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Abstract—Autoencoders are used in a variety of safety-critical
applications. Uncertainty quantification is a key component to
bolster the trustworthiness of such models. With the growing
complexity of the autoencoder design and the dataset they
are trained on, there is a dwindling correlation between the
input and feature space representation. To address this latent
space degeneracy, we propose a novel method of monotonically
perturbing the encoded latent space to increase the entropy in the
learned representations for every corresponding input. For every
perturbation, we obtain a unique decoded signature correspond-
ing to an evaluation metric in the continuous domain, which
can be clustered to build a knowledge base and subsequently
analyzed for outlier analysis. For the test cases, in the absence
of ground truth, we can perturb the latent space representation
and find the closest match of the test cases’ unique signatures to
the existing knowledge base for uncertainty quantification and
outlier detection. We evaluate our proposed novel method on
glomeruli segmentation for frozen kidney donor section on whole
slide imaging, a safety-critical application in digital pathology
which serves as a precursor to kidney transplantation. We prove
the proposed method’s effectiveness for outlier detection by
ranking the test cases according to their associated uncertainties
to leverage the attention of medical experts on boundary cases.

Index Terms—Autoencoders, Perturbation, Latent Space, Out-
lier, Uncertainty quantification

I. INTRODUCTION

Autoencoders (AE) are used in various applications, rang-
ing from classification, regression, and segmentation tasks to
denoising ones. AEs are trained to map input space to an
encoded latent space, which can be meaningfully decoded.
However, with the growing complexities of encoder-decoder
designs and the dataset they are trained on, there is little
to no correlation between the input and the encoded latent
space [1]. This is referred to as latent space degeneracy. Also,
AEs find their way into diverse safety-critical applications like
digital pathology, radiology, high-energy physics, to name a
few. The trustworthiness of AEs is a bottleneck to their wide
adaption. Moreover, in the absence of ground truth for test
cases, the AE model does not assign an uncertainty score to the
prediction results, indicating a constant model test accuracy for
all test cases. This paper introduces a novel perturbation-based
method for uncertainty quantification and outlier detection in
test cases for AE models. The method is applicable to a wide
variety of applications. We extensively evaluate our proposed
approach on a digital pathology application.

The encoder is trained to learn the correlation between the
input space and latent space embeddings. The decoder then re-
constructs meaningful representations from the learned feature
space. In our work, we propose monotonically perturbing the
encoded latent space to increase the entropy in the learned
representations for every corresponding input. We perturb
the non-zero elements of the corresponding latent feature
space matrix in the continuous domain for every input. For
every perturbation corresponding to every input, we decode
the response through the trained decoder, evaluate it, and
generate a response curve in the continuous domain. This
response curve or signature would be unique for every input.
Consequently, we generate unique signatures for every input
query and build a knowledge base. Next, we cluster the
responses and analyze every cluster. Response curves farther
away from their cluster center indicates the presence of a
possible outlier. In the testing phase (queries without ground
truth), we perform similar perturbations to obtain a unique
signature of all the test cases. We assign the test cases’ unique
signature to a cluster from the existing knowledge base with
closest signature matching. Depending on the proximity to its
assigned cluster center, an uncertainty score can be assigned to
every test case. Finally, the test cases can be ranked according
to their associated model uncertainties.

In our work, we evaluate the proposed method on medical
image segmentation application pertaining to digital pathology.
Identifying and segmenting frozen kidney donor sections for
kidney transplantation is a safety-critical healthcare appli-
cation. We opt for a trained AE model that can segment
the sclerotic and non-sclerotic glomeruli in frozen kidney
whole slide imaging tissues to deem the tissue suited for
transplantation or otherwise. Quantifying uncertainties in the
segmentation decision of the AE model is desired by the
medical experts. Also, ranking the slides in order of their
associated uncertainties would assist the medical experts in
identifying cases that require human intervention. The key
contribution of our work is that we developed a novel un-
certainty quantification tool that monotonically perturbs the
feature space in AEs to generate unique signatures and rank the
test cases in order of their uncertainty score to detect outliers.
The tool can identify all sorts of outliers for the test cases
(absence of ground truth) that can arise from poor staining of
the whole slide imaging, noise in the imaging technology, or
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genuinely out-of-distribution cases. Our result shows that we
can successfully detect outliers and rank test cases to let the
medical experts focus on boundary cases.

