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Abstract

We propose Mirror Descent Optimal Transport (MDOT), a novel method for solving discrete
optimal transport (OT) problems with high precision, by unifying temperature annealing in
entropic-regularized OT (EOT) with mirror descent techniques. In this framework, temper-
ature annealing produces a sequence of EOT dual problems, whose solution gradually gets
closer to the solution of the original OT problem. We solve each problem efficiently using a
GPU-parallel nonlinear conjugate gradients algorithm (PNCG) that outperforms traditional
Sinkhorn iterations under weak regularization. Moreover, our investigation also reveals that
the theoretical convergence rate of Sinkhorn iterations can exceed existing non-asymptotic
bounds when its stopping criterion is tuned in a manner analogous to MDOT.

Our comprehensive ablation studies of MDOT-PNCG affirm its robustness across a wide
range of algorithmic parameters. Benchmarking on 24 problem sets of size n = 4096 in a
GPU environment demonstrate that our method attains high-precision, feasible solutions
significantly faster than a representative set of existing OT solvers—including accelerated
gradient methods and advanced Sinkhorn variants—in both wall-clock time and number of
operations. Empirical convergence rates range between O(n2ε−1/4) and O(n2ε−1), where
ε is the optimality gap. For problem sizes up to n = 16 384, the empirical runtime scales
as Õ(n2) for moderate precision and as Õ(n5/2) at worst for high precision. These findings
establish MDOT-PNCG as a compelling alternative to current OT solvers, particularly in
challenging weak-regularization regimes.

1 INTRODUCTION

When a statistical distance is required for an event space equipped with a metric, optimal transport (OT)
distances, such as the Wasserstein metric, provide an intuitive means to account for the inherent structure
of the metric space. Consequently, fast, scalable, and accurate computation of OT distances is a major
problem encountered in various scientific fields. Example application areas include point cloud registration
(Shen et al., 2021), color transfer (Pitie et al., 2005; Ferradans et al., 2014; Rabin et al., 2014), shape matching
(Feydy et al., 2017), texture mixing (Ferradans et al., 2013; Bonneel et al., 2015) and meshing (Digne et al.,
2014) in computer vision and graphics, quantum mechanics (Léonard, 2012), astronomy (Frisch et al., 2002;
Levy et al., 2021) and quantum chemistry (Bokanowski & Grébert, 1996) in physics, and generative modeling
(Gulrajani et al., 2017; Genevay et al., 2018), reinforcement learning (Ferns et al., 2004; Dadashi et al., 2021),
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and neural architecture search (Kandasamy et al., 2018) in machine learning. Exact solvers for the discrete
OT problem encounter significant computational hurdles in high dimensions, with theoretical complexity
Õ(n5/2) and practical complexity Õ(n3) (Lee & Sidford, 2014; Pele & Werman, 2009).

Entropic regularization, as pioneered by Cuturi (2013), has mitigated challenges in scalability by regularizing
the classical problem, thereby allowing approximate solutions in Õ(n2) time via the Sinkhorn-Knopp (SK)
matrix scaling algorithm. This advancement, together with GPU parallelization, has yielded substantial
speed improvements, making it several orders of magnitude faster than conventional CPU-based solvers
(e.g., linear programming) in high dimensions (Peyré et al., 2019). However, these methods necessitate a
delicate balance between regularization strength and convergence speed, a trade-off that can compromise
the precision of the solution. Despite significant progress in recent years, many state-of-the-art solvers still
struggle to strike a better trade-off than aggressively tuned Sinkhorn iterations in practice (Dvurechensky
et al., 2018; Jambulapati et al., 2019; Lin et al., 2019). Although they offer superior theoretical guarantees,
their practical performance is often less compelling, particularly in terms of speed and scalability. Existing
algorithms either suffer from high computational complexity or do not take advantage of modern hardware
capabilities, such as GPU parallelization (Tang et al., 2024). To understand and combat these challenges,
we make the following contributions:

1. We empirically show that in a GPU environment the decades-old Sinkhorn-Knopp algorithm for OT
can still outperform many theoretically grounded recent OT algorithms in practice, especially when
tuned with a seemingly unconventional stopping criterion formula proposed here (Fig. 5).

2. We introduce mirror descent optimal transport (MDOT), a method which generalizes temperature
annealing in entropic OT (EOT) (Schmitzer, 2019; Feydy, 2020), and connects temperature annealing
to mirror descent (Alg. 1).

