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ABSTRACT

Recent works in few-shot learning (FSL) for visual recognition have indicated that
dense features benefit representation learning across novel categories. One of par-
ticularly interesting methods is DeepEMD that is formalized as optimal matching
of dense features via an effective statistical distance, i.e., Earth Mover’s Distance.
Despite its competitive performance, DeepEMD is computationally very expen-
sive due to inherent linear programming. Towards addressing this problem, we
propose a metric-based Gaussian EMD (GEMD-M) for FSL. We adopt Gaussians
for modeling distributions and closed form EMD between Gaussians as a dis-
similarity measure. We illuminate that this metric amounts to feature matching, in
which the optimal matching flows follow a joint Gaussian and can be expressed
analytically. As the distance in GEMD-M is entangled and not that GPU-friendly,
we further present a transfer learning-based Gaussian EMD (GEMD-T). The key
idea is to learn a parametric EMD for a more discriminative metric based on
square-roots of covariance matrices (via learnable orthogonal matrices) and mean
vectors. The learnable metric in GEMD-T is decoupled and thus can be imple-
mented by a fully-connected layer followed by a softmax classifier, very suitable
for GPU. We conduct extensive experiments on large-scale Meta-Dataset and three
small-scale benchmarks. The results show our GEMD is superior to DeepEMD
and achieves compelling performance compared to state-of-the-art methods.

1 INTRODUCTION

Few-shot learning (FSL) for visual recognition aims to classify novel categories unseen previously
given only a limited training examples (Fei-Fei et al., 2006; Koch et al., 2015; Finn et al., 2017).
Typically, FSL is formulated as a multitude of episodes (Vinyals et al., 2016), for each of which one
trains a network model to classify images of a query set, given a support set containing novel classes
each with few training images (shots). Despite great advance in deep learning, it is still challenging
to learn novel knowledge with scarce training examples (Lake et al., 2015; Wang et al., 2020).

Recent study (Doersch et al., 2020; Li et al., 2019) has disclosed that in the few-shot regime it is hard
to learn abundant class-level knowledge for the novel classes, and instance-level information em-
bodied by spatial parts of objects plays an important role. It has also been shown that dense, spatial
features contain structural information, helpful for learning discriminative and transferable knowl-
edge across categories (Zhang et al., 2020; Wertheimer et al., 2021; Xie et al., 2022; Liu et al., 2022).
Among them, DeepEMD (Zhang et al., 2020; 2022) is of our particularity interest, as it is founded on
a very effective statistical distance, i.e., Eather Mover’s Distance (Rubner et al., 2000), also known
as Wasserstein distance (Villani, 2008; Arjovsky et al., 2017) or Optimal Transport (Peyré & Cuturi,
2019). Fig. 1a depicts the idea of DeepEMD, where an image is represented by a set of local features
indicated by points in the same color. The dis-similarity between the left (query) and right (support)
images is formulated as matching of their corresponding features via EMD. The optimal matching
flows indicated by solid lines are computed through QPTH solver (Amos & Kolter, 2017). Despite
its competitive performance, DeepEMD is computationally very expensive due to inherent linear
programming. More efficient EMD variants, e.g., Sinkhorn solver (Cuturi, 2013), can alleviate but
fail to address this disadvantage, particularly for FSL problems at scale.

Towards addressing this problem, we propose in Sec. 4.2 a metric-based Gaussian EMD (GEMD-M)
for FSL as depicted in Fig. 1b. Rather than discrete probability density function (PDF) in DeepEMD,

1



Under review as a conference paper at ICLR 2024

(a) DeepEMD (b) Our GEMD-M (Sec. 4.2) (c) Our GEMD-T (Sec. 4.3)

Figure 1: Illustration of DeepEMD versus our Gaussian EMD (GEMD) in 1-shot setting. The
query (resp. support) image is designated by local features {xi}ni=1 (resp. {yj}mj=1) indicated by
red (resp. blue) points and meanwhile by the corresponding patches; matching flows fXY (xi,yj)
are indicated by solid lines. DeepEMD (a) formulates their dis-similarity as feature matching via
EMD between discrete PDFs fX(x) and fY (y) that involves a costly linear programming. We
use Gaussians N (µ?,Σ?), ? ∈ {X,Y } for modeling distributions, where µ? and Σ? are mean
vector and covariance matrix, respectively. We propose metric-based GEMD (GEMD-M) (b), which
computes EMD in closed form between Gaussian of the query and prototypical Gaussian of a support
class. Furthermore, we propose a more efficient transfer learning-based method called GEMD-T (c),
which learns a parametric EMD metric based on an equivalent but different form of EMD. Refer to
Sec. 3 and Sec. 4 for detailed explanation of symbols and formulas.

we model feature distributions of images by Gaussian functions (Gaussians for short). We show
that the optimal matching flows follow a joint Gaussian and can be expressed analytically; as a
result, the EMD metric can be computed in closed form. GEMD-M constructs a nearest neighbor
classifier that measures EMD between the Gaussian of the query image and prototypical Gaussian of
a support class. However, GEMD-M is not that GPU-friendly as the involved distance is entangled,
less suitable for parallel computation on GPU. To circumvent this problem, we further propose a
transfer learning-based Gaussian EMD (GEMD-T) in Sec. 4.3, which is founded on an equivalent
but different form of EMD for Gaussians as illustrated in Fig. 1c. The key idea of GEMD-T is to
learn a parametric EMD in light of the square-roots of covariance matrices (via learnable orthogonal
matrices) and mean vectors. The learnable metric is disentangled such that it can be implemented
by a fully-connected layer followed by a softmax classifier, very suitable for GPU.

We experiment on large-scale Meta-Dataset (Triantafillou et al., 2020), which contains both in-
domain and out-of-domain evaluations and builds realistic tasks of variable ways and shots. Also
we experiment on 3 commonly used small-scale benchmarks in the Appendix. Our contributions are
threefold. (1) We propose a metric-based FSL method (i.e., GEMD-M) that can compute EMD in
closed form. Notably, we illuminate the metric amounts to feature matching, in which the optimal
matching flows follow a joint Gaussian and can be expressed analytically. This formulation provides
an intuitive understanding of the EMD metric for Gaussians. (2) We further present a more efficient
transfer learning-based method called GEMD-T. Its core is to learn a parametric EMD via orthogonal
matrices for a more discriminative metric. As far as we know, this is the first attempt that enables the
EMD metric for Gaussians to be learned parametrically in deep learning. (3) Thorough ablation and
extensive comparisons show the superiority of our GEMD. Particularly, on Meta-Dataset GEMD-T
improves the previous best accuracies by 2.3% and 1.3% in the settings of training on ImageNet
only and on multiple datasets, respectively.

2 RELATED WORKS

Gaussians as image descriptors Gaussian is the maximum entropy distribution for given mean
and covariance among the family of continuous distributions (Bishop, 2006, Ch. 2). As analyzed
in (Jaynes, 2003), Gaussian is a preferable PDF and enjoys ubiquitous applications due to its na-
ture of maximum uncertainty with the least prior and many nice properties. Researchers widely
used Gaussians for describing feature distributions of images in both traditional shallow learn-
ing (Nakayama et al., 2010; Li et al., 2017; Matsukawa et al., 2016) and deep learning (Wang et al.,
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2017; Li et al., 2020). The Gaussian descriptors capture second-order statistics (i.e., covariance
matrices), which is richer and more effective than lower order statistics (Sanchez et al., 2013). As
the space of Gaussians is a Riemannian manifold (Rao, 1945), the classification performance can
be greatly improved by leveraging the geometry (Li et al., 2017). Wang et al. (2017) propose a
Gaussian embedding network based on theory of Lie group. Bilinear pooling (Lin et al., 2018) or
covariance pooling (Wang et al., 2021; Song et al., 2023) yields second-order moments as image
descriptors, which can be viewed as zero-mean Gaussians and shows better performance than global
average pooling. In the FSL regime, Li et al. (2020) adopt Gaussian descriptors whose dis-similarity
is measured by Kullback-Leibler (KL) divergence, which however is not a true metric (Csiszar,
1975). In contrast, our Gaussian EMD is a geodesic distance that can effectively leverage the geom-
etry of Gaussian manifold (Malago et al., 2018).

FSL leveraging dense features In recent years a number of FSL methods propose to effectively
leverage local features densely extracted by deep neural networks (DNNs). Recognizing the value
of local features, Li et al. (2019) propose an image-to-class similarity measure. Doersch et al. (2020)
disclose learning class-level knowledge is hard due to scarce training examples and instance-level
spatial information plays a critical role. Wertheimer et al. (2021) formulate FSL as a Ridge re-
gression problem, where the reconstruction error between features of a query image and those of
every support class is used as distance measure. Liu et al. (2022) propose bidirectional random walk
to learn mutual affiliations of bipartite dense features for FSL. DeepBDC (Xie et al., 2022) con-
structs Brownian distance covariance matrix based on Euclidean distances among all local features.
DeepEMD (Zhang et al., 2020; 2022) formalizes image dis-similarity as optimal matching of local
features via Earth Mover’s Distance between discrete distributions. Our Gaussian EMD inherits the
strength of DeepEMD (i.e., optimal feature matching), which can compute closed form distance
metric and circumvent costly linear programming of EMD.