Our paper is organized as follows. We delve into the related
works in Section II, describe our proposed method in Section
III, followed by an evaluation of the proposed method on
medical image segmentation task for glomeruli segmentation
in the frozen kidney donor section in Section IV. Section V
concludes our paper.

II. RELATED WORKS

In brief, encoders of AE models are trained to extract and
encode information in the latent feature space such that the
decoder can interpret meaningful reconstructions of the same.
However, with complex designs of AE models, we observe a
latent space degeneracy, meaning a lack of correlation between
the input and its corresponding feature space. In this section,
we delve into the representation learning of AE models, latent
space degeneracy of AEs, and establish the relevance of outlier
detection for the trustworthiness of AE models.

A. Learning in Autoencoders

Fig. 1. Training of Autoencoders to learn meaningful representations in
encoded latent space.

Autoencoders [2] consists of an encoder and a decoder
block. The encoder block, through dimensionality reduction,
learns meaning representations from every training sample,
mi. As illustrated in Fig. 1, the compressed latent space is
obtained through the encoder’s learned function g(.). The
encoded feature space is then decoded through the decoder’s
learned function f(.). These functions, g(.) and f(.) are
trained through the optimization function as given in Equation
1, where <> indicates all the training samples, and ∆ is
the reconstruction loss between input mi and re-constructed
sample m∼

i .

argminf,g < [(∆(mi, f(g(mi)))] > (1)

There are other varieties of AE models [3] like denoising
AE which subtracts the noise from the input queries and
generates a meaningful noiseless reconstruction of the query,
and variational-AE (VAE), wherein the AE is regularized while
training to avoid overfitting. Overall, AE models aim to learn
representations that can be decoded meaningfully.

B. Latent Space Degeneracy of Autoencoders

Encoders are trained to establish a correlation from the input
to latent space. The learned representations of the feature space
can be thereby interpreted by the subsequent decoder network,
completing the design of autoencoders. To the contrary, studies
[1] show that increasing complexity of the encoder or decoder
units dwindles the correlation significantly.

Addressing the degeneracy in variational AEs, H. Zheng
et al. [1] proposed to analyze the transmitted information
across the VAE layers while accounting for the information
loss. It was observed that a deeper decoder compared to its
encoder, yielded a meaningless representation of the latent
space to the inputs. A deeper encoder has a poor decoder
reconstruction yield compared to the encoder. Finally, with a
very deep encoder and decoder, AE models fail to learn any
meaningful representation. Another key finding was that skip
connections help minimize information loss the best. Given
this observation, we adopted an AE model with an equal
yet moderately deep encoder and decoder units, with skip
connections in our evaluation design. Another work by Helena
et al. [4] leverages theoretical physics modeling the latent
space as energy spectrums and using Hamiltonian operators
to study the embedding degeneracy in AEs.

C. Outlier Detection and Trustworthiness of Autoencoders

With the growing degeneracy of latent space representations
in AEs, quantifying uncertainties and identifying outliers in
AE models have become increasingly challenging. Ofir et
al. proposed Probabilistic Robust Autoencoders [5] aimed
to split between the inlier and outlier samples through a
lower dimensional representation of the inliers. It aimed to
exclude outliers through a regularized design of AEs that
does not conform to the low-dimensional inlier sample space.
Finke et al. [6] studied the reconstruction loss of AEs for
unsupervised anomaly detection. It proposed techniques for
performance improvements in model-independent anomaly
detection settings for high-energy physics applications. Kieu et
al. [7] proposed designs of robust and explainable AE models
for outlier detection in time-series models through post-hoc
explainability measures. Yong et al. [8] studied the relevance
of bottlenecks in AE design and proposed ways to do away
with the bottleneck. It also examined that bottleneck removal
techniques can help outperform the bottlenecked AEs and
delved deeper into studying the effect of anomaly detection
in similar settings. Other works include outlier detection using
de-biasing VAE likelihoods [9] and anomaly detection in semi-
supervised settings [10]. The application settings in which
this has been studied remain vast, from high energy physics
to classification, regression, and high-performance computing
systems [11].

