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Abstract

We consider stochastic approximation with block-coordinate stepsizes and propose1

adaptive stepsize rules that aim to minimize the expected distance of the next iterate2

from an optimal point. These stepsize rules use online estimates of the second3

moment of the search direction along each block coordinate, and the popular Adam4

algorithm can be interpreted as using a particular heuristic for such estimation. By5

leveraging a simple conditional estimator, we derive variants of BCOS that obtain6

competitive performance but require fewer optimizer states and hyper-parameters.7

In addition, our convergence analysis relies on a simple aiming condition that8

assumes neither convexity nor smoothness, thus has broad applicability.9

1 Introduction10

We consider unconstrained stochastic optimization problems of the form11

minimize
x∈Rn

F (x) := Eξ[f(x, ξ)], (1)

where x ∈ Rn is the decision variable, ξ is a random variable, and f is the loss function. In the12

context of machine learning, x represents the parameters of a prediction model, ξ represents randomly13

sampled data, and f(x, ξ) is the loss in making predictions about ξ using the parameters x.14

Suppose that for any pair x and ξ, we can evaluate the gradient of f with respect to x, denoted as15

∇f(x, ξ). Starting with an initial point x0 ∈ Rn, the classical stochastic approximation method [38]16

generates a sequence {x1, x2, . . .} with the update rule17

xt+1 = xt − αt∇f(xt, ξt), (2)

where αt is the stepsize, which is often called the learning rate in the machine learning literature. The18

convergence properties of this method are well studied in the stochastic approximation literature [e.g.,19

38, 3, 6, 44, 52]. Despite the rich literature on their convergence theory, stochastic approximation20

methods in practice often require heuristics and trial and error in choosing the stepsize sequence {αt}.21

Adaptive rules that can adjust stepsizes on the fly have been developed in both the optimization22

literature [e.g., 10, 25, 33, 40, 41, 42, 43] and by the machine learning community [e.g., 22, 32, 46, 47].23

More recently, adaptive algorithms that use coordinate-wise stepsizes have become very popular24

following the seminal works of AdaGrad [14] and Adam [26]. In this paper, we present a framework25

for better understanding such methods and propose a family of new, effective methods.26

1.1 Stochastic approximation with block-coordinate stepsizes27

We focus on stochastic approximation with block-coordinate stepsizes, specifically of the form28

xt+1 = xt − st � dt, (3)

where dt ∈ Rn is a stochastic search direction, st ∈ Rn is a vector of coordinate-wise stepsizes,29

and � denotes element-wise product (Hadamard product) of two vectors. The two most common30
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choices for the search direction are: the stochastic gradient, i.e., dt = ∇f(xt, ξt), and its exponential31

moving average (EMA). Let gt = ∇f(xt, ξt), the EMA of stochastic gradient can be expressed as32

dt = βdt−1 + (1− β)gt, (4)
where β ∈ [0, 1) is a smoothing factor. This is often called the stochastic momentum.33

The Adam algorithm [26] uses the direction in (4) and sets the coordinate-wise stepsizes as34

st,i = αt/(
√
vt,i + ε), i = 1, . . . , n, (5)

where αt ∈ R is a common stepsize schedule and each vt,i is the EMA of the squared coordinate35

gradient g2t,i, with a different, often larger, smoothing factor β′ ∈ (0, 1). More specifically,36

vt,i = β′vt−1,i + (1− β′)g2t,i, i = 1, . . . , n. (6)
Here ε > 0 is a small constant to improve numerical stability when vi,t becomes very close to zero.37

Adam [26] and its variant AdamW [31] have been very successful in training large-scale deep38

learning models. However, theoretical understanding of their convergence properties and empirical39

performance is still incomplete despite a lot of recent efforts [e.g., 37, 4, 1, 9, 56, 55, 28]. On the40

other hand, there have been many works that propose new variants or alternatives to Adam/AdamW,41

either starting from fundamental principles [e.g., 53, 17, 21, 29, 24] or based on empirical algorithm42

search [e.g., 5, 54] But all have limited success. Adam and especially AdamW are still the dominant43

algorithms for training large deep learning models, and their effectiveness remains a myth.44

1.2 Contributions and outline45

We propose a family of block-coordinate optimistic stepsize (BCOS) rules for stochastic approxima-46

tion. BCOS provides a novel interpretation of Adam and AdamW and their convergence analysis as47

special cases of a general framework. Moreover, we derive variants of BCOS that obtain competitive48

performance but require fewer optimizer states and hyper-parameters. More specifically:49

• In Section 2, we derive BCOS by minimizing the expected distance of the next iterate from an50

optimal point. While the optimal stepsizes cannot be computed exactly, we make optimistic51

simplifications and approximate the second moment of gradients with simple EMA estimators.52

• In Section 3, we instantiate BCOS with specific search directions. In particular, we show that53

RMSprop [48] and Adam [26] can be interpreted as special cases of BCOS. By leveraging a54

simple conditional estimator, we derive new variants that require fewer optimizer states and55

hyper-parameters. Integrating with decoupled weight decay [31] gives the BCOSW variants.56

• In Section 4, we present convergence analysis of BCOS(W) based on a simple aiming condition,57

which assumes neither convexity nor smoothness, thus has broad applicability. We obtain strong58

guarantees in terms of almost sure convergence, and characterize the effect of signal-to-noise59

ratio of the online estimators on the convergence behavior. Our results also apply to Adam(W).60

• Finally, in Section 5, we present numerical experiments to compare BCOSW and AdamW on61

several Deep Learning tasks and demonstrate the effectiveness of the proposed methods.62

1.3 Notations63

Let I1, . . . , Im be a non-overlapping partition of the coordinate index set {1, . . . , n}, each with64

cardinality nk = |Ik|. Correspondingly, we partition the vectors xt, st and dt into blocks xt,k, st,k65

and dt,k in Rnk for k = 1, . . . ,m. We use a common stepsize γt,k ∈ R within each block, i.e.,66

st,k = γt,k1nk
. As a result, the explicit block-coordinate update form of (3) can be written as67

xt+1,k = xt,k − st,k � dt,k = xt,k − γt,kdt,k, k = 1, . . . ,m.

Notice that γt,k is always a scalar and γt is a vector in Rm instead of Rn (unless m = n).68

Throughout this paper, 〈·, ·〉 denotes the standard inner product in Rn and ‖ · ‖ the induced Euclidean69

norm. The signum function is defined as sign(α) = 1 if α > 0, −1 if α < 0 and 0 if α = 0.70

2 Derivation of BCOS71

We first derive the ideal optimal stepsizes for block-coordinate update, which is not computable in72

practice; then we make several simplifications and approximations to derive the practical ones.73
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2.1 Block-coordinate optimal stepsizes74

We consider the change of distance to an optimal point x∗ after one iteration of the algorithm (3):75

‖xt+1 − x∗‖2 = ‖xt − st � dt − x∗‖2

= ‖xt − x∗‖2 − 2〈xt − x∗, st � dt〉+ ‖st � dt‖2.
Exploiting the block partitions of xt, st and dt and using st,k = γt,k1nk

, we obtain76

‖xt+1 − x∗‖2 = ‖xt − x∗‖2 +

m∑
k=1

(
−2γt,k〈xt,k − x∗,k, dt,k〉+ γ2t,k‖dt,k‖2

)
.

Taking expectation conditioned on the realization of all random variables up to xt, i.e.,77

Et[·] := E[·|x0, d0, x1, d1, . . . , xt], (7)
we have78

Et
[
‖xt+1 − x∗‖2

]
= ‖xt − x∗‖2 +

m∑
k=1

(
−2γt,k

〈
xt,k − x∗,k, Et[dt,k]

〉
+ γ2t,kEt

[
‖dt,k‖2

])
. (8)

In order to minimize the expected distance from xt+1 to x∗, we can minimize the right-hand side79

of (8) over the stepsizes {γt,k}mk=1. This results in the optimal stepsizes80

γ̂t,k =
〈xt,k − x∗,k, Et[dt,k]〉

Et[‖dt,k‖2]
, k = 1, . . . ,m. (9)

Notice that these optimal stepsizes can be positive or negative, depending on the sign of the inner81

product in the numerator. Apparently, they are not computable in practice, because we do not have82

access of x∗ and cannot evaluate the expectations precisely. We address this issue in the next section.83

2.2 Block-coordinate optimistic stepsizes84

We need to make several simplifications and approximations to derive a practical stepsize rule. Our85

first step aims to avoid the direct reliance on x∗. To this end, we rewrite the numerator in (9) as86 〈
xt,k − x∗,k, Et[dt,k]

〉
= ‖xt,k − x∗,k‖‖Et[dt,k]‖ cos θt,k,

where θt,k is the angle between the two vectors xt,k − x∗,k and Et[dt,k]. We absorb the quantities87

related to x∗,k into a tunable parameter αt,k ≈ ‖xt,k − x∗,k‖ cos θt,k, which gives the stepsizes88

γ̃t,k =
αt,k‖Et[dt,k]‖
Et[‖dt,k‖2]

, k = 1, . . . ,m. (10)

We emphasize that any αt,k we choose in practice may only be a (very rough) approximation of89

‖xt,k − x∗,k‖ cos θt,k. In particular, while the optimal stepsizes γ̂t,k can be positive or negative, in90

practice it is very hard to estimate the sign of the inner product 〈xt,k − x∗,k, Et[dt,k]〉. Instead, we91

take the pragmatic approach of restricting αt,k > 0, effectively being optimistic that the expected92

search directions −Et[dt,k] always point towards x∗,k for all k = 1, . . . ,m.93

A further simplification is to use a common stepsize schedule αt across all blocks. This is often a94

reasonable choice for deep learning, where the model parameters are initialized randomly coordinate-95

wise such that E[‖x0,k‖] is constant for each coordinate k [e.g., 13, 19]. This brings us to96

γ̃t,k =
αt‖Et[dt,k]‖
Et[‖dt,k‖2]

, k = 1, . . . ,m. (11)

We note that with some abuse of notation, here αt denotes a scalar, not a vector of (αt,1, . . . , αt,k).97

This simplification reveals the connection between αt and the distance ‖xt − x∗‖. Therefore, we98

expect αt to decrease as ‖xt−x∗‖ gradually shrinks. A simple strategy is to use a monotonic stepsize99

schedule on αt, such as the popular cosine decay [30] or linear decay [8].100

Next, we need to replace the conditional expectations Et[dt,k] and Et[‖dt,k‖2] in (11) with com-101

putable approximations. We adopt the conventional approach of exponential moving average (EMA):102

103 ut,k = βut−1,k + (1− β)dt,k

vt,k = βvt−1,k + (1− β)‖dt,k‖2
(12)

where β ∈ [0, 1) is the smoothing factor. This leads to a set of practical stepsizes:104

γt,k = αt
‖ut,k‖
vt,k + ε

, k = 1, . . . ,m, (13)

where we added a small constant ε > 0 in the denominator to improve numerical stability.105

3



Algorithm 1 BCOS-g

input: x0, {αt}t≥0, β ∈ [0, 1), ε > 0
v−1 = g20
for t = 0, 1, 2, . . . do

gt = ∇f(xt, ξt)
vt = βvt−1 + (1− β)g2t
xt+1 = xt − αt gt√

vt+ε

(same as RMSprop [49])

Algorithm 2 BCOS-m

input: x0, {αt}, β1, β2 ∈ [0, 1), ε > 0
m−1 = g0, v−1 = g20
for t = 0, 1, 2, . . . do

gt = ∇f(xt, ξt)
mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)m2

t

xt+1 = xt − αt mt√
vt+ε

2.3 Further simplification with one EMA estimator106

The BCOS stepsizes in (13) are computed through the ratio of two online estimators ‖ut,k‖ and vt,k,107

which are susceptible to large variations because the numerator and denominator may fluctuate in108

different directions. In this section, we derive a simplified stepsize rule that depends only on vt,k.109

First, recall the mean-variance decomposition of the conditional second moment,110

Et[‖dt,k‖2] = ‖Et[dt,k]‖2 + Et[‖dt,k −Et[dt,k]‖2] = ‖Et[dt,k]‖2 + Vart(dt,k).

