
Under review as submission to TMLR

Learning positional encodings in transformers depends on
initialization

Anonymous authors
Paper under double-blind review

Abstract

The attention mechanism is central to the transformer’s ability to capture complex de-
pendencies between tokens of an input sequence. Key to the successful application of the
attention mechanism in transformers is its choice of positional encoding (PE). The PE pro-
vides essential information that distinguishes the position and order amongst tokens in a
sequence. Most prior investigations of PE effects on generalization were tailored to 1D input
sequences, such as those presented in natural language, where adjacent tokens (e.g., words)
are highly related. In contrast, many real world tasks involve datasets with highly non-
trivial positional arrangements, such as datasets organized in multiple spatial dimensions,
or datasets for which ground truth positions are not known, such as in biological data. Here
we study the importance of learning accurate PE for problems which rely on a non-trivial
arrangement of input tokens. Critically, we find that the choice of initialization of a learnable
PE greatly influences its ability to learn accurate PEs that lead to enhanced generalization.
We empirically demonstrate our findings in three experiments: 1) A 2D relational reasoning
task; 2) A nonlinear stochastic network simulation; 3) A real world 3D neuroscience dataset,
applying interpretability analyses to verify the learning of accurate PEs. Overall, we find
that a learned PE initialized from a small-norm distribution can 1) uncover interpretable
PEs that mirror ground truth positions (with respect to isometry) in multiple dimensions,
and 2) lead to improved downstream generalization in empirical evaluations. Importantly,
choosing an ill-suited PE can be detrimental to both model interpretability and generaliza-
tion. Together, our results illustrate the feasibility of learning identifiable and interpretable
PEs for enhanced generalization.

1 Introduction

Transformers commonly use ordered sequences of data, like words in a sentence. The position and order
of these words are crucial to their correct interpretation. In transformers, sequences of tokens (e.g., words)
are processed in parallel – not sequentially. Thus, to process tokens correctly in their intended sequence,
the transformer must encode a notion of position and/or ordering of tokens. This information is encoded in
its positional encoding (PE) layer – a model parameter that tags each input token with a unique location.
For many common forms of data, such as natural language, text, and audio, the labeling of ground truth
positional information is straightforward, since tokens are ordered sequences in 1D. This led to the original
design of 1D sinusoidal PEs, which were successfully applied to natural language data, and provided general
spatial information about language tokens (rather than data-specific information) (Vaswani et al., 2017).
More recent investigations into the role of PE in transformers has led to a proliferation of PE schemes, each
specifically designed for 1D text with different properties (Su et al., 2022; Shaw et al., 2018; Vaswani et al.,
2017; Raffel et al., 2020; Li et al., 2024; Kazemnejad et al., 2023; Shen et al., 2024; Golovneva et al., 2024;
Press et al., 2022). However, many interesting problems require input sequences that are not in 1D (e.g.,
image datasets; Li et al. (2021)), or where position information is non-trivial or not known (e.g., spatially-
embedded biological data). The choice of PE significantly affects the performance of transformer models,
even in simple string-based tasks (Kazemnejad et al., 2023; Ruoss et al., 2023; McLeish et al., 2024). Thus,
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understanding how to disambiguate and learn ideal position information from data directly would likely
provide improved performance while affording increased model flexibility.

If learning the optimal PE for a task can enhance downstream generalization performance, what strategies
can we use to achieve this? Recent work in deep learning theory suggests various parameterizations of
simple neural network models, such as weight initializations, can greatly influence their learned internal
representations (Woodworth et al., 2020; Chizat et al., 2020). In particular, those studies found that weight
initializations in neural networks from large-norm distributions (e.g., a normal distribution with a large
standard deviation) learned random, high-dimensional representations that would “memorize” input-output
relations. This learning regime is commonly-referred to as the lazy learning or neural tangent kernel (NTK)
regime, as it fails to learn a structured representation of the task or input. In contrast, neural networks
that were initialized from a small-norm distribution (e.g., N (0, σ) for small σ) tend to learn structured
representations that accurately reflected the organization of input features and were robust to noise. This
is referred to as the rich or feature learning regime (Woodworth et al., 2020; Chizat et al., 2020). (We note
that choosing the initialization rank can also induce rich versus lazy learning; Liu et al. (2024)). Although
this theoretical framework was initially developed for simple neural networks (e.g., feed-forward networks
with few hidden layers), the insights drawn from it should apply to various model architectures, including
transformers (Zhang et al., 2024; Kunin et al., 2024). Given the recent interest in studying the impact of PEs
on generalization, we aimed to evaluate whether the norm of PE initialization would influence the ability to
properly learn a structured and accurate PE that would enhance generalization and interpretability.

Here we studied how the initialization of learnable PEs in transformers influence representation learning
and downstream generalization. We focused on problems containing sequences with nontrivial positioning
and ordering, comparing the generalization performance of models with learned PEs to other common PE
schemes (such as absolute and relative PEs). We also examined the interpretability of the learned PEs.
Our primary aim was to evaluate the hypothesis that learnable PEs in the feature rich learning regime would
produce interpretable position information that mirrored ground truth knowledge and improve generalization
performance. We tested this hypothesis in three experiments: 1) A 2D relational reasoning task called the
Latin Squares Task (LST), which is analogous to simplified Sudoku; 2) Masked prediction of a nonlinear
stochastic network simulation with spatially-embedded nodes; 3) a real-world neuroscience dataset, where
the task is to predict masked brain activity in 3D from spatially and heterogeneously distributed brain
regions. Overall, we found that when the PE is appropriately initialized with a small norm, learnable PEs
can uncover ground truth PEs, which lead to improved downstream generalization in both datasets. Note
that the notion of ground truth positions is task-dependent and data-dependent. In some cases, such as in
biological datasets, ground truth spatial information may be difficult to know or ambiguous. In this study, we
focus on tasks in which either a ground truth is unambiguous (e.g., synthetic tasks) or in which there exists
a putative ground truth (e.g., biological data with known properties). These results indicate the importance
of PE choice for generalization performance, and provide insights into how to optimally discover PEs for a
variety of tasks in which the ground truth PE is nontrivial or not known.

1.1 Contributions

We highlight three principal conclusions of this study.

1. Using a 2D relational reasoning task and nonlinear network simulation with known ground truth
position information, we demonstrate that the ability to approximate the ground truth PE (with
respect to isometry) depends on initializing a PE parameter with a small norm.

2. We demonstrate the generality of this approach to learning nontrivial PEs in a real world 3D neu-
roscience dataset, where only small-norm initialized PEs learn a PE representation of brain regions
that reflect brain network modularity.

