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Abstract

We consider stochastic approximation with block-coordinate stepsizes and propose
adaptive stepsize rules that aim to minimize the expected distance of the next iterate
from an optimal point. These stepsize rules use online estimates of the second
moment of the search direction along each block coordinate, and the popular Adam
algorithm can be interpreted as using a particular heuristic for such estimation. By
leveraging a simple conditional estimator, we derive variants of BCOS that obtain
competitive performance but require fewer optimizer states and hyper-parameters.
In addition, our convergence analysis relies on a simple aiming condition that
assumes neither convexity nor smoothness, thus has broad applicability.

1 Introduction

We consider unconstrained stochastic optimization problems of the form
minimize F(z) := E¢[f(z,£)], (D
zeR" ’

where z € R is the decision variable, £ is a random variable, and f is the loss function. In the
context of machine learning, = represents the parameters of a prediction model, £ represents randomly
sampled data, and f(x, ) is the loss in making predictions about ¢ using the parameters .

Suppose that for any pair « and £, we can evaluate the gradient of f with respect to =, denoted as
V f(x,£). Starting with an initial point 2y € R, the classical stochastic approximation method [38]]
generates a sequence {x1, z2, ...} with the update rule

T = ¢ — aV f(24, &), 2

where a; is the stepsize, which is often called the learning rate in the machine learning literature. The
convergence properties of this method are well studied in the stochastic approximation literature [e.g.,
38, 13116} 1441 152]]. Despite the rich literature on their convergence theory, stochastic approximation
methods in practice often require heuristics and trial and error in choosing the stepsize sequence {c; }.
Adaptive rules that can adjust stepsizes on the fly have been developed in both the optimization
literature [e.g.,|10}125/331/40,141} 42| 43] and by the machine learning community [e.g.,22}[32,146,147].
More recently, adaptive algorithms that use coordinate-wise stepsizes have become very popular
following the seminal works of AdaGrad [14] and Adam [26]. In this paper, we present a framework
for better understanding such methods and propose a family of new, effective methods.

1.1 Stochastic approximation with block-coordinate stepsizes

We focus on stochastic approximation with block-coordinate stepsizes, specifically of the form
Typ1 =Ty — St O dy, 3)

where d; € R" is a stochastic search direction, s; € R" is a vector of coordinate-wise stepsizes,
and © denotes element-wise product (Hadamard product) of two vectors. The two most common
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choices for the search direction are: the stochastic gradient, i.e., dy = V f (x4, &), and its exponential
moving average (EMA). Let g = V f (x4, &), the EMA of stochastic gradient can be expressed as

di = Bdi—1+ (1 — B)gt, “)
where 8 € [0,1) is a smoothing factor. This is often called the stochastic momentum.

The Adam algorithm [26] uses the direction in (@) and sets the coordinate-wise stepsizes as

St = o/ (/Ui + €), i=1,...,n, 5)
where o, € R is a common stepsize schedule and each v, ; is the EMA of the squared coordinate
gradient g7 ;, with a different, often larger, smoothing factor 5’ € (0,1). More specifically,

2 .
Ut,i :,8/’075_171'4— (1 _B/)gt,iv 1= 17"'7”' (6)
Here € > 0 is a small constant to improve numerical stability when v; ; becomes very close to zero.

Adam [26] and its variant AdamW [31] have been very successful in training large-scale deep
learning models. However, theoretical understanding of their convergence properties and empirical
performance is still incomplete despite a lot of recent efforts [e.g., |37, 4} [1} 9} 156L 155 128]]. On the
other hand, there have been many works that propose new variants or alternatives to Adam/AdamW,
either starting from fundamental principles [e.g., 53} 17,121}, 129] |24] or based on empirical algorithm
search [e.g.,[5,54] But all have limited success. Adam and especially AdamW are still the dominant
algorithms for training large deep learning models, and their effectiveness remains a myth.

1.2 Contributions and outline

We propose a family of block-coordinate optimistic stepsize (BCOS) rules for stochastic approxima-
tion. BCOS provides a novel interpretation of Adam and AdamW and their convergence analysis as
special cases of a general framework. Moreover, we derive variants of BCOS that obtain competitive
performance but require fewer optimizer states and hyper-parameters. More specifically:

* In Section 2] we derive BCOS by minimizing the expected distance of the next iterate from an
optimal point. While the optimal stepsizes cannot be computed exactly, we make optimistic
simplifications and approximate the second moment of gradients with simple EMA estimators.

* In Section 3] we instantiate BCOS with specific search directions. In particular, we show that
RMSprop [48] and Adam [26] can be interpreted as special cases of BCOS. By leveraging a
simple conditional estimator, we derive new variants that require fewer optimizer states and
hyper-parameters. Integrating with decoupled weight decay [31] gives the BCOSW variants.

* In Section[d] we present convergence analysis of BCOS(W) based on a simple aiming condition,
which assumes neither convexity nor smoothness, thus has broad applicability. We obtain strong
guarantees in terms of almost sure convergence, and characterize the effect of signal-to-noise
ratio of the online estimators on the convergence behavior. Our results also apply to Adam(W).

* Finally, in Section[5} we present numerical experiments to compare BCOSW and AdamW on
several Deep Learning tasks and demonstrate the effectiveness of the proposed methods.

1.3 Notations

Let Z;,...,Z,, be a non-overlapping partition of the coordinate index set {1,...,n}, each with

cardinality n, = |Z|. Correspondingly, we partition the vectors x, s; and d; into blocks x¢ k, Stk

and d; ,, in R™ for k = 1,...,m. We use a common stepsize 7, ; € R within each block, i.e.,

St.k = Y,k 1n, - As aresult, the explicit block-coordinate update form of (3) can be written as
Tpt1k = Tok — Stk O dek = To ke — Vo, ke ks k=1,...,m.

Notice that v, j is always a scalar and ~; is a vector in R"" instead of R™ (unless m = n).

Throughout this paper, {-, -) denotes the standard inner product in R™ and || - || the induced Euclidean
norm. The signum function is defined as sign(a) = 1if a > 0, —1if a < 0 and 0 if a« = 0.

2 Derivation of BCOS

We first derive the ideal optimal stepsizes for block-coordinate update, which is not computable in
practice; then we make several simplifications and approximations to derive the practical ones.
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2.1 Block-coordinate optimal stepsizes

We consider the change of distance to an optimal point . after one iteration of the algorithm (3):
2 2
41 — zul|” = [z — 5¢ © de — 2|
2 2
= ||zt — 2 ||* — 2{m — Ts, 5t O dyp) + ||5¢ © di]|”-
Exploiting the block partitions of x;, s; and dt and using s; , = ¢,k 1p,, We obtain

o1 = ul|® = |2 — 2]|* + Z =29 (T — Taor de i) + Veglldeel?) -
Taking expectation conditioned on the reahzatlon of all random variables up to z4, i.e.,
Et[] = E['|$0,d07$17d1,...,$t], (7)
we have
Ei [z — 2a]?] = o — 2 + Z(—Q’Yt,k<$t,k — Ty Beldei]) + 7 p B [||dfk||2]) ®)
k=1

In order to minimize the expected distance from x4 to x., we can minimize the right-hand side
of ([8) over the stepsizes {~y;  } ;. This results in the optimal stepsizes

a L = <33t,k — Tx ks Et[dt,k]>
tk =

E:llds 1 |°]
Notice that these optimal stepsizes can be positive or negative, depending on the sign of the inner

product in the numerator. Apparently, they are not computable in practice, because we do not have
access of x, and cannot evaluate the expectations precisely. We address this issue in the next section.

, E=1,...,m. 9

2.2 Block-coordinate optimistic stepsizes

We need to make several simplifications and approximations to derive a practical stepsize rule. Our
first step aims to avoid the direct reliance on x . To this end, we rewrite the numerator in @]) as

(e — Tuor Beldei]) = |20 — o i ||| Be[dr i]l| cos Oy g,

where 6, 1, is the angle between the two vectors x; ,, — ., and E;[d; ;]. We absorb the quantities
related to x, j into a tunable parameter o = ||z — T+« k|| cos 0y &, which gives the stepsizes

~ oyl Ee[dy k]|l E—1

T TR dsl?]
We emphasize that any oy, we choose in practice may only be a (very rough) approximation of
lxe, 6 — s k|| cos 6y k. In particular, while the optimal stepsizes 7, , can be positive or negative, in
practice it is very hard to estimate the sign of the inner product (x;  —  k, E¢[d: &]). Instead, we
take the pragmatic approach of restricting o, > 0, effectively being optimistic that the expected
search directions —E;[d; ] always point towards z, , forall k = 1,...,m.