We interpret ‖Et[dt,k]‖2 as the signal power and Vart(dt,k) as the noise power, and define the signal111

fraction (SiF) as112

ρt,k =
‖Et[dt,k]‖2

Et[‖dt,k‖2]
=

‖Et[dt,k]‖2

‖Et[dt,k]‖2 + Vart(dt,k)
. (14)

Apparently we have ρt,k ∈ [0, 1]. Using SiF, we can decompose the stepsizes in (10) as113

γ̃t,k = αt,k
‖Et[dt,k]‖
Et[‖dt,k‖2]

= αt,k

√
‖Et[dt,k]‖2
Et[‖dt,k‖2]

1√
Et[‖dt,k‖2]

=
αt,k
√
ρt,k√

Et[‖dt,k‖2]
. (15)

Now we can merge√ρt,k ∈ [0, 1] into the tunable parameters αt,k and let α′t,k := αt,k
√
ρt,k. Then,114

following the same arguments as in Section 2.2, we arrive at the following simplified stepsize rule:115

γt,k = α′t
1

√
vt,k + ε

, k = 1, . . . ,m, (16)

where α′t is a scalar stepsize schedule, and vt,k is given in (12). The similarity between Adam and116

BCOS in (16) is apparent, and we will explain their connection in detail in the next section.117

3 Instantiations of BCOS118

The derivation of BCOS in Section 2 is carried out with a general search direction dt. In this section,119

we instantiate BCOS with two common choices of the search direction: the stochastic gradient and120

its EMA, also known as the stochastic momentum.121

To simplify presentation, we focus on the case of single coordinate blocks, i.e., m = n and Ik = {k}122

for k = 1, . . . , n. Then we can express the EMA estimators for Et[d2t,k] in a vector form:123

vt = βvt−1 + (1− β)d2t , (17)

where d2t denotes the element-wise squared vector dt� dt. We also have st = γt ∈ Rn and therefore124

xt+1 = xt − γt � dt,
where the vector of coordinate-wise stepsizes, γt, can be expressed as125

γt = αt
1

√
vt + ε

. (18)

Here
√
vt denotes element-wise square roots,

√
vt + ε means element-wise addition of ε, and the126

fraction represent element-wise division or reciprocal. Again, the stepsize schedule αt is a scalar. We127

no longer distinguish between αt and α′t because they are both tunable hyper-parameters.128
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Algorithm 3 BCOS-c

input: x0, {αt}t≥0, β ∈ [0, 1), ε > 0

m−1 = g0, v−1 = g20
for t = 0, 1, 2, . . . do

gt = ∇f(xt, ξt)

mt = βmt−1 + (1− β)gt
vt =

(
1− (1− β)2

)
m2
t−1 + (1− β)2g2t

xt+1 = xt − αt mt√
vt+ε

Algorithm 4 BCOSW-c

input: x0, {αt}t≥0, β ∈ [0, 1), ε > 0

m−1 = g0, v−1 = g20
for t = 0, 1, 2, . . . do

gt = ∇f(xt, ξt)

mt = βmt−1 + (1− β)gt
vt =

(
1− (1− β)2

)
m2
t−1 + (1− β)2g2t

xt+1 = (1− αtλ)xt − αt mt√
vt+ε

3.1 BCOS with EMA estimators129

BCOS-g Algorithm 1 is the instantiation of BCOS using∇f(xt, ξt) as the search direction. We call130

it BCOS-g to signify the use of gradient as search direction. The vector vt consists of coordinate-wise131

EMA estimators for E[g2t,k], and the notation mt√
vt+ε

means element-wise division.132

We immediately recognize that BCOS-g is exactly the RMSprop algorithm [49], which is one of133

the first effective algorithms to train deep learning models. Our BCOS framework gives a novel134

interpretation of RMSprop and its effectiveness. In the special case with β = 0 and ε = 0, we have135

vt = g2t , and both BCOS-g becomes the sign gradient method xt+1 = xt − αt sign(gt), which also136

received significant attention in the literature [35, 2, 45, 23].137

BCOS-m Using the stochastic momentum as search direction has a long history in stochastic138

approximation [e.g., 18, 34, 40]. It has become the default option for modern deep learning due to139

its superior performance compared with using plain stochastic gradients. Following the standard140

notation in machine learning, we use mt to denote the momentum, as shown in Algorithm 2. We141

call it BCOS-m to signify the use of momentum as the search direction. BCOS-m employs a second142

smoothing factor β2 to calculate the EMA of m2
t . These two smoothing factors β1 and β2 do not143

need to be the same and can be chosen independently in practice.144

We notice that BCOS-m is very similar to Adam as given in (5) and (6). The difference is that in145

Adam, vt is the EMA of g2t instead of m2
t . From BCOS perspective, Adam has a mismatch between146

the search direction mt and the second moment estimator based on g2t , which must be compensated147

for by a larger smoothing factor β2 (because mt itself is a smoothed version of gt). For BCOS-m,148

using β2 = β1 produces as good performance as Adam with the best tuned β2 (see Section 5).149

3.2 BCOS with conditional estimators150

Recall that the optimal stepsizes γ̂t,k in (9) and their simplifications γ̃t,k in (11) and (15) are all based151

on conditional expectation. In Section 3.1, we used coordinate-wise EMA of d2t to approximate the152

conditional expectation Et[d
2
t ], i.e., vt as estimator of Et[d2t ] in BCOS-g and of Et[m2

t ] in BCOS-m,153

respectively. In this section, we show that with mt as the search direction, we can exploit its update154

form to derive effective conditional estimators that can avoid using EMA.155

We first repeat the definition of momentum here: mt = βmt−1 + (1 − β)gt with β ∈ [0, 1). To156

derive an estimator of Et[m2
t ], we expand the square and take expectation of each term:157

Et
[
m2
t

]
= Et

[
(βmt−1 + (1− β)gt)

2
]

= β2Et[m
2
t−1] + 2β(1− β)Et[mt−1 � gt] + (1− β)2Et[g

2
t ]

= β2m2
t−1 + 2β(1− β)mt−1 �Et[gt] + (1− β)2Et[g

2
t ], (19)

where we used the fact Et[m2
t−1] = m2

t−1 and Et[mt−1] = mt−1 thanks to the definition of Et[·]158

in (7). It remains to approximate Et[gt] and Et[g
2
t ]. Clearly a good estimator for Et[gt] is mt. To159

approximate Et[g
2
t ], we could use a separate EMA estimator v′t = β′v′t−1 + (1 − β′)g2t , but this160

introduces another algorithmic state v′t and a second smoothing factor β′. Meanwhile, we notice that161

the factor (1− β)2 multiplying Et[g
2
t ] is usually very small, especially for β close to 1. As a result,162

any error in approximating Et[g
2
t ] is attenuated by a very small factor, so it may not cause much163
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Figure 1: Comparing AdamW and BCOSW-c with different momentum parameters.

difference. Therefore, for simplicity, we choose to approximate Et[g
2
t ] with g2t itself. Combining164

with approximating Et[gt] with mt, we arrive at the following conditional estimator for Et[m2
t ]:165

vt = β2m2
t−1 + 2β(1− β)mt−1 �mt + (1− β)2g2t . (20)

While this can be a very effective estimator, we derive another one that is much simpler and as166

effective. The key is to approximate E[gt] in (19) with mt−1 instead of mt, which results in167

vt = β2m2
t−1 + 2β(1− β)m2

t−1 + (1− β)2g2t

=
(
1− (1− β)2

)
m2
t−1 + (1− β)2g2t . (21)

It resembles the standard EMA estimator in Adam, shown in (6), with an effective smoothing factor
β′ = 1− (1− β)2,

but with vt−1 replaced by m2
t−1. As a result, the estimator in (21) does not need to store vt−1, thus168

requiring fewer optimizer states. This also explains that the second smoothing factor in Adam, β2,169

corresponding to β′ here, should be much larger or closer to 1 than β. Specifically, β = 0.9 roughly170

corresponds to β′ = 0.99. The estimator in (21) eliminates β2 as a second hyper-parameter.171

Finally, replacing vt in BCOS-m with the one in (21) produces Algorithm 3. We call it BCOS-c to172

signify the conditional estimator. It has fewer optimizer states and fewer hyper-parameters to tune.173

3.3 BCOS with decoupled weight decay174

Weight decay is a common practice in training deep learning models to obtain better generalization175

performance. It can be understood as adding an L2 regularization to the loss function, i.e., mini-176

mizing the regularized loss Eξ[f(x, ξ)] + λ
2 ‖x‖

2. Effectively, the stochastic gradient at xt becomes177

∇f(xt, ξt)+λxt. We can apply the BCOS family of algorithms by simply replacing gt = ∇f(xt, ξt)178

with gt = ∇f(xt, ξt) + λxt. But a more effective way is to use decoupled weight decay as proposed179

in the AdamW algorithm [31]. Specifically, we apply weight decay separately in the BCOS update:180

xt+1 = xt − γ � dt − αtλxt = (1− αtλ)xt − γ � dt.
We call the resulting method BCOSW following the naming convention of AdamW. Algorithm 4181

shows BCOSW with the conditional estimator. Other variants (-g and -m) can be obtained similarly.182