3. We demonstrate that in all experiments, learning an accurate PE enhances downstream generaliza-
tion relative to alternative and commonly-used PEs.
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2 Model Architecture

For all three experiments, we used a standard encoder-only transformer architecture with four layers and
embedding dimension of 160 for the LST, 64 for the stochastic nonlinear network simulation, and 64 for
the fMRI data (Vaswani et al., 2017). The primary transformer manipulation was the choice of PE, and
includes a mix of absolute, relative, and learnable PEs (described in ensuing sections). The formulations
and definitions of common PEs are detailed in the Appendix A.1. For each experiment, we trained on 15
seeds. For simplicity of analyzing attention maps, we trained models with only a single attention head (fully-
connected, bidirectional attention unless specified otherwise). However, we have included results for models
with multiheaded attention (2 and 4 heads) on the LST task in Fig. A15, which reduced generalization
performance. The context window for the model was either 16 tokens long for the LST (given the 4 × 4
structure of the LST paradigm), 15 tokens for the NMAR model, or 360 tokens long (for the number of
brain regions in the Glasser et al. (2016) brain atlas). We used the Adam optimizer with a learning rate of
0.0001. For comparable analysis, all models were trained for a fixed number of training steps (4000 epochs
for the LST; 8000 puzzles per epoch; 50k training steps for human brain data). Results reported in the
main text were trained without regularization, given that we were interested in understanding the role of
PE initialization in isolation (no dropout, no weight decay). However, for completeness, we include results
using weight decay (AdamW, with weight decay=0.1) in the Appendix for the LST task, which yielded
qualitatively similar results (Fig. A8, Table A5, Table A6). A single model/seed could be trained (4000
epochs of LST) on one NVIDIA V100 GPU in under 45 minutes.

3 Experiment 1: Relational reasoning in the Latin Square Task (LST)

We first evaluated the effect of initialization on learning accurate PEs on the LST, a 2D relational reasoning
task that is similar to the game Sudoku (Fig. 1A-D). The LST is a nonverbal relational reasoning task
developed in line with the psychological theory of Relational Complexity (Birney et al., 2006; Halford et al.,
1998). Prior work in humans has demonstrated the reliability of the LST and its relationship to fluid
intelligence (Hearne et al., 2020; Birney et al., 2012; Hartung et al., 2022). Each puzzle in the LST involves
the presentation of a 4-by-4 grid populated with stimuli (e.g., shapes, numbers, etc.,), blank spaces, and
a single target probe location, noted with a question mark. The fundamental rule of the LST is that in
a complete puzzle (i.e., there remain no empty squares), each shape can only appear once in each row and
column. In our setup, the agent’s aim is to infer the unknown target stimuli based on the organization of
the elements within the LST grid.

The number of relations needed to solve a given LST puzzle can be manipulated by changing the organization
of the elements within the grid (Fig 1A-D). For instance, 1-vector puzzles require integration of information
across a single row or column, while 2-vector problems involve integration across a single row and column.
3-vector puzzles require information integration across three rows and/or columns. Importantly, performing
the LST task requires positional information of the rows and columns. Flattening the grid to 1D without
preserving the position information would significantly increase the difficulty of the LST task (e.g., see Fig.
1E). For our LST experiments, we generated 8000 training puzzles, and assigned to 1-, 2-, or 3-vector
conditions. We ensured that the similarity between any generated training set puzzle was distinct from
the generalization (validation) set of puzzles (i.e., the Jaccard dissimilarity > 0.8 for a test puzzle to any
individual training puzzle). Moreover, simpler neural network architectures, such as vanilla MLPs and
bidirectional LSTMs, could not generalize well across this split (Fig. A16).

3.1 PE initialization influences downstream generalization in the LST

Prior work in deep learning theory suggests that choice of weight initialization can influence learned repre-
sentations and downstream generalization (Jacot et al., 2020; Woodworth et al., 2020; Chizat et al., 2020).
In particular, the smaller the norm of the distribution from which the neural network is initialized, the more
structured the learned representations will be. We first assessed whether these intuitions would generalize
to learnable PEs initialized from different Normal distributions, controlling for the standard deviation (i.e.,
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Figure 1: A-D) The Latin Square Task (LST). The LST involves the presentation of a 2-dimensional 4-by-4 grid
populated with A) four possible symbols, blank spaces and a single target probe ("?"). The agent’s aim is to solve
for the target square with the rule that each shape can only appear once in every row and column. The reasoning
complexity required for an LST puzzle can be manipulated by varying the number of distinct vectors that must be
integrated to solve the problem. Examples of B) 1-, C) 2-, and D) 3-vector LST puzzles (left) and their solutions
(right). E) Performing the LST is intuitive in 2D. However, when formatting the task sequence for neural networks,
the input must be flattened into 1D. The LST is significantly more challenging when row and column information
is lost. F) The pairwise distances between token positions according to rows and columns provides the “ground
truth” of how tokens relate to each other in 2D space. A successful PE would preserve the isometry (i.e., pairwise
distance relationships) of the (x,y) grid coordinates. G) Naively using the 1D sinusoidal PE (Vaswani et al., 2017)
would provide incorrect token-wise position information, since it only considers the closeness of tokens in 1D. H) In
contrast, recomputing absolute positions in 2D (with sines and cosines in the embedding dimensions) would preserve
the position information of a 2D grid, even after flattening the sequence into 1D.

norm). For each token embedding, we initialized a learnable PE parameter from a multivariate Normal
distribution, denoted N (0, Σ), where Σ = σI, and I denotes the identity matrix scaled by σ (Fig. 2A).

We initialized PEs from distributions with σ ∈ {0.1, 0.2, 0.3, ..., 2.0}. (For each PE initialization, we trained
on 15 seeds.) We trained all models for 4000 epochs, and found that all models converged (Fig. 2B).
Remarkably, though the choice of σ was the only source of variation across model parameterizations, models
exhibited a wide range of generalization performance (Fig. 2C). Compared to the default initialization
choice of σ = 1, which had a generalization performance of 0.89 (Table A2), we found that the optimal
generalization performance was produced with PEs initialized with small norms (e.g., σ = 0.2; Acc=0.96;
Table A2). Moreover, consistent with the NTK regime, PE’s initialized from a distribution with large σ
converged, but generalized poorly (e.g., σ = 2.0, Acc=0.38; see also Table A2).

While our results are consistent with the hypothesis that small norm initialized models tend to learn the
most generalizable representations, we did observe a slight reduction in generalization performance for PEs
initialized at σ = 0.1 relative to σ = 0.2. In practice, we found that the poor generalization for very
small values of σ is due to the behavior of the Adam optimizer. Specifically, vanilla SGD outperformed the
generalization ability of models trained with Adam for small values of σ ∈ {0.01, 0.05, 0.1} (see Fig. A7).
Thus, it is important for practitioners to consider optimizers when encouraging the rich/feature training
regime for very small initializations.
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Figure 2: A) Transformer parameterization. We parameterize a learnable PE initialized from different distributions
(i.e., N (0, σI), varying σ), and study the effect initialization on downstream generalization. B) The training and
validation performance across 4000 epochs for examplar initializations. C) Despite the learnability of all initialized
models, the choice of σ strongly influenced downstream generalization. Boxplots reflect variability across 15 random
seeds. (See also Appendix Table A2.)