Differential EMD EMD (Rubner et al., 2000) has many applications in computer vision and ma-
chine learning (Peyré & Cuturi, 2019; Arjovsky et al., 2017). It involves a linear programming (LP)
whose derivative is not straightforward to compute. Early attempt on differential EMD dates back
to Zhao et al. (2010) that computes the gradient of EMD for object tracking. In deep learning, the
QPTH solver (Amos & Kolter, 2017) develops a primal-dual interior point method for computing
gradients of LP. QPTH enables DeepEMD (Zhang et al., 2020) to backpropagate gradients in DNNs,
which unfortunately is computationally very expensive. The Sinkhorn solver (Cuturi, 2013) and its
variants, e.g., IPOT (Xie et al., 2020), introduce entropy regularizers into LP, so the optimization
can be accomplished with Sinkhorn-Knopp’s algorithm (Sinkhorn & Knopp, 1967) that is fit for
parallelization on GPU. In probability and statistics, it has long been known that EMD between
Gaussians admits a closed form solution (Dowson & Landau, 1982; Givens & Shortt, 1984). Heusel
et al. (2017) introduce Fréchet inception distance where Gaussian EMD is used to assess the quality
of images produced by generative adversarial network. We propose Gaussian EMD for few-shot
learning. We show that this metric amounts to optimal matching of image features, which is not elu-
cidated before in deep learning to our best knowledge and can help intuitively interpret this metric;
besides, we propose for the first time to learn a parametric EMD for Gausians.

3 DEEPEMD IN RETROSPECT

The idea of DeepEMD (Zhang et al., 2020; 2022) between a pair of images is shown in Fig. 1a. Let
{xi}ni=1 and {yj}mj=1 respectively be local features of the left (query) and right (support) images
extracted densely by DNNs. Statistically, EMD measures the discrepancy between two discrete
distributions (Peyré & Cuturi, 2019, Sec. 2). Let {xi}ni=1 be observations of a random vector X
and let fX(x) =

∑
i fX(xi)δX(xi) be its discrete PDF, where fX(xi) is probability of xi and

δX(xi) is Kronecker function that is equal to 1 if x = xi and 0 otherwise. Similarly, we denote by
fY (y) =

∑
j fY (yj)δY (yj) the discrete PDF of Y . The image dis-similarity d(fX , fY ) is defined

as the following optimal transport problem:

d(fX , fY ) = min
fXY

∑
i,j
t(xi,yj)fXY (xi,yj), (1)

where fXY satisfies
∑
j fXY (xi,yj) = fX(xi), i = 1, . . . , n and

∑
i fXY (xi,yj) = fY (yj), j =

1, · · · ,m. Here t(xi,yj) is transport cost per unit mass, often defined in terms of the Euclidean
distance or inner product, and the matching flow fXY (xi,yj)≥ 0 denotes the transport mass from
xi to yj . A cross-reference mechanism is developed to compute the discrete PDF.
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From statistical view, EMD seeks an optimal joint distribution f∗XY (x,y) that minimizes the total
transport cost between marginals fX(x) and fY (y). It can also be seen as feature matching be-
tween two set of features and f∗XY (x,y) indicates the optimal matching flows. DeepEMD relies
on differentiable QPTH solver (Amos & Kolter, 2017) for forward- and backward-propagations in a
DNN, which however is computationally very expensive, infeasible to FSL at scale. More efficient
Sinkhorn solver (Cuturi, 2013) and its variant (Xie et al., 2020) alleviate but still cannot address this
disadvantage, as experimentally shown in Tab. 3e.

4 GAUSSIAN EMD FOR FEW-SHOT LEARNING

Few-shot classification is typically formulated as a multitude of episodes (tasks). Let z be an image
and c be its label. An episode consists of a support set Ds = {(zi, ci)}|D

s|
i=1 and a query set Dq =

{(zj , cj)}|D
q|

j=1 , where | · | denotes the set size. The task is to predict the labels of the query images
given the support set with few training images per class. Notably, the numbers of classes and shots
may vary from episode to episode, e.g., on Meta-Dataset (Triantafillou et al., 2020).

We adopt a two-stage pipeline of pre-training and meta-testing as in (Li et al., 2022; Tian et al.,
2020; Dhillon et al., 2020). During pre-training, we train in a non-episodic manner a network using
a softmax classifier with a cross-entropy loss that classifies all categories on the training set; then
following (Tian et al., 2020), we adopt a self-distillation technique to improve the pre-trained model.
In meta-testing, for each episode we use the pre-trained network as backbone on top of which we
construct a classifier; next, we train the model using the support images.

In what follows, we first describe how to represent images by Gaussians. Then we introduce two in-
stantiations, i.e., metric-based Gaussian EMD (GEMD-M) and transfer learning-based one (GEMD-
T). Finally we give implementation of our methods.

4.1 IMAGE REPRESENTATIONS BY GAUSSIANS

To compute the Gaussians, we need to estimate mean vectors and covariance matrices of high-
dimensional features extracted by a DNN. As the sizes of covariance matrices increase quadratically
with feature dimension p′, for reducing computations we add a 1×1 convolution (conv) right after
the last conv layer of the DNN, which decreases the dimension from p′ to a smaller p.

For an input image z, we extract feature maps of size h×w×p using the DNN parameterized by θ,
where h and w denote spatial height and width and p denotes the number of channels. We reshape
the feature maps and obtain a set of n=hw local features {xi}ni=1,xi ∈ Rp, each of which is viewed
as an observation of a random vector X . Note that X is a function of θ and z. We use a Gaussian
for modeling the distribution of X as the descriptor of image z:

N (µX ,ΣX)=
1√

det(2πΣX)
exp(−1

2
(x−µX)TΣ−1

X (x−µX)), (2)

where det denotes matrix determinant, µX = 1
n

∑n
i=1 xi and ΣX = 1

n

∑n
i=1(xi − µX)(xi − µX)T

denote mean vector and covariance matrix that is symmetric positive definite (SPD), respectively.
We mention that the space of Gaussians is a Riemannian manifold (Rao, 1945). For brevity, we
shorten N (µX ,ΣX) as NX where necessary.

4.2 METRIC-BASED GAUSSIAN EMD

The idea of metric-based EMD (GEMD-M) in 1-shot setting is illustrated in Fig. 1b. Given a pair of
left (query) and right (support) images, let {xi}ni=1 and {yj}m=1 be their local features, respectively.
As described previously, we estimate Gaussians NX and NY to model their distributions. The dis-
similarity of the two images is measured by EMD between the two Gaussians:

d(NX ,NY ) = inf
fXY

∫
Rp×Rp

‖x− y‖2fXY (x,y)dxdy, (3)

where ‖·‖ denotes the Euclidean distance and the joint distribution (matching flows) fXY (x,y) is
constrained to have fixed marginals, i.e.,

∫
Rp fXY (x,y)dy=NX and

∫
Rp fXY (x,y)dx = NY . The

following proposition describes the properties of d(NX ,NY ):
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Proposition 1 For two Gaussians NX and NY , their EMD has the following closed form:

d(NX ,NY )=tr(ΣX+ΣY −2ΣXY )+‖µX−µY ‖2, (4)

where tr denotes matrix trace and ΣXY =(ΣXΣY )
1
2 is square root of ΣXΣY . Besides, f∗XY (x,y)

that minimizes Eq. (3) follows a joint Gaussian:

f∗XY (x,y) = N
([

µX
µY

]
,

[
ΣX ΣXY

ΣT
XY ΣY

])
. (5)

Derivation of Eqs. (4) and (5) can be found in (Dowson & Landau, 1982; Givens & Shortt, 1984).

Following the idea of ProtoNet (Snell et al., 2017), we construct a prototype for each class and
then perform nearest neighbor classification. Let N (µ̄k, Σ̄k) (simplified as N̄k) be the prototypical
Gaussian of the k9th support class, k=1, . . . ,K. Here µ̄k and Σ̄k are averages of the mean vectors
and covariance matrices of all support images belonging to class k, respectively. By computing the
distances between a query image and all support classes, we define the loss function as

l(θ,{N̄k}Kk=1) = − 1

|B|
∑

(zi,ci)∈B

log
exp(−d(NXi

, N̄ci))∑K
k=1 exp(−d(NXi , N̄k))

, (6)

where θ is the network parameters, B denotes a mini-batch andNXi denotes Gaussian descriptor of
image zi whose label is ci. Similar to DeepEMD, we develop a structural layer where µ̄k and Σ̄k

are viewed as parameters for further finetuning.

From Eq. (4), it can be seen that d(NX ,NY ) compares mean vectors and covariance matrices of
two Gaussians, which however is a lack of intuitive meaning. Fortunately, according to our for-
mulation, d(NX ,NY ) can be naturally interpreted as optimal matching of dense features, in which
the optimal matching flows f∗XY follow a joint Gaussian and can be expressed analytically. Fig. 1b
intuitively illustrates how and why this metric works for a pair of images. This brings an illuminat-
ing interpretation of this well-known metric (Heusel et al., 2017), which is to our best knowledge
not elucidated previously in deep learning. As d(NX ,NY ) is a Riemannian metric (Malago et al.,
2018), our GEMD can capture the geodesic distance on the underlying manifold. In contrast, KL-
divergence used in ADM (Li et al., 2020) is not a metric due to violation of the symmetry and
triangle inequality (Csiszar, 1975), failing to consider the geometry of Gaussian manifold.

4.3 TRANSFER LEARNING-BASED GAUSSIAN EMD

Despite the analytical form, the metric in GEMD-M (4) is entangled due to ΣXY such that computa-
tion of a batch of distances is not that GPU-friendly. To circumvent this problem, we further propose
transfer learning-based Gaussian EMD (GEMD-T) for FSL, which is founded on an equivalent but
different form of EMD between two Gaussians as described by the following proposition.