3. We introduce an instantiation of MDOT that empirically improves speed and robustness to temper-
ature (regularization strength) decay rate compared to ε-scaling of Schmitzer (2019) (Fig. 2).

4. We show that MDOT can compute high precision, feasible solutions and its performance can be
boosted by adopting a specialized GPU-parallel conjugate gradients (CG) algorithm developed here
(Alg. 2); this method is highly competitive in practice, as we show empirically (Figs. 5, 6, 10-19).

The remainder of this paper is organized as follows. In the next section, we introduce our notation and the
necessary background, followed by related work in Sec. 3. In Sec. 4.1-4.2, we introduce the MDOT framework
and establish its connection to temperature annealing strategies, and make some practical recommendations.
In Sec. 4.3, we introduce the non-linear CG algorithm to be used within MDOT as an alternative to SK. In
Sec. 5, we benchmark various algorithms on upsampled MNIST (n = 4096) under L1 and squared L2 costs,
and a color transfer problem in terms of wall-clock time, and further study the operation count dependence
of the proposed algorithm on problem size n. Lastly, we present concluding remarks in Sec. 6.

2 Background

Here, we present our notation, the basics of EOT, and the necessary background on mirror descent and CG.

Notation and Definitions. We consider discrete OT, where the event space is finite with n parti-
cles and ∆n ⊂ Rn

≥0 is the (n−1)-simplex. The row sum of an n× n matrix P is r(P ) := P1 and the
column sum is c(P ) := P ⊤1. Given marginals r, c ∈ ∆n, the transportation polytope is written as
U(r, c) = {P ∈ Rn×n

≥0 | r(P ) = r, c(P ) = c}. Division, exp and log over vectors or matrices are element-
wise. Vectors in Rn are column vectors, and (x, y) denotes the concatenation of x and y. Vector and
Frobenius inner products alike are given by ⟨·, ·⟩. Hadamard product is given by A⊙B. An n× n diagonal
matrix with x ∈ Rn along the diagonal is written as D(x), and the vector formed by the diagonal entries
of a matrix Q is diag(Q). LogSumExp reductions over the rows and columns of X ∈ Rn×n are given by
LSEr(X) := log

(
exp{X}1

)
and LSEc(X) := log

(
exp{X⊤}1

)
. The Shannon entropy of r ∈ ∆n is denoted

H(r) = −⟨r, log r⟩ with the convention that 0 · log 0 = 0. Under the same convention, the KL divergence
DKL(r|r′) = ⟨r, log(r/r′)⟩+ ⟨r′ − r, 1⟩ for r, r′ ∈ Rn

≥0 given r absolutely continuous with respect to r′.
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2.1 Optimal Transport
Given a cost matrix C ∈ [0, 1]n×n, where Cij is the transportation cost between the ith and jth particles, we
study the EOT problem: minimize

P ∈ U(r, c)
⟨P, C⟩ − 1

γ
H(P ), (1)

where γ > 0. Here, the regularization weight γ−1 is called temperature. The Lagrangian of (1) is strictly
convex in P , which renders the solution P ∗(γ) unique. P ∗(γ) converges to a solution of the unregularized
OT problem as γ →∞ and admits the following form (Cuturi, 2013):

Pij(u, v; γ) = exp{ui + vj − γCij}, (2)

where u, v ∈ Rn. An optimal pair (u, v) minimizes the following convex dual problem (Lin et al., 2019):

minimize
u, v ∈ Rn

g(u, v; γ, r, c) =
∑

ij

Pij(u, v; γ)− ⟨u, r⟩ − ⟨v, c⟩, (3)

where ∇ug = r(P )−r and ∇vg = c(P )−c. The gradient norm naturally measures the constraint violation;
L1 norm is typically used to monitor convergence as it relates to the total variation metric between probability
distributions (Altschuler et al., 2017). The Sinkhorn-Knopp (SK) algorithm (see Alg. 4 in Appx. A) can
be used to minimize g with guaranteed convergence to dual-optimal variables as the number of iterations
k → ∞ (Sinkhorn & Knopp, 1967; Sinkhorn, 1967; Franklin & Lorenz, 1989; Knight, 2008). Dvurechensky
et al. (2018) showed that SK can be used to compute a solution P ∈ U(r, c) satisfying ⟨P − P ∗, C⟩ ≤ ε

with complexity Õ(n2/ε2), where P ∗ is an optimal solution of the unregularized OT problem. In particular,
one first minimizes the dual objective until the L1 norm of its gradient is below a prescribed threshold,
then applies the rounding algorithm of Altschuler et al. (2017) on the infeasible plan given by (2) to obtain
P ∈ U(r, c) with an upper bound on the primal cost increase.