Table 1: Training and validation performance of common PEs and the learn-0.2 PE on the LST.

PE Validation acc Validation SD Training acc Training SD
2d-fixed (ground truth) 0.977 0.073 1.000 0.000
learn-0.2 0.956 0.039 1.000 0.000
1d-relative 0.920 0.042 1.000 0.000
random 0.888 0.046 1.000 0.000
1d-rope 0.805 0.115 1.000 0.000
1d-fixed 0.781 0.185 0.999 0.000
nope 0.334 0.020 0.509 0.002
c-nope 0.314 0.042 0.559 0.102

3.2 Learnable PEs outperform commonly-used PE schemes in the LST

We next sought to benchmark the optimal learnable PE (σ = 0.2, learn-0.2) relative to other standard
PE schemes. These schemes included absolute 1D PE (1d-fixed, using sines and cosines; Vaswani et al.
(2017)), 1D relative PE (1d-relative; Shaw et al. (2018)), and 1D rotary PE (1d-rope; Su et al. (2022)). In
addition, we also evaluated performance on PE schemes that have been shown to be beneficial for algorithmic
and compositional generalization tasks, including no PE with a causal attention mask (c-nope) (Kazemnejad
et al., 2023) and random PE without a learnable parameter (random) (Ruoss et al., 2023). (Note that the
c-nope model can implicitly learn position information due to the nature of the causal attention mask.) We
also included a baseline control model without any specified PE (nope), which should not be able to learn
the task in a systematic way, due to the permutation invariance of bidirectional attention in the absence of
PE. Finally, we included a “ground truth” PE – an absolute 2D PE based on sines and cosines (2d-fixed) –
to compare how similarly the various PEs produced attention mechanisms to this ground truth model (see
Appendix A.1). (Note, that the term “ground truth” applies to any rotation of the absolute 2D PE, or any
PE that preserves the pairwise isometry between the row and column information in the 2D LST grid. This
could include alternative absolute 2D PEs not based on sinusoidals, in addition to relative PEs that preserve
the isometry of the 2D grid information in the LST, as depicted in Fig. 1E,F).)

All models, except for the nope and c-nope models converged (accuracy after 4000 epochs, c-nope=0.56,
nope=0.51). Poor performance was expected for the nope model due to the lack of any explicit or implicit
PE information, and c-nope models neither learned nor generalized due to the autoregressive and causal
structure of its attention mask. Nevertheless, as anticipated, we found the ground truth 2d-fixed model
to exhibit the highest generalization performance (Table 1; Appendix Fig. A10A,D). Remarkably, the

5



Under review as submission to TMLR

next highest performing model was the learn-0.2 model (σ = 0.2), followed by the 1d-relative, random,
1d-rope, and 1d-fixed PE models, respectively. While we did not find a robust statistical difference between
the ground truth 2d-fixed model (97.7%) and the learn-0.2 model (95.6%) (2d-fixed vs. learn-0.2,
t-test, t(13) = 0.96, p = 0.35), there was a significant difference between the learn-0.2 model with the next
highest-performing model (1d-relative) (t(13) = 2.51, p = 0.03). In addition, we assessed the interaction
of PE initialization with weight decay (AdamW), a commonly-used L2 regularization scheme (Loshchilov and
Hutter, 2019). We empirically found that the combination of low initialization and weight decay improved
generalization; performance was virtually indistinguishable from the ground truth 2d-fixed PE (both models
generalized with 99% accuracy; Table A6; Fig. A8). Finally when performing a perturbation analysis, where
we systematically injected noise to the token embeddings and evaluated downstream performance, we found
that models that were most robust to noise were those initialized from a low-norm distribution (Fig. A11).
Overall, these findings corroborate theoretical findings in deep learning, suggesting their applicability to
learning rich transformer PEs in structured reasoning tasks.

3.3 Learnable PE models discover ground truth attention maps and positions

Next, we sought to understand how different PE initializations influenced the learned representations (e.g.,
attention maps and learned PEs) within the transformer. Since the underlying structure of the LST paradigm
is a 2D grid, we used the 2d-fixed model as the ground truth model. This allowed us to assess how learned
attention maps would deviate from attention maps derived from optimal position information. First, we
extracted the attention weights for each model, and computed the cosine similarity of attention weights
between the ground truth and learnable PE models (Fig. 3A; Table A3). We then correlated the alignment
of learned attention maps to the ground truth with generalization performance. We found that the degree of
agreement of learned attention maps with the ground truth (2d-fixed) predicted improved generalization
(ρ = 0.96, p < 0.0001; Fig. 3B). Importantly, learned PEs with small σ tended to learn attention represen-
tations that were more aligned with the ground truth. (We also computed the Jensen-Shannon Divergence
as a complementary distance measure, finding similar results; Appendix Fig. A9.) In the Appendix, we
include comparative analyses of the attention maps of models with common PEs (1d-fixed, 1d-relative,
etc.) and compare those to the ground truth model (Fig. A10B-D).

Next, to directly interpret what embeddings the learned PEs converged to during training, we measured
the alignment of learned PEs with the ground truth 2d-fixed PEs (Fig. 3D). This involved estimating
the distance (i.e., L2 norm) between the 2d-fixed PE and the learned PE embedding after an orthogonal
Procrustes transform was applied. An orthogonal Procrustes transform was applied to rotate and match
embedding dimensions according to maximal similarity since embedding dimensions were arbitrary in the
learnable PE models. We found that small-norm initialized PEs could better approximate the PEs from the
2d-fixed PE scheme (Fig. 3E). Critically, more similar ground truth PE approximation (measured by L2
norm) near perfectly predicted downstream generalization (ρ = −0.98, p < 0.0001; Fig. 3F). These results
indicate that 1) low-norm initializations can discover ground truth PEs and their subsequent attention maps,
and 2) these discovered PEs predicted downstream generalization.