Anomaly detection has thus far been a long-standing prob-
lem. We, in this paper, address this from the degeneracy of
latent space representations point of view, which finds no other
mention in the existing literature. Also, we perform evaluations
on the safety-critical application of medical image segmenta-
tion application which is a precursor to kidney transplantation.
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Fig. 2. This figure demonstrates our proposed method. In Building Knowledge Base phase, for every input, we introduce monotonic perturbations S(g(.)) in
the latent space, cluster the decoded unique signatures, and perform individual cluster analysis. In Outlier Detection in Test Cases phase, for every test case
(absence of ground truth), through monotonic perturbations, we obtain the decoder signature, perform closest signature matching to the existing knowledge
base, quantify the uncertainties, and rank all test case in order of the measured uncertainties. This helps medical experts to address cases involving higher
uncertainties with high priority.

Fig. 3. This figure visualizes the latent space for increasing autoencoder model complexity coupled with dataset complexity. The first column visualizes the
latent space for the MNIST dataset, the second for F-MNIST, and the third for K-MNIST. The first row uses a convolutional autoencoder, the second row
uses a variational autoencoder, and the third uses a denoising autoencoder to learn the feature space for the corresponding datasets. With growing model and
dataset complexity, the correlation from input to latent space degenerates, which emphasizes our problem statement.
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Fig. 4. The adopted model architecture of the autoencoder model we use to extract the latent space embeddings for our image segmentation task. [20]

III. PROPOSED METHOD: DECODING THE ENCODER

In this section, we discuss our proposed novel method
of increasing the entropy of the compressed latent space of
an autoencoder through monotonic perturbations. For every
input, the perturbations in the feature space yield unique
signature responses when decoded. Next, we delve deeper into
analyzing the decoder responses through unsupervised ML
techniques to build a knowledge base. In the testing phase,
for a given unknown test case, we can generate the unique
signature and find its closest match in the knowledge base.
Analyzing the same would help in outlier detection to boost
the trustworthiness of the autoencoder model, as illustrated in
Fig. 2.

Fig. 5. For all non-zero elements in the feature space matrix corresponding to
every input, we perform monotonic discrete perturbations in the latent space.

• Latent Space Degeneracy: The design of AEs can be
broadly classified as AEs with a deeper encoder than
its decoder, a deeper decoder than its encoder, and an

encoder-decoder of equal depth. In all scenarios, the
goal is to have the latent feature space learn meaning
representations from the training dataset. Therefore, the
architecture’s depth (number of hidden layers) is favor-
able for extracting meaningful representations. To its con-
trary, depth in the network also weakens the correlation
between the input and the compressed latent space. To
emphasize the degeneracy of latent space in AEs, we
trained three variants of AEs, namely convolutional AE,
variational AE, and de-noising AE on MNIST [12], F-
MNIST [13], and K-MNIST [14] datasets. We visualize
the latent space through principal component analysis
of various AE models for the rising complexity of the
model and the dataset they are trained on. We observe that
correlation significantly drops between the inputs and the
learned representations with increasing model complexity
and the dataset it is trained on, as visualised in Fig. 3.
This further strengthens our problem statement.

• Perturbations in the Latent Feature Space: We mono-
tonically perturb the encoder learned function, g(.),
through S(g(.)) that increases the entropy in the learned
representations. For a given input to a trained encoder,
the meaningful representations in the latent space are
denoted by the non-zero values. Our method monoton-
ically perturbs the non-zero elements of the latent space
matrix from values tending to zero to the maximum
possible representative value, which, when normalized,
scales from 0 to 1.
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• Decoder Response: For every input mi, we perturb the
meaningful latent feature space matrix with S(g(.)) and
ask the decoder to generate the response. The decoder
generates unique signatures for every mi. Ideally, the best
response signature is obtained through perturbation in the
monotonically continuous domain (which is discretized at
a high sampling frequency).

• Unsupervised Clustering of Decoder Response: For
the perturbed decoder response from every input mi, we
perform quality assessment of the decoded response (as
per the application-oriented metric). The responses can
then be clustered with unsupervised clustering methods
like the birch [15] clustering technique to determine the
number of clusters.

• Individual Cluster Analysis: For every cluster, which is
a function of S(g(.)) with quality of the perturbed latent
space in a continuous domain, we analyze every cluster.
For every cluster, we identify the median response curve
and the response curves that are farther from the median.
Our hypothesis is that response curves farthest from the
cluster’s median response curve would be outliers or
the ones (classified/segmented/de-noised) with the least
confidence.