2.2 Mirror Descent
Consider a constrained convex minimization problem minP ∈F f(P ), where the convex objective f : D → R
is defined over some domain D, and the feasible set F ⊆ D, e.g., in OT, we take f(P ) = ⟨P, C⟩, F = U(r, c)
and D = Rn×n

≥0 . Mirror descent (MD) method of Nemirovski & Yudin (1983) generalizes projected gradient
descent (GD) by first choosing a strictly convex function h : D → R called the mirror map, which induces
a Bregman divergence Dh(P |Q) ≥ 0 between points P, Q ∈ D as the difference between h(P ) and its first
order approximation around Q:

Dh(P |Q) = h(P )− h(Q)− ⟨∇h(Q), P −Q⟩. (4)

Then, the variable P (t) is updated as follows (Bubeck, 2015):
P̂ (t+1) = ∇h−1

(
∇h(P (t))−∆(t)∇f(P (t))

)
(5a) P (t+1) = arg min

P ∈F∩D
Dh(P |P̂ (t+1)) (5b)

where ∆(t) > 0 is the step size. For h(P ) = ∥P∥2
2 /2, projected GD is recovered as a special case since

∇h(P ) = P and Dh(P |Q) = ∥P −Q∥2
2 /2. For certain problem geometries (e.g., if D is the simplex),

choosing a different h provably accelerates convergence. The idea is that in (5a), ∇h : D → D∗ maps primal
variables P to a dual space D∗, where applying a gradient update better aligns with the local curvature of
the underlying geometry (Bubeck, 2015). Once the updated point is mapped back to primal space D via
∇h−1 : D∗ → D, (5b) performs a Bregman projection onto the feasible set F . Plugging (5a) into (5b) and
rearranging yields an equivalent form with another interpretation (Beck & Teboulle, 2003):

P (t+1) = arg min
P ∈F∩D

{⟨∇P f(P (t)), P ⟩+ 1
∆(t) Dh(P |P (t))}. (6)

Each MD step (6) seeks an update jointly maximizing the inner product with the steepest descent direction,
−∇P f(P (t)), subject to (i) a penalty for diverging from the current point P (t) and (ii) feasibility constraints.

A common choice is the negative entropy mirror map h(P ) = ⟨P, log P ⟩ in domain D = Rn×n
≥0 , which yields

Dh(P |Q) = DKL(P |Q). Throughout this work, we only use this mirror map.1 Hence, we write (5) explicitly
1See Di Marino & Gerolin (2020) for other divergence-regularized optimal transport problems (using mirror maps besides

negative Shannon entropy). They consider a single step of (6), while we focus on multiple steps.
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for this case, where ∇h(P ) = 1 + log P and ∇h−1(R) = exp{R− 1},

P̂ (t+1) = P (t) ⊙ exp{−∆(t)∇f(P (t))} (7a) P (t+1) = arg min
P ∈F∩D

DKL(P |P̂ (t+1)). (7b)

Here, we re-weight P (t) entrywise by a factor of exp{−∆(t)∇f(P (t))}, followed by a KL projection onto
F , e.g., if F is the probability simplex, (7b) is a simple renormalization P 7→ P/ ∥P∥1. We leverage the
properties of this mirror map for the case F = U(r, c) to design MDOT in Sec. 4.

3 Related Work
Acceleration of approximate OT solvers has been a focus of machine learning research since the seminal work
of Cuturi (2013). For instance, Altschuler et al. (2017) proposed the Greenkhorn algorithm, which greedily
selects individual rows or columns to scale at a given step and requires fewer row/column updates than SK
to converge, but performs poorly due to low GPU utilization unless n is extremely large. Dvurechensky
et al. (2018) proposed an adaptive primal-dual accelerated gradient descent (APDAGD) algorithm. Lin
et al. (2019) later proposed adaptive primal-dual accelerated mirror descent (APDAMD) with theoretical
guarantees. Lin et al. (2019) showed APDAMD to outperform APDAGD in terms of number of iterations,
but not SK. Further, these tests only covered a high relative error regime (>50%); we investigate a broader
scope down to 10−9 error in Section 5. Modest gains over SK in terms of number of iterations in the same
regime were later obtained by Lin et al. (2022) via an accelerated alternating minimization (AAM) algorithm
similar to that of Guminov et al. (2021). Notably, APDAMD applies mirror descent to the dual (3) of the
EOT problem, while we apply it to the primal of the unregularized OT problem, i.e., problem (1) as γ →∞.

