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ABSTRACT

While foundation models (FMs), such as diffusion models and large vision-
language models (LVLMs), have been widely applied in educational contexts,
their ability to generate pedagogically effective visual explanations remains limited.
Most existing approaches focus primarily on textual reasoning, overlooking the
critical role of structured and interpretable visualizations in supporting conceptual
understanding. To better assess the visual reasoning capabilities of FMs in educa-
tional settings, we introduce EduVisBench, a multi-domain, multi-level benchmark.
EduVisBench features diverse STEM problem sets requiring visually grounded
solutions, along with a fine-grained evaluation rubric informed by pedagogical
theory. Our empirical analysis reveals that existing models frequently struggle
with the inherent challenge of decomposing complex reasoning and translating it
into visual representations aligned with human cognitive processes. To address
these limitations, we propose EduVisAgent, a multi-agent collaborative framework
that coordinates specialized agents for instructional planning, reasoning decompo-
sition, metacognitive prompting, and visualization design. Experimental results
show that EduVisAgent substantially outperforms all baselines, achieving a 40.2%
improvement and delivering more educationally aligned visualizations.

1 INTRODUCTION

“To truly teach is not to tell the answer, but to illuminate the path."

The common method for producing carbon 
dioxide in the laboratory is ( )
A: Charcoal burns. 
B: Sodium carbonate reacts with dilute hydrochloric acid. 
C: Reaction between Marble and Dilute Sulfuric Acid. 
D: Reaction between Limestone and Dilute Hydrochloric Acid.

Visualize the problem-solving process.

Figure 1: GPT-4o fails to illustrate its
problem-solving with high-quality, logical,
and explanatory visualization.

While foundation models (FMs), such as diffusion
models and large vision-language models (LVLMs),
have been extensively adopted in educational do-
mains (Chu et al., 2025; Wang et al., 2024), including
pedagogical agents providing automated classroom
assistance and science learning agents offering tex-
tual explanations of problem-solving processes (Wu
et al., 2023), their applications have predominantly
focused on text-based interactions (Wu et al., 2023;
Xu et al., 2024). However, in education, especially
K-12 settings, creating compelling visualizations is
crucial for cognitive comprehension and overall learn-
ing effectiveness (Presmeg, 2006). Despite its im-
portance, there is currently limited understanding of
how FMs can effectively generate visually grounded
elements (e.g., diagrams, interactive education tools, illustrative graphics) to support the pedagogical
illustration of problem-solving processes.

Currently, generating visually grounded elements for pedagogical reasoning poses several challenges:
(1) decomposing complex reasoning into representable steps that align closely with human cognitive
processes is non-trivial (Yang et al., 2024; Chen et al., 2024d); (2) precisely producing visual aids
for each sub-step to optimally support learners is challenging (Hong et al., 2025); and (3) different
educational domains require distinct visualization styles and formats, which makes consistent and
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adequate visual aid delivery difficult (Pandey & Ottley, 2025).This difficulty stems not just from
technical rendering challenges, but from the complex task of translating abstract pedagogical concepts
into intuitive visual narratives. Addressing these obstacles first requires a picture of how current FMs
perform, so that future models can be purpose-built to close the gaps. Consequently, a comprehensive
evaluation platform is critical for systematically assessing FMs on visual pedagogical reasoning.

Figure 2: Dataset distribution of EduVis-
Bench. Each domain encompasses var-
ious sub-domains, collectively covering
15 comprehensive pedagogical scenarios.

To bridge this gap, we introduce EduVisBench, a multi-
domain, multi-level benchmark designed to evaluate the
capacity of FMs to generate pedagogically effective, step-
by-step visual reasoning. EduVisBench comprises struc-
tured problem sets across diverse domains, each requiring
multimodal-centric reasoning and solutions that prioritize
visualization principles such as interpretability, cogni-
tive alignment, and instructional clarity to achieve high
evaluation score. To facilitate a detailed evaluation, we
further develop a fine-grained rubric enabling multidi-
mensional assessments of AI-generated visual outputs,
focusing explicitly on pedagogical criteria such as con-
textual relevance, visual clarity, multimodal coherence,
reasoning support, and interactive engagement.

Utilizing this benchmark, we conduct extensive evalua-
tions on a variety of FMs and agents. Our findings reveal
that although current models achieve predominantly cor-
rect step-by-step textual analyses, they frequently fail to
generate useful or faithful visualizations, as depicted in
Figure 1. Specifically, our systematic analysis highlights
recurring challenges including (1) semantic misalignments between textual explanations and visual
components, (2) omissions of critical steps within rendered diagrams, and (3) structural inconsisten-
cies in code-based visual outputs, collectively undermining accuracy, clarity, and interactivity.These
shortcomings collectively compromise the pedagogical utility of the generated content, often leading
to more confusion than clarity for the learner.

To address these limitations, we introduce a multi-agent collaborative framework, EduVisAgent,
designed to simulate the complete learning journeyfrom initial problem exposure to deep concep-
tual understanding. Specifically, a central planning agent orchestrates six specialized expert agents
dedicated to visualization design, cognitive scaffolding, and metacognitive regulation. A synthesis
module then integrates these expert outputs into interactive, personalized learning webpages tailored
specifically to human learners. Experimental results demonstrate that our proposed method EduVis-
Agent achieves an average improvement of 40.2% than current SOTA method. This underscores
the effectiveness of our approachleveraging modular specialization and collaborative integration to
produce robust and visually grounded learning solutions.