4 Experiment 2: Masked prediction of a nonlinear stochastic network simulation

In our next experiment, we sought to demonstrate the impact of PE initialization in transformers in learning
data representations from a nonlinear, stochastic network simulation. Specifically, the main goal in this
experiment was to assess the interpretability of learned representations, rather than generalization. Unlike
natural language text, many real-world networks, such as genetic networks, air traffic flows, and brain prop-
agation networks, are inherently spatially embedded in physical or conceptual space. Thus, understanding
the positional arrangements of embedded data – e.g., the spatial relation between two genes in DNA, or the
functional relation between two brain regions – is of paramount importance when learning representations of
that data. We first explore the importance of learning PEs in a toy network simulation embedded into clus-
ters of networks, before subsequently investigating its importance in real-world brain data in the subsequent
section.
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Figure 3: A,B) We compared the attention maps of each learnable PE model to those derived from the “ground truth”
2d-fixed model. C) A strong rank correlation between generalization performance and the agreement of attention
maps to the 2d-fixed model. D) We directly compared the learned PE embeddings to the ground truth 2d-fixed
PE. Since the embedding dimensions of the learned PE models are random and not indexed in the same way to
the 2d-fixed embedding, we matched their embedding dimensions using an orthogonal Procrustes transform. After
matching the dimensions of the PE embeddings, we computed the L2 norm to calculate the distance between the
learned PE and the ground truth 2d-fixed PE. E) The distance (L2 norm) between the learned PEs and 2d-fixed
PE, for every σ. F) We found a strong relationship between the PE agreement with the ground truth PEs and
generalization performance (ρ = −0.977). (See also Appendix Table A3.)

4.1 Recovering network modules via PE learning in a stochastic network simulation

We implemented a nonlinear multivariate autoregressive (NMAR) model to simulate a system of 15 nodes
organized into 3 network clusters (5 nodes per network) (Fig 4A). Each node evolves over time based on
a combination of: 1) Autoregressive effects from its own past values (p = 3 lags); 2) Strong intra-cluster
interactions with other nodes in the same cluster; 3) Weak inter-cluster interactions with nodes in different
clusters; 4) Private noise to introduce variability.

The timeseries for node xi at time t was computed as

xi(t) =
p∑

k=1
wi,k · xi(t − k) +

∑
j∈Ci,j ̸=i

λij · f(xj(t − 1)) +
∑
j /∈Ci

ηij · f(xj(t − 1)) + ϵi(t),
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where wi,k ∼ U(0.2, 0.5), C refers to the module, λij ∼ U(0.02, 0.2), ηij ∼ U(0.005, 0.01), ϵi(t) ∼ N (0, 0.2),
and f(x) = sin(x).

A CB D

50% mask

Training set up

E

F

Figure 4: Recovering network structure in learned PEs using a simple nonlinear, stochastic network simulation. A)
Network structure with 15 nodes divided into 3 modules, where intra-module nodes interacted more strongly with
each other than inter-module nodes. B) Example time series from 3 randomly selected nodes. C) We used a self-
supervised training objective, where the model was trained to predict masked data from contemporaneous timepoints.
D) The network modularity of PEs, which was measured in relation to the “ground truth” networks, was highest in
learnable PE models initialized with small norm (learn-0.1) (see Appendix A.3 for calculation). Boxplots are sorted
by mean modularity in descending order. E) The equation governing the timeseries generation for node xi(t) (see
text for description of parameters). F) The cosine similarity of the PEs for each pair of tokens, across all models.
We can observe that learnable PE models with small-norm initializations (particularly learn-0.1) can recover the
ground truth network structure, while others cannot. (For additional data on training and testing convergence, see
Fig. A17.)

Models were simulated for 20k time points. The training objective for the transformer was to predict
contemporaneous activity of the 15 nodes using masked inputs (mask-level=50%) (Fig. 4C). We found that
learnable PE models with a small-norm were the models that were most capable of learning the ground truth
network organization (see visualizations in Fig. 4F, and compare to Fig. 4A). Statistically, when computing
the network modularity of the learned PEs with respect to the ground truth network structure, we found
that models initialized with learnable PEs with σ = 0.1 learned positions with the highest modularity
(Fig. 4D; see A.3 for how modularity was computed). This toy experiment demonstrates the feasibility of
accurately recovering accurate position representations in nonlinear stochastic networks. We next explore
this application to a real world brain imaging dataset.

5 Experiment 3: Masked prediction of spontaneous brain imaging data

In neuroscience, an important goal is to be able to predict distributed brain activity using the activity of other
brain regions (Bassett and Sporns, 2017). To achieve this, we sought to build a generalizable transformer
model that would predict the brain activity of target regions using the brain activity of other regions. In
this context, we conceptualized ‘tokens’ as distinct brain regions across the cortical mantle with the goal of
predicting masked brain activity. This task can be formalized as masked pretraining, where the input tokens
to the model are contemporaneous brain activity across different brain regions with masked (or missing)
activity values (Fig 5B). This requires the model to predict missing brain activity from its surrounding
context, i.e., the brain activity values of other brain regions.

Naively, the PE of brain regions might manifest as their physical location in 3D space. However, decades
of neuroscience research has revealed a modular brain organization, whereby different brain regions be-
long to distinct functional networks (or communities) (Power et al., 2011; Yeo et al., 2011; Ji et al., 2019;
Schaefer et al., 2018). Thus, the goal of using this real-world dataset was to assess the degree to which
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models could recover this “modular” network organization in terms of PE. We used publicly available hu-
man functional magnetic resonance imaging (fMRI) data from the Human Connectome Project (HCP)
dataset (www.humanconnectomeproject.org). We used the resting-state fMRI data from a subset (n = 100;
ntrain = 70; ntest = 30) of the HCP 1200 participant pool (Van Essen et al., 2013). fMRI data were parti-
tioned into 360 distinct cortical regions (tokens), which mapped onto to 12 distinct functional networks (Ji
et al., 2019; Glasser et al., 2016). Additional details of the fMRI data and preprocessing pipelines can be
found in Appendix A.2.

5.1 Learning interpretable PEs in human brain data for generalized brain activity prediction

We trained transformer models with a mix of fixed and learnable PEs (fixed: 1d-fixed, 1d-relative,
1d-rope, random; learnable PEs initialized with σ ∈ {0.1, 0.2, 1.0, 2.0}), minimizing the MSE of masked brain
activity. Figure 5 shows results of the training with 50% masking (Fig. 5C), and testing with 90% masking
(Fig. 5D). (We show results with 15%, 75%, and 90% mask training in Appendix Figs. A12,A13,A14)
Successful generalization of the trained model involved predicting the masked brain activity of a separate
subject’s data (i.e., test subjects). As expected, we found that small-norm initialized PEs (learn-0.1 and
learn-0.2) achieved the best performance in both their training and validation sets after a fixed number of
training steps (50k). Interestingly, relative PEs fared the worst, followed by absolute 1d-fixed and random
PEs.
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Dorsal attention (DAN)
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C D
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Figure 5: A) The brain is organized into functional networks that are spatially distributed throughout the brain in 3D
space. B) We sought to understand the influence of PE on a model’s ability to predict contemporaneous brain activity.
This can be formalized as a masked prediction task, where a transformer is trained to predict contemporaneous,
spatially masked brain activity. To test for generalization, we evaluated the MSE on a validation dataset, which
involved predicting the masked activity of data collected from different participants with increased masking (90%).
(Models were trained with a 50% masking. See Figures A12,A13,A14 for results with 15%, 75%, and 90% masked
training objectives.) C) We found that transformers endowed with different PE schemes converged to different MSE
loss values. D) Notably, learnable PEs initialized with small norms (learn-0.1 and learn-0.2) achieved to the lowest
MSE for both training and validation datasets. (X-axis is sorted from highest to lowest MSE.)