A PyTorch implementation of all BCOS and BCOSW variants is given in Appendix A.183

4 Convergence analysis184

In this section, we present the convergence analysis of BCOS and BCOSW. Due to space limit, we185

focus on BCOSW and give comments on BCOS wherever apply. Our analysis consists of two stages.186

First, we analyze the convergence properties of the conceptual BCOSW method187

xt+1 = (1− αtλ)xt − γ̃t � dt, where γ̃t = αt
1√

Et[d2t ]
. (22)

It is called “conceptual” because we cannot compute Et[d2t ] exactly in practice. Then, for the practical188

BCOSW algorithm with stepsize γt in (18), we bound the difference between the expected steps189

Et[γt � dt] and Et[γ̃t � dt] = γ̃t �Et[dt], which produces the desired convergence guarantee.190
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First, we need an appropriate condition to build our analysis. For the algorithm xt+1 = xt − γ̃t � dt,191

the next iterate xt+1 moves closer to x∗ in expectation if the expected direction −Et[γ̃t � dt] aims192

towards x∗ and αt (a scalar) is sufficiently small. For the conceptual BCOS method, we have193

Et[γ̃t � dt] = Et

[
αt

dt√
Et[d2t ]

]
= αt

Et[dt]√
Et[d2t ]

= αt

√
Et[dt]2

Et[d2t ]
sign(Et[dt]),

where sign(·) denotes element-wise sign function. Recall the definition of SiF in (14). With single194

coordinate blocks, we can write the vector of coordinate-wise SiFs as ρt = Et[dt]
2

Et[d2t ]
∈ [0, 1]n. Then195

we have the expected update direction Et[γ̃t�dt] = αt
√
ρt� sign(Et[dt]). Since αt > 0 is a scalar,196

we omit it from the statement of the aiming condition below.197

Assumption A (Aiming condition). There exists x∗ ∈ Rn such that198 〈
xt − x∗,

√
ρt � sign(Et[dt]) + λxt

〉
≥ λ‖xt − x∗‖2 (23)

holds for all t ≥ 0 almost surely. If dt is independent of the past trajectory conditioned on xt, i.e.,199

Et[dt] = E[dt|xt], then it suffices to have (23) hold for every x ∈ Rn (independent of the trajectory).200

Notice that we have Et[dt] = E[dt|xt] when, e.g., dt = ∇f(xt, ξt) and ξt is independent of xt.201

The aiming conditions assume neither convexity nor smoothness, but it has some overlapping202

characteristics with convexity, which we discuss in Appendix B.203

4.1 Analysis of conceptual BCOSW204

Our first result concerns the one-step contraction property of the conceptual algorithm in (22).205

Lemma 4.1. Suppose Assumption A holds, αt ≥ 0 and αtλ < 1. Then we have206

Et
[
‖xt+1 − x∗‖2

]
≤ (1− αtλ)2 ‖xt − x∗‖2 + α2

t c∗, (24)

where c∗=n+λ2 ‖x∗‖2+2λ ‖x∗‖1. Thus for sufficiently small αt, Et
[
‖xt+1−x∗‖2

]
≤ ‖xt−x∗‖2.207

In fact, we can prove the following much stronger result of almost sure (a.s.) convergence.208

Theorem 4.1. Suppose the stepsize schedule {αt}t≥0 and weight decay parameter λ satisfy209

αt ≥ 0, 0 ≤ αtλ ≤ 1, ∀ t ≥ 0, and
∑∞
t=0 αt =∞,

∑∞
t=0 α

2
t <∞. (25)

Then Assumption A implies ‖xt − x∗‖ → 0 a.s. for the conceptual BCOSW method (22).210

In terms of convergence rate, we can readily obtain linear convergence to a neighborhood of x∗ with211

a constant αt based on (24). In addition, we have the following result on sublinear convergence.212

Theorem 4.2. Consider the conceptual BCOSW method (22) with the stepsize schedule αt = α
t+1213

where 1/2 < αλ < 1 is satisfied. Then Assumption A implies that for all t ≥ 1,214

E[‖xt − x∗‖2] ≤
α2
(
c∗ + λ2E[‖x0 − x∗‖2] + π2α2λ2c∗/6

)
2αλ− 1

1

t
+O

(
1

t2
+

1

t2αλ

)
.

Without decoupled weight decay, BCOS may also have almost-sure convergence if the aiming215

condition with λ = 0 holds with strict inequality for xt 6= x∗. However, the O(1/t) convergence rate216

no longer holds. The proofs of the above results are given in Appendix C.217
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Figure 3: Left: Adam/ AdamW with β1,2 = (0.9, 0.99). Right: BCOS/BCOSW with β = 0.9.

4.2 Analysis of practical BCOSW218

Now we consider the practical BCOSW method xt+1 = (1 − αtλ)xt − γt � dt with the stepsize219

vector γt given in (18). Our analysis is based on bounding the difference between the expected220

practical update Et[γt � dt] and the expected conceptual update Et[γ̃t � dt]. Intuitively, it boils221

down to the quality of the estimator vt. Specifically, we need the following assumption on its bias.222

Assumption B. There exists τ > 0 and ε > 0 such that for all t ≥ 0 it holds that223 ∣∣Et[vt]−Et[d
2
t ]
∣∣ ≤ τEt[d2t ] + ε. (26)

Based on this assumption, we have the following bound on the expected update directions.224

Lemma 4.2. Under Assumptions B, we have the following bound at each iteration t:225 ∣∣∣∣∣ Et[dt]√
Et[d2t ]

−Et

[
dt√
vt + ε

]∣∣∣∣∣ ≤ ct
∣∣∣∣∣ Et[dt]√

Et[d2t ]

∣∣∣∣∣+O(ε) +O(Vart(vt)), (27)

where O(Vart(vt)) includes terms such as Et[(dt −Et[dt])(vt −Et[vt])
2] and Et[(vt −Et[vt])

3]226

and higher-order terms. The coefficient ct is defined as227

ct :=
4τ + 3τ2

8
+

8 + 4τ + 3τ2

16

(
1

SNRt(vt + ε)
+

1√
SNRt(dt)

√
SNRt(vt + ε)

)
. (28)

Here, SNRt(·) denotes conditional Signal-to-Noise Ratio. Specifically, SNRt(dt) = Et[dt]
2

Vart(dt)
= ρt

1−ρt228

and SNRt(vt + ε) = E[vt+ε]
2

Vart(vt+ε)
= E[vt+ε]

2

Vart(vt)
. This leads to the following result for practical BCOSW:229

Theorem 4.3. Suppose Assumptions A and B holds, {αt} satisfies (25) and ‖dt‖ is bounded almost230

surely. Let δ be the smallest constant such that, for all t ≥ 0,231

2ct‖
√
ρt‖+O(ε) +O(Vart(vt)) ≤ λδ. (29)

Then we have lim supt→∞ ‖xt − x∗‖2 ≤ δ2, meaning a.s. convergence to a neighborhood of x∗.232

In fact, it is sufficient for λδ to be the lim sup→∞ of the left-hand side of (29) (see Appendix D.2).233

We notice from (28) that ct is small if the estimator vt has low bias (small τ ) and low variance (high234

SNR). In addition, it also helps to have high SNR of dt, for example, by using mt rather than gt.235

Let’s examine the bias-variance trade-off of the effective estimator vt used by popular optimizers:236

• The classical SGD method (with dt = gt or dt = mt) effectively uses a constant vt, which has237

zero variance but high bias |Et[vt]−Et[d
2
t ]| = |v −Et[d

2
t ]| for some constant v.238

• Sign-SGD effectively uses vt = d2t , which has no bias but high variance Vart(vt) = Vart(dt).239

• The conditional estimator of BCOS-c has the following bias and variance (see Appendix E)240

Et[vt]−Et[d
2
t ] = 2β(1− β)mt−1

(
mt−1 −Et[gt]

)
, Vart(vt) = (1− β)4Vart(g2t ).

Its bias is a small fraction of the bias of mt−1 and it has a very small variance.241

• For Adam, we do not have a simple expression for its bias, but Vart(vt) = (1− β2)2Vart(m2
t ).242

In summary, our convergence analysis can be applied to a variety of different optimizers, including243

Adam and AdamW, by characterizing their bias-variance trade-off (see Appendix E).244
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Figure 4: Left: ResNet-20 on CIFAR10. Right: Vision Transformer on ImageNet.

5 Numerical experiments245

We present preliminary experiments to compare BCOS with Adam, specifically their variants with246

decoupled weight decay. Among the BCOSW family, we focus on BCOSW-c (Algorithm 4).247

Our first set of experiments are conducted on training the small GPT2 model with 124 million248

parameters [36] on the OpenWebText dataset [16]. We use global batch size 512 and run all249

experiments for 100k iterations with the first 2k for linear warmup and then cosine decay on {αt}.250

The default hyper-parameters are chosen (based on a coarse sweep) as: peak stepsize αmax = 0.002,251

final stepsize αmin = 0.01αmax, ε = 10−6 and weight decay λ = 0.1.252

Figure 1 (left) shows the test loss of AdamW with different combination of β1 and β2. For each value253

of β1 ∈ {0.8, 0.9, 0.95}, we choose the best β2 after sweeping β2 ∈ {0.8, 0.9, 0.95, 0.975, 0.99}.254

Their final loss achieved are all very close around 2.82. For most (β1, β2) combinations, we observe255

loss spikes, especially at the beginning of the training (as shown in the inset). In contrast, Figure 1256

(right) shows that BCOSW-c obtains the same final loss but with very smooth loss curve.257

Figure 2 compares the test loss of AdamW against the three variants BCOSW-g, -m, and -c. We258

observe that BCOSW-g is significantly worse than the momentum-based methods. The loss curves for259

the momentum-based methods are all very close, but with spikes for both AdamW and BCOSW-m.260

Figure 3 illustrates the difference between algoritms with and without decoupled weight decay.261

BCOS-c converges to much higher loss than BCOSW-c, and different values of λ (weight decay)262

makes dramatic difference for BCOS-c but cause little change to BCOSW-c. The same phenomenon263

happens for Adam versus AdamW, and we again observe spikes from their loss curve.264

Finally, in Figure 4, we compare different algorithms for training ResNet-20 [20] on the CIFAR10265

dataset [27], and also training the Vision Transformer (ViT) [50] on the ImageNet dataset [11]. For266

the ResNet task, we tried both cosine decay (drop by factor 100) and step decay (drop by 10 at267

epochs 80, 120, 150). The hyper-parameters chosen are: β = 0.9 for SGD and BCOSW-c, and268