2 EDUVISBENCH BENCHMARK

2.1 OVERVIEW

In this section, we introduce EduVisBench, a novel and challenging benchmark designed to evaluate
the capability of models to generate logical and explanatory visualizations for educational purposes.
As shown in Figure 2, EduVisBench comprises 1,154 carefully curated STEM questions across three
academic subjects and 15 distinct domains, organized into three levels of difficulty. In addition to
assessing accuracy in step-by-step problem solving, EduVisBench places particular emphasis on a
models ability to communicate the reasoning process clearly and visuallyhelping students understand
problems through structured, interpretable visual outputs, as illustrated in Figure 3.

Specifically, EduVisBench adopts a multimodal setting in which models are provided with both textual
and visual inputs and are tasked with producing diverse output formats, including interactive web
pages and visual diagrams. Beyond evaluating the correctness of final answers, we introduce a fine-
grained evaluation framework that assesses the quality of visualizations across five key dimensions:
(1) the logical sequencing of visual elements, (2) the structural richness of the visuals, (3) semantic
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Chemistry

Discuss the properties and effects of 
oxygen based on your knowledge. In your 
answer, address whether: 1.Oxygen can 
act as a fuel. 2.The proportion of oxygen in 
the air is approximately 21%.

Visualization

Question

Mathematics

Fill in the blank to make the 
equation true. 7 + 9 =

Question

Visualization

Physics

A force of 50 N is applied to a 5 kg 
block. What is the acceleration of 
the block?

Question

Visualization

…
… …

Visual Guidance: 5/5, Visual Design: 5/5,
Coordination: 5/5, Learning Guidance: 5/5,
Interactivity: 5/5

Total Score: 100%

Visual Guidance: 5/5, Visual Design: 4/5,
Coordination: 5/5, Learning Guidance: 5/5,
Interactivity: 3/5

Total Score: 88%

Visual Guidance: 5/5, Visual Design: 4/5,
Coordination: 5/5, Learning Guidance: 5/5,
Interactivity: 4/5

Total Score: 92%

Figure 3: Representative examples from EduVisBench, featuring questions from Maths, Chemistry,
and Physics alongside their corresponding high-scoring visual explanations. These interactive visual-
izations, generated by our multi-agent system EduVisAgent, exemplify well-designed, pedagogically
effective outputs for STEM problems.

alignment with the underlying subject matter, (4) the clarity and guidance provided for problem-
solving, and (5) the level of interactivity and engagement. In the following subsections, we describe
our dataset curation process and the design of the evaluation rubric in detail.

2.2 DATASET CURATION

EduVisBench is built from several high-quality public educational resources that we carefully curated,
translated, and adapted to support multimodal visualization learning tasks. Specifically, the chemistry
questions are sourced from the C-MHChem-Benchmark (Zhang et al., 2024), originally presented in
Chinese and meticulously translated into English with careful attention to scientific accuracy and
terminology. The physics questions are drawn from the high-school-physics (Rohith, 2023) dataset,
which includes a range of conceptual and quantitative exercises suitable for secondary-level learn-
ers. The mathematics component combines easy-level problems from the Illustrative Mathematics
curriculum with medium- to hard-level questions selected from the MATH-500 (Lightman et al.,
2023) dataset. Furthermore, each domain encompasses diverse sub-domains, collectively covering 15
comprehensive scenarios, as illustrated in Figure 2. All data sources were standardized into a unified
format and consolidated to enable consistent and comprehensive evaluation across subjects.

2.3 EVALUATION METRIC

In this subsection, we detail the performance evaluation rubrics in EduVisBench.

Evaluation Dimensions. To comprehensively evaluate the quality of generated visualizations in
supporting student understanding and learning, we introduce a fine-grained scoring metric grounded
in five pedagogically motivated dimensions: (1) Context Visualization: evaluates how clearly the
visualization situates the problem within a relevant context; (2) Diagram Design: assesses the
clarity, accuracy, and effectiveness of the diagrams used to represent information; (3) Text–Graphic
Integration: measures the coherence between textual explanations and visual elements, ensuring
mutual interaction; (4) Thought Guidance: examines the extent to which the visualization supports
reasoning processes and highlights critical thinking steps; (5) Interactivity: evaluates whether
and how the visualization invites students engagement, reflection, or active manipulation. Each
dimension captures a distinct aspect of effective multimedia learning, with detailed rubrics provided
in Appendix A.1 to guide the scoring process.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Visualization Prompt 

Diffusion 
Models

Visual Agent

Code Code

Web Page 
Screenshot

Web Page 
Screenshot

GPT-4o

Visual Guidance: …, Visual Design: …, Coordination: …, Learning 

Guidance: …, Interactivity: … Total Score: …

Question+

Image

SVG
Image

Render

or
Visualization

Evaluation

LVLMs

Figure 4: Workflow for evalua-
tion.