Proposition 2 The EMD between NX and NY is the solution to the following constrained mini-
mization problem:

d(NX ,NY )= min
U∈U(p)

∥∥Σ 1
2

XU−Σ
1
2

Y

∥∥2

F
+‖µX−µY ‖2, (7)

where ‖ · ‖F is Frobenius norm and U(p) is the space of p× p orthogonal matrices. The mini-

mum is obtained when U is the factorizer of the polar decomposition of Σ
1
2

XΣ
1
2

Y , i.e., Σ
1
2

XΣ
1
2

Y =

(Σ
1
2

XΣY Σ
1
2

X)
1
2 U.

The proof of this proposition is given in One may refer to (Bhatia et al., 2019) for its proof. This
proposition provides an alternative view of the EMD between Gaussians. As shown in Fig. 1c, for a
pair of images with Gaussian descriptors, this metric aims to align the square-root of the covariance
matrix (via an orthogonal matrix) and mean vector of the left image with those of the right one.

Inspired by Prop. 2, we propose a transfer learning-based GEMD (GEMD-T). The key idea lies
in a parametric EMD with learnable orthogonal matrices, aiming to learn a more discriminating
EMD metric under supervision of the ground truth. Specifically, for an input image represented
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by N (µX ,ΣX), we learn an EMD metric to align Σ
1
2

X and µX with a weight matrix W via an
orthogonal matrix U and a weight vector v for every class. Here W and v can be regarded as the
square-root of the covariance matrix and mean vector of the corresponding class, respectively. Then,
we define the loss function of GEMD-T as:

l
(
θ, {Uk,Wk,vk}Kk=1

)
= − 1

|B|
∑

(zi,ci)∈B

log
exp(tr((Σ

1
2

Xi
Uci)Wci)+µTXi

vci)∑K
k=1 exp(tr((Σ

1
2

Xi
Uk)Wk)+µTXi

vk)
, (8)

where Uk∈U(p) is the orthogonal matrix to be learned, ΣXi
and µXi

denote the covariance ma-
trix and mean vector of the Gaussian descriptor for image zi whose label is ci. Here we learn
class-wise orthogonal matrices that are distinct for different classes. Alternatively, we can learn
a class-share orthogonal matrix, i.e., U1 = · · · = UK . The class-share scheme reduces sig-
nificantly the number of orthogonal matrices to be learned. We compare the two schemes in
Sec. 5.4. The matrix trace in Eq. (8) can be replaced by inner product of vectors. Let us denote
fi = [vec(W1), . . . , vec(WK)]Tvec(Σ

1
2

Xi
Uci)+[v1, . . . ,vK ]TµXi

, where vec(·) indicates matrix
vectorization. Then we can obtain a softmax-like classifier.

Clearly, the metric in GEMD-T is disentangled such that the classifier can be implemented by off-
the-shelf fully-connected (FC) layer. This makes GEMD-T very suitable for parallel computation on
GPU. It is worth mentioning that, as far as we know, we are among the first who learn the parametric
EMD for better discriminating Gaussian distributions in deep learning.

4.4 IMPLEMENTATION OF GEMD

Our GEMD needs to compute square-roots of SPD matrices. A simple method for this is via eigen-
decomposition (EIG) or singular value decomposition (SVD) (Lin & Maji, 2017), both of which
unfortunately are GPU-unfriendly. So we adopt Newton-Schulz (NS) algorithm (Song et al., 2022;
Li et al., 2018) that involves only matrix multiplications and additions and thus is every suitable
for GPU. Given a SPD matrix Σ, the NS algorithm consists of a pair of coupling iterations: A←
1
2A(3I−BA) and B← 1

2 (3I−BA)B, where A and B are initialized with Σ and the identity matrix
I, respectively. After some iterations A is approximately equal to Σ

1
2 . To ensure convergence of

the NS algorithm, we divide Σ by tr(Σ) so that its matrix norm is less than 1; after iteration stop
we multiply A by

√
tr(Σ) to recover the square-root of Σ. Sec. 5.4 studies how iteration number

affects GEMD.

For learning parametric EMD metric in GEMD-T, we are required to learn orthogonal matrices.
The commonly used methods depend on some retraction operators, which map the update in the
tangent space (Euclidean space) to the manifold of orthogonal matrices (Absil et al., 2007, Chap. 4).
However, these retraction-based methods are not friendly to GPU due to complex matrix operations,
e.g., matrix exponential or inversion. Therefore, we use the landing algorithm without retraction
that has proven to be faster and more robust to numerical errors (Ablin & Peyré, 2022). Specifically,
in order to learn an orthogonal matrix U, during training process we make updates according to the
following formula: U← U− η( 1

2 ( ∂l∂UUT −U( ∂l∂U )T ) + λ(UUT − I))U, where η is a step size,
λ is a fixed parameter (set to 1), and ∂l

∂U is the derivative of loss function l with respect to U.

5 EXPERIMENTS

In this section, we first introduce briefly the experimental setup. Then we compare with state-
of-the-art (SOTA) methods on large-scale Meta-Dataset (Triantafillou et al., 2020). Finally, we
conduct an ablation study for GEMD. In the Appendix, we describe detailed experimental settings,
time complexity, visualization, and implementation of our counterparts as well as the additional
experiments. The code and models of GEMD will be released.

5.1 EXPERIMENTAL SETUP

Datasets Meta-Dataset (Triantafillou et al., 2020) is a large-scale benchmark that involves both in-
domain (In-D) and out-of-domain (Out-D) tasks. It initially consists of 10 datasets each designating
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Test Domain Matching
-Net

BOHB ProtoNet Simple
CANPS

ALFA
+fo-Proto
-MAML

FLUTE TSA RFS† ADM† DeepEMD†
GEMD-M
(ours)

GEMD-T
(ours)

In
-D ImageNet 45.0±1.1 51.9±1.1 50.5±1.1 54.8±1.2 52.8±1.1 46.9±1.1 59.5±1.1 57.8±1.1 59.2±1.1 61.0±1.1 62.0±1.0 64.2±1.1

O
ut

-o
f-

do
m

ai
n

Omniglot 52.3±1.3 67.6±1.2 60.0±1.4 62.0±1.3 61.9±1.5 61.6±1.4 78.2±1.2 75.5±1.2 78.0±1.1 82.1±1.1 83.8±0.9 84.8±0.9

Aircraft 49.0±0.9 54.1±0.9 53.1±1.0 49.2±0.9 63.4±1.1 48.5±1.0 72.2±1.0 68.3±1.1 69.3±1.0 67.0±1.0 72.8±1.1 81.7±1.0

Birds 62.2±1.0 70.7±0.9 68.8±1.0 66.5±1.0 69.8±1.1 47.9±1.0 74.9±0.9 77.1±0.9 79.3±0.8 79.0±0.8 82.2±0.9 84.4±0.9

Textures 64.2±0.9 68.3±0.8 66.6±0.8 71.6±0.7 70.8±0.9 63.8±0.8 77.3±0.7 75.7±0.7 74.5±0.7 72.4±0.7 74.8±0.7 78.6±0.7

Quick Draw 42.9±1.1 50.3±1.0 49.0±1.1 56.6±1.0 59.2±1.2 57.5±1.0 67.6±0.9 62.6±1.0 64.3±1.0 64.4±0.9 68.6±0.8 72.4±0.9

Fungi 34.0±1.0 41.4±1.1 39.7±1.1 37.5±1.2 41.5±1.2 31.8±1.0 44.7±1.0 46.6±1.2 44.6±1.0 45.9±1.1 49.9±1.2 50.6±1.1

VGG Flower 80.1±0.7 87.3±0.6 85.3±0.8 82.1±0.9 86.0±0.8 80.1±0.9 90.9±0.6 90.2±0.6 91.1±0.6 89.1±0.7 91.8±0.8 94.8±0.5

Traffic Signs 47.8±1.1 51.8±1.0 47.1±1.1 63.1±1.1 60.8±1.3 46.5±1.1 82.5±0.8 65.1±1.2 63.2±1.1 62.2±1.1 65.9±1.1 76.7±1.0

MSCOCO 35.0±1.0 48.0±1.0 41.0±1.1 45.8±1.0 48.1±1.1 41.4±1.0 59.0±1.0 49.2±1.1 49.1±1.1 52.9±1.0 53.1±1.1 52.3±1.2

MNIST – – – – – 80.8±0.8 93.9±0.6 90.5±0.6 90.5±0.6 92.4±0.5 92.1±0.5 95.2±0.4

CIFAR-10 – – – – – 65.4±0.8 82.1±0.7 72.0±0.9 71.8±0.8 72.2±0.8 74.2±0.7 77.6±0.8

CIFAR-100 – – – – – 52.7±1.1 70.7±0.9 64.0±1.1 62.3±1.1 62.4±1.0 64.8±1.0 69.0±1.0

A
ve

ra
ge

In-D 45.0 51.9 50.5 54.8 52.8 46.9 59.5 57.8 59.2 61.0 62.0 64.2
Out-D 51.9 59.9 56.7 59.4 62.4 56.5 74.5 69.7 69.8 70.2 72.8 76.5
All 51.3 59.1 56.1 58.9 61.4 55.8 73.3 68.8 69.0 69.5 72.0 75.6
Rank 11.5 8.1 9.8 8.7 7.8 9.9 2.8 4.9 4.9 4.5 2.8 1.5

†Our implementation.