Having established the superior predictive performance of richly learned PEs (small σ), we next evaluated
whether these models learned meaningful yet nontrivial position information from masked pretraining of brain
activity. While the PE of brain regions could be encoded as their physical location in 3D space, decades of
neuroscience research has revealed a modular brain network organization, whereby different brain regions
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that are spatially distributed throughout the cortex belong to distinct functional networks (or communities)
(Fig. 5A) (Power et al., 2011; Yeo et al., 2011; Ji et al., 2019; Schaefer et al., 2018). In other words, two
brain regions that are distant in 3D space may actually be “functionally” close (e.g., yellow regions in Fig.
5A). (Prior work has indicated this functional closeness is determined by anatomical connectivity; Vázquez-
Rodríguez et al. (2019).) We therefore sought to address whether richly learned PEs could recover this
modular functional organization by measuring the distance of learned PE parameters.

When flattening brain regions across the cortex into a 1D tensor, each brain region’s (i.e., token’s) assignments
are distributed across that tensor (Fig. 6A). (In this context, a PE scheme that places adjacent tokens closer
to each other, such as in the original 1d-fixed PE with sines and cosines from Vaswani et al. (2017), would be
clearly ill-suited.) To evaluate whether learned PEs learned a modular organization that reflected the known
functional network organization of the brain, we measured the distance between every pair of tokens’ PE.
This involved computing an orthogonal Procrustes transform to rotate and match the embedding dimensions
of each token’s PE prior to computing their distance (L2 norm) (Figure 6B). The reason this is necessary
is because since learned PEs are first randomly initialized, the embedding dimension of each token’s PE
are not necessarily aligned (e.g., position 1’s embedding dimension i does not necessarily correspond to
embedding dimension i of position 2). After aligning the embedding dimensions across tokens, we computed
the distance between every pair of tokens. (We then scaled distance in this 2D matrix to range from 0 and
1, and computed the complement (i.e., 1 − dscaled), such that closer PEs would have higher values. We
computed both the network modularity and network clustering (i.e., segregation) with respect to the known
network partitions (see A.3 for mathematical definitions; Rubinov and Sporns (2010)). In brief, modularity
is a statistic that quantifies the degree to which the distance matrix can be cleanly subdivided into the
brain’s network partitions. Network clustering is a statistic that quantifies the ratio between within-module
distances and across-module distances, where modules are defined using a network partitioning from Ji et al.
(2019). We found that the modularity of small-norm initialized PEs (learn-0.1 and learn-0.2) had the
highest overall network modularity and segregation relative to other learnable PEs. This implies that the
small-norm initialized PEs learned interpretable PEs with respect to the known functional networks of the
brain. These findings support the hypothesis that learnable PEs (as opposed to off-the-shelf PEs) in the
rich training regime can improve brain activity prediction, while successfully learning interpretable position
information (Figure 6C,D).

6 Discussion

Related work. Recent studies have revealed that the choice of PE can strongly influence transformer
generalization (Li et al., 2024; Kazemnejad et al., 2023; Golovneva et al., 2024; Ruoss et al., 2023; McLeish
et al., 2024; Shen et al., 2024; Csordás et al., 2021; Ontanon et al., 2022; Zhou et al., 2024; Zhang et al.,
2024). However, most of these investigations have been limited to evaluating the generalizability of various
PE schemes on 1D string-based tasks (e.g., sequence learning tasks for arithmetic, context-free grammars, or
compositional tasks). In contrast, many important problems require the encoding of sequences that are not
in 1D (e.g., Li et al. (2021)), and where position information is non-trivial or not known, which we investigate
here. Additionally, work in deep learning theory has provided insight into the impact of model initialization
on representation learning, yet focus primarily on simple neural networks rather than transformers (Chizat
et al., 2020; Woodworth et al., 2020; Jacot et al., 2020; Kunin et al., 2024; Lippl and Stachenfeld, 2024).
In this study, we apply insights from deep learning theory to transformer models to effectively learn (and
improve generalization) to nontrivial sequence tasks, such as tasks requiring reasoning in 2D, or tasks in
which ground truth position information is organized in higher dimensions.

Limitations and future directions. We have demonstrated that learnable PEs initialized from small-
norm distributions can 1) approximate the ground truth PE, and 2) outperform many commonly-used PEs.
However, there remain several limitations of the present study which future studies can explore. First,
though we consider the use of the LST (with a 2D organization) a strength of this study due to the visual
interpretability of the paradigm’s positional information, it is unclear how well this approach will generalize
to tasks with an arbitrary number of elements or tasks in which there are dynamic changes in the number of
elements (e.g., length generalization problems in higher dimensions). In addition, due to the task-dependent
nature of utilizing (or learning) optimal PEs, for some tasks and training objectives, such as generic next-
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Do learned positional encodings organize 
along the brain’s community structure?

Flatten 3D Brain Regions to 1D
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Figure 6: A) We evaluated whether learnable PEs could discover the brain’s modular functional network organization.
When flattening the brain from a 3D to 1D tensor, the network labeling of each brain region is heterogenously
distributed across a 1D tensor in a disorganized manner. B) We computed the distance between positional embeddings
between every pair of token positions after aligning their embedding dimensions (d) through an orthogonal Procrustes
transform. This allowed us to construct a token-by-token embedding distance matrix, which we then compared to
brain network organization. C) The modularity of PEs with respect to the brain’s network organization. Models that
had learnable PEs initialized from small-norm distributions learned a modular PE organization that was consistent
with previously identified brain networks (Ji et al., 2019) D) The network clustering of PEs, which assessed whether
PEs of tokens that belong to the same network are closer in space than PEs that do not belong to the same network.