., m. (10)

A further simplification is to use a common stepsize schedule a; across all blocks. This is often a
reasonable choice for deep learning, where the model parameters are initialized randomly coordinate-
wise such that E[||xg x||] is constant for each coordinate & [e.g.,[13][19]. This brings us to

~ Oét”Et[dt k]”
Yk = = k=1 ....m. (11
' Eufllder]?] Y
We note that with some abuse of notation, here o; denotes a scalar, not a vector of (am, cey 0y, k)

This simplification reveals the connection between oy and the distance || — z.||. Therefore, we
expect a to decrease as ||y — .|| gradually shrinks. A simple strategy is to use a monotonic stepsize
schedule on a4, such as the popular cosine decay [30] or linear decay [S]].

Next, we need to replace the conditional expectations E;[d; ] and E,|||d; x|?] in (TT) with com-
putable approximations. We adopt the conventional approach of exponential moving average (EMA):

Uk = Pur—1k + (1 — B)di i

9 (12)
vk = Bui—1k + (1= B)[|de k|l
where 5 € [0, 1) is the smoothing factor. This leads to a set of practical stepsizes:
'yt,k:atM7 kzla"'am7 (13)
Utk + €

where we added a small constant € > 0 in the denominator to improve numerical stability.
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Algorithm 1 BCOS-g Algorithm 2 BCOS-m

input: o, {a¢}+>0, 6 €1[0,1),e >0 input: zo, {ov}, £1,02 €[0,1),e >0
V1= 93 m—1 = go, V-1 = 98
fort =0,1,2,...do fort =0,1,2,...do

gt = V (2, &) gt = V (w4, &)

vp = o1 + (1 — B)g? my = frmg—1 + (1 — B1)ge

Tip1 = Ty — Qs vy = Bovp—1 + (1 — Ba)mi

€T = T — (pp —Rt
(same as RMSprop [49]) tHl = e T e

2.3 Further simplification with one EMA estimator

The BCOS stepsizes in (I3) are computed through the ratio of two online estimators ||u; x| and vy g,
which are susceptible to large variations because the numerator and denominator may fluctuate in
different directions. In this section, we derive a simplified stepsize rule that depends only on vy 4.

First, recall the mean-variance decomposition of the conditional second moment,
Eef|lde,cl”] = 1Ee[de i]lI* + Eellldex — Eeldei]I) = [Eelde ][I + Vare(de,r.)-

We interpret | E;[dy x]||? as the signal power and Var;(d; 1) as the noise power, and define the signal
fraction (SiF) as

= [Eeldes]® _ [Ee[de.i]]? . (14)
T EdflldenlP] [[Eeldyg][* + Var, (dy )
Apparently we have p; ;. € [0, 1]. Using SiF, we can decompose the stepsizes in (10} as
E;|d E;|d 2 1 Ok
o — o JEll B o

t,k = Ok =
E¢[[|de,k ] Eillldee?] /Elldek[I?]  /Eelllde x]]?]
Now we can merge ,/p; 1 € [0, 1] into the tunable parameters o 5 and let a;’k = a4 k+/Pr.5- Then,
following the same arguments as in Section[2.2] we arrive at the following simplified stepsize rule:
, 1
o ——,
Utk + €

where o is a scalar stepsize schedule, and v, i, is given in (I2). The similarity between Adam and
BCOS in (T6) is apparent, and we will explain their connection in detail in the next section.

Ytk = y e ey M, (16)

3 Instantiations of BCOS

The derivation of BCOS in Section 2]is carried out with a general search direction d;. In this section,
we instantiate BCOS with two common choices of the search direction: the stochastic gradient and
its EMA, also known as the stochastic momentum.

To simplify presentation, we focus on the case of single coordinate blocks, i.e., m = n and I, = {k}
for k =1,...,n. Then we can express the EMA estimators for E, [df &) in a vector form:

v = o1 + (1= B)d;, (17)
where d? denotes the element-wise squared vector d; ® d;. We also have s; = ; € R" and therefore
Tip1 = Ty — Y O dy,

where the vector of coordinate-wise stepsizes, 7;, can be expressed as

Ve (18)

1
=qp—.
/Ut + €
Here /v; denotes element-wise square roots, /v; + € means element-wise addition of ¢, and the
fraction represent element-wise division or reciprocal. Again, the stepsize schedule o is a scalar. We
no longer distinguish between o, and ag because they are both tunable hyper-parameters.
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Algorithm 3 BCOS-c Algorithm 4 BCOSW-c

input: zo, {a}1>0, 8 €[0,1),¢ >0 input: zo, {oy }1>0, 8 €[0,1),¢ >0
m—i1 =49go, V-1 = 93 m—i1 = go, V-1 = 93
fort=0,1,2,...do fort=0,1,2,...do
gt = V [z, &) gt = Vf(w4, &)
my = fmy_1 + (1 — B)g: my = fmy—1 + (1 — B)g:
v = (1= (1—=8)?)mi+(1-5)g v = (1—-(1=0)%)mi_ + (1 - B)%g}
Tirl = Ty — atﬁ Ter1 = (1 —agN)xy — atﬁ

3.1 BCOS with EMA estimators

BCOS-g Algorithmis the instantiation of BCOS using V f(x¢, &) as the search direction. We call
it BCOS-g to signify the use of gradient as search direction. The vector v, consists of coordinate-wise

EMA estimators for E[g?,], and the notation \/:T’ft_‘_e means element-wise division.

We immediately recognize that BCOS-g is exactly the RMSprop algorithm [49]], which is one of
the first effective algorithms to train deep learning models. Our BCOS framework gives a novel
interpretation of RMSprop and its effectiveness. In the special case with 8 = 0 and € = 0, we have
vy = g2, and both BCOS-g becomes the sign gradient method ;1 = x4 — o sign(g; ), which also
received significant attention in the literature [35, 2} 145} 23]].

BCOS-m Using the stochastic momentum as search direction has a long history in stochastic
approximation [e.g., 18} 34, 40]]. It has become the default option for modern deep learning due to
its superior performance compared with using plain stochastic gradients. Following the standard
notation in machine learning, we use m; to denote the momentum, as shown in Algorithm@ We
call it BCOS-m to signify the use of momentum as the search direction. BCOS-m employs a second
smoothing factor 3, to calculate the EMA of m?. These two smoothing factors 3; and 32 do not
need to be the same and can be chosen independently in practice.

We notice that BCOS-m is very similar to Adam as given in (8) and (6). The difference is that in
Adam, v; is the EMA of gf instead of mf. From BCOS perspective, Adam has a mismatch between
the search direction m; and the second moment estimator based on g7, which must be compensated
for by a larger smoothing factor S35 (because my itself is a smoothed version of g;). For BCOS-m,
using B2 = [ produces as good performance as Adam with the best tuned (3, (see Section ).

3.2 BCOS with conditional estimators

Recall that the optimal stepsizes 7, in (O) and their simplifications 7, j, in (IT) and (I3) are all based
on conditional expectation. In Section we used coordinate-wise EMA of d? to approximate the
conditional expectation E;[d?], i.e., v; as estimator of E;[d?] in BCOS-g and of E;[m?] in BCOS-m,
respectively. In this section, we show that with m; as the search direction, we can exploit its update
form to derive effective conditional estimators that can avoid using EMA.