Table 1: Comparison on Meta-Dataset in SDL setting (i.e., training on ImageNet only).

a different domain with distinct classes and distributions, i.e., ImageNet (Deng et al., 2009), Om-
niglot (Lake et al., 2015), Aircraft (Maji et al., 2013), Birds (Wah et al., 2011), Textures (Cimpoi
et al., 2014), Quick Draw (Jongejan et al., 2016), Fungi (Schroeder & Cui, 2018), VGG Flower (Nils-
back & Zisserman, 2008), Traffic Signs (Houben et al., 2013) and MSCOCO (Lin et al., 2014). As
suggested in (Requeima et al., 2019; Triantafillou et al., 2021; Li et al., 2022), we include 3 extra
datasets for meta-testing only, i.e., MNIST (LeCun & Cortes, 2010), CIFAR-10 (Krizhevsk, 2009)
and CIFAR-100 (Krizhevsk, 2009). Following standard protocol, we conduct experiments in two
settings, i.e., training on ImageNet only which we call single-domain learning (SDL) and training
on 8 datasets called multi-domain learning (MDL).

Implementation For fair comparisons with previous works, we use ResNet-18 as backbone net-
work. Similar to (Doersch et al., 2020; Li et al., 2020; Xie et al., 2022), we eliminate the last down-
sampling of the backbone to obtain more spatial features. We follow the methodology of RFS (Tian
et al., 2020), i.e., pre-training with self-distillation and meta-testing. During pre-training, we train
the networks using standard softmax classifier with cross-entropy loss, which either classifies all
categories on the train split of ImageNet in SDL setting or classifies all categories concatenated
together on the train splits of 8 datasets in MDL setting; then, we use a sequential self-distillation
technique to improve the models. In meta-testing, in SDL setting we freeze the backbone networks
that are used to extract features for training the classifiers only; in MDL setting we finetune the
whole networks, in which we only unfreeze the second convolutional layer of each residual block to
reduce the risk of overfitting.

5.2 COMPARISON WITH SOTA METHODS IN SDL SETTING

In the single-domain learning (SDL), we train the network models on ImageNet only, while meta-
testing on the test splits of ImageNet and 12 other datasets. The SOTA methods to be compared in-
clude MatchingNet (Vinyals et al., 2016), BOHB (Saikia et al., 2020), ProtoNet (Snell et al., 2017),
Simple CANPS (Bateni et al., 2020), ALFA+fo-Proto-MAML (Baik et al., 2020), FLUTE (Tri-
antafillou et al., 2021) and TSA (Li et al., 2022). Note that our three counterparts, i.e., RFS (Tian
et al., 2020), ADM (Li et al., 2020) and DeepEMD (Zhang et al., 2020), did not experiment on
Meta-Dataset. So we implement them ourselves using the same setup; refer to Appendix for imple-
mentation details .

As shown in Tab. 1, RFS achieves an ‘Average All’ accuracy of 68.8%, surpassing all previous
SOTA methods but TSA. This suggests that the pre-trained backbone (embedding) is important for
knowledge transfer. ADM is slightly better than RFS, achieving 0.2% higher accuracy. DeepEMD
outperforms RFS by 0.7%, which we attribute to usage of dense features; in contrast, RFS simply
performs global average pooling of all features. Our GEMD-M and GEMD-T improve DeepEMD
by 2.5% and 6.1%, respectively. Notably, GEMD-T is much better than GEMD-M; we conjecture
the reason may be that the entangled metric in GEMD-M makes network optimization difficult that
greatly limits its performance. Compared to previous top-performer (i.e., TSA), GEMD-M has the
same average rank though its accuracy is lower than TSA, while GEMD-T outperforming TSA by
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Test Domain SUR Simple
CNAPs

URT FLUTE Tri-M URL TSA∗
2LM
+TSA RFS† ADM† DeepEMD†

GEMD-M
(ours)

GEMD-T
(ours)

In
-d

om
ai

n

ImageNet 56.2±1.0 58.4±1.1 56.8±1.1 58.6±1.1 51.8±1.1 58.8±1.1 57.4±1.1 58.4±1.6 59.5±1.2 59.5±1.2 59.6±1.1 61.1±1.1 64.3±1.0

Omniglot 94.1±0.4 91.6±0.6 94.2±0.4 92.0±0.6 93.2±0.5 94.5±0.4 95.0±0.4 95.4±0.8 93.9±0.5 94.7±0.4 95.0±0.4 95.2±0.4 95.3±0.7

Aircraft 85.5±0.5 82.0±0.7 85.8±0.5 82.8±0.7 87.2±0.5 89.4±0.4 89.3±0.4 89.3±0.5 91.3±0.6 92.2±0.4 91.8±0.4 91.4±0.5 93.4±0.4

Birds 71.0±1.0 74.8±0.9 76.2±0.8 75.3±0.8 79.2±0.8 80.7±0.8 81.4±0.7 82.1±0.7 84.9±0.7 84.8±0.7 85.0±0.6 86.4±0.8 87.8±0.7

Textures 71.0±0.8 68.8±0.9 71.6±0.7 71.2±0.8 68.8±0.8 77.2±0.7 76.7±0.7 78.2±1.0 77.4±0.9 77.4±0.7 76.4±0.7 76.7±0.9 78.1±0.8

Quick Draw 81.8±0.6 76.5±0.8 82.4±0.6 77.3±0.7 79.5±0.7 82.5±0.6 82.0±0.6 82.8±0.6 79.6±0.7 82.1±0.6 81.4±0.6 82.3±0.6 83.1±0.7

Fungi 64.3±0.9 46.6±1.0 64.0±1.0 48.5±1.0 58.1±1.1 68.1±0.9 67.4±1.0 69.5±1.2 62.0±1.1 66.6±1.0 70.5±1.0 62.7±1.2 64.0±1.1

VGG Flower 82.9±0.8 90.5±0.5 87.9±0.6 90.5±0.5 91.6±0.6 92.0±0.5 92.2±0.5 92.4±1.6 93.3±0.7 92.5±0.6 91.6±0.5 92.3±0.7 93.8±0.6

O
ut

-o
f-

do
m

ai
n Traffic Signs 51.0±1.1 57.2±1.0 48.2±1.1 63.0±1.0 58.4±1.1 63.3±1.1 83.5±0.9 88.4±2.1 79.4±1.0 74.1±1.1 71.0±1.1 83.5±0.9 87.0±0.8

MSCOCO 52.0±1.1 48.9±1.1 51.5±1.1 52.8±1.1 50.0±1.0 57.3±1.0 55.8±1.1 57.3±1.5 50.7±1.0 50.5±1.2 54.8±1.1 54.5±1.2 53.7 ±1.1

MNIST 94.3±0.4 94.6±0.4 90.6±0.5 96.2±0.3 95.6±0.5 94.7±0.4 96.7±0.4 97.3±1.2 96.2±0.5 95.4±0.4 95.6±0.4 97.0±0.4 97.4±0.5

CIFAR-10 66.5±0.9 74.9±0.7 67.0±0.8 75.4±0.8 78.6±0.7 74.2±0.8 80.6±0.8 76.5±1.4 77.0±0.9 78.4±0.9 78.6±0.8 78.9±0.9 79.6±0.9

CIFAR-100 56.9±1.1 61.3±1.1 57.3±1.0 62.0±1.0 67.1±1.0 63.5±1.0 69.6±1.0 67.7±1.5 68.0±1.1 66.4±1.1 67.0±1.1 67.7±1.1 72.4±1.0

A
ve

ra
ge

In-D 75.9 73.7 77.4 74.5 76.2 80.4 80.2 80.9 80.2 81.2 81.4 81.0 82.5
Out-D 64.1 67.4 62.9 69.9 69.9 70.6 77.2 77.4 74.3 73.0 73.4 76.3 78.0
All 71.4 71.2 71.8 72.7 73.8 76.6 79.0 79.5 77.9 78.1 78.3 79.2 80.8
Rank 10.5 11.3 10.1 9.9 9.5 6.7 5.0 4.0 6.0 5.5 5.5 4.5 2.5

∗Corrected results by TSA’s authors (see the official supplement). †Our implementation.

Table 2: Comparison on Meta-Dataset in MDL setting (i.e., training on eight datasets).

2.3%. Our GEMD-T takes the lead on 9 out of 13 datasets, generally by large margins, achieving
the first position in average rank across the board.

5.3 COMPARISON WITH SOTA METHODS IN MDL SETTING

In the multi-domain learning (MDL), the models are trained on 8 datasets with diverse distributions,
and are meta-tested on the test splits of them together with those of the other 5 datasets. We contrast
our methods with SUR (Dvornik et al., 2020), Simple CNAPs (Bateni et al., 2020), URT (Liu et al.,
2021a), FLUTE (Triantafillou et al., 2021), tri-M (Liu et al., 2021b), URL (Li et al., 2021), TSA (Li
et al., 2022), 2LM+TSA (Qin et al., 2023). As in the SDL setting, we also implement the three
counterparts, i.e., RFS, ADM and DeepEMD. Note that all methods above are inductive and we do
not compare with high-performance transductive methods, e.g., Tao et al. (2023), as they use the
query images during training.