β1,2 = (0.9, 0.99) for AdamW. We observe that the best-performing stepsize schedules are quite269

different for different methods. This prompt the need of tuning hyper-parameters for BCOSW for270

different tasks even though it shares similar tuned hyper-parameters as AdamW on the GPT2 task.271

For the ViT task, although the best tuned stepsize schedules are similar between AdamW and BCOSW,272

their training and test curves look quite different. Figure 4 (right) shows that the test precision curves273

for BCOSW-c raises slowly but reaches slightly higher precision at the end.274

These preliminary experiments demonstrate that BCOSW-c can obtain competitive performance275

compared with the state-of-the-art method AdamW, but with fewer optimizer states and fewer hyper-276

parameters to tune. We are conducting additional empirical study to fully understand its potential.277

6 Conclusion278

BCOS is a stochastic approximation method that exploits the flexibility of taking different coordinate-279

wise stepsizes. Rather than using sophisticated ideas from optimization such as preconditioning,280

it builds upon the simple idea of coordinate-wise contraction and focuses on constructing efficient281

statistical estimators, especially through conditional expectation, in determining the stepsizes.282
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A PyTorch implementation of BCOS417

Listing 1: BCOS and BCOSW implementation as a single PyTorch Optimizer
import torch418

from torch.optim import Optimizer419

420

class BCOS_short(Optimizer):421

def __init__(self , params , lr, beta =0.9, eps=1e-6,422

weight_decay =0.1, mode='c', decouple_wd=True):423

424

defaults = dict(lr=lr , beta=beta , eps=eps , wd=weight_decay)425

super().__init__(params , defaults)426

427

if mode not in ['g', 'm', 'c']:428

raise ValueError(f"BCOS mode {mode} not supported")429

self.mode = mode430

self.decouple_wd = decouple_wd # True for BCOSW431

432

def step(self , closure = None):433

434

for group in self.param_groups:435

lr = group["lr"]436

beta = group["beta"]437

eps = group["eps"]438

wd = group["wd"]439

440

for p in group["params"]:441

if not p.requires_grad:442

continue443

444

state = self.state[p]445

g = p.grad446

447

# initialize optimizer states for specific modes448

if self.mode in ['m', 'c'] and 'm' not in state:449

state['m'] = g.detach ().clone()450

if self.mode in ['g', 'm'] and 'v' not in state:451

state['v'] = g.detach ().square ()452

453

# decoupled weight decay or absorb in gradient454

if self.decouple_wd: # p := (1 - lr * wd) * p455

p.data.mul_(1 - lr * wd)456

else: # g := g + wd * p457

g.data.add_(p.data , alpha = wd)458

459

if self.mode in ['m', 'c']:460

m = state['m']461

if self.mode == 'c':462

beta_v = 1 - (1 - beta)**2463

g2 = g.detach ().square ()464

v = beta_v * m.square () + (1 - beta_v) * g2465

# update momentum466

m.mul_(beta).add_(g.detach (), alpha =1 - beta)467

d = m468

else:469

d = g.detach ()470

471

if self.mode in ['g', 'm']: # EMA estimator472

v = state['v']473

v.mul_(beta).add_(d.square (), alpha =1 - beta)474

475

# BCOS update: p := p - lr * (d / (sqrt(v) + eps))476

p.data.add_(d.div(v.sqrt() + eps), alpha= - lr)477
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B Aiming condition and convexity478

In the paper we have focused on the special case of single coordinate blocks. To investigate the479

relation between the aiming condition and convexity, it is more instructive to examine the general480

block structure. For general block partitions ∪mk=1Ik, employing a block-coordinate stepsize vector481

st where each block Ik of st is defined as st,k = γ̃t,k1nk
yields iterative methods of the form482

xt+1 = xt − st � dt, (30)

with conceptual BCOS stepsizes483

γ̃t,k =
1√

Et
[
‖dt,k‖2

] , k = 1, . . . ,m.

The corresponding aiming condition is as follows, which guarantees one-step improvement.484

Assumption C. There exists x∗ ∈ Rn such that485

m∑
k=1

〈
xt − x∗,

Et[dt]√
Et
[
‖dt,k‖2

]
〉
≥ 0, (31)

holds for all t ≥ 0 almost surely. If dt is independent of the past trajectory conditioned on xt, i.e.,486

Et[dt] = E[dt|xt], then it suffices to have (31) hold for every x ∈ Rn.487

Assumption C allows us to conduct a comparative analysis of the aiming condition and the classical488

convexity assumption, highlighting their similarities and key differences. For the sake of simplicity489

in our exposition, we will assume that the stochastic search direction dt is trajectory independent,490

i.e., Et[dt] = E[dt|xt], allowing us to drop the subscript t. We further assume that dt satisfies491

E[d] = ∇f(x). Simplifying (31):492

m∑
k=1

〈
xk − x∗,k,

∇f(x)k
‖∇f(x)k‖

〉
≥ 0, ∀x. (32)

In the specific case of a full-dimensional block stepsize, where γ̃t = 1
‖∇f(x)‖ ∈ R+ is a scaler and493

the stepsize vector is st = γ̃t1n, the aiming condition simplifies to:494

〈x− x∗,∇f(x)〉 ≥ 0, ∀x. (33)

Condition (33) is directly implied by the classical convex assumption, which states:495

〈x− y,∇f(x)−∇f(y)〉 ≥ 0, ∀x, y. (34)

To see the implication, simply substitute y = x∗ and∇f(x∗) = 0 into the above convex inequality.496

However, the aiming condition under a general block partition exhibits a significant departure from497

the classical notion of convexity, as expected update directions deviate from true gradients and498

become axis-aligned. Consider the extreme case of coordinate-wise stepsizes, where st = γ̃t ∈ Rn499

and each element is chosen as γ̃t,k = 1√
∇f(xk)2

= 1
|∇f(xk)| . The specific choice of stepsize yields500

an aiming condition of the form:501

〈x− x∗, sign(∇f(x))〉 ≥ 0, ∀x. (35)

To illustrate the fundamental differences between this coordinate-wise aiming condition (35) and the502

standard convexity assumption (34), we provide the following two counterexamples, each satisfying503

one condition while failing the other:504

• Aiming but not convex: Let f(x) := log(x) with the optimal solution x∗ = 0. On the domain of505

R+, the gradient is f ′′(x) = 1
x , and thus sign(f ′(x)) = 1 for all x > 0. Consequently, for any506

x ∈ R+, we have507

〈x− x∗, sign(∇f(x))〉 = x ≥ 0,

satisfying the aiming condition (35). However, log(x) is a concave function, thus failing the508

convex inequality (34).509
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• Convex but not aiming: Consider the quadratic function class f : R2 → R, f(x) = 1
2x

TAx.
Choose coefficient matrix A:

A =

(
1
−2

)(
1
−2

)T
=

[
1 −2
−2 4

]
� 0.

Since A is positive semidefinite, the function f is convex and attains its minimum at x∗ = 0.
The gradient of f is

∇f(x) = Ax =

[
x1 − 2x2
−2x1 + 4x2.

]
.

Evaluating the aiming condition (35) at x = (1.5, 1)T , we get510

〈x− x∗, sign(∇f(x))〉 = 1.5× sign(−0.5) + 1× sign(1) = 1.5× (−1) + 1× 1 = −0.5 ≤ 0.

Thus, the aiming condition (35) at this point even though f is convex.511

C Convergence analysis of conceptual BCOSW512

First, we notice that the aiming condition is Assumption A is equivalent to513 〈
xt − x∗,

√
ρt � sign(Et[dt]) + λx∗

〉
≥ 0, (36)

because514 〈
xt − x∗,

√
ρt � sign(Et[dt]) + λx∗

〉
=
〈
xt − x∗,

√
ρt � sign(Et[dt]) + λxt − λxt + λx∗

〉
=
〈
xt − x∗,

√
ρt � sign(Et[dt]) + λxt

〉
− λ‖xt − x∗‖2.

We use it to prove Lemma 4.1.515

Proof of Lemma 4.1. Given xt+1 = xt − γ̃t � dt − αtxt, we have516

Et[‖xt+1 − x∗‖2] = Et

∥∥∥∥∥xt − αt√
Et[d2t ]

� dt − αtλxt − x∗

∥∥∥∥∥
2


= Et

∥∥∥∥∥(1− αtλ)xt −
αt√
Et[d2t ]

� dt − (1− αtλ)x∗ − αtλx∗

∥∥∥∥∥
2


= Et ‖(1− αtλ)(xt − x∗)‖2 − 2Et

〈
(1− αtλ)(xt − x∗),

αt√
Et[d2t ]

� dt + αtλx∗

〉

+ Et

∥∥∥∥∥ αt√
Et[d2t ]

� dt + αtλx∗

∥∥∥∥∥
2

= (1− αtλ)2 ‖xt − x∗‖2 − 2αt(1− αtλ)

〈
xt − x∗,

Et[dt]√
Et[d2t ]

+ λx∗

〉

+ α2
t

∑
k

(
1 + λ2x2∗,k + 2λx∗,k

Et[dt,k]√
Et[d2t,k]

)
= (1− αtλ)2 ‖xt − x∗‖2 − 2αt(1− αtλ) 〈xt − x∗,

√
ρtsign (Et[dt]) + λx∗〉

+ α2
t

∑
k

(
1 + λ2x2∗,k + 2λx∗,k

√
ρt,ksign (Et[dt,k])

)
Under Assumption A, the aiming condition in (36) implies that the inner product in the last equality517

above is non-negative. With αt ≥ 0 and αtλ ≤ 1, we can drop the inner product term to obtain518

Et[‖xt+1 − x∗‖2] ≤ (1− αtλ)2 ‖xt − x∗‖2 + α2
t

∑
k

(
1 + λ2x2∗,k + 2λx∗,k

√
ρt,ksign (Et[dt,k])

)
≤ (1− αtλ)2 ‖xt − x∗‖2 + α2

t (n+ λ2 ‖x∗‖2 + 2λ ‖x∗‖1)

where the last inequality follows from the loose upper bound√ρt,ksign (Et[dt,k]) ≤ 1.519
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The proof of Theorem 4.1 follows from the following almost supermartingale lemma.520

Lemma C.1 (“Almost supermartingale", Theorem 1 [39]). ) Let (Ω,F , P ) be a probability space, and521

F0 ⊂ F1 ⊂ . . . be a sequence of sub-σ-algebras of F . For each t, let Xt, at, bt, ct be non-negative522

Ft-measurable random variables such that523

E[Xt+1|Ft] ≤ Xt(1 + at) + bt − ct. (37)

Given
∑∞
t=0 at < ∞ and

∑∞
t=0 bt < ∞, then limt→∞Xt exists and is finite, and

∑∞
t=0 ct < ∞524

almost surely (a.s.).525

Proof of Theorem 4.1. Define Xt := ‖xt − x∗‖2 and Ft to be the σ-algebra generated by526

X0, · · · , Xt. Lemma 4.1 implies the following recursive relationship527

E[Xt+1|Ft] = Et[‖xt+1 − x∗‖2]

≤ (1− αtλ)2 ‖xt − x∗‖2 + α2
t c∗

= (1 + α2
tλ

2) ‖xt − x∗‖2 + α2
t c∗ − 2αtλ ‖xt − x∗‖2

= (1 + at)Xt + bt − ct,

In the form of (37), we have at = α2
tλ

2, bt = α2
t c∗, ct = 2αtλ ‖xt − x∗‖2. Here, Xt, at, bt, ct are528

trivially non-negative, and the squared summable assumption of αt guarantees:529

∞∑
t=0

at =

∞∑
t=0

α2
tλ

2 <∞,
∞∑
t=0

bt =

∞∑
t=0

α2
t c∗ <∞.