We first repeat the definition of momentum here: m; = fm;_1 + (1 — 8)g: with 8 € [0,1). To
derive an estimator of E;[m?], we expand the square and take expectation of each term:

Ei[m7] = E;[(Bmi—1 + (1= B)gr)?]
= B°Edmi_1] +28(1 = B)Ei[mi—1 © g + (1 = B)*Eq[g7]
= B°m;_; +2B(1 = B)mi—1 © By[ge] + (1 — B)°Eqlg7], (19)

where we used the fact E;[m?_;] = m?_, and E{[m;_1] = m;_ thanks to the definition of E[/]
in (7). It remains to approximate E;[g;] and E;[¢?]. Clearly a good estimator for E;[g;] is m;. To
approximate E[¢g?], we could use a separate EMA estimator v; = v, ; + (1 — 8")g?, but this
introduces another algorithmic state v; and a second smoothing factor 3’. Meanwhile, we notice that
the factor (1 — 3)? multiplying E;[¢?] is usually very small, especially for 3 close to 1. As a result,
any error in approximating E,[¢7] is attenuated by a very small factor, so it may not cause much
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Figure 1: Comparing AdamW and BCOSW-c with different momentum parameters.

difference. Therefore, for simplicity, we choose to approximate E;[g?] with g? itself. Combining
with approximating E,[g;] with m,, we arrive at the following conditional estimator for E,[m?]:

ve = B2mi_y +28(1 = B)me—y © my + (1= B)?gi. (20)
While this can be a very effective estimator, we derive another one that is much simpler and as
effective. The key is to approximate E[g¢;] in (T9) with m;_ instead of m;, which results in

vy = B2mi_y +28(1— B)mi_, + (1 — B)%g;

=1 -1=p)2)mi+(1-5) g 1)
It resembles the standard EMA estimator in Adam, shown in @), with an effective smoothing factor
pg=1-(1-p)7

but with v;_1 replaced by mffl. As a result, the estimator in (Z1)) does not need to store v;_1, thus
requiring fewer optimizer states. This also explains that the second smoothing factor in Adam, [3s,
corresponding to 8’ here, should be much larger or closer to 1 than 3. Specifically, 5 = 0.9 roughly
corresponds to 8’ = 0.99. The estimator in (21)) eliminates 32 as a second hyper-parameter.

Finally, replacing v; in BCOS-m with the one in produces Algorithm[3] We call it BCOS-c to
signify the conditional estimator. It has fewer optimizer states and fewer hyper-parameters to tune.

3.3 BCOS with decoupled weight decay

Weight decay is a common practice in training deep learning models to obtain better generalization
performance. It can be understood as adding an L, regularization to the loss function, i.e., mini-
mizing the regularized loss E¢[f(z, £)] 4 5 ||z||. Effectively, the stochastic gradient at z; becomes
V f (2, &)+ Ax. We can apply the BCOS family of algorithms by simply replacing g; = V f (x4, &)
with g; = V f(x¢,&) + Az¢. But a more effective way is to use decoupled weight decay as proposed
in the AdamW algorithm [31]]. Specifically, we apply weight decay separately in the BCOS update:
Tpp1 =@ — YO dy — apdzy = (1 — o) zy — v © dy.

We call the resulting method BCOSW following the naming convention of AdamW. Algorithm [4]
shows BCOSW with the conditional estimator. Other variants (-g and -m) can be obtained similarly.
A PyTorch implementation of all BCOS and BCOSW variants is given in Appendix [A]

4 Convergence analysis

In this section, we present the convergence analysis of BCOS and BCOSW. Due to space limit, we
focus on BCOSW and give comments on BCOS wherever apply. Our analysis consists of two stages.
First, we analyze the convergence properties of the conceptual BCOSW method

1

Ot — =
vV E[df]
It is called “conceptual” because we cannot compute E; [d7] exactly in practice. Then, for the practical

BCOSW algorithm with stepsize +; in (I8), we bound the difference between the expected steps
Ei[v: ® di) and E;[y; © di] = 3+ ® E[d;], which produces the desired convergence guarantee.

g1 = (I — o N)xy — 5 © dy, where Ve = (22)
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Figure 2: Comparing AdamW and BCOSW. Left: first 10k iterations; Right: all 100k iterations.

First, we need an appropriate condition to build our analysis. For the algorithm z; 11 = z; — 3¢ © dy,
the next iterate ;11 moves closer to x, in expectation if the expected direction —E;[¥; ® d;] aims
towards x, and oy (a scalar) is sufficiently small. For the conceptual BCOS method, we have

dy _ E.[d] _ E.[d:]? .
o \/Et[d%]] T M Bgar MV Edd] sign(E¢[dy]),

where sign(-) denotes element-wise sign function. Recall the definition of SiF in (T4). With single

E.[7: ©di] = By [

2
coordinate blocks, we can write the vector of coordinate-wise SiFs as p; = EEtt[ﬁ;Z]] € [0,1])™. Then
t

we have the expected update direction E; [y, © d;] = o \/pr © sign(E;[d¢]). Since a; > 0 is a scalar,
we omit it from the statement of the aiming condition below.

Assumption A (Aiming condition). There exists v, € R™ such that

(2 — 24, /Pt © sign(Ey[dy]) + Aze) > A2 — 2 (23)
holds for all t > 0 almost surely. If d; is independent of the past trajectory conditioned on x, i.e.,
E;[d;] = E[d¢|z], then it suffices to have 23) hold for every x € R™ (independent of the trajectory).

Notice that we have E;[d;] = E[d;|z;] when, e.g., d; = V f(z,&) and & is independent of x;.
The aiming conditions assume neither convexity nor smoothness, but it has some overlapping
characteristics with convexity, which we discuss in Appendix [B]

4.1 Analysis of conceptual BCOSW

Our first result concerns the one-step contraction property of the conceptual algorithm in 22).
Lemma 4.1. Suppose Assumption[A|holds, v, > 0 and cy\ < 1. Then we have
E [z — 2% < (1= aeX)? [y — .]® + abes, (24)

where ¢, =n+ X2 ||z, ||>+2) |z« ly. Thus for sufficiently small oy, Ey [||xt+1fx*||2] < g —.4 |2

In fact, we can prove the following much stronger result of almost sure (a.s.) convergence.
Theorem 4.1. Suppose the stepsize schedule { o }¢>0 and weight decay parameter X satisfy

a; >0, 0<ayA<1, Vt>0, and Yo = 00, Yooy ai < oo. (25)
Then Assumption[A]implies ||z, — x.|| — 0 a.s. for the conceptual BCOSW method (22).

In terms of convergence rate, we can readily obtain linear convergence to a neighborhood of x, with
a constant «; based on (24). In addition, we have the following result on sublinear convergence.

Theorem 4.2. Consider the conceptual BCOSW method [22) with the stepsize schedule oy =
where 1/2 < aX < 1 is satisfied. Then Assumption@implies that for all t > 1,
o2 (e, + ME[[lzo — z. || + 7%0?Ne /6) 1 (1 1

20\ — 1 t 2 " g2an )

@
t+1

E[|a, - 2.]%] <

Without decoupled weight decay, BCOS may also have almost-sure convergence if the aiming
condition with A = 0 holds with strict inequality for z; # z.. However, the O(1/t) convergence rate
no longer holds. The proofs of the above results are given in Appendix [C|
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Figure 3: Left: Adam/ AdamW with 8; o = (0.9, 0.99). Right: BCOS/BCOSW with 8 = 0.9.

4.2 Analysis of practical BCOSW

Now we consider the practical BCOSW method ;11 = (1 — ay\)xy — ¢ © d; with the stepsize
vector -y, given in (I8). Our analysis is based on bounding the difference between the expected
practical update E;[vy; ® d;] and the expected conceptual update E;[y; @ d;]. Intuitively, it boils
down to the quality of the estimator v;. Specifically, we need the following assumption on its bias.