Evaluation Protocol. As shown in Figure 4, models are provided
with a visualization prompt together with a question and are asked
to generate visual outputs. To enable fair comparison across het-
erogeneous outputs, we first canonicalize every model result to
a raster image prior to scoring. This standardization is a crucial
step that ensures all systems are evaluated on a level playing field,
independent of their native modality or file format, and prevents
format-specific rendering artifacts from biasing the assessment.
Visuals produced directly as SVG or PNG are used as-is. Web
pages (HTML or Next.js) are rendered in a headless browser and
captured as screenshots of the primary view; when lightweight
interactivity is present (e.g., buttons, tabs, or toggles), we system-
atically traverse the reachable states and retain one representative
screenshot per state. All resulting images are then evaluated by
GPT-4o along five dimensions defined in Appendix A.2 to com-
pute an overall performance score. Each dimension is rated on a
0-5 scale; the ratings are summed (0-25) and, when appropriate,
normalized to a percentage to yield the final overall score.

3 EDUVISAGENT

Using EduVisBench we systematically evaluate the performance of existing text-to-image models
and LVLMs (see detailed results in Table 1 in Section 4). We find that most models perform poorly,
with average scores below 50 on a 0-100 scale. This significant performance gap serves as the primary
motivation for developing a novel approach that moves beyond monolithic model architectures.
This underperformance underscores the inherent challenge of decomposing complex reasoning and
translating it into visual representations that align with human cognitive processes to effectively
support educationa task that remains highly non-trivial.

To address these challenges, we propose a multi-agent system, EduVisAgent, inspired by pedagogical
theories and designed to emulate the division of labor and collaborative reasoning found in expert
instructional design. EduVisAgent consists of five specialized yet interdependent agents: a Task
Planning Agent, which structures the instructional objective; a Conceptual Mapping Agent, which
extracts and organizes key information; a Reasoning Decomposition Agent, which constructs step-
by-step problem-solving logic; a Metacognitive Reviewer, which encourages summarization and
learner reflection; and a Visualization Agent, which generates appropriate visual representations.
This design introduces modularity and pedagogical interpretability by embedding distinct instructional
roles directly into the agent workflow. The overall operation of EduVisAgent proceeds in two stages:
(1) instructional flow construction and (2) collaborative solution generation, as detailed below.

3.1 INSTRUCTIONAL FLOW CONSTRUCTION

The first stage of EduVisAgent focuses on formulating a well-structured instructional task based on
the original problem. A key challenge lies in analyzing the underlying reasoning structure, identifying
implicit logical dependencies, and associating each reasoning step with relevant conceptual knowledge.
To address this, we employ the Task Planning Agent, which systematically organizes the problem into
an instructional format suitable for multimodal visualization. Its main functions include: (1) breaking
down the problem into coherent subgoals, (2) clarifying the reasoning expected at each step, (3)
aligning each step with domain-specific principles or formulas, and (4) anticipating potential student
misconceptions or cognitive needs. This structured formulation provides a pedagogically grounded
foundation that guides the downstream agents in generating coherent, targeted, and educationally
effective visual explanations.

3.2 COLLABORATIVE SOLUTION GENERATION

In this stage, EduVisAgent executes the instructional task constructed by sequentially activating a
set of specialized agents, each responsible for completing a specific aspect of the task. As shown
in Figure 5, these agents operate in a coordinated manner to enhance the coherence of instructional
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logic, improving the clarity of visual representation, and ensure alignment with educational objectives.
Specifically,we detail each agent as follows.

Task Planning
Agent

Conceptual 
Mapping 

Agent

Reasoning 
Decomposition 

Agent

Metacognitive 
Reviewer

Visualization 
Agent

Question

subgoals expectation formula …

Interactive
Webpage

Figure 5: The structure of EduVisAgent.

Conceptual Mapping Agent. This agent is responsi-
ble for extracting and organizing the core components
of the input problem. Drawing on the ConcreteRepre-
sentationalAbstract (CRA) instructional model (Nugroho
& Jailani, 2019), it classifies information into three cate-
gories: concrete entities, representational elements, and
abstract constructs. This structured classification helps
bridge the gap between the concrete elements of a prob-
lem and the abstract principles required to solve it. This
progression from concrete to abstract is particularly valu-
able for an AI system, as it provides a structured path-
way to ground complex concepts in relatable terms before
generating symbolic representations.The agent conducts
fine-grained categorization and semantic summarization
to support downstream visualization modules.

Reasoning Decomposition Agent. This agent decomposes complex problems into manageable
subcomponents and provides step-specific instructional guidance. It applies the memory-oriented
FOPS strategy (Miller & Cohen, 2020)find the problem type (e.g., equation solving, conceptual
reasoning, commonsense application, or graphical interpretation), organize the structure via equations
or diagrams, plan the solution path, and solve the task. Based on the decomposed steps, the agent
also identifies critical instructional points that require additional support, especially those that benefit
from visual scaffolding or interactive guidance.

Metacognitive Reviewer. Grounded in metacognitive theory (Schraw & Moshman, 1995), this
agent supports learners in monitoring their comprehension and reasoning processes. It generates
reflective prompts that foster self-questioning and self-correction, encouraging learners to evaluate
the soundness of their problem-solving approaches.

Visualization Agent. This agent is responsible for constructing the visual guidance component
of the instructional output. Instead of relying on decorative visuals, it emphasizes the use of
abstract yet pedagogically effective representationssuch as number lines, bar charts, schematic object
illustrations, graphic organizers, sketch diagrams, and structured data tables. The agent ensures that
each visualization is tightly aligned with the underlying abstract concept being taught. All visuals are
rendered using the v0 (Vercel, 2025) system for web-based deployment.