So far, we have verified all the assumptions in Lemma C.1, so we conclude that530

Xt = ‖xt − x∗‖2 → X a.s. for some X <∞,
∞∑
t=0

ct =

∞∑
t=0

2αtλ ‖xt − x∗‖2 <∞ a.s.

This is compatible with
∑∞
t=0 αt =∞ only if531

‖xt − x∗‖2 → 0 a.s.,

as desired.532

To quantify the convergence rate, we study the upper bound on the expected distance to the optimal533

solution E[‖xT − x∗‖2], after recursively applying BCOSW for T iterations.534

Theorem C.1. Suppose Assumption A holds, αt ≥ 0 and αtλ ≤ 1. The expected distance to x∗535

admits the following upper bound after T iterations of BCOSW:536

E[‖xT − x∗‖2] ≤
T−1∏
t=0

(1− αtλ)2E
[
‖x0 − x∗‖2

]
+

T−1∑
t=0

T−1∏
t′=t+1

(1− αt′λ)2α2
t c∗, (38)

where c∗ := (n+ λ2 ‖x∗‖2 + 2λ ‖x∗‖1) denote the constant residual that depends on x∗.537
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Proof. Taking expectation of the recursive relationship (24) and applying the law of total expectation,538

we obtain:539

E[‖xT − x∗‖2] = E
[
ET−1[‖xT − x∗‖2]

]
≤ E

[
(1− αT−1λ)2 ‖xT−1 − x∗‖2 + α2

T−1c∗

]
= (1− αT−1λ)2E

[
‖xT−1 − x∗‖2

]
+ α2

T−1c∗

= (1− αT−1λ)2E
[
ET−1[‖xT−1 − x∗‖2]

]
+ α2

T−1c∗

≤ (1− αT−1λ)2E
[
(1− αT−2λ)2 ‖xT−2 − x∗‖2 + α2

T−2c∗

]
+ α2

T−1c∗

= (1− αT−1λ)2(1− αT−2λ)2E
[
‖xT−2 − x∗‖2

]
+ ((1− αT−1λ)2α2

T−2 + α2
T−1)c∗

...

≤
T−1∏
t=0

(1− αtλ)2E
[
‖x0 − x∗‖2

]
+

T−1∑
t=0

T−1∏
t′=t+1

(1− αt′λ)2α2
t c∗,

as desired.540

Different choices of stepsize schedule lead to different convergence behaviors. Next, we consider two541

choices of αt: (i) diminishing learning rates αt = α
t+1 , which leads to Theorem 4.2 and (ii) constant542

learning rates αt = α which lead to linear convergence to a neighborhood of x∗.543

The proof of Theorem 4.2 is a direct application of a classical result in the 1954 paper of Chung’s [7].544

Lemma C.2 (Chung’s lemma, Lemma 1 from [7]). Suppose that {Xt} is a sequence of real numbers545

such that for t,546

Xt+1 ≤
(

1− a

t

)
Xt +

b

tp+1
, (39)

where a > p > 0, b > 0. Then547

Xt ≤
b

a− p
1

tp
+O

(
1

tp+1
+

1

ta

)
.

Proof of Theorem 4.2. Taking expectation of both sides of (24) with αt = α
t+1 at iteration T , we548

have549

E[‖xT − x∗‖2]

≤ (1− αT−1λ)2E[‖xT−1 − x∗‖2] + α2
T−1c∗

=

(
1− αλ

T

)2

E[‖xT−1 − x∗‖2] +
α2

T 2
c∗

=

(
1− 2αλ

T

)
E[‖xT−1 − x∗‖2] +

α2

T 2

(
c∗ + λ2E[‖xT−1 − x∗‖2]

)
≤
(

1− 2αλ

T

)
E[‖xT−1 − x∗‖2] +

α2c∗
T 2

+
α2λ2

T 2

(
T−2∏
t=0

(
1− αλ

t+ 1

)2

E
[
‖x0 − x∗‖2

]
+

T−2∑
t=0

T−2∏
t′=t+1

(
1− αλ

t′ + 1

)2
α2c∗

(t+ 1)2

)
,

where the last inequality is in light of (38) in Theorem C.1 and αt = α
t+1 . Upper bounding550 (

1− αλ
t+1

)2
by 1 yields:551

E[‖xT − x∗‖2] ≤
(

1− 2αλ

T

)
E[‖xT−1 − x∗‖2]+

α2c∗
T 2

+
α2λ2

T 2

(
E
[
‖x0 − x∗‖2

]
+

T−2∑
t=0

α2c∗
(t+ 1)2

)
.
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Further replacing the finite sum
∑T−2
t=0

1
(t+1)2 =

∑T−1
t=1

1
t2 by its infinite version π2

6 , we obtain a552

recursive relationship in the form of (39):553

E[‖xT − x∗‖2] ≤
(

1− 2αλ

T

)
E[‖xT−1 − x∗‖2]+

α2c∗
T 2

+
α2λ2

T 2

(
E
[
‖x0 − x∗‖2

]
+
π2α2c∗

6

)
,

with Xt = E[‖xt−1 − x∗‖2], a = 2αλ, b = α2c∗ + α2λ2
(
E
[
‖x0 − x∗‖2

]
+ π2α2c∗

6

)
, and p = 1,554

which satisfies the Chung’s assumptions a > 1 = p > 0, b > 0 because αλ ∈ (0.5, 1). Lemma C.2555

implies556

E[‖xT − x∗‖2] ≤
α2c∗ + α2λ2

(
E
[
‖x0 − x∗‖2

]
+ π2α2c∗

6

)
2αλ− 1

1

T
+O

(
1

T 2
+

1

T 2αλ

)
,

as desired.557

With a constant stepsize, we obtain linear convergence to a neighborhood of x∗, as stated in the558

following corollary.559

Corollary C.2. Fix learning rate schedule αt = α where α satisfies αλ < 1. Let xt’s be a sequence560

generated by applying the conceptual BCOSW. Under Assumption A, the asymptotic expected distance561

to x∗ admits the following upper bound:562

E[‖xT − x∗‖2] ≤ (1− αλ)2TE
[
‖x0 − x∗‖2

]
+

α2c∗
1− (1− αλ)2

. (40)

Proof. A direct application of Theorem C.1 with αt = α yields the following upper bound on:563

E[‖xT − x∗‖2]564

E[‖xT − x∗‖2] ≤ (1− αλ)2TE
[
‖x0 − x∗‖2

]
+

T−1∑
t=0

(1− αλ)2(T−t−1)α2c∗

= (1− αλ)2TE
[
‖x0 − x∗‖2

]
+

T−1∑
t=0

(1− αλ)2tα2c∗

≤ (1− αλ)2TE
[
‖x0 − x∗‖2

]
+

α2c∗
1− (1− αλ)2

,

which decreases exponentially with T and converges to a constant.565

D Convergence analysis of practical BCOSW566

D.1 Proof of Lemma 4.2567

We first prove Lemma 4.2. To proceed, we decompose the error between the expected search568

directions into two parts (elementwise inequality between vectors):569 ∣∣∣∣∣ Et[dt]√
E[d2t ]

−Et

[
dt√
vt + ε

]∣∣∣∣∣ ≤
∣∣∣∣∣ Et[dt]√

E[d2t ]
− Et[dt]√

Et[vt] + ε

∣∣∣∣∣+

∣∣∣∣∣ Et[dt]√
Et[vt] + ε

−Et

[
dt√
vt + ε

]∣∣∣∣∣ .
(41)

Under certain assumptions on the quality of the estimator vt, we demonstrate that the practical update570

approximates the conceptual update in expectation by bounding the two terms on the right-hand side571

separately.572

Assumption B leads to an upper bound for the first error term in (41).573

Lemma D.1. Under Assumption B, it holds that:574 ∣∣∣∣∣ Et[dt]√
Et[d2t ]

− Et[dt]√
Et[vt] + ε

∣∣∣∣∣ ≤ 4τ + 3τ2

8

∣∣∣∣∣ Et[dt]√
Et[d2t ]

∣∣∣∣∣+O(ε). (42)
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Proof. The proof leverages the second-order Taylor expansion of g(y) := 1√
y :575

g(y + δ) ≈ g(y) + g′(y)δ +
1

2
g′′(y)δ2, where g′(y) = − 1

2y3/2
, g′′(y) =

3

4y5/2
.

Applying Taylor expansion at y := Et[d
2
t ] with δ := Et[vt] + ε − Et[d

2
t ] yields the following576

approximation:577 ∣∣∣∣∣ Et[dt]√
Et[d2t ]

− Et[dt]√
Et[vt] + ε

∣∣∣∣∣
= |Et[dt](g(y)− g(y + δ))|

≈
∣∣∣∣Et[dt](g′(y)δ +

1

2
g′′(y)δ2 +O(δ3))

∣∣∣∣
=

∣∣∣∣Et[dt](− 1

2Et[d2t ]
3/2
· (Et[vt] + ε−Et[d

2
t ]) +

3

8Et[d2t ]
5/2
· (Et[vt] + ε−Et[d

2
t ])

2

)∣∣∣∣+O(ε)

≤
∣∣∣∣Et[dt]( 1

2Et[d2t ]
3/2
· τEt[d2t ] +

3

8Et[d2t ]
5/2
· τ2Et[d2t ]2

)∣∣∣∣+O(ε) (43)

≤4τ + 3τ2

8

∣∣∣∣∣ Et[dt]√
Et[d2t ]

∣∣∣∣∣+O(ε),

where (43) is a consequence of Assumption B.578

To establish the upper bound on the second error term in (41),
∣∣∣∣ Et[dt]√

Et[vt]+ε
−Et

[
dt√
vt+ε

]∣∣∣∣, we present579

a useful approximation for general differential function g.580

Lemma D.2. For any differentiable function g and random variable X ∈ Rn, the following581

expansion holds:582

E [g(X)] = g(E[X]) +
1

2
〈∇2g(E[X]),Cov(X)〉+

∞∑
p=3

Dpg(E[X])

p!
E [(X −E[X])p] , (44)

where 〈·, ·〉 denotes matrix inner product, i.e, 〈A,B〉 = Tr(ATB), and p ∈ Nn and

Dpg(E[X]) =
∂|p|g

∂Xp
=

∂p1+···+png

∂Xp1
1 · · · ∂X

pn
n
.