Assumption B. There exists 7 > 0 and € > 0 such that for all t > 0 it holds that
|Ei[v] — Eo[d7]| < TE[d}] + €. (26)

Based on this assumption, we have the following bound on the expected update directions.
Lemma 4.2. Under Assumptions[B] we have the following bound at each iteration t:

E, [dt] dy E, [dt]
E;[d7] v [m] = m + O(e) + O(Vary(vy)), 27

where O(Vary(v;)) includes terms such as Bi[(dy — E¢[dy]) (v; — Ei[v])?] and Ei[(vy — E¢[vg])?]
and higher-order terms. The coefficient c; is defined as

. '_4T+372+8+47’+372( 1 N 1 ) (28)
b 8 16 SNRy(vi +€)  /SNRy(d;)\/SNRy(v; +€)/

Here, SNR;(-) denotes conditional Signal-to-Noise Ratio. Specifically, SNR;(d;) = \]Z;t[’?;l]j) = 12

and SNRy(v; + €) = V?r[:)(tvtﬂ:) = EVZ;Z (t:]; . This leads to the following result for practical BCOSW:

Theorem 4.3. Suppose Assumptions[A|and[B|holds, {c} satisfies 23) and ||d;|| is bounded almost
surely. Let § be the smallest constant such that, for all t > 0,
2¢|[v/pell + O(€) + O(Vary(v)) < Ad. (29)

Then we have limsup,_, . ||x; — x.||? < 6% meaning a.s. convergence to a neighborhood of ..
In fact, it is sufficient for A to be the lim sup_, ., of the left-hand side of (29) (see Appendix [D.2).

We notice from (28)) that ¢; is small if the estimator v; has low bias (small 7) and low variance (high
SNR). In addition, it also helps to have high SNR of d;, for example, by using m; rather than g;.

Let’s examine the bias-variance trade-off of the effective estimator v; used by popular optimizers:

 The classical SGD method (with d; = g; or d; = m;) effectively uses a constant v;, which has
zero variance but high bias |E;[v;] — E¢[d?]| = |v — E4[d?]| for some constant v.
* Sign-SGD effectively uses v; = d?, which has no bias but high variance Var;(v;) = Var;(dy).
* The conditional estimator of BCOS-c has the following bias and variance (see Appendix [E))
Ei[v] — Eq[df] = 2B8(1 — B)my—1 (mi—1 — Bi[ge]), Var (v;) = (1 — B8)*Var,(g7).
Its bias is a small fraction of the bias of m;_; and it has a very small variance.
* For Adam, we do not have a simple expression for its bias, but Var;(v;) = (1 — B2)*Vary(m?).

In summary, our convergence analysis can be applied to a variety of different optimizers, including
Adam and AdamW, by characterizing their bias-variance trade-off (see Appendix [E).
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Figure 4: Left: ResNet-20 on CIFAR10. Right: Vision Transformer on ImageNet.

5 Numerical experiments

We present preliminary experiments to compare BCOS with Adam, specifically their variants with
decoupled weight decay. Among the BCOSW family, we focus on BCOSW-c (Algorithm [@).

Our first set of experiments are conducted on training the small GPT2 model with 124 million
parameters [360] on the OpenWebText dataset [16]. We use global batch size 512 and run all
experiments for 100k iterations with the first 2k for linear warmup and then cosine decay on {c }.
The default hyper-parameters are chosen (based on a coarse sweep) as: peak stepsize amax = 0.002,
final stepsize i = 0.01amax, € = 107% and weight decay A = 0.1.

Figure[I] (left) shows the test loss of AdamW with different combination of $; and 5. For each value
of 81 € {0.8,0.9,0.95}, we choose the best 3 after sweeping 82 € {0.8,0.9,0.95,0.975,0.99}.
Their final loss achieved are all very close around 2.82. For most (31, 82) combinations, we observe
loss spikes, especially at the beginning of the training (as shown in the inset). In contrast, Figure|[T]
(right) shows that BCOSW-c obtains the same final loss but with very smooth loss curve.

Figure [2] compares the test loss of AdamW against the three variants BCOSW-g, -m, and -c. We
observe that BCOSW-g is significantly worse than the momentum-based methods. The loss curves for
the momentum-based methods are all very close, but with spikes for both AdamW and BCOSW-m.

Figure [3| illustrates the difference between algoritms with and without decoupled weight decay.
BCOS-c converges to much higher loss than BCOSW-c, and different values of A (weight decay)
makes dramatic difference for BCOS-c but cause little change to BCOSW-c. The same phenomenon
happens for Adam versus AdamW, and we again observe spikes from their loss curve.

Finally, in Figure ] we compare different algorithms for training ResNet-20 [20] on the CIFAR10
dataset [27]], and also training the Vision Transformer (ViT) [50] on the ImageNet dataset [[L1]. For
the ResNet task, we tried both cosine decay (drop by factor 100) and step decay (drop by 10 at
epochs 80, 120, 150). The hyper-parameters chosen are: 5 = 0.9 for SGD and BCOSW-c, and
B1.2 = (0.9, 0.99) for AdamW. We observe that the best-performing stepsize schedules are quite
different for different methods. This prompt the need of tuning hyper-parameters for BCOSW for
different tasks even though it shares similar tuned hyper-parameters as AdamW on the GPT2 task.

For the ViT task, although the best tuned stepsize schedules are similar between AdamW and BCOSW,
their training and test curves look quite different. Figure 4] (right) shows that the test precision curves
for BCOSW-c raises slowly but reaches slightly higher precision at the end.

These preliminary experiments demonstrate that BCOSW-c can obtain competitive performance
compared with the state-of-the-art method AdamW, but with fewer optimizer states and fewer hyper-
parameters to tune. We are conducting additional empirical study to fully understand its potential.

6 Conclusion

BCOS is a stochastic approximation method that exploits the flexibility of taking different coordinate-
wise stepsizes. Rather than using sophisticated ideas from optimization such as preconditioning,
it builds upon the simple idea of coordinate-wise contraction and focuses on constructing efficient
statistical estimators, especially through conditional expectation, in determining the stepsizes.
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A PyTorch implementation of BCOS

Listing 1: BCOS and BCOSW implementation as a single PyTorch Optimizer

import torch
from torch.optim import Optimizer

class BCOS_short (Optimizer):

def

def

__init__(self, params, lr, beta=0.9, eps=le-6,
weight_decay=0.1, mode='c', decouple_wd=True):

defaults = dict(lr=1r, beta=beta, eps=eps, wd=weight_decay)
super () . __init__(params, defaults)

if mode not in ['g', 'm', 'c']:

raise ValueError (£"BCOS mode {mode} not supported")
self .mode = mode
self .decouple_wd = decouple_wd # True for BCOSW

step(self, closure = None):

for group in self.param_groups:
lr = group["1lr"]
beta = group["beta"]
eps = group["eps"]
wd = group["wd"]

for p in group["params"]:
if not p.requires_grad:
continue

state = self.statel[p]
g = p.grad

# initialize optimizer states for specific modes

if self.mode in ['m', 'c'] and 'm' not in state:
state['m'] = g.detach().clone()

if self.mode in ['g', 'm'] and 'v' not in state:
state['v'] = g.detach().square()

# decoupled weight decay or absorb in gradient

if self.decouple_wd: # p := (1 - 1r * wd) * p
p-data.mul_(1 - 1lr * wd)
else: # g = g + wd *x p

g.data.add_(p.data, alpha = wd)

if self.mode in ['m', 'c']:
m = state['m']
if self.mode == '°c':
beta_v = 1 - (1 - beta)*x*2
g2 = g.detach().square()
v = beta_v * m.square() + (1 - beta_v) * g2
# update momentum

m.mul_(beta).add_(g.detach(), alpha=1 - beta)
d =m
else:
d = g.detach()
if self.mode in ['g', 'm']: # EMA estimator
v = state['v']

v.mul_(beta).add_(d.square(), alpha=1 - beta)

# BCOS update: p := p - 1lr * (d / (sqrt(v) + eps))
p-data.add_(d.div(v.sqrt() + eps), alpha= - 1r)

13



478

479
480
481
482

484

485

486
487

488

490
491
492

493
494

495

496

497
498
499
500

501

503
504

505
506
507

508
509

B Aiming condition and convexity

In the paper we have focused on the special case of single coordinate blocks. To investigate the
relation between the aiming condition and convexity, it is more instructive to examine the general
block structure. For general block partitions U}, Zj,, employing a block-coordinate stepsize vector
s¢ where each block Zj; of s, is defined as s; , = 7 115, yields iterative methods of the form

Tpp1 = Ty — 8¢ O dy, (30)
with conceptual BCOS stepsizes
~ 1
’Yt,k:72, k:].,...,nl.
E[lldsr]"]

The corresponding aiming condition is as follows, which guarantees one-step improvement.
Assumption C. There exists x, € R™ such that

i<zt—x*,Et[dt]> >0, 3D
]

k=1 E, [||de”

holds for all t > 0 almost surely. If d; is independent of the past trajectory conditioned on x, i.e.,
E.[d:] = E[d¢|x), then it suffices to have (1)) hold for every x € R™.