4 EXPERIMENTS

This section outlines the experimental setup for benchmarking various foundation models on Edu-
VisBench. We evaluate Diffusion Models, LVLMs, a specialized visualization agent (v0), and
our proposed EduVisAgent. Our investigation seeks to address the following key questions: (1)
How proficient are existing models at generating high-quality, explanatory visualizations within
EduVisBench? (2) Can the proposed EduVisAgent system outperform current models? (3) What
distinct performance patterns emerge across different model architectures, academic disciplines, and
evaluation dimensions in EduVisBench?

4.1 EXPERIMENT SETUP

Baseline Models. Our experimental evaluation encompasses a range of FMs, categorized as follows:
(1) Image Generation Models: This category includes Flux.1-dev (Labs, 2024), Stable Diffusion 3.5
Large (SD3.5) (IT Admin, 2024), and Stable Diffusion XL Base 1.0 (SDXL) (Podell et al., 2023).
These models are tasked with generating static images directly from textual or visual inputs. (2)
Large Vision-Language Models (LVLMs): We evaluate Deepseek-VL2 (Wu et al., 2024), GLM-4V-
9B (GLM et al., 2024), MiniCPM-V2.6 (Yao et al., 2024), Mistral-Small-3.1-24B-Instruct-2503 (Mis-
tral AI, 2025), Phi-3.5-Vision-Instruct (Abdin et al., 2024), Phi-4-Multimodal-Instruct (Abouelenin
et al., 2025), Qwen2.5-VL-72B (Team, 2025), GPT-4o (Hurst et al., 2024), Claude 3.7 Sonnet (An-
thropic, 2025), and Gemini 2.0 Flash (Mallick & Kilpatrick, 2025). These models are prompted
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Table 1: Performance of Diffusion Models, Large Vision Language Models and v0 on EduVisBench.

Method Vis. Type Maths Physics Chemistry Avg
Easy Medium Hard Easy Medium Hard Easy Medium Hard

Diffusion Model

Flux.1-dev Image 13.8 13.4 13.2 11.7 8.5 10.0 20.0 16.6 16.0 13.8
SD3.5 Image 17.3 20.3 18.8 16.8 13.0 12.0 22.8 21.7 34.0 18.4
SDXL Image 17.3 23.3 25.5 18.9 15.4 24.0 33.6 30.2 24.0 21.8

Large Vision Language Model

Deepseek VL2 Webpage 20.3 17.1 15.7 17.9 17.0 20.0 16.4 13.8 14.0 17.5
GLM-4V-9B Webpage 22.3 21.1 19.4 24.5 21.5 24.0 22.3 21.5 16.0 21.9
MiniCPM-V-2.6 Webpage 24.1 17.3 15.5 19.1 17.4 20.0 14.5 15.2 12.0 19.3
Mistral-Small-3.1 Webpage 29.1 31.6 32.2 32.3 33.5 20.0 30.6 27.5 24.0 30.2
Phi-3.5 Webpage 25.3 20.7 19.1 21.2 19.5 12.0 20.0 18.6 20.0 21.8
Phi-4 Webpage 26.1 25.1 22.9 27.8 25.5 24.0 31.2 27.5 12.0 26.4
Qwen2.5-VL-72B Webpage 24.3 18.1 15.8 19.7 17.1 24.0 18.2 16.4 12.0 20.0
Claude 3.7 Sonnet SVG 61.2 26.7 23.6 18.5 16.9 14.0 47.5 47.2 18.0 42.0
Claude 3.7 Sonnet Webpage 56.2 57.5 55.6 44.8 42.6 24.0 61.1 60.6 64.0 54.6
GPT-4o Webpage 47.6 39.3 37.9 25.7 24.2 24.0 34.3 32.6 36.0 38.1
GPT-4o SVG 36.1 19.7 19.5 13.0 12.8 4.0 30.0 27.5 22.0 26.3
Gemini 2.0 Flash Webpage 46.9 9.5 15.7 31.7 26.5 24.0 32.0 25.8 30.0 43.6

Visualization Agent

v0 Webpage 63.0 37.6 47.2 53.3 58.5 52.0 74.7 52.8 68.0 58.2

to generate SVG or HTML code, which is then rendered into visual outputs for evaluation. (3)
Specialized Visualization Agent: We also assess v0 (Vercel, 2025), an AI agent specifically designed
to create interactive web pages based on instructional content.This diverse selection of models was
chosen to represent the current state-of-the-art across different architectural paradigms.

Evaluation Setups. During evaluation, all generated visualizations are standardized into image
format. For interactive web pages containing buttons, an automated script navigates through all
accessible sub-pages, capturing individual screenshots of each. This automated approach ensures
that the evaluation is both scalable and free from subjective human bias during the rendering process.
Performance is assessed using the evaluation metric described in Section 2.3, where GPT-4o scores
the visual outputs based on predefined rubrics, assigning a score from 0 to 5 for each of the five
dimensions. The cumulative score (maximum 25 points) is then normalized to a 0-100 scale for
standardized reporting and comparison.

Table 2: Cosine similarity and mean squared error across
subjects. Math is the average of Math500 and IllustrativeMath,
each with 50 samples.