Proof. Let δ := X −E[X]. The second-order Taylor expansion of g at E[X] yields583

g(X) = g(E[X]) +∇g(E[X])T δ +
1

2
δT∇2g(E[X])δ +

∞∑
p=3

Dpg(E[X])

p!
δp.

Taking expectation with respect to X , we have584

E[g(X)] = g(E[X]) +∇g(E[X])TE[δ] +
1

2
E[δT∇2g(E[X])δ] +

∞∑
p=3

Dpg(E[X])

p!
E [δp]

= g(E[X]) + 0 +
1

2

〈
∇2g(E[X]), E[δδT ]

〉
+

∞∑
p=3

Dpg(E[X])

p!
E [δp] ,

where E[δδT ] = Cov(X) and E [δp] = E [(X −E[X])p].585

The following lemma provides an approximation for E[g] with g(Y, Z) := Y√
Z

.586

Lemma D.3. Let Y,Z be two random variables and Z > 0 almost surely, then587

E

[
Y√
Z

]
=

E[Y ]√
E[Z]

(
1− Cov(Y, Z)

2E[Y ]E[Z]
+

3Var(Z)

8E[Z]2

)
+O

(
E[(Y −E[Y ])(Z −E[Z])2]

)
+O

(
E[(Z −E[Z])3]

)
.

(45)
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Proof. We apply Lemma D.2 with X := (Y, Z) and g(x) = g(y, z) := y√
z

. First, the gradient and588

Hessian of g can be calculated as589

∇g(x) = ∇g(y, z) =

(
1

z1/2

− y
2z3/2

)
, ∇2g(x) = ∇2g(y, z) =

[
0, − 1

2z3/2

− 1
2z3/2

, 3y
4z5/2

]
.

For general p-th partial derivative, we derive the following result for any q ∈ [0, p]:590

∂pg

∂yq∂zp−q
=

∂p−q

∂zp−q

(
∂qg

∂yq

)
=


0 if q ≥ 2,
∂p−1

∂zp−1
1√
z

= (−1)p−1 (2p−2)!
4p−1(p−1)!z

− 2p−1
2 if q = 1,

y · ∂
p

∂zp
1√
z

= (−1)p (2p)!
4pp! yz

− 2p+1
2 if q = 0.

,

which Substitute the gradient, Hessian and p-th order partial derivative into (44), we get591

E

[
Y√
Z

]
=

E[Y ]√
E[Z]

−E

[
(Y −E[Y ])(Z −E[Z])

2E[Z]3/2

]
+ E

[
3E[Y ](Z −E[Z])2

8E[Z]5/2

]

+

∞∑
p=3

1

p!

(
p(2p− 2)!

4p−1(p− 1)!
E

[
(Y −E[Y ])(Z −E[Z])p−1

E[Z]
2p−1

2

]
+ (−1)p

(2p)!

4pp!
E

[
E[Y ](Z −E[Z])p

E[Z]
2p+1

2

])

=
E[Y ]√
E[Z]

− Cov(Y,Z)

2E[Z]3/2
+

3E[Y ]Var(Z)

8E[Z]5/2
+O

(
E[(Y −E[Y ])(Z −E[Z])2]

)
+O

(
E[(Z −E[Z])3]

)
=

E[Y ]√
E[Z]

(
1− Cov(Y,Z)

2E[Y ]E[Z]
+

3Var(Z)

8E[Z]2

)
+O

(
E[(Y −E[Y ])(Z −E[Z])2]

)
+O

(
E[(Z −E[Z])3]

)
,

as desired.592

A combination of the consequence of Lemma D.3 and Assumption B culminates in an upper bound593

on the second error term.594

Lemma D.4. Define signal-noise-ratio SNRt(Y ) := Et[Yt]
2

Vart(Yt)
. Under Assumptions B, we have595 ∣∣∣∣∣ Et[dt]√

Et[vt] + ε
−Et

[
dt√
vt + ε

]∣∣∣∣∣
≤
(

8 + 4τ + 3τ2

8

) ∣∣∣∣∣− Corrt(dt, vt + ε)

2
√

SNRt(vt + ε)

√
1

ρt
− 1 +

3

8SNRt(vt + ε)

∣∣∣∣∣ ·
∣∣∣∣∣ Et[dt]√

Et[d2t ]

∣∣∣∣∣
+O(ε) +O

(
Et[(Y −Et[Y ])(Z −Et[Z])2]

)
+O

(
Et[(Z −Et[Z])3]

)
Proof. Following Lemma D.3 with Y := dt, Z := vt + ε, we get596 ∣∣∣∣∣ Et[dt]√

Et[vt] + ε
−Et

[
dt√
vt + ε

]∣∣∣∣∣ ≤
∣∣∣∣∣ Et[dt]√

Et[vt] + ε

∣∣∣∣∣ ·
∣∣∣∣− Covt(dt, vt + ε)

2Et[dt]Et[vt + ε]
+

3Vart(vt + ε)

8Et[vt + ε]2

∣∣∣∣ (46)

+O
(
Et[(Y −Et[Y ])(Z −Et[Z])2]

)
+O

(
Et[(Z −Et[Z])3]

)
.

We express the covariance between d and v + ε based on the definitions of SNR as follows:597

Covt(dt, vt + ε) = Et[dt]Et[vt + ε] · Covt(dt, vt + ε)√
Vart(dt)Vart(vt + ε)

√
Vart(dt)Vart(vt + ε)

Et[dt]2Et[vt + ε]2

= Et[dt]Et[vt + ε] · Corrt(dt, vt + ε)√
SNRt(dt)SNRt(vt + ε)

,

where SNRt(dt) is closely connected to the signal fraction ρt, defined as ρt := Et[dt]
2

Et[d2t ]
:

SNRt(dt) =
Et[dt]

2

Vart(dt)
=

1

Vart(dt)/Et[dt]2
=

1

(Vart(dt) + Et[dt]2)/Et[dt]2 − 1
=

1

1/ρt − 1
.
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The first term (46) admits the following upper bound:598

(46) =

∣∣∣∣∣ Et[dt]√
Et[vt] + ε

∣∣∣∣∣ ·
∣∣∣∣− Covt(dt, vt + ε)

2Et[dt]Et[vt + ε]
+

3Vart(vt + ε)

8Et[vt + ε]2

∣∣∣∣
=

∣∣∣∣∣ Et[dt]√
Et[vt] + ε

∣∣∣∣∣ ·
∣∣∣∣∣− E[dt]E[vt + ε]

2Et[dt]Et[vt + ε]
· Corrt(dt, vt + ε)√

SNRt(vt + ε)

√
1

ρt
− 1 +

3

8SNRt(vt + ε)

∣∣∣∣∣
=

∣∣∣∣∣ Et[dt]√
Et[vt] + ε

∣∣∣∣∣ ·
∣∣∣∣∣− Corrt(dt, vt + ε)

2
√

SNRt(vt + ε)

√
1

ρt
− 1 +

3

8SNRt(vt + ε)

∣∣∣∣∣
≤8 + 4τ + 3τ2

8

∣∣∣∣∣− Corrt(dt, vt + ε)

2
√

SNRt(vt + ε)

√
1

ρt
− 1 +

3

8SNRt(vt + ε)

∣∣∣∣∣ ·
∣∣∣∣∣ Et[dt]√

Et[d2t ]

∣∣∣∣∣+O(ε)

(47)

where (47) is given by Lemma D.1.599

Combining the upper bounds on two terms on the right-hand side of (41), we finally can prove600

Lemma 4.2601

Proof of Lemma 4.2. It follows immediately by triangle inequality, Lemma D.1 and Lemma D.4.602 ∣∣∣∣∣ Et[dt]√
Et[d2t ]

−Et

[
dt√
vt + ε

]∣∣∣∣∣
≤

∣∣∣∣∣ Et[dt]√
Et[d2t ]

− Et[dt]√
Et[vt] + ε

∣∣∣∣∣+

∣∣∣∣∣ Et[dt]√
Et[vt] + ε

Et

[
dt√
vt + ε

]∣∣∣∣∣
≤ 4τ + 3τ2

8

∣∣∣∣∣ Et[dt]√
Et[d2t ]

∣∣∣∣∣+
8 + 4τ + 3τ2

8

∣∣∣∣∣ Corrt(dt, vt + ε)

2
√

SNRt(vt + ε)

√
1

ρt
− 1− 3

8SNRt[vt + ε]

∣∣∣∣∣ ·
∣∣∣∣∣ Et[dt]√

Et[d2t ]

∣∣∣∣∣
+O(ε) +O

(
Et[(Y −Et[Y ])(Z −Et[Z])2]

)
+O

(
Et[(Z −Et[Z])3]

)
Finally, bounding |Corrt(dt, vt + ε)| by 1 and recognizing 1

ρt
− 1 = 1

SNRt(dt)
give the desired603

result.604

D.2 Proof of Theorem 4.3605

To prove Theorem 4.3, we can use a classical result on stochastic approximation originally due to606

Dvoretzky [15].607

Theorem D.1 (An extension of Dvoretzky’s Theorem). Let (Ω = {ω},F , P ) be a probability space.608

Let {xt} and {yt} be sequences of random variables such that, for all t ≥ 0,609

xt+1(ω) = Tt
(
x0(ω), . . . , xt(ω)

)
+ yt(ω), (48)

where the transformation Tt satisfy, for any x0, . . . , xt ∈ Rn,610 ∥∥Tt(x0, . . . , xt)− x∗‖2 ≤ max
{
at, (1 + bt)‖xt − x∗‖2 − ct + dt

}
(49)

and the sequences {at}, {bt}, {ct} and {dt} are non-negative and satisfy611

lim
t→∞

at = a∞,

∞∑
t=0

bt <∞,
∞∑
t=0

ct =∞,
∞∑
t=1

dt <∞. (50)

In addition, suppose the following conditions hold with probability one:612

E[‖x0‖2] <∞,
∞∑
t=0

E[‖yt‖2] <∞, E
[
yt|x0, . . . , xt] = 0 ∀ t ≥ 0.