Assumption [C|allows us to conduct a comparative analysis of the aiming condition and the classical
convexity assumption, highlighting their similarities and key differences. For the sake of simplicity
in our exposition, we will assume that the stochastic search direction d; is trajectory independent,
ie., E[d;] = E[d|z,], allowing us to drop the subscript t. We further assume that d; satisfies
E[d] = V f(z). Simplifying (3I):

m

Ty — Vf(z)k>
§<k T @) 2 T (32)

In the specific case of a full-dimensional block stepsize, where 7; = L

€ R, is ascaler and

the stepsize vector is s; = 7;1,, the aiming condition simplifies to: el
(x —x,, Vf(z)) >0, V. (33)
Condition (33) is directly implied by the classical convex assumption, which states:
(r -y, Vf(x)-Vfy) =20, Vay (34)

To see the implication, simply substitute y = x, and V f(z.) = 0 into the above convex inequality.

However, the aiming condition under a general block partition exhibits a significant departure from
the classical notion of convexity, as expected update directions deviate from true gradients and
become axis-aligned. Consider the extreme case of coordinate-wise stepsizes, where s; = 7; € R"

. ~ o 1 _ 1 . . . .
and each element is chosen as ¢ , = TG TG The specific choice of stepsize yields
an aiming condition of the form:

(x — x4, sign(V f(z))) > 0, V. (35)

To illustrate the fundamental differences between this coordinate-wise aiming condition (35) and the
standard convexity assumption (34)), we provide the following two counterexamples, each satisfying
one condition while failing the other:

* Aiming but not convex: Let f(z) := log(x) with the optimal solution z, = 0. On the domain of
R, the gradientis f”/(z) = 1, and thus sign(f’(z)) = 1 for all z > 0. Consequently, for any
z € R4, we have

(x — x4, sign(V f(z))) =2 >0,
satisfying the aiming condition (33). However, log(z) is a concave function, thus failing the
convex inequality (34).
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* Convex but not aiming: Consider the quadratic function class f : R? = R, f(z) = 127 Ax.
Choose coefficient matrix A:
1 -2
[_2 . ] -0,

1= (5)(5) -

Since A is positive semidefinite, the function f is convex and attains its minimum at z, = 0.

The gradient of f is
_ _ xr1 — 21‘2
510 Evaluating the aiming condition (33) at z = (1.5,1)7, we get
(x — x4, sign(V f(z))) = 1.5 x sign(—0.5) + 1 x sign(1) = 1.5 x (-1)+1x1=-0.5<0.
511 Thus, the aiming condition (33) at this point even though f is convex.

sz C  Convergence analysis of conceptual BCOSW

513 First, we notice that the aiming condition is Assumption [A]is equivalent to
<l‘t — Ty, \/E ® SlgI‘l(Et[dt]) + /\$*> > O7 (36)
514 because

(z — @, /pr © sign(E[dy]) + Az, )
:<l‘t — Ty, \/EQ mgn(Et[dt]) + /\J}t — )\.’L‘t + )\$*>

:<J)t — Ty, \/EQ mgn(Et[dt]) + /\J}t> — )\Hl‘t — $*||2
515 We use it to prove Lemmal[4.1]

ste  Proof of Lemma[.1} Given xy41 = x4 — 3¢ © dy — cpxy, we have

2
Qi
Et[||.’L‘t+1 - Z‘*HQ] = Et T — ——= O dt — (JétAJ?t — Tx
E;[d7]
B 2
O
=E; [||(1 — M)z — Odi — (1 — apN)x. — Az,
E;[d7]
«
= Et ||(1 — Olt>\)($t — z*)”Q — 2Et <(1 — OétA)(It — IL‘*), ﬁ O) dt + O[t)\x*>
t1%

2
Qi

VE([d?]

E.|d
= (1= aN)? ||z — 2 ])® = 200 (1 — ) <act — I, _Buldi] + )\x*>

VE[d]

+ E; O ds + aiAx,

E
+a? Z (1 + %22 4 20 [9.1] )
k E[d7 ;]

= (1 —aN\)? ||y — x*||2 —20u(1 — oy A) (@ — @, v/pesign (Ee[dy]) + Az)
o7 > (14 Na2y + 222 o /prasign (Ee[dy 1))
k

517 Under Assumption [A] the aiming condition in (36) implies that the inner product in the last equality
518 above is non-negative. With oy > 0 and oy A < 1, we can drop the inner product term to obtain

Billlwen — 227 < (1— ah)? [l — el + 03 3 (14 A2 4 + 27 i/rrsign (Bldy i)
k

< (1= @) o — 2ol + a2(n + 22 2. > + 2 2. )
st9  where the last inequality follows from the loose upper bound . /p; rsign (Eq[d; x]) < 1. O
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533
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536

537

The proof of Theorem f.1]follows from the following almost supermartingale lemma.

Lemma C.1 (“Almost supermartingale", Theorem 1 [39]). ) Let (2, F, P) be a probability space, and
Fo C F1 C ... bea sequence of sub-c-algebras of F. For each t, let Xy, ay, by, ¢y be non-negative
Fi-measurable random variables such that

E[Xt+1|]:t] S Xt(l + at) + bt — C¢. (37)

Given Y o qar < coand Y o by < oo, then limy_, o Xy exists and is finite, and Y ;2 ¢; < 00
almost surely (a.s.).

Proof of Theorem]) Define X, := |z, —x.||> and F; to be the o-algebra generated by
Xo, -+ , X;. Lemmafd.T]implies the following recursive relationship

E[Xy 1| 7] = Bi[we — 2.]°]
< (1= apN)? ||z — 2 ||” + e
= (14 a?X?) ||z — z.|)* + aZen — 200\ ||z — 2|
=(1+ay) X¢e+ b — ¢y,

2
In the form of (37), we have a; = a?\?, by = aic., ¢; = 204\ ||z — 2.||”. Here, Xy, ay, by, ¢; are
trivially non-negative, and the squared summable assumption of ; guarantees:

iat:iaf)\2<oo7 th Zatc*<oo
t=0 t=0

So far, we have verified all the assumptions in Lemma@ so we conclude that

oo oo
X, = ||z — 2.]* = X as. for some X < oo, th = Z2o¢t)\ |z — 2.]° <00 as.
t=0 t=0

This is compatible with }_,° /&y = oo only if
|z, — 2| > 0 as.,

as desired. O

To quantify the convergence rate, we study the upper bound on the expected distance to the optimal
solution E[||z7 — . ||*], after recursively applying BCOSW for T iterations.

Theorem C.1. Suppose Assumption[A holds, a; > 0 and oy < 1. The expected distance to x,
admits the following upper bound after T iterations of BCOSW:

T-1 T—1 T-1
El|or — 2.]% < [] (1 - a:A)’E [||x0 - x*\ﬂ v (1—ap))?a2e,,  (38)
t=0 t=0 t/'=t+1

where ¢, := (n4 X2 ||z, |” + 2\ ||z 1) denote the constant residual that depends on x..
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s  Proof. Taking expectation of the recursive relationship (24) and applying the law of total expectation,
539 we obtain:

2 2
El|or - .|%] = E [Broaller - o.]]
<E [<1 —ar N2 laro — ol +0d_se.]
1 —ar_1A\)°E {HxT 1— Tl } +ak e,

1= ar 1B [Bralor—s — 2.lP)] +a_ye.

< (1-ar B [(1 - az o)) oz - ac*||2 n a§_2c*] + a%_lc*
(

T-1 T—

<[] (1 - aNE [||g;0—x*\|2] + (1 - ap)2aes,
t=0 t=0 t/'=t+1

,_.
!
=

540 as desired. O

s41  Different choices of stepsize schedule lead to different convergence behaviors. Next, we consider two
s42 choices of a: (i) diminishing learning rates oy = t%l, which leads to Theorem and (ii) constant
543 learning rates a; = o which lead to linear convergence to a neighborhood of ..