Tab. 2 shows the comparison results. We can see that RFS is still a strong baseline, which achieves
77.9% in ‘Average All’ accuracy, higher than most of the previous arts except TSA and 2LM+TSA.
As for our counterparts, ADM and DeepEMD perform marginally better than RFS. Our GEMD-
M improves DeepEMD by 0.9% and GEMD-T outperforms it by 2.5%. Note that previous top-
competitor (i.e., TSA) uses pre-trained model of URL, where a universal model is distilled from 8
networks separately trained on individual datasets; 2LM+TSA improves TSA and achieves previ-
ously the best result. Compared to them, our EMD-M performs comparatively while our GEMD-T
surpasses 2LM+TSA by 1.3%, taking the lead in average rank across the board.

5.4 ABLATION STUDY

We conduct an ablation study on key components of our GEMD. To facilitate fast evaluations in-
volving a great number of experiments, we ablate in SDL setting (i.e., train on ImageNet only).

Dimension reduction As described in Sec. 4.1, we insert a 1×1 convolution for dimension reduction
(DR) after the last conv layer of the backbone, decreasing feature dimension from p′ = 512 to
a smaller p. Tab. 3a presents the accuracy and average wall-clock time per episode of GEMD
versus p, where the iteration number of NS algorithm is fixed to five and class-share scheme is
used in GEMD-T. Since the ways and shots are changing from episode to episode, to facilitate
time measurement, we select randomly a hundred of 20-way 10-shot episodes with 10 queries per
class on validation set of ImageNet and report average time per task using GeForce RTX 3090. It
can be seen that, starting from p = 128, the accuracy of GEMD-T increases and saturates around
p= 192, and GEMD-M demonstrates a similar trend. We note that with same dimension GEMD-
T performs significantly better than GEMD-M while running much faster. This suggests that our
transfer learning-based method has better generalization capability than the metric-based one. To
tradeoff between the performance and speed, we set throughout p to 128 and 192 for GEMD-M and
GEMD-T, respectively.
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Dim
(p)

GEMD-M GEMD-T
Acc Time Acc Time

320 71.6 1434 75.4 88
256 71.7 715 75.7 70
192 71.5 488 75.6 64
160 70.8 388 74.4 62
128 70.4 197 74.2 58

(a) Dimension re-
duction

NS iter
(r)

GEMD-M GEMD-T
Acc Time Acc Time

3 68.2 149 74.9 62
5 70.4 197 75.6 64
7 71.5 236 75.5 68
10 72.0 328 75.3 78
15 71.9 414 75.0 88

(b) Newton-Schulz al-
gorithm

Scheme GEMD-T
Class-wise 75.2
Class-share 75.6

(c) Learning Ui

h×w GEMD-M GEMD-T
6×6 70.4 74.2

11×11 72.0 75.6

(d) Size of feature maps

Method Acc Time

DeepEMD
QPTH – >700K
Sinkhorn 69.5 420
IPOT 69.4 540

Ours
GEMD-M 72.0 328
GEMD-T 75.6 64

RFS 68.8 60
TSA 73.3 120

ProtoNet 56.1 45

(e) Speed of GEMD

Table 3: Ablation study on Meta-Dataset in SDL setting. We report accuracy (Acc, %) of ‘Average
All’ and wall-clock time (ms) per episode with GeForce RTX 3090.

Newton-Schulz (NS) algorithm As Sec. 4.4 explains, our methods use NS algorithm for computing
square-roots of SPD matrices. Tab. 3b shows how the number r of NS iterations affects the perfor-
mance of GEMD. As r increases, the accuracy of GEMD-T reaches a peak value at r= 5 and then
decreases slightly, and meanwhile the wall-clock time steadily yet mildly enlarges. The accuracy
of GEMD-M improves continually until r = 10; however, the increment of the wall-clock time is
considerable. We set the number of iterations r to 5 for GEMD-T and 10 for GEMD-M throughout
the paper, unless otherwise specified.

Learning orthogonal matrix Ui in GEMD-T Sec. 4.3 introduces two schemes to learn the pa-
rameters of orthogonal matrices using the landing algorithm (cf. Sec. 4.4), i.e., the class-share
scheme and class-wise scheme. As shown in Tab. 3c, the class-share scheme performs better than
the class-wise one, though the latter might seem to be more promising as it learns category-specific
orthogonal matrices. We hypothesize that the large number of orthogonal matrices in the class-wise
scheme makes optimization difficult and brings side effect. So we opt for the class-share scheme.

Size of feature maps To obtain more local features, we remove down-sampling (DS) of the last
stage in ResNet. As such, the size (i.e., h×w) of feature maps increases from original 6×6 with DS
to 11×11 without DS. As seen in Fig. 3d, removal of DS brings an improvement of 1.4%∼1.6%.
This suggests that more local features are helpful for learning more discriminative and transferable
knowledge. We thus prefer without DS across the paper.

Wall-clock time comparison The original DeepEMD relying on differentiable QPTH solver (Amos
& Kolter, 2017) is computationally prohibitive on Meta-Dataset. So we turn to more efficient
Sinkhorn solver (Cuturi, 2013) and one of its variants called IPOT solver (Xie et al., 2020). As
shown in Tab. 3e, QPTH is extremely expensive while both Sinkhorn and IPOT are computation-
ally more efficient. DeepEMD with Sinkhorn and IPOT solvers achieve similar performance; our
GEMD-M outperforms them by ∼1.5% with comparable speed. Notably, our GEMD-T performs
significantly better, improving DeepEMD by ∼6% while running 6 times faster. We also compare
to RFS, TSA and ProtoNet. Our GEMD-T is clearly superior to RFS while having almost the same
speed. Compared to state-of-the-art TSA, our GEMD-T is 2 times faster and meanwhile performs
better. ProtoNet consists of pre-training plus meta-training along with meta-test where no training
is required. Therefore, ProtoNet runs the fastest, but with significantly inferior performance.

6 CONCLUSION

Our GEMD inherits the strength of DeepEMD, i.e., optimal matching of dense features that helps
representation learning in the few-shot regime. As GEMD uses Gaussian descriptors, it can capture
second-order statistics (i.e., covariance matrices), which is richer and has better representational
ability than lower order discrete statistics (Sanchez et al., 2013) used in DeepEMD. Moreover, our
metric is a geodesic distance admitting closed form expression, so it can effectively exploit the ge-
ometry of Gaussian manifold. As a result, our GEMD is much faster and stronger than DeepEMD,
while being very compelling compared to state-of-the-art methods. The proposed GEMD is appli-
cable to other vision tasks such as few-shot action recognition and image retrieval.
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A APPENDIX

A.1 STATISTICS OF META-DATASET AND EVALUATION PROTOCOLS

Meta-Dataset (Triantafillou et al., 2020) initially consists of 10 datasets. As in (Requeima et al.,
2019; Triantafillou et al., 2021; Li et al., 2022), we introduce 3 additional datasets for meta-testing
only. It is a large-scale benchmark, span diverse data sources, and contains realistic tasks. Tab. 4a
summarizes statistics of 13 datasets each of which designates a different domain. Notably, both
the number of ways and shots in Meta-Dataset are variable from episode to episode that leads
to class imbalance. These tasks are more realistic than those of previous FSL benchmarks, e.g.,
miniImageNet (Vinyals et al., 2016) and tiredImageNet (Ren et al., 2018), where typically 5-way
1-shot/5-shot tasks are constructed. The input images are 84×84 for both training and test. Tab. 4b
shows two protocols specified on Meta-Dataset, i.e., train on ImageNet only that we call single-
domain learning (SDL) and train on multiple datasets called multi-domain learning (MDL). Both
SDL and MDL contain in-domain (In-D) and out-of-domain (Out-D) evaluations. For meta-testing,
we randomly sample 600 tasks per dataset and report average accuracy and 95% confidence score.
We also report average accuracies of In-D/Out-D/all domains and average rank across the board.

A.2 IMPLEMENTATION DETAILS OF GEMD ON META-DATASET

Following (Li et al., 2022; Tian et al., 2020; Dhillon et al., 2020), we adopt a two-stage pipeline for
few-shot learning, i.e., pre-training in a non-episodic manner and meta-testing. In both stages, we
use the SGD optimizer with momentum (set to 0.9 throughout). For fair comparisons with previous
methods, we use ResNet-18 architecture (He et al., 2016) slightly modified as in (Requeima et al.,
2019; Bateni et al., 2020). Regarding Netwon-Schulz (NS) algorithm that computes square-roots
of symmetric positive definite (SPD) matrices, we use the code released by Li et al. (2018). For
the landing algorithm that learns the orthogonal matrices in GEMD-T, we adopt the implementation
by Ablin & Peyré (2022) that is public available.

A.2.1 PRE-TRAINING STAGE

In this stage, we train networks non-episodically with standard softmax classifiers and cross-entropy
losses. Following the methodology of RFS (Tian et al., 2020), we adopt a self-distillation technique
of multiple generations (one generation in our case) to boost the pre-trained models, whose im-
plementation is based on the code released by the authors of RFS. We use the same augmentation
as (Dvornik et al., 2020; Li et al., 2021), i.e., random crop and color jittering. We add a dropout
(rate=0.5) in the last fully-connected (FC) layer. The weight decay of SGD is set to 0.0001.

SDL The networks are trained on 712 categories of the train split of ImageNet, and the best model
is selected on the validation split. We train the networks up to 600K iterations with a batch size of
64. The initial learning rate is 0.05, divided by 10 after 350K and 500K iterations, respectively.