Then we have with probability one,613

lim sup
t→∞

‖xt − x∗‖2 ≤ a∞.
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Remark. There are many extensions of Dvoretzky’s original results [15]. Theorem D.1 is a minor614

variation of Venter [51, Theorem 1]. More concretely,615

• Theorem 1 of Venter [51] has the sequence {at} being a constant sequence, i.e., at = a∞ for616

all t ≥ 0. The extension to a non-constant sequence {at} is outlined in the original work of617

Dvoretzky [15] and admits a simple proof due to Derman and Sacks [12].618

• Theorem 1 of Venter [51] does not include the sequence {dt}. The extension with
∑∞
t=0 dt <∞619

is straightforward based on a simple argument of Dvoretzky [15].620

• More generally, the sequences {at}, {bt}, {ct}, {dt} can be non-negative measurable func-621

tions of x0, . . . , xt, and the conclusion of Theorem D.1 holds if a∞ is an upper bound on622

lim supt→∞ at(x0, . . . , xt) uniformly for all sequences x0, . . . , xt, . . . [12, 39].623

We also need the following lemma.624

Lemma D.5. Under Assumptions B, it holds that625

Et

[〈
xt − x∗,

dt√
vt + ε

〉]
≥

〈
xt − x∗,

Et[dt]√
Et[d2t ]

〉
− ‖xt − x∗‖

(
ct‖
√
ρt‖+O(ε) +O(Vart(vt))

)
,

where ct is given by (28).626

Proof. Adding and subtracting the term Et[dt]√
Et[d2t ]

from the inner product, we obtain:627

Et

[〈
xt − x∗,

dt√
vt + ε

〉]
=Et

[〈
xt − x∗,

Et[dt]√
Et[d2t ]

〉]
+ Et

[〈
xt − x∗,

dt√
vt + ε

− Et[dt]√
Et[d2t ]

〉]

≥Et

[〈
xt − x∗,

Et[dt]√
Et[d2t ]

〉]
− ‖xt − x∗‖ ·

∥∥∥∥∥Et
[

dt√
vt + ε

]
− Et[dt]√

Et[d2t ]

∥∥∥∥∥
≥

〈
xt − x∗,

Et[dt]√
Et[d2t ]

〉
− ‖xt − x∗‖

(
ct

∥∥∥∥∥ Et[dt]√
Et[d2t ]

∥∥∥∥∥+O(ε) +O(Vart(vt))

)
, (51)

where the inequality (51) is due to Lemma 4.2. To finish the proof, we recall
√
ρt = Et[dt]√

Et[d2t ]
.628

Proof of Theorem 4.3. We can write the practical BCOSW algorithm as629

xt+1 = (1− αtλ)xt − αt
dt√
vt + ε

= (1− αtλ)xt − αtEt
[

dt√
vt + ε

]
+ αt

(
Et

[
dt√
vt + ε

]
− dt√

vt + ε

)
In terms of the decomposition in (48), we have xt+1 = Tt(x0, . . . , xt) + yt where630

Tt(x0, . . . , xt) = (1− αtλ)xt − αtEt
[

dt√
vt + ε

]
yt = αt

(
Et

[
dt√
vt + ε

]
− dt√

vt + ε

)
.

Apparently we have Et[yt] = E[yt|x0, . . . , xt] = 0. We also have
∑∞
t=0 E[‖yt‖2] < ∞ with a631

bounded assumption on yt due to the assumption
∑∞
t=0 α

2
t <∞.632
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The squared distance between Tt(x0, . . . , xt) and x∗ is633 ∥∥Tt(x0, . . . , xt)− x∗∥∥2 =

∥∥∥∥(1− αtλ)xt − αtEt
[

dt√
vt + ε

]
− x∗

∥∥∥∥2
= (1− αtλ)2‖xt − x∗‖2 − 2αt(1− αtλ)

〈
xt − x∗, Et

[
dt√
vt + ε

]
+ λx∗

〉
+ α2

t

∥∥∥∥Et[ dt√
vt + ε

]
+ λx∗

∥∥∥∥2
From Lemma D.5 and the aiming condition (36), we have634 〈
xt − x∗, Et

[
dt√
vt + ε

]
+λx∗

〉
≥

〈
xt − x∗,

Et[dt]√
Et[d2t ]

+λx∗

〉
−
(
ct‖
√
ρt‖+O(ε) +O(Vart(vt))

)
‖xt − x∗‖

≥ −
(
ct‖
√
ρt‖+O(ε) +O(Vart(vt))

)
‖xt − x∗‖ .

In addition, by the bounded assumption on dt, there exist a constant B such that∥∥∥∥Et[ dt√
vt + ε

]
+ λx∗

∥∥∥∥2 ≤ B, ∀ t ≥ 0.

Together with 0 < 1− αtλ < 1, we conclude that635 ∥∥Tt(x0, . . . , xt)− x∗∥∥2 ≤ (1− αtλ)2 ‖xt − x∗‖2 + 2αt(1− αtλ)
(
ct‖
√
ρt‖+O(ε) +O(Vart(vt))

)
‖xt − x∗‖+ α2

tB

≤ (1− αtλ)2 ‖xt − x∗‖2 + 2αt

(
ct‖
√
ρt‖+O(ε) +O(Vart(vt))

)
‖xt − x∗‖+ α2

tB

= (1 + α2
tλ

2) ‖xt − x∗‖2 + αt
(
2c‖√ρt‖+O(ε) +O(Vart(vt))

)
‖xt − x∗‖

− 2αtλ‖xt − x∗‖2 + α2
tB

= (1 + α2
tλ

2) ‖xt − x∗‖2 + αt

((
2c‖√ρt‖+O(ε) +O(Vart(vt))

)
‖xt − x∗‖ − λ‖xt − x∗‖2

)
− αtλ‖xt − x∗‖2 + α2

tB.

We observe that there exist δ > 0 such that636

‖xt − x∗‖ ≥ δ =⇒
(
2c‖√ρt‖+O(ε) +O(Vart(vt))

)
‖xt − x∗‖ − λ‖xt − x∗‖2 ≤ 0.

Therefore, ‖xt − x∗‖ ≥ δ implies637

‖Tt(x0, . . . , xt)− x∗‖2 ≤ (1 + α2
tλ

2)‖xt − x∗‖2 − αtλ‖xt − x∗‖2 + α2
tB.

Otherwise, when ‖xt − x∗‖ ≤ δ, we have638

‖Tt(x0, . . . , xt)− x∗‖2 ≤ (1− αtλ)2δ2 + 2αt
(
c‖√ρt‖δ +O(ε)

)
+ α2

tB.

By defining at as the right-hand side of the above inequality, i.e.,639

at = (1− αtλ)2δ2 + 2αt
(
c‖√ρt‖δ +O(ε)

)
+ α2

tB, (52)

we can combine the above two cases as640

‖Tt(x0, . . . , xt)− x∗‖2 ≤ max
{
at, (1 + α2

tλ
2)‖xt − x∗‖2 − αtλ‖xt − x∗‖2 + α2

tB
}
.

With the additional definition of641

bt = α2
tλ

2, ct = αtλ‖xt − x∗‖2, dt = α2
tB,

we arrive at the key inequality (49).642

We are left to check the conditions in (50). Using the assumptions on {αt}, the definition in (52)643

implies that at converges and limt→∞ at = δ2. The conditions on {bt} and {dt} are automatically644

satisfied. For {ct}, if
∑∞
t=0 ct < ∞, then we must have ‖xt − x?‖2 → 0 almost surely and the645

conclusion of theorem holds trivially. Otherwise,
∑∞
t=0 ct =∞ allows all the conditions in (50) to646

hold, so we can invole Theorem D.1 to conclude the proof.647
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E Biases and variances of second-moment estimators648

Lemma 4.2 provides guidelines for choosing the second-moment estimator vt, which should exhibit:649

• low bias (i.e., low τ );650

• high signal-to-noise ratio (i.e., high SNR);651

However, there is always a bias-variance tradeoff for various estimators vt. Here are some examples:652

1. Sign-SGD is equivalent to take vt = d2t , exhibiting low bias and high variance653

Bias = |Et[vt]−Et[d
2
t ]| = 0, Variance = Vart(vt) = Vart(dt),

with resulting update rule to be sign-SGD (with and without momentum corresponding to654

dt = gt and dt = mt respectively):655

xt+1 = xt − αt
dt√
d2t + ε

≈ xt − αtsign(dt).

2. Standard SGD is equivalent to take vt = c for some positive constant c, exhibiting high bias656

and low variance657

Bias = |Et[vt]−Et[d
2
t ]| = |c−Et[d

2
t ]|, Variance = Vart(vt) = 0,

with resulting update rule to be SGD (with and without momentum corresponding to dt = gt658

and dt = mt respectively):659

xt+1 = xt − αt
dt√
c+ ε

= xt − α′tdt,

where α′t := αt√
c+ε

.660

3. BCOS-m uses vt = EMAβ(d2t ), exhibiting non-trivial bias and low variance properties:661

Bias = |Et[vt]−Et[d
2
t ]|

=

∣∣∣∣∣Et
[

t∑
k=1

(1− β)βt−kd2k

]
−Et[d

2
t ]

∣∣∣∣∣
=

∣∣∣∣∣
t−1∑
k=1

(1− β)βt−kd2k + (1− β)Et
[
d2t
]
−Et[d

2
t ]

∣∣∣∣∣
=

∣∣∣∣∣
t−1∑
k=1

(1− β)βt−kd2k − βEt
[
d2t
]∣∣∣∣∣ .

As for the variance, we get662

Vart(vt) = Et

( t∑
k=1

(1− β)βt−kd2k −
t∑

k=1

(1− β)βt−kEt[d
2
k]

)2


= Et

(t−1∑
k=1

(1− β)βt−kd2k + (1− β)d2t −
t−1∑
k=1

(1− β)βt−kd2k − (1− β)Et[d
2
k]

)2


= (1− β)2Et

[(
d2t −Et[d

2
t ]
)2]

= (1− β)2Vart
(
d2t
)
.