544 The proof of Theorem {.2]is a direct application of a classical result in the 1954 paper of Chung’s [7]).

545 Lemma C.2 (Chung’s lemma, Lemma 1 from [[7]]). Suppose that {X;} is a sequence of real numbers
546 such that for t,

a b
X1 < (1 - 2) X: + praug (39)

547 where a > p > 0,b > 0. Then
b 1 1 1
Xt<a—ptp+0<tp+1+ )

s48 Proof of Theoremd.2] Taking expectation of both sides of 24) with o, = ;%5 at iteration 7', we
549 have

E[|er — .|

< (1—ar—1A)’E[|zr_1 — ff*||2] + a7 e

2 o2
aA

20\ o?
= (1= 22 ) Blloros — 21+ 5 (e + Bllors - 0.]1)

2aA 9 o’e,
< (122 Blleros - o)+ 5

ag)\Q T-2 al 2 T—-2 T-2 2 CYQC*
e (H) (1_t+1) E[”mo_x*H > 11 ( t’+1> (t+1)2>’

t= t=0 t'=t+1

ss0  where the last inequality is in light of (38) in Theorem @ and oy = 7. Upper bounding
2
551 ( —;{%) by 1 yields:
20\ 9, 02c.  a2)? 1 <2 ale,
— T 1—-— | E 1 — T4 — E[ — T } .
Biler 1" < (125 ) Bller — S+ S (B[l =] + 3 5
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552
553

554

555
556

557

558
559

560
561
562

563
564

565

566

570
571
572

573

574

. . —_ _ . . . . 2 .
Further replacing the finite sum ., ﬁ = Y2121 & by its infinite version =, we obtain a

recursive relationship in the form of (39):

20\ e, a2 m2ae,
Bller - .17 < (1= %2 ) Blloros - o+ 5t + o (B [loo - o] + T5 ),

T2 T2 6

6
which satisfies the Chung’s assumptions @ > 1 = p > 0,b > 0 because aX € (0.5,1). Lemma|C.2|
implies

, 0%+ 0 (B llng — ] + 22 ) L
E[|lar — 2] < — 240 ()

as desired. O

with X, = E[|z1—1 — 2.]*],a = 20\, b = a2c, + a2 (E {||x0 - :c*HQ} + &) and p = 1,

With a constant stepsize, we obtain linear convergence to a neighborhood of z., as stated in the
following corollary.

Corollary C.2. Fix learning rate schedule oy = o where « satisfies a\ < 1. Let x;’s be a sequence
generated by applying the conceptual BCOSW. Under Assumption[A] the asymptotic expected distance
to ., admits the following upper bound:

0620*

1—(1—aN? “40)

Ellar - 2. £ (1= a)™E |20 - 2] +

Proof. A direct application of Theorem [C.1] with a; = « yields the following upper bound on:
E[||zr — .||

~
Ju

E[|zr — z.]*] < (1 — a))*'E [on - m*\ﬂ + (1 — a2 T2,

~+
I
o

S

— (1-aN¥E [||x0 - x*\ﬂ +37(1 - an)ale,
t

I
=

0426*

<(1- Oz)\)QTE [HCEO - JJ*HQ} + m,

which decreases exponentially with 7" and converges to a constant. O

D Convergence analysis of practical BCOSW

D.1 Proof of Lemma [4.2]

We first prove Lemma £.2] To proceed, we decompose the error between the expected search
directions into two parts (elementwise inequality between vectors):

Eq[d] _E[ d ] Eide] _ Eildy] Bldl g {Idt ]
VE[&] Vutel| T\ VE@E]  VEivl+e| |[VEiul+e  Vortel|

(4D
Under certain assumptions on the quality of the estimator v;, we demonstrate that the practical update
approximates the conceptual update in expectation by bounding the two terms on the right-hand side
separately.
Assumption [B]leads to an upper bound for the first error term in @I).

Lemma D.1. Under Assumption|B} it holds that:

Et [dt] Et [dt]

_ < A1 + 372
VEd7]  VE[v] +e

8

Et [dt}
E;[d7]

O(e). 42)
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575

577

579

580

581
582

583

584

585

586

587

Proof. The proof leverages the second-order Taylor expansion of g(y) := ﬁ:
1 1 3
~ ! - 2 / - - 7" _ 2

9y +0) = g(y) +9' () + 59"(y)6",  where ¢'(y) 23 Y (y) e
Applying Taylor expansion at y := E,[d?] with § := E;[v;] + € — E;[d?] yields the following
approximation:

Eid)  Eid]

VEdZ]  VEi[v] +e

= |E[di)(9(y) — g(y +9))|

= Bldl(a/ )0 + 39" + 06

_ 1 2 3 21\2
~ |Buld] (= g (Bl 4 ¢~ B + g - (Balod + e~ BE)? )| 4000
1 3
<|Edd] (s - TEd]] + —= gy - T E4[d]]? 43
— t[ t] <2Et[dt2]3/2 T t[ t} + 8Et[dt2]5/2 T t[ t] +O(€) ( )
2
g 47 + 371 Et [dt] 0(6)7
8 E,[d}]
where is a consequence of Assumption [B] O

E.[d:]

, We present

—E, [ ;i:Jre}

a useful approximation for general differential function g.

Lemma D.2. For any differentiable function g and random variable X € R", the following
expansion holds:

B [¢(X)] = g(BIX)) + 5 (V?g(B[X]), Cov(X) + Z 2 b - Bl @

where (-, -) denotes matrix inner product, i.e, (A, B) = Tr(ATB), and p € N" and

alelg L gmttng

p = =

Proof. Let § := X — E[X]. The second-order Taylor expansion of g at E[X] yields
Dr
9(X) = g(BIX]) + Vg(BIX])"5 + 267V 5+Z on
Taking expectation with respect to X, we have

Blo(X)] = (B[X]) + Vo(BIX)) B[] + ;B V2g(B[X])3] + Z ng E[57]

— G(ELX)) + 0+ L(2(BIX]). BsT)) + Y Dgp!)E[ap} ,
where E[§67] = Cov(X) and E [§"] = E[(X — E[X])?]. O

The following lemma provides an approximation for E[g] with ¢(Y, Z) := %
Lemma D.3. Let Y, Z be two random variables and Z > 0 almost surely, then
E [Y} _ E[Y] (1 ~ Cov(Y, Z) n 3Var(Z))
E[Z] 2E[Y|E[Z] 8E[Z]?

VZ
+0 (E[(Y - E[Y))(Z - E[Z])?]) + O (E[(Z - E[Z])’]).

(45)
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s88  Proof. We apply Lemmawith X :=(Y,Z)and g(z) = g(y, z) := . First, the gradient and
s89 Hessian of g can be calculated as
1

0, —337
Vg(z) = Vg(y, z) = ( = ) V3g(x) = V3g(y, z) = [ ) 5 ] :

__Y _ Y
223/2 223/2) 425/2

se0  For general p-th partial derivative, we derive the following result for any ¢ € [0, p]:

b p—a /g 0 ifg>2,
0 g — 0 (8 g) _ 36:;;11% _ (71);071%27%2—1 ifq: 1’7
5‘yqazl’*q 0zP—4 8yq o 1 1 p(2p) 201 o=
Yooz = (S0P mryz 2 ifg=0.

591 which Substitute the gradient, Hessian and p-th order partial derivative into (44), we get

Y
E [
7)
EY] o {(Y - E[Y))(Z - E[Z])} B {3E[Y](Z - E[Z])T
E[Z] 2E[Z]3/2 SE[Z]5/2

p(2p—2)! o | (Y - EY])(Z - E[Z])"" »20)' o | EY](Z — E[Z])”
B Z <4p ! 1)~E E[Z)" T g P E[Z]*" )

- EE;] - SEgTE  spg + O (BUY — EY)(Z - ELZ)?) + O (B{Z - El2)))
_ E[Y] <1 ~ Cov(Y,Z) | 3Var(2)
= /B[] SE[Y|E[Z] = SE[Z]

502 as desired. O

)+ 0 Iy ~ EIY))(2 ~ BIZ)7) + O (B{Z - B(Z])).