Application of mirror descent to the primal of the OT problem has also been considered. Yang & Toh (2022)
propose a more general inexact mirror descent algorithm (iBPPA), which they apply to the OT problem.
Our approach differs from theirs in several ways, most notably in how we decide to terminate the Bregman
projection inner loop to solve (7b) inexactly (details in Section 4.2). Recently, Ballu & Berthet (2023)
introduced Mirror Sinkhorn (MSK), which also takes gradient steps in the dual space as in (7a), but instead
of approximately projecting onto U(r, c) as in (7b) (as we do here), they alternately project onto U(·, c) and
U(r, ·) via Sinkhorn updates, satisfying only half of the marginal constraints at a time. Our experiments in
Sec. 5 suggest that this approach is efficient only in the low precision regime. Furthermore, MSK requires
maintaining a running average of the transport plan at each iteration, precluding a straightforward O(n)
memory implementation. In contrast, all algorithms presented here admit O(n) memory implementations,
assuming individual cost matrix entries can be computed on-the-fly in O(1) time. Xie et al. (2020) previously
proposed an algorithm (IPOT) similar to MSK with a fixed, even number of Sinkhorn updates (usually 2)
following temperature updates. Alg. 3.5 of Feydy (2020) is also similar to these algorithms in spirit and
is discussed thoroughly in Sec. 5.2. As discussed in detail in Sec. 4.1, well-known ε-scaling strategies are
also closely related (Kosowsky & Yuille, 1994; Schmitzer, 2019). Similar ideas have also been applied to the
Wasserstein barycenter problem (Gramfort et al., 2015; Xie et al., 2020), which is left outside the scope of
this work.

An alternative line of acceleration research focuses on multi-scale strategies, which employ clustering or grid-
based methods to solve a series of coarse-to-fine OT problems and are sometimes combined with ε-scaling
(Schmitzer, 2016; 2019; Feydy, 2020). These are known to provide performance gains when the marginals
are defined over well-clustered particles or in low-dimensional event spaces (Peyré et al., 2019). Lastly, in
a similar spirit to our use of non-linear CG here, curvature-aware convex optimization techniques such as
L-BFGS have also been considered for OT, e.g., Mérigot (2011); Blondel et al. (2018); however, scalability,
precision and better performance than SK on GPUs has not been demonstrated simultaneously to our
knowledge. Tang et al. (2024) recently adopted Newton’s method with Hessian sparsification to efficiently
use second order information, but their key sparsification strategy is maximally utilized only on CPUs.

4 A Mirror Descent Framework for Optimal Transport
4.1 Temperature Annealing as Mirror Descent
The OT objective ⟨P, C⟩ has a constant gradient ∇P ⟨P, C⟩ = C. Given step sizes ∆(t) > 0 at time t ≥ 0, we
obtain mirror descent iterates (using the negative entropy mirror map) from (7)
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P (t+1) = arg min
P ∈U(r,c)

DKL

(
P |P (t) ⊙ exp{−∆(t)C}

)
. (8)

Comparing the conditioning term P (t) ⊙ exp{−∆(t)C} above with the Lagrangian closed form solution to
the EOT problem in (2), namely P (u, v; γ) = P (u1⊤ +1v⊤−γC), suggests considering an MD step starting
with a P (t) of this same form. Specifically, we find the following result (proved in Appx. A.1).

Lemma 4.1. Given any initial u, v ∈ Rn, γ ≥ 0 and ∆γ > 0, we have
P (u∗, v∗; γ + ∆γ) = arg min

P ∈U(r,c)
DKL

(
P |P (u, v; γ)⊙ exp{−∆γC}

)
, (9)

where u∗, v∗ ∈ arg min g(γ + ∆γ , r, c).
That is, if we begin an MD step for the OT problem with any P (t) = P (u, v; γ(t)) (i.e., in the Lagrangian
form but not necessarily optimal for the EOT problem), then the next MD iterate is the unique solution to
the EOT dual problem at γ(t+1) = γ(t) + ∆(t)

γ , namely P (t+1) = P ∗(γ(t+1)). Therefore, by induction, if we
begin the MD iteration (8) for the OT problem with such an initial P (0), then the MD iterates P (t) trace
solutions of the EOT problems at increasing values of γ(t).