MDL We train the models on the train splits of 8 datasets and select the best model using their
validation splits. We concatenate the categories of all 8 datasets and train a standard multi-way
classifier. Following Li et al. (2021), we randomly select 64×7 images on ImageNet and 64 for
each of the other 7 datasets in forming a mini-batch. The learning rate starts from 0.35 and decays
according to a cosine annealing scheduler (He et al., 2019) within 248K iterations.

A.2.2 META-TESTING STAGE

For each episode, we build a classifier with the pre-trained network as the backbone, training with
a constant learning rate on the support set and predicting labels of the query set. The mini-batch of
GEMD-T is composed of all support images.

SDL For each episode, we freeze the backbone of the pre-trained model and train the classifier only.
In GEMD-M, the nearest neighbor classifier is initialized with the protypical Gaussians of support
classes and then trained in 5 epochs with a learning rate of 0.001, a weight decay of 0.0001 and a
batch size of 64. For GEMD-T, the softmax-like classifier is trained from scratch for 600 iterations
with a learning rate of 0.01 and a weight decay of 0.0005.
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Image
Num

Classes
Dataset (domain) Train Val Test
ImageNet (Deng et al.) 1.3M 712 158 130
Omniglot (Lake et al.) 32K 883 81 659
Aircraft (Maji et al.) 10K 70 15 15
Birds (Wah et al.) 12K 140 30 30
Texture (Cimpoi et al.) 6K 33 7 7
Quick Draw (Jongejan et al.) 50M 241 52 52
Fungi (Schroeder & Cui) 100K 994 200 200
VGG Flower
(Nilsback & Zisserman) 7K 71 15 16

MSCOCO (Lin et al.) 860K 40 40
Traffic Signs (Houben et al.) 39K 43
MNIST (LeCun & Cortes) 70K 10
CIFAR-10 (Krizhevsk) 60K 10
CIFAR-100 (Krizhevsk) 60K 100

Input size 84×84
Tasks variable-way & -shot

(a) Statistics

SDL
(train on ImageNet only)

MDL
(train on eight datasets)

Train Val Test Train Val Test
ImageNet ImageNet ImageNet ImageNet ImageNet ImageNet

Omniglot Omniglot Omniglot Omniglot
Aircraft Aircraft Aircraft Aircraft
Birds Birds Birds Birds
Texture Texture Texture Texture
Quick Draw Quick Draw Quick Draw Quick Draw
Fungi Fungi Fungi Fungi
VGG Flower VGG Flower VGG Flower VGG Flower
MSCOCO MSCOCO
Traffic Signs Traffic Signs
MNIST MNIST
CIFAR-10 CIFAR-10
CIFAR-100 CIFAR-100

(b) Evaluation protocols

Table 4: Statistics of individual datasets on Meta-Dataset (a) and evaluation protocols of single-
domain learning (SDL) and multi-domain learning (MDL) (b).

MDL We finetune the model with a weight decay of 0.0001, in which we only unfreeze the second
conv layer of every residual block to avoid the risk of overfitting. For GEMD-M, after initializing
the classifier with the prototypes of support classes, we finetune the network for 50 epochs with a
learning rate of 0.0001 and a batch size of 32. For GEMD-T, we adopt a dropout (rate=0.7) for the
last FC layer; the network is finetuned for 70 epochs with the learning rate set to 0.005.

A.2.3 ANALYSIS OF TIME COMPLEXITY

The dominant operations of GEMD are matrix square-roots computed via NS iterations. Let n be
the number of features and p be feature dimension. GEMD-M is a metric-based method that has a
complexity of O(KQrgmp

3) for an episode with K9ways and Q9queries, where rgm is the number
of NS iterations. GEMD-T is a transfer learning-based method whose complexity is O(|B|rgtp3)
where |B| is batch size and rgt is iteration number. The DeepEMD with QPTH solver runs in a time
ofO(KQn3 log n) (Zhang et al., 2022; Amos & Kolter, 2017). Both the Sinkhorn and IPOT solvers
are based on Sinkhorn-Knopp algorithm (Sinkhorn & Knopp, 1967) and have a provable complexity
of O(KQn2 log n‖T‖3∞ε−3) (Altschuler et al., 2017), where ‖T‖∞ is the infinity norm of matrix
T = [t(xi,yj)] (cf. Sec. 3), and ε > 0 is the difference between the value of exact EMD and that of
the approximate one. Both of them generally require iterations far larger than GEMD.

The QPTH solver has a high time complexity. Besides, it is unfit for GPU parallel computing, as
it involves inverse of normal matrix due to the used interior point algorithm (Luenberger & Ye,
2016). In practice, GEMD-M and DeepEMD with Sinkhorn (or IPOT) solver have comparable
complexities and are much more efficient than QPTH solver. Compared to them, though having
similar complexity, GEMD-T is significantly faster as it can be implemented via off-the-shelf FC
layer, highly suitable for GPU. The wall-clock time in Sec. 5.4 validates the analysis above.

A.3 VISUALIZATION OF GEMD

We visualize Gaussian EMD (GEMD) from two aspects. First, as our GEMD-M is a metric based
method that essentially performs matching of features (patches), we visualize the optimal patches
matched between the query image and support image. Second, our GEMD-T is transfer learning
based method and therefore we adopt commonly used heatmaps to see the effect of its representation
learning.

Visualization by Patch Matching We visualize the effect of patch matching and compare with
DeepEMD in the 1-shot setting. To this end, given a support image, for every query image we
compute the optimal matching flows between them using GEMD-M and DeepEMD, respectively.
For clarity, we only show matching results of some typical patches that are indicated by different
color squares. Specifically, for a color patch in the support image, its best match that has the largest
matching flow is determined in the query image and is indicated by a square with the same color.
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Fig. 2 shows matching results of four categories, i.e., mushroom, arctic fox, school bus and beer
bottle. It can be seen that, overall, the matches determined by GEMD-M are more accurate than
those of DeepEMD, which we attribute to more discriminative capability of GEMD. It is worth not-
ing that, when performing few-shot recognition, we directly compute closed form EMD between
Gaussians without explicitly computing the optimal matching flows; in contrast, only after comput-
ing the optimal matching flows via expensive linear programming, can one obtain the distance in
DeepEMD.

Visualization by Heatmaps We visualize in Fig. 3 the heapmaps of images by CAM (Zhou et al.,
2016). We select four categories, i.e., Tench, Daisy, Rosehip and Meekat, for visualization with
models learned by GEMD-T and DeepEMD. Let us take Tench as an example. From Fig. 3a, it
can be seen that GEMD can accurately focus on the regions of the tench while neglecting the back-
grounds. In contrast, DeepEMD has larger tendency to be distracted by backgrounds; specifically,
it seems that the model largely attends to both the objects and the person who holds it. We have
similar observations for the images of the other categories. The comparison above indicates that
GEMD can learn more discriminative features than DeepEMD, demonstrating better capability of
representation learning. We attribute this superiority over DeepEMD to the Gaussian descriptor that
can capture higher order statistics and to the metric that is a geodesic distance and can effectively
leverage geometry of the underlying manifold.

A.4 IMPLEMENTATION OF OUR COUNTERPARTS

This section first introduces how to implement DeepEMD with Sinkhorn solver (Cuturi, 2013) and
with IPOT solver (Xie et al., 2020). Subsequently, we provide implementation of RFS (Tian et al.,
2020) and ADM (Li et al., 2020). For a fair comparison, in MDL setting we finetune the backbones
of the three counterparts with the same finetuning strategy.

A.4.1 IMPLEMENTATION OF DEEPEMD

During training, DeepEMD (Zhang et al., 2020) adopt the differentiable QPTH solver (Amos &
Kolter, 2017) for the linear programming (LP) problem. The QPTH solver enables forward- and
backward-propagations of EMD in DNN, but is so costly as to be infeasible for large-scale Meta-
Dataset. For acceleration, Zhang et al. (2020) propose to use the OpenCV solver (Kaehler &
Bradski, 2017) that however cannot compute gradients for backpropagation. So we resort to efficient
Sinkhorn and IPOT solvers.

Let us keep the notations of the main paper in mind. The Sinkhorn solver aims to optimize the
following entropy regularized EMD:

min
fXY

∑
i,j

t(xi,yj)fXY (xi,yj) + α
∑
i,j

fXY (xi,yj) log fXY (xi,yj), (9)

where α is a regularizing parameter. The discrete joint distribution fXY (x,y) is constrained to
have fixed marginals, i.e.,

∑
j fXY (xi,yj) = fX(xi) and

∑
i fXY (xi,yj) = fY (yj) for feasible

values of i and j. Thanks to the entropic regularizer, i.e., the second term in (9), the objective can
be minimized with the Sinkhorn-Knopp’s matrix scaling algorithm (Sinkhorn & Knopp, 1967) that
is appropriate to parallelization on GPU. As suggested in (Xie et al., 2020), α cannot be very small;
otherwise, it may lead to numerical instability.