593 A combination of the consequence of Lemma|[D.3]and Assumption B culminates in an upper bound
594 on the second error term.

ss5  Lemma D.4. Define signal-noise-ratio SNR(Y') := \]2 trf[l(/g,]j Under Assumptions@ we have
E¢[d,] E { dy ]
— By
Et[vt} + € \/’Ut+6
<<8+4T+372) 7C0rrt(dt7vt—|—6) l71+ 3 Et[dt]
- 8 SNRt (’Ut + E) Pt 8SNR’t(Ut + 6) E, [d%}

+0(e) + O (Be[(Y = By [Y])(Z — Ee[2])°]) + O (Ee[(Z — E4[Z])%))

so6  Proof. Following Lemma[D.3|with Y :=d;, Z := v; + €, we get

Et [dt} _E |: dt :| Et [dt} ) ‘ COVt (dt, V¢ -+ E) 3Vart (’Ut + 6) (46)
E;[v]] + ¢ VUt € E;[v]] + ¢ 2E4[d]E¢[vr + €] S8Et[vy + ¢]?

+O (B(Y — B [Y])(Z — E[Z])%]) + O (Be[(Z — Ee[Z])%)) -
597 We express the covariance between d and v + € based on the definitions of SNR as follows:
Cove(ds, vy +€) Var,(d;)Vary (v + €)
\/Vart dy)Vary(ve + €) | E¢[di]?Ey[vg + €]
Corry(dy, vy + €)

COVt(dt, vt + 6) = Et[dt]Et [’Ut + E} .

= E;|d;|E¢|vs + €
el el \/SNRt (d)SNRy (v, + )
where SNR;(d;) is closely connected to the signal fraction p;, defined as p; := %:
E.[d]* 1 1 1

SNR,(d;) =

Var,(dy)  Var,(dy)/Ee[dy]?  (Vary(dy) + Eeldi)?)/Ee[di)? — 1 1/p—1°
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se8  The first term (6) admits the following upper bound:

@ N Et [dt] | COVt (dt7 vt + 6) 3V3.I't (’Ut + 6)
Et [vt] + € 2Et [dt]Et [’Ut =+ 6] 8Et [Ut + 6]2
- Et[dt] S E[dt]E[Ut + 6] ) COI'I't(dt, v + 6) i 14 3
Ei[ve] + € 2E;[di]E¢[vs + €] \/SNR,(v; +€) V pt 8SNR¢ (vt + €)
- Et[dt] S COITt(dt, v + E) l 14
Ei[vi] + ¢ 24/SNR;(vs +€) V pt 8SNRy(v: + €)
2
§8+4T+3T _ COI'I't(dt,Ut +€) l 14 ) Ef[dt} +O(e)
8 24/SNR;(v; +¢€) V pt 8SNR¢ (vt + €) E,[d?]
(47
se0 where (7) is given by Lemma|D.1] O

600 Combining the upper bounds on two terms on the right-hand side of @I), we finally can prove
so1  Lemmal2]

602 Proof of Lemma It follows immediately by triangle inequality, Lemma[D.T]and Lemma[D.4]

E; [dt} E; [dt] E; [dt] E { dy }
B t
\/Et [d%] \/Et ['Ut] +€ \/Et [’Ut} + € \/Ut + €
471+ 372 | E,; [dy] 8 + 47 + 372 | Corr, (di,ve +€) i L 3 . E.[d;]
S g Ey[d?] 8 2v/SNR;(v; +€) V pr 8SNRy[v; + €] B

+0(e) + O (Be[(Y = Ey[Y])(Z — Eo[2))%]) + O (Ee[(Z — E4[2])%))

es  Finally, bounding |Corr,(d, v, + €)| by 1 and recognizing - — 1 = m give the desired
604 result. O

605 D.2 Proof of Theorem[d.3|
606 1o prove Theorem@ we can use a classical result on stochastic approximation originally due to
607 Dvoretzky [15]].
sos Theorem D.1 (An extension of Dvoretzky’s Theorem). Let (2 = {w}, F, P) be a probability space.
600 Let {x:} and {y:} be sequences of random variables such that, for all t > 0,

T (w) = Ty (wo(w), ..., 2 (w)) + ye(w), (48)
610 where the transformation Ty satisfy, for any xg,...,x; € R",

HTt(mo, I R [ max{as, (1+ b)

|2 — 2.2 _Ct+dt} 49)

611 and the sequences {a;}, {b:}, {c:} and {d;} are non-negative and satisfy

o0 (o] o0
tlggo at = Goo, z;bt < 00, Zoct = 00, Zldt < 0. (50)
t= t= t=

612 In addition, suppose the following conditions hold with probability one:
El|zol’] < oo, Y E[|wl*l <o,  Elylxo,...,z]=0 Vt>0.
t=0

613 Then we have with probability one,

limsup ||z — 2.[]? < Goo.
t—o0
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6

4 Remark. There are many extensions of Dvoretzky’s original results [15]]. Theorem[D.I]is a minor
5 variation of Venter [S1, Theorem 1]. More concretely,

616 * Theorem 1 of Venter [51]] has the sequence {a,} being a constant sequence, i.e., a; = G for
617 all ¢ > 0. The extension to a non-constant sequence {a;} is outlined in the original work of
618 Dvoretzky [[15] and admits a simple proof due to Derman and Sacks [12].

619 * Theorem 1 of Venter [51]] does not include the sequence {d; }. The extension with Ztoi gdi < o0
620 is straightforward based on a simple argument of Dvoretzky [15].

621 * More generally, the sequences {a:}, {b:}, {c:}, {d:} can be non-negative measurable func-
622 tions of zq,...,x, and the conclusion of Theorem holds if a., is an upper bound on
623 lim sup,_, . a+(xo, . . ., z¢) uniformly for all sequences xo, . . ., ¢, . . . [12L[39].

624 We also need the following lemma.

625 Lemma D.5. Under Assumptions[B} it holds that

dy E, [dt]
EtK”m“w+f>}Z<“I“Em@>
— e = .| (ecllv/pill + O(€) + O(Var,(v,) )

626 where c; is given by (28).

E,[d:]

v E¢[d?]

v di  Eildy]
¢ Yo+ € \/Et[df]

Et[ vilt-&-J N EEt[E%}

627 Proof. Adding and subtracting the term from the inner product, we obtain:

_ d,
Etﬂ@‘fﬁ¢a+eﬂ
[, B
t - t * 9 \/m
[ E.[d;]
>E,; -<$t — T, m>] —|lzs — x| -

> (ay -2, BN ) (e
E,[d?]

628 where the inequality is due to Lemma To finish the proof, we recall /p; = E:[d:)

+ E;

Et [dt]

E;[d7]

+O(e) + O(Vart(vt))> , (5D

VE[d?]’

629 Proof of Theorem We can write the practical BCOSW algorithm as

dy
T =1—-—oNr: — «
t+1 ( t )t tm
dy [ dy ] dy )
=(1—o Nz —oEi| ——| + | E —
( t)t t t|: /7Ut+€:| t( t_\/Ut+6_ \/Ut+€
630 In terms of the decomposition in (48), we have z;1 = Ti(xo, - .., x¢) + y¢ Where
T( ) = (1 —aA) o
o, . .., Tt) = — QA )Ty — Ol
t 0 t t t t f_m_

_ E dy _ dy
Yt = O t S Fe NOET: .

ss1  Apparently we have E;[y;] = Ely;|zo,...,2¢] = 0. We also have > ;= E[||y;||*] < oo with a
632 bounded assumption on y; due to the assumption Zfi 0 al < oc.
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638

639

640

641

642

643
644
645
646
647

The squared distance between T} (zo, . . ., z;) and z, is
2

d
||Tt(x07 ceyTy) — x*Hz = H(l — Nz — By [\/ﬁ} — T,

dy
= (1 — o N)?||lzy — 2. ||? — 200 (1 — M) <xt — ., Ey {} + )\x*>

\ Ut +€

2
+af

dy
E AL,
t|: /7Ut+€:|+ T

From Lemma [D.5]and the aiming condition (36), we have

<xt — ., E [\/1%] +)\x*> > <xt -, E;;[:[l;]?] +/\x*> — (CtH\/FtH +O(e) + O(Vart(vt))) [ — 24|