For initialization, recall that the EOT solution at γ=0 is the maximum entropy coupling, rc⊤ =
limγ→0+ arg minP ∈U(r,c)⟨P, C⟩− 1

γ H(P ). Thus, we can initialize γ(0) = 0 and P (0) = P (log r, log c; 0) = rc⊤.
Alternatively, in view of Lemma 4.1, it would suffice to use P (0) = P (u, v; 0) for any u, v ∈ Rn at γ(0) = 0.
That is, P (0) can be any rank-1 matrix in Rn×n

>0 .

Finally, note that for the purpose of computing P (t+1) in (8), Lemma 4.1 ensures that any values u(t) and
v(t) can serve to provide a suitable P (t) = P (u(t), v(t); γ(t)). Therefore, when implementing the MD iteration
in (8) we do not need to converge to exact optimality each step (see Fig. 1). We formalize this discussion
and provide further insight in the following proposition.

Proposition 4.2. Let γ(0) = 0 and γ(t+1) = γ(t) +∆(t)
γ , which together imply γ(t+1) =

∑t
t′=0 ∆(t′)

γ . Suppose
P (0) ∈ Rn×n

>0 is rank-1 and P (t) are computed via (8) for t ≥ 0. The following are true.

1. P (t+1) = P ∗(γ(t+1)), i.e., the solution of the EOT problem (1) at γ(t+1).

2. Given any u, v ∈ Rn, P (t+1) = arg minP ∈U(r,c) DKL(P |P (u, v; γ(t+1))).

3. ⟨P (t)−P ∗, C⟩ ≤ Hmin(r, c)
/

γ(t), where P ∗ ∈ arg minP ∈U(r,c)⟨P, C⟩ and Hmin(r, c) := min
(
H(r), H(c)

)
.

4. ⟨P (t)−P (t+1), C⟩ = 1
∆(t)

γ

(
DKL

(
P (t)|P (t+1)) + DKL

(
P (t+1)|P (t)))

for all t ≥ 0.

A detailed proof is deferred to Appx. A.2. Next we comment on each statement in the order presented.

1. proves the equivalence of MD iterates to a sequence of solutions to EOT problems with decreasing
temperature, and therefore connects MD to temperature annealing.

2. shows that MD iterates P (t+1) derived from a rank-1 initialization can be written independently of the
previous solution P (t) (cf. 8), but rather only as a function of γ(t+1). This means that we need not start
from an exact minimizer of the previous KL projection problem to reach the correct solution of the new
problem. Given this result and Lemma 4.1, MD reduces in the dual space to a numerical continuation
method (Allgower & Georg, 2003), in which we numerically trace the curve u∗(γ), v∗(γ):2

u(t), v(t) ≈ arg min
u,v∈Rn

g(u, v; γ(t), r, c), (10)

where each problem is initialized with some guess u′, v′ ∈ Rn. This is the key idea behind MDOT.

3. bounds the primal optimality gap at a given step t ≥ 1 in terms of the entropies of the marginals r, c.
Since min(H(r), H(c)) ≤ log n for r, c on the (n−1)-simplex, this is a tighter bound than the standard upper
bound γ−1 log n used in prior work (Altschuler et al., 2017; Dvurechensky et al., 2018; Lin et al., 2019).3

2Slight abuse of terminology: in fact, there is a space of optimal curves, since g(u, v; γ) = g(u+δ1, v−δ1; γ) for any finite δ.
3This log n term appears in the time complexity of various algorithms, but is hidden in Õ-notation.
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                     Visualization of MDOT in Dual Space

Path of Minima MDOT iterates Minimization of g Past Difference Extrapolation Warm-start Guess

Figure 1: In each iteration of Alg. 1, MDOT approximately minimizes g(u, v; γ) as in (10) to compute
duals (u(t), v(t)) (i.e., “MDOT iterates”), starting initially with γi and increasing γ by a factor of q > 1
per iteration until a final value γf . With increasing γ (weaker entropic regularization), the convex dual
objectives defined over R2n become increasingly ill-conditioned (illustrated here in 1D by parabolas with
increasingly high curvature) and therefore harder to solve. At each step, MDOT uses approximate solutions
of prior problems to produce an initial guess for the next problem (left), and generates increasingly accurate
warm-start guesses to mitigate the difficulty posed by ill-conditioning (right).