• Outlier Detection with Signature Matching: In the
testing scenario, in the absence of ground truth, we
can perturb the latent feature space of the test instance
to generate the unique signature. We can assign this
response to a cluster from the knowledge base with the
nearest neighbor measure. Consequently, with the dis-
tance metric, we can find the signature’s relative distance
from its assigned cluster’s median response and quantify
the confidence in the prediction result of the test case.
For several such test cases, we can rank them in order of
their relative distance from their assigned cluster’s median
response curve, in ascending order of their quantified
uncertainties as a probable outlier. Ranking all test cases
in order would help increase the model’s trustworthiness.
This would provide medical experts insights into which
test cases must be closely observed in safety-critical
applications. The one classified/segmented/de-noised by
the AE with high confidence can be overlooked.

IV. EVALUATION OF PROPOSED METHOD FOR GLOMERULI
SEGMENTATION ON KIDNEY DONOR FROZEN SECTIONS

We evaluate our proposed novel perturbation method for
outlier detection on a very sensitive medical image seg-
mentation application. In this section, we first establish the
sensitivity associated with our target application. Following
on, we provide the experimental setup with discussions on the
dataset and the AE model we use for our study. After that,
we delve deeper into analyzing our proposed technique with
discussions on every aspect of our novel proposed method and
how it boosts the model’s trustworthiness.

A. Application overview

Advancements in nephrology research have weighed in
on renal allograft transplantion as a substitute for dialysis
for subjects with severe kidney disorders [16]. Scarcity of
allografts led to the rise of extended criteria donor allografting
program wherein transplantation was legalized from cadaveric
donors too [17]. To further bolster the program dynamics,
Kidney Donor Profiling Index [18] [19] was developed. From
an histological point of view, kidney biopsies remain the
widely accepted norm of estimating the sclerotic and non-
sclerotic glomeruli with hematoxylin and eosin (H&E) stain-
ing. Kidneys with non-sclerotic glomeruli above the accepted
clinical standard are deemed acceptable for transplantation.

Whole Slide Imaging (WSI) enables digitization of the
biopsy samples which in turn enables computational analysis
on them. AEs has predominantly established itself in this
space. In our evaluation, we study our proposed method
on a developed encoder-decoder network [20] which detects
and segments sclerotic and non-sclerotic glomeruli on frozen
sections of donor kidney biopsies.

B. Experimental Setup

This study was performed at Duke University wherein a
bottleneck dialated U-Net model with skip connections [20]
was designed to detect and segment sclerotic and non-sclerotic
glomeruli on a WSI dataset. Some details outlining the dataset
and model is outlined in the following subsections.

1) Dataset: This study involved 268 frozen sections of
H&E stained slides from 211 subjects. Out of these 211
subjects, 75 kidney biopsies were performed at Duke Univer-
sity which contributed to 128 H&E stained slides. Rest were
performed at other institutions, and post extensive review by
the university’s medical experts, were approved for the study.
A team of three well-trained medical experts, as approved by
the university, manually annotated (segmented) the scelotic
and non-sclerotic glomeruli. To ensure high quality manual
annotation (segmentation), two renal pathologists were further
involved in the study. Following a rigorous quality control,
these samples were used to train a AE model for detection
and segmentation of sclerotic and non-sclerotic glomeruli in
frozen kidney donor sections.

2) Autoencoder Model: The 75 WSI kidney biopsies per-
formed at Duke University were split into training and val-
idation dataset in 80-20 ratio, while the 135 WSI kidney
biopsies performed at other universities were harnessed as
testing dataset. For the detection and segmentation of sclerotic
vs. non-sclerotic glomeruli, a nine-module U-Net architecture
with dilations at bottleneck layers was adopted from our
previous work [20]. It consists of a symmetric encoder-
decoder convolutional neural network architecture to ensure
pixel-level segmentation. The adopted model to extract latent
space embeddings is as depicted in Fig. 4. The encoder
uses VGG pre-trained weights which are fine tuned through
training epochs. The bottleneck layer dilates features based
on convolutional operations. Skip connections help restore
encoded information from specific layers of the encoder in the
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Fig. 6. For all latent space perturbation corresponding to every input, we decode the unique signatures (decoder response). We obtain the number of clusters
through unsupervised clustering technique to be 5. Figure on left shows the clustered response curves (agglomerative clustering). Figure on right shows the
anchor curve (median response of every cluster).

Fig. 7. Outlier analysis in every cluster.

decoding process. The hyper-parameters and implementation
details are elaborately illustrated in our previous work [20].