Metric Chemistry Math Physics Average

Cosine Similarity 0.9742 0.9557 0.9666 0.9655
MSE 0.3895 0.7093 0.6118 0.5702

Reliability of GPT-based Scoring.
To validate the reliability of our au-
tomatic judge, we compared GPT-
based evaluations with human eval-
uations. Specifically, we selected
50 samples from each subject cate-
gory (Chemistry, Math, and Physics),
and had both GPT and human eval-
uators independently rate them. Hu-
man evaluators were undergraduate
students from top universities. We measured agreement using Cosine Similarity and Mean Squared
Error (MSE). As shown in Table 2, high agreementaverage cosine similarity 0.9655 and MSE 0.5702
across subjects indicates negligible practical discrepancy .

4.2 BASELINE BENCHMARKING

The performance of all evaluated baseline models is detailed in Table 1. Across all evaluated models,
the average scores indicate significant room for improvement. Diffusion Models generally exhibited
the lowest performance, with average scores ranging from 13.8% (Flux.1-dev) to 21.8% (SDXL). This
suggests that direct static image generation, while capable of producing visual elements, struggles
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substantially with the nuanced requirements of explanatory and guiding visualizations for complex
logical problems in our benchmark.

LVLMs typically scored between 17.5% (Deepseek VL2) and 30.2% (Mistral-Small-3.1). Notable
exceptions include Gemini 2.0 Flash (43.6%) and Claude 3.7 Sonnet; the latter’s significantly better
performance with Webpages (54.6%) over SVG (42.0%). GPT-4o also showed a preference for
Webpage generation (38.1%) over SVG (26.3%), suggesting that prompting advanced LVLMs for
structured interactive webpages can yield more effective visual explanations. Nevertheless, even these
top-tier LVLMs face considerable challenges in consistently meeting all of evaluation criteria. The
visualization agent v0, specifically designed for webpage generation, achieved the highest average
score among all baseline models at 58.2%. This result highlights the advantage of a specialized agent
in this task over more general-purpose FMs.

Table 3: Overall comparison of models: left is our EduVisAgent performance, right is the bar chart.
EduVisAgent achieves the highest average score among all models.

(a) Performance of our EduVisAgent on EduVisBench.

Method Vis. Type Easy Medium Hard Avg

EduVis
Agent Webpage

Maths

81.6

90.2 64.5 65.0

Physics

85.3 81.7 84.0

Chemistry

69.0 76.3 76.0

(b) Comparison of average score across all models.

4.3 PERFORMANCE ANALYSIS OF EDUVISBENCH

Building upon the insights gained from the baseline evaluations, we assessed our proposed multi-
agent system, EduVisAgent. The results in Table 3 demonstrate a substantial leap in performance
for generating explanatory and logically valuable visualizations for STEM problems. EduVisAgent
achieved an impressive overall average score of 81.6%. Specifically, EduVisAgent surpasses the
best-performing baseline v0 (58.2%), by a remarkable 23.4 percentage points. This constitutes an
approximately 40.2% relative improvement, underscoring the efficacy of our multi-agent architecture
and the integration of educational methodologies. Compared to the best performing LVLM (Claude
3.7 Sonnet Webpage at 54.6%) and the top diffusion model (SDXL at 21.8%), the advancement
offered by EduVisAgent is even more pronounced. These results clearly indicate that the design
principles underlying EduVisAgent, which incorporate a multi-agent structure and pedagogical
strategies, effectively address many of the limitations observed in existing generative models.

4.4 CASE ANALYSIS

To further illustrate the limitations of existing baselines and how our approach addresses these
challenges, we present two case studies in Figure 6. On the left, for a chemistry question, the
GPT-4o-generated solution lacks intuitive visualization of the chemical processes, resulting in
fragmented information without visual guidancereflected in a low score of just 28%. In contrast,
EduVisAgent begins by displaying background images of the relevant chemical elements, activating
students prior knowledge. This strategy effectively connects abstract chemical concepts to tangible,
everyday experiences, a well-established method for enhancing comprehension and retention. It then
contextualizes each of the four answer options with real-world scenarios, thereby enhancing students’
understanding of the underlying chemical transformations.

Conversely, for the Carnot cycle efficiency physics problem (right side of Figure 6), the Gemini
solution presents a single, flawed chart. Its depiction of 300K and 400K temperatures with identical
heights introduces visual misinformation, failing to accurately represent data differences and thereby
diminishing its pedagogical value. In stark contrast, EduVisAgent employs a multi-agent collaborative
approach: it first generates a concrete factory scene to activate students’ working memory of the
"heat engine" concept. Subsequently, it constructs an accurate Carnot cycle diagram and offers a
step-by-step problem breakdown, fostering clear conceptual understanding. Crucially, EduVisAgent
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Visual Information Mispresentation

A Carnot engine operates between 27°C 
and 127°C. What is its efficiency?

Question Gemini

Visual Guidance: 2/5, Visual Design: 3/5,
Coordination: 3/5, Learning Guidance: 2/5,

Interactivity: 0/5 Total Score: 40%

The image contains only one chart, and 
the values represented are incorrect. The 
heights of 300k and 400k are identical, 
not reflecting the difference in data values.

Lack of Visual Guidance

The following changes belong to chemical 
changes are (    )
A: Dry the wet clothes B: The glass shatters
C: Melting Snow D: Paper Burning

Question GPT-4o

Visual Guidance: 2/5, Visual Design: 2/5, 
Coordination: 2/5, Learning Guidance: 1/5, 

Interactivity: 0/5 Total Score: 28%

EduVisAgent (Ours)

…

…

EduVisAgent (Ours)

The image fails to illustrate the chemical 
process, lacks a clear step-by-step 
instructional approach, and offers no 
intuitive visual representation.