~ (el varll + 0(e) + O(Vari (v0)) ) lloe — ..
In addition, by the bounded assumption on d;, there exist a constant B such that

d 2
HEt[ i }—F/\a:* <B, VYt>0.
’Ut+6

v

Together with 0 < 1 — ay A < 1, we conclude that
| Tutos ) = u* < (1= @) e = 2?4+ 200(1 = @) (el Vrll + O(6) + OVars () ) o — .|| + a? B
< (1= ah)? fae — 2. * + 200 (ll Vol + O(e) + OVary(w0)) ) 2 — @ + o} B
— (14 a2A?) |l — 2.2 + o (2el| rll + O(6) + O(Vars (v0)) |z — .|
— 20 \||lzy — zo||* + 2B
= (1+a?A?) oy — 2. * + o (26l /Bl + O(€) + O(Vary(ve))) e = .| = Mz — )
— oMy — 24 + 2 B.
We observe that there exist § > 0 such that
loe =z >0 = (2e|v/pell + Ole) + O(Vary(v,))) [lzs — ]| = Allzs — 2.|* < 0.
Therefore, ||z, — .|| > ¢ implies
Ty (zo, . .. 21) — x])* < (142X ||z — 2. || — e[| we — 2|2 + a2 B.
Otherwise, when ||a; — 2] < d, we have
1Ty (w0, ) = 2| < (1= @ X)?0% + 20, (el /pelld + O(e)) + af B
By defining a; as the right-hand side of the above inequality, i.e.,
ar = (1 — ayN)?6% + 2 (c||/pe |6 + O(€)) + o} B, (52)
we can combine the above two cases as
Ty (zo, ... a1) — x> < max{a, (1 4+ a7 \)||ze — 2. |* — aeA||ze — 2.]]* + of B}.
With the additional definition of
b = aZ\?, cr = auN|zy — 24]?, dy = 2B,
we arrive at the key inequality (49).

We are left to check the conditions in (30). Using the assumptions on {c }, the definition in (52)
implies that a; converges and lim;_,, a; = 62. The conditions on {bt} and {d;} are automatically
satisfied. For {c,}, if ¥_,~,¢; < oo, then we must have ||z; — z,||*> — 0 almost surely and the
conclusion of theorem holds trivially. Otherwise, _,° , ¢; = oo allows all the conditions in (30) to
hold, so we can invole Theorem [D.T]to conclude the proof. O
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E Biases and variances of second-moment estimators

Lemma[4.2] provides guidelines for choosing the second-moment estimator v;, which should exhibit:
¢ low bias (i.e., low 7);
* high signal-to-noise ratio (i.e., high SNR);

However, there is always a bias-variance tradeoff for various estimators v;. Here are some examples:

1. Sign-SGD is equivalent to take v; = d7, exhibiting low bias and high variance
Bias = |E¢[v] — E¢[d?]| = 0, Variance = Var(v;) = Var,(d;),

with resulting update rule to be sign-SGD (with and without momentum corresponding to
dy = g+ and d; = m, respectively):

dy
s/d% +e€

2. Standard SGD is equivalent to take v; = ¢ for some positive constant ¢, exhibiting high bias
and low variance

Bias = |E¢[v] — E¢[df]| = [c — E¢[d}]|,  Variance = Vary(v;) = 0,

Tgr1l = Tp — ~ xy — aysign(dy).

with resulting update rule to be SGD (with and without momentum corresponding to d; = ¢,
and d; = m; respectively):

dy

/
l’t+1 =Tt — O =Tt — thdt,
Ve+ €
where o := \/(j’?

3. BCOS-m uses v; = EMA 5(d?), exhibiting non-trivial bias and low variance properties:

Bias = |Eq[ve] — Eq¢[d}]|

t
=B | Y _(1-p)B8 7 dy | — By[d]]
k=1

S - BB FE + (1 - BB, [&] - Eula?)

t—1
= > _(1—p)pt~*d} — BE, [d?]

k=1

As for the variance, we get

t

Var, (v) = Ey (Z(l = BB =Y (1 - B)B““Et[di]>
k=1

k=1
i t—1 2
B, (zu BB 4 (1 B - SO(1- HF R — (1 mEt[dz])
k=1 k=1

= (1— B)E: [ (d — Exfd}])’]
= (1 — B)?Var, (df) .

4. Adam uses estimator v; = EMAg, (g7) with search direction d; = EMAg, (g;): exhibiting
non-trivial bias and low variance properties:

Bias = |E;[vs] — E¢[d?]]
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t
= B |20 - sk
k=1

t 2
- E [(Z(l - mmi—kgk) ]
k=1

t—1 t—1 2
> (1= Ba)BE Fgp - (Z(l - 51)5f_k9k>
k=1 k=1

t—1
(Z(l - ﬂl)ﬂf_kgk> E¢[g:]

k=1

IN

+ 2

+|(1 = B2)Eq l97] — (1 - 51)2Et[9t2]| .

665 As for the variance, we get

[/ ¢ t 2
Vart(vt) =E; (Z 1- ﬁQ 5 b 2 Z(l - ﬁZ)ﬁéikEt [91%]) ]
k=1 k=1

-
I

1 t—1 2
=E ( (1- 52)55%91% + (1= Ba)g; — Z(l — B2)B5” kgli (1- 52)Et[9t2]> ]

1 k=1

=~
Il

=(1-B2)°E, [(df - Et[df])z}
= (1 — B2)?*Var; (d7) .

666 5. BCOS-c uses estimator v; = (1 — (1 — 8)?)m7_; + (1 — B)%g? with search direction d; =
667 my = EMAg(g¢) = Bmy—1 + (1 — )g:: exhibiting low bias and low variance properties:

Bias = |E¢[vy] — E¢[d?]|
= [Be [0 = (1= B%)mi_y + (1= B)267) — Bu [(Bma-s + (1= )90
= [(28 = B)mi_y + (1= BB [g7] — Bmi_; — 28(1 = Bym1 By [g] — (1 - H)Bx [47]]

‘ 252)7”?71 —28(1 - B)my_1Ey [gt]]

=26(1 = B) [ms—1 (mi—1 — By [g4])]

Var(v0) = B [ (1= (1= B)2)mi_y + (1= 8267 — (1= (1= B)*)mi_, — (1 - B)*Eulg?)’]
=(1-p8)'E, {(9,52 - Et[gf])z}
= (1 — B)*Var, (gtz) .
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]
Justification: The claims match theoretical and experimental results presented.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims made in
the paper.
* The abstract and/or introduction should clearly state the claims made, including the contri-

butions made in the paper and important assumptions and limitations. A No or NA answer
to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the need of tuning the stepsize schedule in Sections 2.2} 2.3 and[3]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low
or images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best judgment
and recognize that individual actions in favor of transparency play an important role in
developing norms that preserve the integrity of the community. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

Justification: We state the assumptions and key results clearly and give rigorous proofs.
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Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the hyper-parameters used in the experiments clearly, and included an
optimizer implementation in Appendix[A|that is used to generate the experiment results.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate
the results, access to a hosted model (e.g., in the case of a large language model), releasing
of a model checkpoint, or other means that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The data used in this paper are all widely available in the public domain. We also
include the optimizer code in Appendix[A|for reproducibility.
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Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

* Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: We describe the hyper-parameters used in the Experiment section. The models and
datasets we use are all very standard and there should be no confusion on the settings.
Guidelines:
* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail that
is necessary to appreciate the results and make sense of them.
* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Performing the errors bars are computationally costly and they are not essential in
understanding and justifying the results in this paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to
a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.
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10.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer:

Justification: Information on compute resources are not relevant to the results of this paper. We
focus on training performance of standard tasks whose compute requirements are well-known.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experi-
mental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We reviewed the Code of Ethics and stick with it.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA|
Justification: There is no perceivable negative impact of the work perfomed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.
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13.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring that
users adhere to usage guidelines or restrictions to access the model or implementing safety
filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]
Justification: All sources are properly cited and no license required.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.
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» Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA|
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA|
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Depending on the country in which research is conducted, IRB approval (or equivalent) may

be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:
* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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