4. Adam uses estimator vt = EMAβ2(g2t ) with search direction dt = EMAβ1(gt): exhibiting663

non-trivial bias and low variance properties:664

Bias = |Et[vt]−Et[d
2
t ]|
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=

∣∣∣∣∣∣Et
[

t∑
k=1

(1− β2)βt−k2 g2k

]
−Et

( t∑
k=1

(1− β1)βt−k1 gk

)2
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
t−1∑
k=1

(1− β2)βt−k2 g2k −

(
t−1∑
k=1

(1− β1)βt−k1 gk

)2
∣∣∣∣∣∣

+ 2

∣∣∣∣∣
(
t−1∑
k=1

(1− β1)βt−k1 gk

)
Et[gt]

∣∣∣∣∣+
∣∣(1− β2)Et

[
g2t
]
− (1− β1)2Et[g

2
t ]
∣∣ .

As for the variance, we get665

Vart(vt) = Et

( t∑
k=1

(1− β2)βt−k2 g2k −
t∑

k=1

(1− β2)βt−k2 Et
[
g2k
])2


= Et

(t−1∑
k=1

(1− β2)βt−k2 g2k + (1− β2)g2t −
t−1∑
k=1

(1− β2)βt−k2 g2k − (1− β2)Et[g
2
t ]

)2


= (1− β2)2Et

[(
d2t −Et[d

2
t ]
)2]

= (1− β2)2Vart
(
d2t
)
.

5. BCOS-c uses estimator vt = (1 − (1 − β)2)m2
t−1 + (1 − β)2g2t with search direction dt =666

mt = EMAβ(gt) = βmt−1 + (1− β)gt: exhibiting low bias and low variance properties:667

Bias = |Et[vt]−Et[d
2
t ]|

=
∣∣∣Et [(1− (1− β)2)m2

t−1 + (1− β)2g2t
]
−Et

[
(βmt−1 + (1− β)gt)

2
]∣∣∣

=
∣∣(2β − β2)m2

t−1 + (1− β)2Et
[
g2t
]
− β2m2

t−1 − 2β(1− β)mt−1Et [gt]− (1− β)Et
[
g2t
]∣∣

=
∣∣(2β − 2β2)m2

t−1 − 2β(1− β)mt−1Et [gt]
∣∣

= 2β(1− β) |mt−1 (mt−1 −Et [gt])|
668

Vart(vt) = Et

[(
(1− (1− β)2)m2

t−1 + (1− β)2g2t − (1− (1− β)2)m2
t−1 − (1− β)2Et[g

2
t ]
)2]

= (1− β)4Et

[(
g2t −Et[g

2
t ]
)2]

= (1− β)4Vart
(
g2t
)
.
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how they were chosen, type of optimizer, etc.) necessary to understand the results?794

Answer: [Yes]795

Justification: We describe the hyper-parameters used in the Experiment section. The models and796

datasets we use are all very standard and there should be no confusion on the settings.797

Guidelines:798

• The answer NA means that the paper does not include experiments.799

• The experimental setting should be presented in the core of the paper to a level of detail that800

is necessary to appreciate the results and make sense of them.801

• The full details can be provided either with the code, in appendix, or as supplemental802

material.803

7. Experiment statistical significance804

Question: Does the paper report error bars suitably and correctly defined or other appropriate805

information about the statistical significance of the experiments?806

Answer: [No]807

Justification: Performing the errors bars are computationally costly and they are not essential in808

understanding and justifying the results in this paper.809

Guidelines:810

• The answer NA means that the paper does not include experiments.811

• The authors should answer "Yes" if the results are accompanied by error bars, confidence812

intervals, or statistical significance tests, at least for the experiments that support the main813

claims of the paper.814

• The factors of variability that the error bars are capturing should be clearly stated (for815

example, train/test split, initialization, random drawing of some parameter, or overall run816

with given experimental conditions).817

• The method for calculating the error bars should be explained (closed form formula, call to818

a library function, bootstrap, etc.)819

• The assumptions made should be given (e.g., Normally distributed errors).820

• It should be clear whether the error bar is the standard deviation or the standard error of the821

mean.822

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably823

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality824

of errors is not verified.825
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• For asymmetric distributions, the authors should be careful not to show in tables or figures826

symmetric error bars that would yield results that are out of range (e.g. negative error rates).827

• If error bars are reported in tables or plots, The authors should explain in the text how they828

were calculated and reference the corresponding figures or tables in the text.829

8. Experiments compute resources830

Question: For each experiment, does the paper provide sufficient information on the computer831

resources (type of compute workers, memory, time of execution) needed to reproduce the experi-832

ments?833

Answer: [No]834

Justification: Information on compute resources are not relevant to the results of this paper. We835

focus on training performance of standard tasks whose compute requirements are well-known.836

Guidelines:837

• The answer NA means that the paper does not include experiments.838

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or839

cloud provider, including relevant memory and storage.840

• The paper should provide the amount of compute required for each of the individual experi-841

mental runs as well as estimate the total compute.842

• The paper should disclose whether the full research project required more compute than the843

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it844

into the paper).845

9. Code of ethics846

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS847

Code of Ethics https://neurips.cc/public/EthicsGuidelines?848

Answer: [Yes]849

Justification: We reviewed the Code of Ethics and stick with it.850

Guidelines:851

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.852

• If the authors answer No, they should explain the special circumstances that require a853

deviation from the Code of Ethics.854

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration855

due to laws or regulations in their jurisdiction).856

10. Broader impacts857

Question: Does the paper discuss both potential positive societal impacts and negative societal858

impacts of the work performed?859

Answer: [NA]860

Justification: There is no perceivable negative impact of the work perfomed.861

Guidelines:862

• The answer NA means that there is no societal impact of the work performed.863

• If the authors answer NA or No, they should explain why their work has no societal impact864

or why the paper does not address societal impact.865

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,866

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-867

ment of technologies that could make decisions that unfairly impact specific groups), privacy868

considerations, and security considerations.869

• The conference expects that many papers will be foundational research and not tied to870

particular applications, let alone deployments. However, if there is a direct path to any871

negative applications, the authors should point it out. For example, it is legitimate to point872

out that an improvement in the quality of generative models could be used to generate873

deepfakes for disinformation. On the other hand, it is not needed to point out that a generic874

algorithm for optimizing neural networks could enable people to train models that generate875

Deepfakes faster.876
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• The authors should consider possible harms that could arise when the technology is being877

used as intended and functioning correctly, harms that could arise when the technology is878

being used as intended but gives incorrect results, and harms following from (intentional or879

unintentional) misuse of the technology.880

• If there are negative societal impacts, the authors could also discuss possible mitigation881

strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-882

nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback883

over time, improving the efficiency and accessibility of ML).884

11. Safeguards885

Question: Does the paper describe safeguards that have been put in place for responsible release886

of data or models that have a high risk for misuse (e.g., pretrained language models, image887

generators, or scraped datasets)?888

Answer: [NA]889

Justification: This paper poses no such risks.890

Guidelines:891

• The answer NA means that the paper poses no such risks.892

• Released models that have a high risk for misuse or dual-use should be released with893

necessary safeguards to allow for controlled use of the model, for example by requiring that894

users adhere to usage guidelines or restrictions to access the model or implementing safety895

filters.896

• Datasets that have been scraped from the Internet could pose safety risks. The authors should897

describe how they avoided releasing unsafe images.898

• We recognize that providing effective safeguards is challenging, and many papers do not899

require this, but we encourage authors to take this into account and make a best faith effort.900

12. Licenses for existing assets901

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the902

paper, properly credited and are the license and terms of use explicitly mentioned and properly903

respected?904

Answer: [Yes]905

Justification: All sources are properly cited and no license required.906

Guidelines:907

• The answer NA means that the paper does not use existing assets.908

• The authors should cite the original paper that produced the code package or dataset.909

• The authors should state which version of the asset is used and, if possible, include a URL.910

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.911

• For scraped data from a particular source (e.g., website), the copyright and terms of service912

of that source should be provided.913

• If assets are released, the license, copyright information, and terms of use in the package914

should be provided. For popular datasets, paperswithcode.com/datasets has curated915

licenses for some datasets. Their licensing guide can help determine the license of a dataset.916

• For existing datasets that are re-packaged, both the original license and the license of the917

derived asset (if it has changed) should be provided.918

• If this information is not available online, the authors are encouraged to reach out to the919

asset’s creators.920

13. New assets921

Question: Are new assets introduced in the paper well documented and is the documentation922

provided alongside the assets?923

Answer: [NA]924

Justification: This paper does not release new assets.925

Guidelines:926

• The answer NA means that the paper does not release new assets.927
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• Researchers should communicate the details of the dataset/code/model as part of their sub-928

missions via structured templates. This includes details about training, license, limitations,929

etc.930

• The paper should discuss whether and how consent was obtained from people whose asset is931

used.932

• At submission time, remember to anonymize your assets (if applicable). You can either933

create an anonymized URL or include an anonymized zip file.934

14. Crowdsourcing and research with human subjects935

Question: For crowdsourcing experiments and research with human subjects, does the paper936

include the full text of instructions given to participants and screenshots, if applicable, as well as937

details about compensation (if any)?938

Answer: [NA]939

Justification: This paper does not involve crowdsourcing nor research with human subjects.940

Guidelines:941

• The answer NA means that the paper does not involve crowdsourcing nor research with942

human subjects.943

• Including this information in the supplemental material is fine, but if the main contribution944

of the paper involves human subjects, then as much detail as possible should be included in945

the main paper.946

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or947

other labor should be paid at least the minimum wage in the country of the data collector.948

15. Institutional review board (IRB) approvals or equivalent for research with human subjects949

Question: Does the paper describe potential risks incurred by study participants, whether such950

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals951

(or an equivalent approval/review based on the requirements of your country or institution) were952

obtained?953

Answer: [NA]954

Justification: This paper does not involve crowdsourcing nor research with human subjects.955

Guidelines:956

• The answer NA means that the paper does not involve crowdsourcing nor research with957

human subjects.958

• Depending on the country in which research is conducted, IRB approval (or equivalent) may959

be required for any human subjects research. If you obtained IRB approval, you should960

clearly state this in the paper.961

• We recognize that the procedures for this may vary significantly between institutions and962

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines963

for their institution.964

• For initial submissions, do not include any information that would break anonymity (if965

applicable), such as the institution conducting the review.966

16. Declaration of LLM usage967

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-968

standard component of the core methods in this research? Note that if the LLM is used only for969

writing, editing, or formatting purposes and does not impact the core methodology, scientific970

rigorousness, or originality of the research, declaration is not required.971

Answer: [NA]972

Justification: the core method development in this research does not involve LLMs as any973

important, original, or non-standard components.974

Guidelines:975

• The answer NA means that the core method development in this research does not involve976

LLMs as any important, original, or non-standard components.977

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for978

what should or should not be described.979
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