4. shows the one-step reduction in transport cost with equality; this is in contrast to the more standard
analysis of MD where the improvement is bounded with an inequality.

4.2 A mirror descent method for optimal transport: MDOT
Using insights derived in the previous section, we construct the MDOT method shown in Alg. 1. As
illustrated in Fig. 1, MDOT minimizes a sequence of EOT dual objectives g(γ(t)). At each step, MDOT
uses prior approximate minimizers u(t−k), v(t−k) of g(γ(t−k)) for k ∈ [0, K] to extrapolate better initial
guesses (warm-starting) for the next problem at t + 1 (see Fig. 1, where K = 1 is depicted).

The MDOT loop is summarized with the following steps:
• L3: Choose stopping criterion εd for ∥∇g(γ, r, c)∥1.
• L4: Obtain smoothed marginals r̃, c̃ to avoid zero or

infinitesimal entries.
• L5: Rank-1 initial guess with positive r̃, c̃.
• L6: Solve (10) given initial u′, v′, i.e., minimize

g(γ, r̃, c̃) until ∥∇g(γ, r̃, c̃)∥1 ≤ εd/2. By the triangle
inequality, this implies ∥∇g(γ, r, c)∥1 ≤ εd.

• L7: Exit if γ reached user input γf , otherwise continue.
• L8: Increase γ for the next iteration.
• L9: Using previous u(t−k), v(t−k) for k ≥ 0, extrapolate

a warm-start guess for the new KL projection (or, EOT
dual) problem of minimizing g(γ(t+1), r, c).

In L13, approximation of P ∗(γf) is rounded via Altschuler
et al. (2017) onto U(r, c); see Alg. 3 in Appx. A.

Algorithm 1 MDOT(C, r, c, γi, γf , p ≥ 1, q > 1)
1: t← 1, γ ← min(γi, γf)
2: while True do
3: εd ← Hmin(r, c)/γp

4: (r̃, c̃)← (1− εd
4 ) · (r, c) + εd

4n · 12n

5: if t == 1 then u′, v′ ← log r̃, log c̃
6: u(t), v(t) ← Given initialization u′, v′

minimize g(γ, r̃, c̃) until ∥∇g∥1 ≤ εd/2
7: if γ == γf then break
8: ∆γ ← (q − 1)γ, γ ← min(γ + ∆γ , γf)
9: u′, v′ ←WarmStart(u(t), v(t); · · · )

10: t← t + 1
11: end while
12: P ← exp{u(t)1⊤

n + 1nv(t)⊤ − γfC}
13: Output P ← Round(P, r, c)

Using (i) the guarantee that ∥∇g(γf , r, c)∥1 ≤ Hmin(r, c)/γf , (ii) the third statement of Prop. 4.2, and (iii)
Lemma 7 of Altschuler et al. (2017), we obtain a guarantee on the quality of the solution.
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Remark 4.3. If γf ≥ 5Hmin
(
r, c

)
/2ε, the output P ∈ U(r, c) of Alg. 1 satisfies ⟨P−P ∗, C⟩ ≤ ε+Õ(ε2).

The proof follows from a special case of Prop. 4.5, which is deferred to Sec. 4.2.2. Next, we discuss key
MDOT steps listed above, how they differ from existing work, and trade-offs of input parameters.
Stopping criterion (L3) and input p. Several prior methods such as IPOT (Xie et al., 2020), Alg. 3.5
of Feydy (2020) and MSK (Ballu & Berthet, 2023) that use MD ideas do not enforce any constraints on
∥∇g∥1. Rather, they only take a few Sinkhorn steps after γ is increased. Feydy (2020) takes increasingly
bigger updates ∆γ = (q− 1)γ as we do in L8, such that when γ is large, a few Sinkhorn steps are insufficient
to prevent divergence from the optimal curve u∗(γ), v∗(γ). This effectively caps their precision as we show
in Sec. 5. IPOT takes fixed steps (typically ∆γ = 1), which helps trace the curve u∗(γ), v∗(γ) closely, but
reduces the regularization weight γ−1 more slowly; see Appx. G for further discussion and empirical data.
On the other hand, MSK takes increasingly smaller ∆(t)