token prediction or arithmetic (which is order invariant under addition), standard PE choices may be most
appropriate (e.g., 1d-fixed or rndpe). However, for tasks in which establishing an underlying ordering and
relation of tokens is crucial — such as reasoning tasks in 2D or tasks with complex network structures, as
is common in biology — our results show that using small-norm initialized learnable PEs can be highly
beneficial. Second, the current learned PE is limited insofar that the embedding is linearly superimposed
on a given token (i.e., token + pe). While this makes it potentially difficult to generalize to more complex
tasks, a natural future research direction would be to learn nonlinear PE embeddings that allow for PEs to
be flexibly generated as a function of the token embedding, thereby learning token abstractions/types (i.e.,
pe(token)). This nonlinear formulation of PE as a function of the token embedding would, in theory, have
significantly greater expressive ability, and potentially endow transformers with the ability to recognize more
complex formal languages (Merrill et al., 2024). Finally, while we have empirically demonstrated that PE
initialization impacts the learned representation and generalization in transformers, in practice, it remains
unclear how the precise choice of σ interacts with other hyperparameters (e.g., architectural choices and
optimization protocols). For example, while theory alone suggests small norm initializations should produce
rich representations, in practice, such initializations can be hard to train due to small gradients (Chizat et al.,
2020). This can be empirically observed by the experiments we performed when using σ=0.01 and σ=0.05
(Fig. A4), where we find slower training convergence with smaller σ using SGD. Interestingly, however,
when Adam is used, σ = 0.01 leads faster training convergence yet poor generalization, which is likely due to
Adam’s adaptive learning rates. Specifically, since the learning rate in Adam is scaled by the magnitude of
the gradient flow in Adam, this behavior likely produces large changes to the weights (during the initial small
gradient updates) that pushes learning regime back into the kernel learning regime. Nevertheless, it will be
important for future theoretical work to more rigorously characterize these behaviors to better understand
how the choice of σ, architecture, and optimizer interact to influence representation learning.
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Conclusion. There are many tasks and problems in which it is difficult to know the ground truth arrange-
ment of input sequences, or tasks in which commonly-used PEs are ill-suited. Examples of such problems
include reasoning on parse trees and directed graphs (where node distances and relations are not preserved
when flattening into a 1D sequence for transformer sequence processing), or inference on real-world biological
datasets in which the ground truth structure is important for prediction yet difficult to know (e.g., the 3D
neuroscience data explored here, or co-expression of genes in a DNA sequence based on 3D chromatin con-
formation) (Szabo et al., 2019; Ji et al., 2021). In this study, we sought to understand how to learn position
information directly from data using insights from deep learning theory. In particular, we found that an
optimally-learned PE 1) outperformed commonly-used PEs, 2) learned attention maps and PE embeddings
that were closely aligned to ground truth position information, and 3) enhanced generalization performance.
Critically, learning an optimal and interpretable PE depended on its initialization in a reasoning task, a non-
linear netowrk simulation, and a real-world biological dataset. We anticipate these results will spur future
investigations into the importance and utility of learnable PEs for structured learning and generalization.

7 Ethics statement

All human brain data used in this study is publicly available archived data from the Human Connectome
Project (www.humanconnectomeproject.org). All participants gave signed, informed consent in accordance
with the protocol approved by the local institutional review board.

8 Code availability

Code and task environments associated with reproducing models, results, and figures in this study will be
made publicly available.
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A Appendix / supplemental material

A.1 Positional encoding definitions

Below, we provide the formal definitions for the common PEs that we evaluated learnable PEs against:
1d-fixed, 2d-fixed, 1d-relative, and 1d-rope.

1d-fixed (Vaswani et al., 2017). 1D absolute PEs were defined from Vaswani et al. (2017) (Vaswani et al.,
2017). For a given position pos (here 1 ≤ pos ≤ 16, for elements in the LST grid), we define

PE(pos,2i) = sin( pos

100002i/dmodel
)

PE(pos,2i+1) = cos( pos

100002i/dmodel
)

where i is the embedding dimension, and dmodel is the dimensionality of the embedding vector. Note that
PE(pos,2i) (sines) is reserved for even embedding dimensions, and PE(pos,2i) (cosines) is reserved for odd
embedding dimensions.

2d-fixed. 2D absolute PEs were a 2D generalization of 1d-fixed (Vaswani et al., 2017). The primary
distinction is that rather than 1 < pos < 16, there are two position variables, 1 ≤ posw ≤ 4 and 1 ≤ posh ≤ 4
(for width and height of grid). Positional encoding for a row w is defined by

PE(posw,2i) = sin( posw

100002i/dmodel
)

PE(posw,2i+1) = cos( posw

100002i/dmodel
)

Positional encoding for a column h is defined by

PE(posh,2i) = sin( posh

100002i/dmodel
)

PE(posh,2i+1) = cos( posh

100002i/dmodel
)

For a 2D PE encoding, half the embedding dimensionality is reserved for encoding rows; the other half of the
embedding dimensionality is reserved for encoding columns. Thus, for dmodel = 160, embedding dimensions
0-79 are reserved for encoding rows. Embedding dimensions 80-159 are reserved for encoding columns.

1d-relative (Shaw et al., 2018). 1d-relative PE modifies standard self-attention to incorporate the relative
positions of tokens. This implies that calculation of PE is wrapped within the self-attention module. The
relative position embedding parameter between a token at position i and j is aj−1. In brief, self attention is
then modified to include relative position information by modifying attention between tokens i and j as

eij =
xiW

Q(xjW K)T + xiW
Q(aK

ij )T

√
dz

where xi and xj are the embeddings for tokens i and j, and W Q andd W K are the query and key matrices,
respectively. Additional details can be found in (Shaw et al., 2018).

1d-rope (Su et al., 2022). 1d-rope applies a rotation to the token embeddings based on their positions in
a higher dimensional space. For a token at position p with an embedding x, let x = [x1, x2, ..., xd], where d
is even. Then, for each pair of dimensions, apply the rotation(

x̂2k

x̂2k+1

)
=

(
cos(θp) −sin(θp)
sin(θp) cos(θp)

) (
x2k

x2k+1

)
with θp = p

100002k/d . The resulting embedding is the concatenation of rotated pairs. Additional details can
be found in the original paper (Su et al., 2022).
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A.2 fMRI data and preprocessing

Data were previously collected as part of the Human Connectome Project and made publicly available
(Van Essen et al., 2013). All participants gave signed, informed consent in accordance with the protocol
approved by the Washington University institutional review board. Whole-brain multiband echo-planar
imaging acquisitions were collected on a 32-channel head coil on a modified 3T Siemens Skyra with TR =
720 ms, TE = 33.1 ms, flip angle = 52◦, Bandwidth = 2,290 Hz/Px, in-plane FOV = 208x180 mm, 72 slices,
2.0 mm isotropic voxels, with a multiband acceleration factor of 8. Data were collected across two days, with
the first two resting-state fMRI sessions collected on the first day, and another two sessions collected on the
second day. Each resting-state fMRI session lasted 14.4 minutes. Additional details on imaging sessions can
be found in Smith et al. (2013).

Data were provided in a minimally preprocessed format. We performed additional preprocessing steps in
accordance with Ito et al. (2020), which we paraphrase below. We first parcellated minimally preprocessed
data into 360 brain regions using the Glasser et al. (2016). In addition, we removed the first five frames of
each run, de-meaning and de-trending the timeseries, and performing nuisance regression on the minimally
preprocessed data. Nuisance regression included removing motion signals and physiological noise. Six pri-
mary motion parameters were included, along with their derivatives and quadratic timeseries. Physiological
noise was modeled using aCompCor on the timeseries extracted from the white matter and ventricles (Be-
hzadi et al., 2007). For aCompCor, the first 5 principal components from the white matter and ventricles
were extracted separately and included in the nuisance regression. We also included the derivatives of each
of those components, and the quadratics of all noise regressors. In total, the nuisance regression modeled
contained 64 nuisance regressors.

