly overlaps the
trajectory, unlike the low-rank RNN without inputs.
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Target dz1/dt Fitted dz1/dt with inputs Fitted dz1/dt without inputs

w

Target dz2/dt Fitted dz2/dt with inputs Fitted dz2/dt without inputs

Sample Trajectory
RNN with inputs RNN without inputs

True z2
RNN z1 RNN z2

Figure SI-3: Influence of inputs in capturing non-symmetrical limit cycle

B GENERAL FORMULATION AND APPLICATION TO BINARY DECISION
MAKING TASK

We apply our framework to a specific group of binary decision making tasks commonly observed
in systems neuroscience. In this task, a rat accumulates evidence of auditory pulses over time from
clicks on its left and right side. At the end of the stimulus period, the rat must turn to the side
which produced more clicks, and is rewarded for inferring this correctly. It has been shown that
multiple underlying dynamical portraits could represent this behavior [Luo et al.| (2023). We thus
show applicability of our method by using it to recover the intrinsic and input driven dynamics on
four separate synthetically generated dynamic portraits linked to this task [Luo et al.|(2023). Here,
intuitively, the input dynamics encode for the accumulation of evidence based on the clicks, and a
final decision to turn is made once the accumulation value reaches a specific attractor in the network.
For instance, if the instrinsic dynamics encode a bi-stable attractor, each of the end points represent a
specific decision, and the inputs move the dynamics along a line between themWong & Wang| (2006).
Additionally, consistent with previous studies, we model our simulations to provide equal weights to
left and right clicks but with opposite magnitudes.

We model four flow fields representing intrinsic dynamics, namely a bi-stable attractor, a line attractor,
an non-canonical line attractor and the flow field inferred from|Luo et al.| (2023). More formally, they
are given as follows -
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Bistable attractors:
dz; = 1021 (0.7 4 21)(0.7 — 2z1)dt + cudt

dzo = —10z9dt
Classic DDM - line attractor:
dzy — {cudt 21 € (—0.7,0.7)
1021 (0.7 — 21)(0.7 + z1)dt 2z, ¢ (—=0.7,0.7)
dzo = —30z9 (15)

Non-canonical line attractor:
le = 522
dzo = —bHzodt + cudt
Unsupervised model:
dz; = 521(0.85 + 21)(0.85 — 21)dt + cudt
dzg = 5(05‘21| + 0.1)(2’1 - 1.222)
Here, z1, 2o, represent the two latent dimensions, u represents the magnitude of the input clicks, and
c represents if its positive or negative.
Critically, we observe the input dynamics lie in a dimension parallel to the recurrent activity. Or
alternatively, drive the system in the dimensionality spanned by the recurrent activity. We thus present
a general formulation of our equations to model these input dynamics. Following Eqn[6] we now

not only observe orthogonal (I = I,.,,) neuron specific inputs, but additional input dynamics that
influence the recurrent activity (1,4, spans the same direction as m), thus updating Eqn@as :

x(t) = mz(t) + Lpar V' (t) + Lperpv(t), (16)
Our goal of embedding the ODE ¢(z) into the network can now be viewed as setting the model
parameters so that
9(z) +2z ~ n' ¢p(mz + LV () + Lyerpv(t)) (17)
where v'(t) represents the low-pass filtered input which drives the system in the dimensions spanned
by the recurrence (m). This allows us to follow a similar setup to our discussions in Sec. 3, with the
exception that auditory inputs are applied along I,q, or I = I},c,p, Or both.

As shown in Fig[SI-4] each row represents one of the above dynamical regimes. The first column
represents the dynamics along z1, or 2o, and the RNN fitted version. Next, we model two right (or
positive) clicks at t = 0.5 and ¢ = 1 second and a single left (negative) click at { = 2.5 second. The
second column represents the ODE when we start from (z = 0), pushed by these input dynamics,
for our fitted RNN dynamics (Eqn|/]) against the true ODE (computed using Euler method). Lastly,
we also recover the underlying flow fields, as indicated by the last column. In Fig we embed a
non-canonical line-attractor in which input axis is perpendicular to the line attractor and non-normal
dynamics give rise to movement along the line attractor. We successfully embedded all three of these
systems with rank 1 RNNs. Lastly, we also embed a system with rotational dynamics between fixed
points with integration along the diagonal between them. This is done through a rank 2 RNN with
inputs along each of the directions spanned by I, (Fig. B). This proves the flexibility of our
framework in embedding dynamics associated with neuroscience tasks.

C ADDITIONAL TASKS AND COMPARISONS

C.1 DiscussioN oON FORCE FRAMEWORK

Below we discuss some ways in which our methodology differs from the FORCE/FULL-FORCE
(Sussillo & Abbott, 2009; DePasquale et al., 2018) training schemes.