For IPOT method, in the k9th iteration, the original LP problem is constrained by entropy-based
Bregman divergence and the objective can be written as:

min
fXY

∑
i,j

(t(xi,yj)−β log f
(k)
XY (xi,yj))fXY (xi,yj)+β

∑
i,j

fXY (xi,yj) log fXY (xi,yj) (10)

where f (k)
XY (xi,yj) denotes the joint distribution at iteration k, and fXY (x,y) is constrained to have

fixed marginals fX(x) and fY (y). Naturally, the objective (10) can be solved by Sinkhorn-Knopp’s
algorithm, and, as suggested in (Xie et al., 2020), one iteration is sufficient for this inner loop.
Consequently, one can obtain the joint distribution at (k+1)9th iteration, i.e., f (k+1)

XY (xi,yj). The
process is repeated until convergence. Compared to the Sinkhorn solver, the regularizing parameter
β can be selected in a larger range.
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(a) Mushroom

(b) Arctic fox

(c) School bus

(d) Beer bottle

Figure 2: Visualization of matching of typical patches with GEMD-M in 1-shot setting. For one
patch indicated by a colored square in a support image (left), its best match in each query image
(right) is shown by an identically colored square. Best viewed in color.
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(a) Tench

(b) Daisy

(c) Rosehip

(d) Meerkat

Figure 3: Visualization through heatmaps with GEMD-T. Deeper color indicates more importance
of the regions.
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Method GEMD-M GEMD-T

Baseline (frozen) 77.0 78.7
Naive finetuning 75.6 77.4
Our finetuning 79.2 80.8

Table 5: ‘Average All’ accuracy (%)
of different finetuning strategies with
ResNet-18 on Meta-Dataset in MDL
setting.

Method Dis-similarity In-D Out-D All

GEMD-M EMD 62.0 72.8 72.0
GEMD-T EMD 64.2 76.5 75.6
ADM KLD 59.2 69.8 69.0
Ours G-JSD 60.4 69.5 68.8
Ours Dual G-JSD 60.0 70.0 69.2

Table 6: Comparison results (%) with Geometric
Jensen-Shannon divergence with ResNet-18 on Meta-
Dataset in SDL setting.

Our implementation of DeepEMD is based on the code repository released by the original authors.
We implement the Sinkhorn algorithm via open source Python Optimal Transport (POT) library (Fla-
mary et al., 2021). We use the code released by the authors of IPOT for its implementation. For
each of the two solvers, we tune the regularizing parameter and iteration number on the validation
splits. By careful tuning in terms of the balance between performance and speed, we set α= 0.03
and the iteration number to 50 for the Sinkhorn solver, while choosing β=0.1 and 40 iterations for
the IPOT solver.

A.4.2 IMPLEMENTATION OF RFS AND ADM

RFS (Tian et al., 2020) is closely related to our GEMD, since we adopt a similar methodology, i.e.,
pre-training with self-distillation technique on all classes of the training set and then train the model
for every meta-testing task. We use implementation of the original authors that is public available.
Note that we use a softmax classifier instead of the logistic regression model, as the former one runs
significantly faster on GPU while achieving better performance.

ADM (Li et al., 2020) represents images with Gaussian descriptors and measures the dis-similarity
with KL divergence. Its implementation is mainly based on the code released by the original
authors. For a fair comparison, similar to our GEMD, we add one 1×1 convolution for dimension
reduction before computing the mean vectors and covariance matrices. After tuning, we set its
feature dimension to 512.

A.5 ADDITIONAL EXPERIMENTS

In this section, we first present extra experiment to evaluate our simple finetuning strategy in MDL
setting on Meta-Dataset. Next, we additionally compare with Jensen-Shannon divergence based
FSL method. Finally, we give additional experiment on three small-scale benchmarks.

A.5.1 OUR FINETUNING STRATEGY IN MDL SETTING ON META-DATASET

Recall that ResNet-18 consists of a 5×5 convolutional (conv) layer and 4 stages (i.e., conv2 x∼
conv5 x). Every stage contains two residual blocks each of which is composed of two 3 × 3 conv
layers and a shortcut connection, where each conv layer is followed by a batch normalization (BN)
layer that is also learnable. The baseline method is concerned with freezing the backbone and
training the classifier only, while the naive finetuning strategy simply unfreezes all learnable layers
and trains the whole network. As regards our finetuning strategy, we only unfreeze the second
conv layer of each residual block to prevent overfitting; meanwhile, we freeze BN layers since it is
difficult to learn the statistics of novel data due to limited training examples.

Tab. 5 compares ‘Average All’ accuracy of different finetuning strategies. Compared to the baseline,
the naive finetuning strategy is hurtful, decreasing the accuracy by∼1.3%. In contrast, the proposed
method improves the baseline by ∼2.1%, suggesting the effectiveness of our finetuning strategy.
Nevertheless, it may be more beneficial to tweak the backone by designing domain- or task-specific
adapters (Bateni et al., 2020; Dvornik et al., 2020; Li et al., 2022). Our GEMD methods focus
on classifier at the network end, which is parallel to the adaptor-based methods and may further
improve if combined with them. We leave this for future work.
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miniImageNet tieredImageNet CUB
(Vinyals et al.) (Ren et al.) (Chen et al.)

Image num 60K 779K 12K

Class
Train 64 351 100
Val 16 97 50
Test 20 160 50

Input size 84×84 84×84 224×224

Tasks 5-way 1-shot/5-shot

(a) Statistics

Method Hyper-parameter
miniImageNet tieredImageNet CUB
(Vinyals et al.) (Ren et al.) (Chen et al.)

GEMD-M
Initial LR 1e-4 5e-5 1e-3
LR scheduler [40, 80]*0.1 [70]*0.1 [40]*0.1
Epochs 100 100 60

GEMD-T
Initial LR 5e-2 5e-2 5e-2
LR scheduler [100,150]*0.1 [40,70]*0.1 [300,350]*0.1
Epochs 170 100 400

(b) Hyper-parameters

Table 7: Statistics of small-scale datasets and the hyper-parameter setting.

A.5.2 COMPARISON WITH GEOMETRIC JENSEN-SHANNON DIVERGENCE IN SDL ON
META-DATASET

In addition to KL divergence (KLD) based ADM, we would also like to compare with Jensen-
Shannon divergence (JSD) (Lin, 1991), a well-known symmetric divergence. Unfortunately,
when used to measure the discrepancy between two Gaussians, JSD has no closed from expres-
sion (Nielsen, 2019; Abou-Moustafa & Ferrie, 2012). Hence, we compare with geometric Jensen-
Shannon divergence (G-JSD) recently proposed in Nielsen (2019) that can be computed in closed
form.

Recall that NX
4
= N (µX ,ΣX) is a distribution with mean vector µX and covariance ma-

trix ΣX . The G-JSD between two Gaussians NX and NY is defined as dG9JSD = (1 −
α)KL(NX‖Nα) + αKL(NY ‖Nα) where α ∈ (0, 1) and KL(·‖·) denotes KL divergence. Here
Nα is a Gaussian with mean vector µα and covariance matrix Σα, which take the forms µα =

Σα

(
(1− α)Σ−1

X µX + αΣ−1
Y µY

)
and Σα =

(
(1− α)Σ−1

X + αΣ−1
Y

)−1
, respectively. We also

compare with dual G-JSD for which d∗G9JSD = (1− α)KL(Nα‖NX) + αKL(Nα‖NY ).

We implement G-JSD and dual G-JSD in the framework of ADM as in Section A.4.2. After grid
search for the parameter α, we set it to 0.9 for the best performance. From Tab. 6, we can see that
G-JSD and dual G-JSD achieve comparable accuracies, both perform on par with ADM. Compared
to our GEMD, they significantly underperform by large margins. We hypothesize the reason is that
KL-divergence based measures are agnostic to the metric of the underlying data distribution (Ozair
et al., 2019); in contrast, our GEMD concerns a geodesic distance on the space of Gaussians (Malago
et al., 2018).

A.5.3 COMPARISON TO SOTA METHODS ON SMALL-SCALE DATASETS

Datasets To further evaluate GEMD, we conduct experiments on commonly used small-scale
datasets, including miniImageNet (Vinyals et al., 2016), tiredImageNet (Ren et al., 2018) and CUB-
200-2011 (CUB) (Wah et al., 2011). The statistics of the three benchmarks are summarized in
Tab. 7a.

miniImageNet is a few-shot benchmark constructed from ImageNet (Deng et al., 2009) for general
object recognition. It contains 100 categories each with 600 images, and we use standard splits
provided in (Ravi & Larochelle, 2017), i.e., 64/16/20 classes for meta-train/val/test. For a fair com-
parison, we use ResNet-12 as the backbone and image resolution is 84×84.

tieredImageNet is a few-shot benchmark also originated from ImageNet (Deng et al., 2009). Com-
pared to miniImageNet, it is larger and considers the hierarchical structure of ImageNet. Specifi-
cally, it consists of 608 classes from 34 super-classes and has 779,165 images in total, in which 20
super-classes (351 classes), 6 super-classes (97 classes) and 8 super-classes (160 classes) are used
for meta-train, meta-val and meta-test, respectively.

CUB-200-2011 is a fine-grained benchmark, containing 200 bird classes with 11,788 images in total.
We adopt the splits of Chen et al. (2019), where the overall classes are divided into 100/50/50 for
meta-training/val/test. Following (Chen et al., 2019; Liu et al., 2020; Afrasiyabi et al., 2020), we
make experiments with the original raw images.
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Settings Following the previous arts (Chen et al., 2021; Xie et al., 2022; Zhang et al., 2020),
we pre-train the model on the overall categories of the training set. We perform meta-training for
the metric-based GEMD-M; for each epoch, we randomly choose 1,000 5-way 1-shot episodes or
600 5-way 5-shot ones with 16 query images for each class. We do not perform meta-training for
GEMD-T. During meta-testing, we randomly select 10,000 episodes for both 5-way 1-shot and 5-
shot settings with 15 query images for each class; for every episode, we directly make inference
without training for GEMD-M, while we train the classifier only with backbone frozen and then
make inference for GEMD-T. As in (Zhang et al., 2020; 2022), we use standard data augmentation
including random resized crop, random horizontal clip and color jittering. Across the experiments
here, we adopt the SGD optimizer with a momentum of 0.9 and a weight decay of 0.0005. We
summarize other hyper-parameters in Tab. 7b.