A.3 Modularity and clustering in network data

Modularity and network clustering (segregation) are common measures in network science, and commonly
applied to fMRI data (Rubinov and Sporns, 2010). We adopted these measures to calculate the modularity
and network clustering of learned PE parameters. The distance d between PEs was scaled between 0
and 1, and we calculated the complement (1 − d) such that higher values indicated two PEs were closer.
Both modularity and network clustering were calculated with respect to the predefined network partition.
Modularity QW of the learned, PE distance matrix W was calculated as

QW = 1
lW

∑
i,j∈N

[
Wij −

kW
i kW

j

lW

]
δmi,mj

where lW is the sum of all weights in W , N are tokens (brain regions), Wij is the distance between token
i and token j, kW

i is the weighted degree of token i, mi is the module containing node i, and δmi,mj = 1 if
mi = mj and 0 otherwise (as determined by the network partition).

Network clustering C is measured as the difference in mean within module and across module distances, as
a proportion of the within-module distance

C = 1
|M |

∑
m∈M

[
W̄min

− W̄mout

W̄min

]

where M is the full set of modules (networks), W̄min
is the mean within-module distance, and W̄mout

is the
across-module distance.
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Table A2: Training and generalization performance for all learnable PE models initialized with different N (0, σ) (no
regularization). This is the corresponding data table for Fig. 2.

PE Training acc Training SD Validation acc Validation SD
0.100 1.000 0.000 0.925 0.083

0.200 1.000 0.000 0.956 0.039
0.300 1.000 0.000 0.946 0.022
0.400 1.000 0.000 0.929 0.048
0.500 1.000 0.000 0.946 0.025
0.600 1.000 0.000 0.929 0.027
0.700 1.000 0.000 0.926 0.027
0.800 1.000 0.000 0.916 0.048
0.900 1.000 0.000 0.896 0.060
1.000 1.000 0.000 0.894 0.043
1.100 1.000 0.000 0.835 0.101
1.200 1.000 0.000 0.756 0.141
1.300 1.000 0.000 0.702 0.126
1.400 1.000 0.000 0.654 0.161
1.500 1.000 0.000 0.616 0.208
1.600 1.000 0.000 0.582 0.168
1.700 1.000 0.000 0.480 0.167
1.800 1.000 0.000 0.378 0.153
1.900 1.000 0.000 0.406 0.161
2.000 1.000 0.000 0.377 0.171

Table A3: Attention map similarity between learnable PEs and the ground truth 2d-fixed. Corresponding data
table for Fig. 3.

σ Cosine SD
0.100 0.836 0.018
0.200 0.838 0.016
0.300 0.808 0.013
0.400 0.779 0.013
0.500 0.748 0.014
0.600 0.722 0.016
0.700 0.715 0.016
0.800 0.710 0.016
0.900 0.694 0.015
1.000 0.685 0.015
1.100 0.697 0.015
1.200 0.692 0.017
1.300 0.685 0.016
1.400 0.672 0.016
1.500 0.657 0.017
1.600 0.647 0.022
1.700 0.642 0.016
1.800 0.624 0.021
1.900 0.606 0.023
2.000 0.577 0.019
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Figure A7: Different optimizers (Adam, SGD) can lead to different generalization performances in very small-norm
PE initializations. We noticed that for models that were initialized with very small-norm PEs, generalization per-
formance was reduced, counter to the theoretical claims in the NTK theory. However, we realized that this could be
attributed to variability in the adaptive learning rates inherent to the Adam optimizer. Thus, we evaluated whether
using vanilla SGD (learning rate=0.001) would ameliorate these reduced accuracies. Indeed, we found that for very
small-norm initializations, SGD tended to ameliorate the reduced generalization effects observed with Adam. A)
Training trajectories for σ ∈ 0.01, 0.05, 0.1, 0.2 using vanilla SGD (learning rate=0.001). Note that the slow train-
ing is significantly more obvious for small-norm initializations with SGD, consistent with theory. B) Corresponding
training trajectories using Adam. C) A clear generalization discrepancy emerges when using Adam vs. SGD.

Table A4: Performance differences across different optimizers (Adam, SGD) in very small-norm PE initializations
(without regularization). Corresponding data table for Fig. A7C.

σ Adam acc Adam sd SGD acc SGD sd
0.010 0.588 0.186 0.885 0.101
0.050 0.836 0.140 0.941 0.042
0.100 0.925 0.083 0.947 0.027
0.200 0.956 0.039 0.930 0.044
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Figure A8: Generalization performance of learnable and common PEs with weight decay (0.1). To assess the impact
of learnable PEs in a more realistic setting, we measured the effect of L2 regularization with a weight decay parameter
of 0.1. In general, weight decay improves the generalization of learnable PE models across initializations, except for
particularly high σ. Importantly, learnable PEs with weight decay become nearly indistinguishable to the ground-
truth PE. Nevertheless, the general pattern remains for learnable PE models: the smaller the σ, the greater the
generalization. A) Training and validation trajectories across training. B) Generalization performance for learnable
PE models with weight decay = 0.1. C) Generalization performance for common PE models with weight decay =
0.1.

Table A5: Training and validation performance of learnable PEs with weight decay (0.1). Corresponding data table
for Fig. A8B.

σ Validation acc Validation SD Training acc Training SD
0.100 0.996 0.006 1.000 0.000
0.200 0.995 0.007 1.000 0.000
0.300 0.994 0.008 1.000 0.000
0.400 0.994 0.007 1.000 0.001
0.500 0.993 0.007 0.999 0.002
0.600 0.993 0.007 1.000 0.001
0.700 0.993 0.009 0.999 0.003
0.800 0.993 0.009 0.999 0.003
0.900 0.993 0.008 1.000 0.001
1.000 0.993 0.008 1.000 0.001
1.100 0.990 0.008 0.999 0.002
1.200 0.989 0.010 1.000 0.001
1.300 0.989 0.012 1.000 0.000
1.400 0.987 0.010 0.999 0.002
1.500 0.985 0.013 0.999 0.002
1.600 0.983 0.018 0.999 0.002
1.700 0.929 0.138 1.000 0.001
1.800 0.900 0.180 1.000 0.001
1.900 0.707 0.238 0.992 0.024
2.000 0.586 0.238 0.996 0.012
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Table A6: Training and validation performance of common PEs with weight decay (0.1). Corresponding data table
for Fig. A8C.