…

…

Figure 6: Baseline models versus our EduVisAgent. These examples clearly demonstrate the
often poor output quality of baseline models, contrasting sharply with the high-quality, effective
visualizations produced by EduVisAgent.

Figure 7: Fine-grained performance comparison across our five key evaluation dimensions.

provides interactive visualization components, enabling users to dynamically adjust temperatures via
sliders and observe real-time changes in heat engine efficiency. This interactive element transforms
the learner from a passive observer into an active participant, which is known to deepen engagement
and learning. This interactive engagement significantly facilitates higher-order thinking skills.

Overall, through coordinated multi-agent optimization of image design, instructional structure, and
learning pathways, EduVisAgent significantly outperforms traditional single-model approaches in
accuracy, guidance, and interactivity.

4.5 FINE-GRAINED ANALYSIS ON FIVE EVALUATION DIMENSIONS

Figure 7 reveals distinct performance profiles for eight high-performing evaluated models. In Context
Visualization and Diagram Design, most baselines, including SDXL, Claude 3.7, and v0, exhibit
moderate to low scores, often struggling with providing rich situational cues or pedagogically sound
visual structures, especially for complex problems. v0 and Claude show relatively better capabilities
in Text-Graphic Integration and Thought Guidance compared to other FMs, which generally offer
minimal support in these areas. However, all baseline models, including v0, are significantly limited
in the Interactivity dimension, primarily due to their output format (static images/SVG or less dynamic
webpages). In contrast, our EduVisAgent demonstrates consistently strong performance across all
five dimensions. It particularly excels in creating rich context visualizations, well-structured diagram
designs, and ensuring seamless text-graphic integration. Furthermore, EduVisAgent provides superior
thought guidance and achieves notably high scores in Interactivity, areas where baseline models
significantly lag. This comprehensive strength highlights EduVisAgent’s advanced ability to generate
not just visualizations, but truly effective and interactive pedagogical tools.
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5 RELATED WORK

LLM for Pedagogical Assistance. Foundation models (FMs), including diffusion models and large
vision-language models (LVLMs), have been increasingly adopted in educational contexts (Chu
et al., 2025; Wang et al., 2024) to support teaching and classroom interactions. EduAgent (Xu et al.,
2024) and Teachtune (Jin et al., 2025) enhance the problem-solving process through automated
simulations of student-teacher dialogues, collaborative learning, and task-oriented reasoning. Agents
such as SEFL (Zhang et al., 2025) and PROF (Nair et al., 2024) synthesize immediate, on-demand
feedback to support large-scale instructional scenarios. Furthermore, domain-specific agents such as
MathChat (Wu et al., 2023), NEWTON (Wang et al., 2023b), and MEDCO (Wei et al., 2024) further
provide textual explanations tailored to scientific and medical education. While these systems address
diverse pedagogical needs, their focus remains largely on text-based interactions (Wu et al., 2023; Xu
et al., 2024; Cui et al., 2024), overlooking the critical role of visualization in fostering conceptual
understanding and improving learning outcomes (Presmeg, 2006). While valuable, these text-centric
systems do not address the large body of educational research highlighting the unique cognitive
benefits of visual learning. Despite its pedagogical importance, the capacity of FMs and agents to
generate logical, explanatory visual illustrations remains underexplored. EduVisBench is the first
comprehensive benchmark designed to systematically evaluate FMs ability to produce pedagogically
effective, step-by-step visual reasoning, covering 15 diverse visually grounded educational scenarios
with multi-level problem sets and multimodal-centric solutions.

LLM for Scientific Visualization. While some existing works have preliminarily explored the
potential of FMs in supporting visual scaffolding (Podo et al., 2024; Chen et al., 2024c; Pandey &
Ottley, 2025; Hong et al., 2025), they are typically fragmented, lack pedagogical grounding, and fail
to generalize across diverse educational tasks (Wang et al., 2023a; Ku et al., 2025). For instance,
Visual Sketchpad (Hu et al., 2024) attempts to illustrate problem-solving processes with sketches
generated from code. However, these visuals are often low in quality, lack logical coherence, and
fall short in explanatory depth (Wang et al., 2025). Other approaches like MatplotAgent (Yang
et al., 2024), PlotGen (Goswami et al., 2025), and OmniSVG (Yang et al., 2025) leverage plotting
and SVG tools to produce more accurate, data-grounded visualizations. Still, these methods are
limited in scope, often addressing only isolated steps rather than providing systematic, end-to-end
visual explanations of multi-step problem-solving tasks (Vázquez, 2024; Chen et al., 2024a; 2025b).
Our framework, in contrast, is designed to manage the entire pedagogical workflow, from problem
deconstruction to the final interactive explanation. To overcome these limitations, we propose a
multi-agent collaborative framework, EduVisAgent, that simulates the full learning journeyfrom
initial problem exposure to deep conceptual understandingby coordinating specialized agents to
generate coherent, pedagogically aligned visualizations throughout the reasoning process.