Results As shown in Tab. 8a, for general object recognition our GEMD-M achieves competitive
results, while our GEMD-T improves significantly over GEMD-M. This suggests again transfer
learning-based method has better generalization capability than the metric-based method, which is
consistent with our observation in the main paper. On miniImageNet, compared to state-of-the-art
methods, GEMD-T is the second best, only inferior to tSF for 1-shot tasks; it performs much better
than all the competing methods for 5-shot tasks. On tiredImageNet, our GEMD-T achieves the best
results for both 1-shot and 5-shot tasks. For fine-grained recognition, as Tab. 8b shows, both our
GEMD-M and GEMD-T outperforms across the board. As the fine-grained categories pose very
small inter-class difference but large intra-class variation, the results suggest our methods have the
capability to learn more discriminative features. In summary, the experimental results in Tab. 8 show
our methods are very competitive on the commonly used small-scale FSL datasets.

A.6 PROOF OF PROPOSITION 2

For self-contained and coherence, this section proves Proposition 2 in Section 4.3. One may refer
to Bhatia et al. (2019) for more related conclusions.

Proof 1 In terms of Eq. (4) and Eq. (7), we know that the task is to prove

tr(ΣX + ΣY − 2(ΣXΣY )
1
2 ) = min

U
‖ Σ

1
2

XU−Σ
1
2

Y ‖
2
F . (11)

Consider a more general case where U is an unitary matrix. According to relation between Frobe-
nious norm and matrix trace, Eq. (11) can be written as
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U
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where ∗ denotes matrix conjugate transpose.

Let Z = Σ
1
2

Y Σ
1
2

X and Z = JS be its polar decomposition, where J is a a unitary matrix and S is a

positive semi-definite Hermitian matrix. It is not hard to show that S = (Z∗Z)
1
2 = (Σ
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2

XΣY Σ
1
2
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1
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1
2

Y + Σ
1
2

Y Σ
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XU) = tr(U∗SJ∗ + JSU) = tr(J∗U∗S + UJS). Let Q = UJ for
which we know QQ∗ = I. Then our task becomes how to prove

2tr((ΣXΣY )
1
2 ) = max

U
tr((Q + Q∗)S). (13)

Let us choose a set of basis Q = diag(eiθ1 , · · · , eiθn) where diag denotes diagonal matrix. Then
we have tr((Q + Q∗)S) =

∑p
j 2 cos(θj)sjj where sjj denotes the diagonal entry of S. Obviously,

when cos(θj) = 1 for all j, i.e., Q = I, tr((Q + Q∗)S) takes the maximum value
∑p
j=1 2sjj =

2tr(S) = 2tr((Σ
1
2

XΣY Σ
1
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1
2 ). As of now, we have
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Note that when Q = UJ is the identity matrix, we have U = J∗ which is the factorizer of the polar
decomposition of Z∗ = Σ

1
2

XΣ
1
2

Y .

22



Under review as a conference paper at ICLR 2024

Method Backbone
miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

DN4 (Li et al., 2019) ResNet-12 64.73±0.44 79.85±0.31 – –
RFS (Tian et al., 2020) ResNet-12 64.82±0.60 82.14±0.43 71.52±0.69 86.03±0.58

FEAT (Ye et al., 2020) ResNet-12 66.78±0.20 82.05±0.14 70.80±0.23 84.79±0.16

Meta-Baseline (Chen et al., 2021) ResNet-12 63.17±0.23 79.26±0.17 68.62±0.27 83.29±0.18

MELR (Fei et al., 2021) ResNet-12 67.40±0.43 83.40±0.28 72.14±0.51 87.01±0.35

FRN (Wertheimer et al., 2021) ResNet-12 66.45±0.19 82.83±0.13 71.16±0.22 86.01±0.15

IEPT (Zhang et al., 2021) ResNet-12 67.05±0.44 82.90±0.30 72.24±0.50 86.73±0.34

BML (Zhou et al., 2021) ResNet-12 67.04±0.63 83.63±0.29 68.99±0.50 85.49±0.34

ProtoNet (Snell et al., 2017) ResNet-12 62.11±0.44 80.77±0.30 68.31±0.51 83.85±0.36

ADM (Li et al., 2020) ResNet-12 65.87±0.43 82.05±0.29 70.78±0.52 85.70±0.43

CovNet (Wertheimer & Hariharan, 2019) ResNet-12 64.59±0.45 82.02±0.29 69.75±0.52 84.21±0.26

DeepEMD (Zhang et al., 2020) ResNet-12 65.91±0.82 82.41±0.56 71.16±0.87 86.03±0.58

UNICORN-MAML (Ye & Chao, 2022) ResNet-12 65.17±0.20 84.30±0.14 69.24±0.20 86.06±0.16

TAS-distill (Le et al., 2022) ResNet-12 65.13±0.39 82.47±0.52 72.81±0.48 87.21±0.52

SetFeat (Afrasiyabi et al., 2022) SF-12 68.32±0.62 82.71±0.46 73.63±0.88 87.59±0.57

MCL-Katz (Liu et al., 2022) ResNet-12 67.51±0.20 83.99±0.20 72.01±0.20 86.02±0.20

Meta DeepBDC (Xie et al., 2022) ResNet-12 67.34±0.43 84.46±0.28 72.34±0.49 87.31±0.32

tSF (Lai et al., 2022) ResNet-12 69.74±0.47 83.91±0.30 71.98±0.50 85.49±0.35

CORL (He et al., 2023) ResNet-12 65.74±0.53 83.03±0.33 73.82±0.58 86.76±0.52

LP-FT-FB (Wang et al., 2023) ResNet-18 66.20 83.06 73.98 89.48

GEMD-M (ours) ResNet-12 66.30±0.20 84.63±0.12 71.71±0.22 88.78±0.14

GEMD-T (ours) ResNet-12 67.98±0.19 85.09±0.12 74.81±0.47 89.93±0.32

(a) General object recognition

Method Backbone
CUB

1-shot 5-shot

MatchNet (Vinyals et al., 2016) ResNet-12 71.87±0.85 85.08±0.57

MAML (Finn et al., 2017) ResNet-18 68.42±1.07 83.47±0.62

∆-encoder (Schwartz et al., 2018) ResNet-18 69.80 82.60

Baseline++ (Chen et al., 2019) ResNet-18 67.02±0.90 83.58±0.54

AA (Afrasiyabi et al., 2020) ResNet-18 74.22±1.09 88.65±0.55

Neg-Cosine (Liu et al., 2020) ResNet-18 72.66±0.85 89.40±0.43

LaplacianShot (Ziko et al., 2020) ResNet-18 80.96 88.68

FRN (Wertheimer et al., 2021) ResNet-18 82.55±0.19 92.98±0.10

RFS (Tian et al., 2020) ResNet-18 77.92±0.46 89.94±0.26

ProtoNet (Snell et al., 2017) ResNet-18 80.90±0.43 89.81±0.23

ADM (Li et al., 2020) ResNet-18 79.31±0.43 90.69±0.21

CovNet (Wertheimer & Hariharan, 2019) ResNet-18 80.76±0.42 92.05±0.20

DeepEMD (Zhang et al., 2020) ResNet-12 75.65±0.83 88.69±0.50

UNICORN-MAML (Zhang et al., 2020) ResNet-12 78.07±0.20 91.67±0.16

ProtoNet(+OT) (Guo et al., 2022) ResNet-10 – 84.44±0.51

SetFeat (Afrasiyabi et al., 2022) SF-12 79.60±0.80 90.48±0.44

Meta DeepBDC (Xie et al., 2022) ResNet-18 83.55±0.40 93.82±0.17

LP-FT-FB (Wang et al., 2023) ResNet-18 73.36 86.88

GEMD-M (ours) ResNet-18 84.75±0.40 94.25 ±0.28

GEMD-T (ours) ResNet-18 84.95±0.43 94.87±0.28

(b) Fine-grained recognition

Table 8: Comparison on small-scale FSL benchmarks.
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X owing to the property of matrix similarity. Therefore, we have
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where we use the property that the trace of a product is commutative. Combining Eq. (14) and
Eq. (15), we can complete our proof.
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A.7 LIMITATIONS AND FUTURE RESEARCH

In this paper, we assume deep features follow Gaussian distributions. Despite the facts that Gaussian
is of maximal entropy for given mean and covariance and has closed form distance, this assumption
may not be optimal or even do hold. Depending on various architectures of deep neural networks
(DNNs), feature distributions may be multimodal (multiple peaks) and, if single-peaked, may be dif-
ferent functions other than Gaussian. As far as we know, distribution of deep features is inadequately
studied and future research on this topic can potentially further benefit representation learning in the
few-shot regime.

Our GEMD is not applicable to scenarios where distributions are discrete, e.g., categorical distribu-
tion or histogram; in these cases, DeepEMD is a natural option. In addition, GEMD only focuses on
classifier attached at the end of DNNs without touching on middle layers; in contrast, recent state-of-
the-art methods design task-/domain-specific adapters, i.e., auxiliary lightweight sub-networks, for
tweaking the middle layers of the backbone. GEMD is parallel to such methods and it is promising
to combine them for further improvement.
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