PE Validation acc Validation SD Training acc Training SD
2d-fixed 0.997 0.008 0.999 0.001
learn-0.2 0.994 0.008 1.000 0.000
random 0.987 0.016 0.999 0.003
1d-relative 0.965 0.012 0.999 0.004
1d-rope 0.959 0.060 1.000 0.001
1d-fixed 0.872 0.166 0.998 0.001
c-nope 0.352 0.036 0.999 0.003
nope 0.322 0.017 0.508 0.002

A B

Figure A9: We computed the Jensen-Shannon Divergence of the attention weights for every learnable PE model and
the ground truth 2d-fixed model. This Figure is a comparable analysis to Fig. 3, but using the Jensen-Shannon
Divergence distance metric applied to attention maps (instead of cosine similarity).

2d-fixed : 2D absolute (”ground truth”)
learn-0.2: Learnable, initialized from N(0,0.2I)
relative : Relative (Shaw et al. 2018)
random: Random encoding
rope : Rotary (Su et al. 2022)
1d-fixed : 1D absolute (Vaswani et al. 2017)
nope : No encoding
c-nope: No encoding + causal mask

A B “Ground truth” 2d-fixed model Other model

cosine

attention weights

C D
human acc

Figure A10: Comparing top-performing learnable PE models (learn-0.2) with commonly-used PE schemes. A) We
compare the generalization performance of learn-0.2 model with models using common PEs. Notably, we included
a 2d-fixed PE as the “ground truth”, since it obeyed the 2D organization of the LST task. The learn-0.2 model
outperformed all other PE models. B) We compared the attention maps of each model to those derived from the
“ground truth” 2d-fixed model. C,D) We found that aside from the 1d-fixed model (which does not generalize
well), learn-0.2 learned the closest attention map to the 2d-fixed model. This was expected, since the 2d-fixed
and 1d-fixed PEs are highly similar by design (the baseline cosine similarity between the two schemes is 0.72). In
contrast, the learn-0.2 learned an attention map that was highly similar to the 2d-fixed model, despite having
no similarity to the 2d-fixed PE scheme at initialization (cosine at initialization = 0.00). (We also note that the
1d-rope model had high baseline similarity to the 2d-fixed, since by construction, a component of the 1d-rope
encoding is highly similar to the 1d-fixed PE scheme.) Thus, we found that despite having no prior bias towards the
2d-fixed PE scheme, a small-norm initialized learnable PE is capable of learning an attention map that approximates
an attention map derived from the ground truth PE.
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Figure A11: A) We injected noise with different amplitudes into each token embedding, and assessed downstream
generalization performance. B) Generalization performance with noisy inputs across all initializations for learnable
PEs, and C) common PEs. D) Average performance across noisy inputs (collapsing across rows in B). E) Besides the
ground truth model (2d-fixed), the learn-0.2 model was most robust to perturbation compared to common PEs.
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Figure A12: Training and evaluating models on fMRI data with 15% masked pretraining. A) Training trajectory
for each model with 15% masked pretraining. B) MSE of each model on training and testing datasets at the end
of training (after 50k training steps) predicting on 90% masked input. (X-axis is sorted by highest to lowest MSE.)
Consistent with results in the main text, models with a learnable PE parameter (initialized from a small-norm
distribution) achieved the lowest generalization MSE. C) The modularity of PEs with respect to the brain’s network
organization (analogous analysis to Fig. 6C). D) The network clustering of PEs within a model, which assessed
whether PEs of tokens that belong to the same network are closer in space than PEs that do not belong to the
same network (analogous analysis to Fig. 6D). Consistent with results in the main text, models with a learnable PE
parameter initialized from a small-norm distribution learned a similar network modularity/clustering consistent with
the brain’s known network organization.

22



Under review as submission to TMLR

BA

C D

75% masked training

Figure A13: Training and evaluating models on fMRI data with 75% masked pretraining. A) Training trajectory
for each model with 75% masked pretraining. B) MSE of each model on training and testing datasets at the end
of training (after 50k training steps) predicting on 90% masked input. (X-axis is sorted by highest to lowest MSE.)
Consistent with results in the main text, models with a learnable PE parameter (initialized from a small-norm
distribution) achieved the lowest generalization MSE. C) The modularity of PEs with respect to the brain’s network
organization (analogous analysis to Fig. 6C). D) The network clustering of PEs within a model, which assessed
whether PEs of tokens that belong to the same network are closer in space than PEs that do not belong to the
same network (analogous analysis to Fig. 6D). Consistent with results in the main text, models with a learnable PE
parameter initialized from a small-norm distribution learned a similar network modularity/clustering consistent with
the brain’s known network organization.
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Figure A14: Training and evaluating models on fMRI data with 90% masked pretraining. A) Training trajectory
for each model with 90% masked pretraining. B) MSE of each model on training and testing datasets at the end
of training (after 50k training steps) predicting on 90% masked input. (X-axis is sorted by highest to lowest MSE.)
Consistent with results in the main text, models with a learnable PE parameter (initialized from a small-norm
distribution) achieved the lowest generalization MSE. C) The modularity of PEs with respect to the brain’s network
organization (analogous analysis to Fig. 6C). D) The network clustering of PEs within a model, which assessed
whether PEs of tokens that belong to the same network are closer in space than PEs that do not belong to the
same network (analogous analysis to Fig. 6D). Consistent with results in the main text, models with a learnable PE
parameter initialized from a small-norm distribution learned a similar network modularity/clustering consistent with
the brain’s known network organization.
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Figure A15: Model performances when incorporating multihead (2 and 4) attention mechanisms. Overall, we find that
adding attention heads tends to reduce generalization performance across the board. The only architecturein which
we see improvements are models with 1d-rope PE. Nevertheless, despite their improvements, 1d-rope models still do
not outperform models with 1d-relative PEs, nor do they outperform learn-0.2 models with a single attention head
(single head learn-0.2 performance = 95.6%; Table 1). We also notably see that learn-0.2 models tend to degrade
in their performance, likely due to the increase in free parameters. A,B) Performance of models with 2 attention
heads. C) Performance and of models with learnable PEs (2 attention heads). D) Training trajectories for example
model architectures (2 attention heads). E,F) Performance of models with 4 attention heads. G) Performance of
models with learnable PEs (4 attention heads). H) Training trajectories for example model architectures (4 attention
heads).
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Figure A16: Control models. We assessed two alternative artificial neural network architectures: A vanilla multilayer
perceptron (MLP), and a bidirectional Long Short-Term Memory (LSTM) model. Each model contained four layers
and 160 hidden units each. Overall, we found that compared to the 2d-fixed PE transformer model, the MLP and
LSTM model could not generalize the LST task.

A B

Figure A17: Supplementary data associated with Fig. 4. We report the training and validation MSE evaluation at
the end of training for the stochastic network simulation. A) Training converged rapidly across all models. B) Across
all the models / PE variants, there was little difference in MSE across training and validation distributions for this
task. This is because all models optimally converged. In addition, all models could not converge to near zero due to
the stochastic nature of the simulation (which cannot be perfectly modeled).
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