LLM-based Education Agents. Recent advancements in LLM-based agents have led to the de-
velopment of specialized architectures capable of long-horizon planning, tool use, and memory
management across a range of real-world domains (Yao et al., 2023; Chan et al., 2024; Chen et al.,
2024b; 2025a; Nie et al., 2025; Han et al., 2025; Zhou et al., 2025). In the educational domain, AI
agents such as EduAgent (Xu et al., 2024) and Teachtune (Jin et al., 2025) simulate student-teacher
dialogues, collaborative learning activities, and task-oriented reasoning to enhance problem-solving
instruction. Agents like SEFL (Zhang et al., 2025) and PROF (Nair et al., 2024) generate on-demand
feedback for large-scale educational settings, while domain-specific tools such as MathChat (Wu et al.,
2023), NEWTON (Wang et al., 2023b), and MEDCO (Wei et al., 2024) provide textual explanations
for scientific and medical learning. Despite these advances, limited research has investigated collab-
orative, multi-agent approaches tailored to educational reasoning and visualization. EduVisAgent
is the first systematic multi-agent framework that coordinates specialized agents and provides a
comprehensive approach to supporting step-by-step pedagogical problem-solving.

6 CONCLUSION

This paper addressed the challenge of generating pedagogically meaningful visual explanations with
AI systems. We introduced EduVisBench, a benchmark revealing that existing models often produce
inadequate visual outputs. This work provides a quantitative baseline for the field, clearly identifying
the key areas where current technologies fall short. To overcome this, we proposed EduVisAgent, a
collaborative multi-agent framework. Experiments show EduVisAgent significantly outperforms all
baselines, demonstrating the potential of agent-based systems for advancing educational visualization.
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ETHICS STATEMENT

The primary goal of this research is to advance educational technology by improving the pedagog-
ical quality of AI-generated visualizations, aiming for a positive societal impact. The benchmark
developed, EduVisBench, is curated from publicly available and high-quality educational resources,
including C-MHChem-Benchmark, high-school-physics, Illustrative Mathematics, and MATH-500.
To validate our automated evaluation metric, we conducted a comparative study involving human
evaluators, who were undergraduate students from top universities. All data used in the study was
handled with care to ensure anonymity and was used solely for the purpose of validating the scoring
system. The models and methods proposed are intended for beneficial educational applications. The
authors are not aware of any other ethical issues and declare no competing interests or conflicts of
interest associated with this research.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have provided detailed descriptions of our methodology
and resources. The curation process for our benchmark, EduVisBench, is detailed in Section 2.2,
with data sources explicitly cited. Our comprehensive evaluation framework, including the five key
dimensions and scoring protocol, is described in Section 2.3 and Section 4.1.The detailed scoring
rubrics and the exact prompt used for our GPT-4o-based evaluation are available in Appendix A.2
and Appendix A.3, respectively. The architecture of our proposed EduVisAgent and the roles of each
specialized agent are thoroughly explained in Section 3. A complete list of all baseline models and
their versions used in our experiments is provided in Section 4.1.
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A APPENDIX

A.1 VISUALIZATION DISCIPLINES

Table 4 illustrates the disciplines and types in our EduVisBench.

Discipline Common Visualization Types

Mathematics Number lines, function graphs, and other formalized
visual tools.

Physics Diagrams involving levers, rigid body motion, forces,
and fields.

Chemistry Molecular structures and schematic representations of
standard laboratory apparatus.

Table 4: Representative Visualization Types Across Academic Disciplines

A.2 EVALUATION METRIC

Visual Scenario Design Guidance The category of "Visual Scenario Design Guidance" outlines
different levels of visualizing mathematical concepts, progressing from basic text-only representations
to highly integrated visual-text formats. Through five defined levels, the framework demonstrates how
visual elements can enhance students’ understanding and engagement with abstract ideas, guiding
instructional designers to gradually enrich scenarios, add annotations, and strengthen contextual
connectionsultimately achieving the goal of visually presenting the full flow and conceptual structure
of the content.The five levels of Visual Scenario Design Guidance are as follows:

Level Description

Level 1
The image contains no scenes or illustrations, presenting only text and
formulas. It lacks contextual visual cues, failing to spark interest or connect
the concepts to real-life situations.

Level 2
The image includes a single static illustration or low-fidelity mockup with
minimal labeling that does not highlight variables or key objects, offering
limited context and poor immersion.

Level 3
Multiple static schematic diagrams or sketch-style illustrations appear in the
image, labeling core objects, variables, and simple steps, providing basic
visual guidance but lacking layered coherence.

Level 4
The image integrates scenario illustrations, storyboard panels, and info-
graphics to present the process in multiple views and steps, with annotations
and captions guiding students through mapping abstract concepts to context.

Level 5

Storyboard-style illustrations and infographics are fused into a single image,
including overview, detailed close-ups, and key pathway diagrams with
comprehensive annotations, allowing students to grasp the entire flow and
conceptual network at a glance.

Table 5: Five Levels of Visual Scenario Design Guidance

Visual Illustration Design The category of "Visual Illustration Design" describes progressive levels
of visual elements used to support students systematic understanding of quantities and relationships.
It ranges from no visual aids to complex integrated dashboards that deeply connect data and model
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structures. Through five levels, the framework guides designers to improve clarity, coherence, and
contextual richness of visual illustrations, enhancing students analytic and comparative abilities.

Level Description

Level 1
The image contains no charts, axes, or flow diagramsonly text. Without
embedded visual tools, students cannot systematically organize or analyze
quantities and relationships.