1. Imitialization with Full-Rank Weight Matrix: FORCE/FULL-FORCE methods require
full rank-initializations, and learn low-rank updates on this initilalization over time. This
comes at the cost of interpretibility as the dynamics of such networks need to be analysed
post training through methods such as PCA. On the other hand, our framework directly
models the latent low-dimensional dynamic and doesn’t ever need full-rank initializations
and is highly interpretable.
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Figure SI-4: Two different dynamical portraits for binary decision making task: (A) bi-stable attractor
ODE and (B) line attractor ODE. First column represents the true underlying ODE and the RNN
estimate learned using least squares. Second column depicts a sample trajectory driven by momentary
input clicks. A right click creates a drift towards the positive stable fixed point where as a left click,
towards the negative stable fixed point for A. For B, accumulation along the line takes place with no
diffusion. Third column represents the flow-field estimated by the RNN.
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Figure SI-5: Two additional dynamical portraits for binary decision making task. Top: flow-field for
each ODE, with input driven trajectory highlighted in blue. Bottom: true and fitted trajectories over
time for each dimension.
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2. Senstive to initialization and requires multiple epochs: One of the motivations of FORCE
is that it introduces the benefits of training networks that exhibit chaotic activity prior
to training. While powerful, it is observed this results in these networks needing mul-
tiple epochs/iterations. Additionally, these networks exhibit stochastic results based on
initialization. In contrast, our method provides a deterministic and single-step closed form
solution.

3. Doesn’t Directly Embed an ODE, but Produces a Set of Target Trajectories: A stark
difference between our framework is unlike other training methodologies similar to FORCE
and FULL-FORCE that are trained against target trajectories, we can also directly model the
underlying ODE. Thus, in cases where such a hypothesized ODE exists, we can represent
the entire space of the low-dimensional dynamic.

C.2 3D LORENZ ATTRACTOR

In addition to the 1-dimensional and 2-dimensional ODEs described in the main text, we also scale
our method to the Lorenz attractor. Specifically, we train our network on the Lorenz attractor over a
set of 10 separate trajectories (start location denoted by red circles in Fig[SI-6). Additionally, the
error plots in Fig[SI-6]indicates our network learns an accurate representation of this system.

Our formulation follows from our descriptions in Sec. 3.1, with one extra dimension. This can be
formalized as a rank-3 RNN, written as the problem of fitting three different nonlinear functions
91(2), g2(z) and g3(z) using three different linear combinations of the same 3D basis functions:

91(2) Z1 n{ ¢(Mz+ 1)
9(z) = |92(2)| = —|22|+ |ngo(Mz+1)|, (18)
93(z) 23 nj ¢(Mz + 1)

where M = [m;momsy] is a d x 3 matrix, I is once again a column vector of offsets, and we have
assumed a constant filtered input, v = 1.

Lorenz Attractor

Error Plots
Data Simulated from trajectories

True v/s Fitted X True v/s Fitted Y True v/s Fitted Z

True
— — - Fitted

@ trajectory start

-400!
200000 400000 200000 400000 200000 400000

Number of points across all trajectories

Figure SI-6: Lorenz attractor

Lastly, in Fig[SI-7)) we also show the efficacy of our model on a sample test trajectory. As shown, our
low-rank RNN model recovers the time-traces with high accuracy.

A Time Series of Sample Test Trajectory B True and Fitted Test Trajectory

Target ODE
RNN estimate
Trajectory start-— ] 200

-200
400

2 2 4 200
Time (s) Time (s) Time (s) 200 -400

Figure SI-7: Performance on sample test trajectory
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D OMP FOR 2D LIMIT CYCLE

Following our discussion on the multi-dimensional case and OMP (Sec. 3.1 and 4), we apply our
framework to learn the smallest number of neurons needed to fit an RNN for the limit cycle ODE. As
depicted in Fig[SI-8)), with the addition of neurons we start noticing periodicity in trajectories with
just 6 neurons. Finally, we obtain near perfect fits with 20 neurons.

Iteration Basis Function Added

\

im 1 ODE Estimate dim 2 ODE Estimate Trajectory

ODE value

ODE value

— Tagetdm
= = RNN fit dimt

argel dm2
RN fit dim2

ODE value

E

ODE value

P

j;\
3]
5
g .
g !

wwwwwwww

[——

Target ODE Dim1 Target ODE Dim 2

Figure SI-8: OMP for 2d Limit Cycle. Column 1 shows the single basis function added the corre-
sponding iteration of OMP. Columns 2 and 3 represent the estimated flow-fields via a learnt linear
weight, i.e two separate weights are learnt using the same basis function. Last column depicts a
sample trajectory. Note, periodicity of the limit cycle starts appearing as more neurons are added.