In this work, we focus on quantifying the uncertainties,
ranking the test cases based on their uncertainty score, and
detect outliers in the test cases (absence of ground truth). For
every WSI kidney biopsy input, we perturb the non-zero values
of the encoder layer in steps of 0.02, from 0 to the maximum
value, to obtain the response curves as a measure of dice score.
Next, we cluster the response curves through birch [15] and
agglomerative [21] clustering technique to obtain the cluster
number. Thereafter, we calculate the median response curve

of every cluster and find the outliers. For new test cases, we
propose to perturb the learned feature space of the encoder
to generate the response curve. The generated response curve
can then be attributed to belong to a cluster from the existing
knowledge base. This can help to quantify model uncertainties
depending on the response curve’s relative distance to its
assigned cluster center.

C. Results

For every image in the WSI dataset, we introduce monoton-
ically increasing discretized perturbations in learned feature
space of the AE model to generate the unique signature
corresponding to every input. The signatures are then clustered
in an unsupervised fashion for individual cluster analysis.
In the testing phase, the responses can be asserted to an
existing cluster through signature matching. Our goal remains
to rank the test cases in order to their uncertainties in the
segmentation task through signature matching to prioritize
attention of medical experts on critical cases.

1) Perturbation in latent space: The last block of the
trained encoder network consists of a 32x32 feature map,
stacked up into 512 layers, as depicted in Fig. 5. For every WSI
input, we monotonically perturb the corresponding non-zero
elements of the 32x32x512 matrix from zero to its maximum
value of 1, discretized in steps of 0.2, pass it through the
decoder to obtain the response curve or signature.
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Fig. 8. Evaluation of our proposed method for uncertainty quantification and outlier analysis. For every cluster, we analyze the median response curve, noted
by center, the signature one unit away in either direction of the median response curve, center_up, center_down, and the signatures farthest away from the
median response curve, outlier_up, and outlier_down. We are able to detect obvious outliers in clusters 1 and 4. For test cases (absence of ground truth),
for every response curve assigned to a cluster, we are able to assign an uncertainty score based on the relative distance from the median response and the
absolute difference of dice score between the two extreme cases for the cluster.
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2) Clustering the response curves: Quantification of the
number of clusters is done in an unsupervised fashion through
birch clustering [15] technique. The number of clusters is
noted to be 5. The response curves, grouped through agglom-
erative clustering [21] with the requisite number of clusters,
are visualized with its assigned cluster number in Fig. 6.

3) Dice Performance by Cluster: We investigate into the
dice performance for every cluster through a box and whisker
plot, as visualized in Fig. 7. We are able to detect the outliers
from every cluster.

4) Cluster-wise Anomaly Detection: Given the clusters and
the median response curve, we analyze signatures those are
farthest away from the cluster median. In Fig. 8, for every
cluster, we visualize and estimate the model performance on
the frozen kidney donor section for the cluster median, signa-
ture ordered one unit away from the median response in either
direction, and the signatures those are farthest away from the
median response in either direction. Median response curve
has the highest dice for every cluster, indicating our proposed
technique is able to position the best case from every cluster
as its median. For outlier analysis, in cluster 1 and 4 we are
able to successfully detect an outlier with dice scores of 0.62
and 0.59 respectively. In regards to uncertainty quantification,
the absolute difference of dice score between the two extreme
cases for each cluster yields the range of uncertainty of the
cluster. In testing scenario, for every response curve assigned
to a cluster, we are able to assign an uncertainty score based
on the relative distance from the median response and the
absolute difference of dice score between the two extreme
cases for the cluster. Ranking the test cases according to their
uncertainty helps medical experts focus on boundary cases
while also boosting the trustworthiness of the AE model.

V. CONCLUSION

In this paper, we proposed a novel method of monotonically
perturbing the encoded latent space to increase the entropy
in the learned representations for every corresponding input.
Through our evaluation use case of glomeruli segmentation
in the frozen kidney donor section, we could extract unique
signatures for every input, cluster them and analyze the
clusters for outliers. Subsequently, in the testing phase, in the
absence of ground truth, we were able to rank the cases by
first assigning them to an existing cluster in the knowledge
base and quantifying the uncertainty according to its relative
distance from the cluster’s median response curve. This helps
boost the trustworthiness of AE models. Therefore, we can
demonstrate the effectiveness of our proposed novel uncer-
tainty quantification method and outlier detection.
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