Level 2
The image presents a static number line and colored bar chart with com-
plete scales and a legend, helping students gain a basic understanding of
numerical changes. However, it lacks comparison and contextual layering.

Level 3
The image presents a static number line and colored bar chart with complete
scales and legends, helping students grasp basic numerical changes visually,
though comparison and context layering are absent.

Level 4
The image combines number lines, flowcharts, infographics, and arrow
annotations; multiple visuals are juxtaposed or overlaid to show processes
and variable changes for a coherent modeling view.

Level 5
The image presents a dashboard-style visualization integrating axes, bar
charts, flow diagrams, heatmaps, etc., with linked elements that deeply
visualize data relationships and model structure.

Table 6: Five Levels of Visual Illustration Design

TextIllustration Coordination The category of "TextIllustration Coordination" describes levels
of alignment and integration between textual content and visual elements within images. This
progression ranges from complete disconnection to seamless fusion, enabling students to effectively
map and synthesize text, formulas, and graphics. The framework guides designers in strengthening
links between verbal and visual information to enhance comprehension and structural understanding.

Level Description

Level 1
Text and illustrations in the image are completely disconnected, with no
labels, legends, or connectorsstudents cannot use visuals to understand text
or formulas.

Level 2
Text occasionally prompts see diagram or refer to the illustration, but the
image lacks legends or clear labels, so mapping between text and graphics
remains ambiguous.

Level 3
Text descriptions and image elements share consistent numbering, color
blocks, or arrows linked to a simple legend, explaining core symbols and
variables to support initial mapping.

Level 4
Text paragraphs are laid out alongside corresponding visuals within the
same image, with detailed legends and color-coded annotations enabling
simultaneous reading and mapping.

Level 5
Text, formulas, and legends are fully integrated in one image, using consis-
tent colors, numbering, and layered layout to achieve seamless textgraphic
fusion for complete structural understanding.

Table 7: Five Levels of TextIllustration Coordination

Learning Thought Guidance The category of "Learning Thought Guidance" describes the progres-
sive inclusion of visualized problem-solving strategies and reflective cues in images. From presenting
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only problem statements to complex integrated dashboards, this framework guides designers to
scaffold students strategic thinking and metacognitive reflection through visual tools, enabling deeper
reasoning and transfer of learning.

Level Description

Level 1
The image offers no visualized problem-solving guidance, showing only
the problem statement and formulas, leaving students without strategic cues
or reflection prompts.

Level 2
The image embeds a simple flowchart or two title-style hints (e.g., Identify
problem type, Check result), but the flowchart is overly simplistic and hints
lack hierarchical detail.

Level 3
The image displays a step-by-step flowchart template with key thinking
nodes and self-check checkpoints, leaving annotation space for students to
visually record their reasoning.

Level 4
The image combines a near-transfer exercise with a comparative thought
diagram, visually highlighting strategy differences so students can apply
existing reasoning to a new context.

Level 5
The image fuses near- and far-transfer exercises, concept mind maps, and a
reflection panel into a dashboard-style layout, allowing students to review
and extend their problem-solving network visually.

Table 8: Five Levels of Learning Thought Guidance

Interactivity and Personalized Support The category of "Interactivity and Personalized Support"
outlines levels of incorporating feedback, hints, and tailored assistance into images, evolving from
static presentations to dynamic, student-responsive visual supports. This framework encourages
designers to embed interactive elements that adapt to learner needs, promoting engagement and
personalized problem-solving.

Level Description

Level 1
The image includes no feedback or support componentsonly a static problem
statement and answer fieldoffering no hints, examples, or error cues and
resulting in a nonresponsive visual.

Level 2
The image shows fixed hint boxes (e.g., Hint: draw a number line, Hint:
check rounding), but hints are not tailored to student responses, limiting
personalized guidance.

Level 3
The image integrates multiple static correction tips and example solution
modules (common mistakes and standard approaches), which students can
reference visually but without intelligent recommendations.

Level 4
The image presents example solution workflows, text hints, and a common-
errors analysis section highlighted with color blocks and arrows, providing
diverse visual support in a single layout.

Level 5

The image displays a comprehensive visual support panel with difficulty
suggestions, personalized hints, worked examples, and extension resource
links, enabling students to select tailored guidance directly from the visual
layout.

Table 9: Five Levels of Interactivity and Personalized Support
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A.3 EVALUATION PROMPT

The instructional web page evaluation prompt is structured as follows:

Evaluation Prompt

As a professional evaluator of instructional web pages, your task is to determine whether
the generated web page meets expectations across five specific categories.

Instructions:
• Assign an integer score from 0 to 5 for each of the five categories (15).

• 0 = completely missing or extremely poor
5 = fully meets the highest standard

• Evaluation should be based solely on the specified aspect: {category}.
The definition of {category} is: {description}.

• Do not include any explanation, justification, or additional commentary.
Refusing to provide a score is not allowed.

Evaluation Output Format

{{RATING: {"1":score, "2":score, "3":score, "4":score, "5":score}}}

B DISCLOSURE OF LARGE LANGUAGE MODEL USAGE

All content in this article is entirely authored by the writers. The LLM was used solely for language
refinement and stylistic polishing, without contributing to content generation. All LLM-refined
passages were subsequently reviewed and revised by the authors.
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