E PARAMETER DISTRIBUTION OF RANDOM BASIS

In this section we delve into the role of the distribution from which the random basis is sampled.
As shown in Section each basis function approximates the ODE (g(z)) over some finite domain
(z). Thus, first, it is critical the basis functions span the domain of the function being approximated.
Second, these functions need not be odd symmetric and hence basis functions need to also be shifted
to capture these movements. As shown in Fig[SI-9), as long as these properties are met (i.e both the
uniform grid and standard normal generate basis functions in the same domain, with the same offset
ranges), the exact underlying distribution from which the basis functions are drawn does not play a
critical role. This can be seen as the MSE values follow similar trends with greedy addition of basis
functions (panel C). Qualitatively, this can also be observed via similar reconstruction of the ODE
across iterations of OMP (panel A,B).
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A ODE fits with OMP
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Figure SI-9: Influence of distribution of basis functions. (A,B) RNN estimated fit of Bi-stable
attractor ODE the true underlying ODE over 1,3,5 iterations of OMP. In the top row basis functions
(both m; and I;) are generated over a uniform grid spanning +1 to —1. Alternatively the bottom row
consists of basis functions generated from a standard normal (i.e m; ~ N(0, 1), and I; ~ N (0,1)).
(C) Mean squared error (MSE) between target ODE and RNN approximation as a function of the
number of RNN neurons added by OMP (blue: basis functions drawn from uniform grid, green: basis
functions drawn from standard normal).

F ADDITIONAL TRAINING DETAILS

In Section [6} both our framework and the networks trained with BPTT are trained from a set of
teacher trajectories, which are simulated from the underlying ODE (eg. for binary decision making -
they start somewhere on the grid and eventually converge to one of the two fixed points). However,
unlike previous sections, our method here can be broken into two main steps -

1. Estimate ODE: Through a finite differencing approach (euler), we compute the difference
between every pair of points along the training trajectory. Thus, using a small time bin, we
estimate the value of g(z) along each point of the trajectory. This is used to populate our
target vector for regression.

2. Perform Regression: Our basis matrix is evaluated at grid points along these training
trajectories. Given this design matrix, and target we compute the necessary weights through

Eqn[9]

Lastly, both our framework and the networks trained with BPTT must reproduce a set of target
trajectories (eg. blue lines in In Fig.[5] panel A) from an input pulse train (eg. representing bit value
for each channel over the time interval). Thus, both our method and models trained with gradient
methods are trained to uncover underlying dynamics (from data points) that solve the task.

As shown in Table[T] [2 our framework provides significantly faster training.

Table 1: Training Time For Binary-Decision Making Task
Model Type Size Time(s)

LowRank (r =1) 5  62.419
LowRank (r =1) 10  62.468

Full Rank 2 29.161
Full Rank 3 29.209
Full Rank 5 29.025
Full Rank 10 29.392
Full Rank 50 28.998
Our Model 5 0.069
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Table 2: Training Time For 3-Bit Flip Flop Task
Model Type Size  Time(s)

Low Rank (r = 3) 5 305.256
Low Rank (r=3) 10  303.559

Full Rank 3 170.512
Full Rank 5 169.076
Full Rank 10 170.239
Full Rank 50 173.590
Our Model 5 0.09

F.1 APPLICATION TO HIGH DIMENSIONAL NOISY DATA

We further validate our framework by discussing its application to high-dimensional noisy data. In this
case we assume we have access to high-dimensional noisy rate-based neural recordings. Specifically,
this simulation is achieved by simulating a trajectory from the bi-stable ODE in Fig. B. This
trajectory z(t), starts somewhere on the grid of z, and is run forward until it converges to one of
the fixed points. To convert this into a high-dimensional noisy rate based recordings we take the
following steps. For each value along this trajectory z(t) we -

1. Project it into a high dimensional space through a linear weight matrix (values are drawn
between 0-1).

2. This linear mapping is made non-linear via the tanh activation
3. Finally, we independently add Gaussian noise to each of the dimensions (N (0,0.01)).

We thus assume we have access to these high-dimensional recordings. We project the data onto the
top PC’s(since the underlying dynamic here is 1-d, the first PC dimension captures the dynamic). In
Fig. the low-dimensional trajectory was first projected into a 1000 dimensional space. PCA on
this trajectory showed the single top PC captured most of the variance in the data. As shown, through
this projection we recover a noisy trajectory that represents the true low-dimensional dynamic. The
rank of the network will depend on the number of PC dimensions needed, in this case 1 suffices.
Furthermore, as noise in the system increases this recovery will also become more noisy (or need
more dimensions to capture it). Other confounding factors such as low-resolution recordings or sparse
recordings could also influence recovery (although not explored here).

Finally, once we have access to these trajectories the approach discussed in Section [F]can once again
be followed.

Original vs Recovered Trajectory
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Figure SI-10: Recovering low-dimensional trajectory from noisy dimensional data
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