γ = O(1/
√

t), such that its convergence rate suffers
(shown in Sec. 5). All three rely on Sinkhorn updates, while MDOT can benefit from any (potentially
better) convex optimization algorithms for minimizing g. The practical approach of Yang & Toh (2022) also
uses a fixed ∆γ and Sinkhorn iteration. As the stopping criterion, they measure DKL(Round(P, r, c)|P )
after each Sinkhorn step to satisfy an inexactness condition for the KL projection, which facilitates their
theoretical analysis. This incurs some O(n2) overhead per inner loop iteration. In contrast, we only check
the L1 norm of the dual gradient as in L6 (which can be evaluated in O(n) time during optimization), since
by Proposition 4.2 maintaining the structure P (u, v; γ) throughout ensures that P ∗(γf) can be recovered
theoretically, regardless of how inexact previous KL projections were.
Another line of work runs (some version of) a single iteration of MDOT (Altschuler et al., 2017; Dvurechensky
et al., 2018; Lin et al., 2019). In these works, εd ∝ (log n)/γ, while we adapt it according to the entropy of
r, c using the third statement of Prop. 4.2. In Appx. C, the use of Hmin(r, c) instead of log n is shown to
yield speedups of order log n/Hmin(r, c). Our use of p ≥ 1 is also novel and controls how closely the curve
u∗(γ), v∗(γ) is traced. We study theoretical benefits and practical trade-offs in Sec. 4.2.2.
Marginal smoothing (L4). Our “smoothing” of the target marginals r and c (mixing in the uniform
distribution) follows prior work by Dvurechensky et al. (2018) and Lin et al. (2019). This step helps provide
convergence guarantees for certain choices of minimization algorithms for the dual g in L6. Since the mixing
weight used is proportional to γ−p, it gradually decreases with the temperature in our case. This scheme
smoothes marginals more aggressively in earlier iterations of MDOT when γ is small. In Appx. D, we
empirically show the performance benefits of this variable smoothing.
EOT dual minimization (L6). The algorithm for minimizing g(γ, r, c) is left unspecified here for gener-
ality; for example, Sinkhorn iteration can be used. In Sec. 4.3, we introduce a new algorithm (PNCG).
Temperature decay and input q (L8). L8 effectively sets γ(t+1) = qγ(t), which follows prior work
(Schmitzer, 2019; Feydy, 2020). With larger MD steps (higher q), the extrapolation of duals for warm-
starting is over a longer range, which degrades quality and poses a trade-off, investigated in Sec. 4.2.1.
Warm-starting duals (L9). Our explicit warm-starting approach in Sec. 4.2.1 is novel to our knowledge
and was left unspecified in Alg. 1 for generality. We show that ε-scaling as implemented by Schmitzer (2019)
and Feydy (2020) amount to an implicit warm-starting, which is shown to be less effective than ours.

4.2.1 Warm-starting KL Projections
Assume that at each prior temperature value, we obtained the dual-optimal u∗(γ(t)), v∗(γ(t)) without error.
How should u, v be initialized for γ(t+1)? A simple, memory-efficient approach is to consider a Taylor
expansion around recent γ to predict u∗(γ(t+1)), v∗(γ(t+1)). Letting z = (u, v) to reduce clutter:

z∗(γ(t+1)) = z∗(γ(t)) + ∂z∗

∂γ
(γ(t))(γ(t+1) − γ(t)) + . . . (11)

As we cannot compute ∂z∗/∂γ analytically, we use a numerical approximation (backward finite differencing)
∂z∗(γ(t))/∂γ ≈

(
z∗(γ(t))− z∗(γ(t−1))

)/
∆(t−1)

γ and keep only the first two terms in (11):

z∗(γ(t+1)) ≈ z∗(γ(t)) + ∆(t)
γ

∆(t−1)
γ

(
z∗(γ(t))− z∗(γ(t−1))

)
. (12)
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Figure 2: Comparison of the MDOT warm-start proposed in Sec. 4.2.1 to ε-scaling. Curves show the median
over 36 upsampled-MNIST problems (n=4096) under L1 (top) and L2

2 (bottom) distance costs (see Sec. 5
for details). In all experiments, p = 1.5 and γi = 24. For the L1 cost, γf = 216 and for the L2

2 cost, γf = 219.

In contrast, the ε-scaling approach of Schmitzer (2019) and Feydy (2020) maintains reparamatrized dual
variables z̃ := z/γ as the temperature decays. Rewriting (2) in terms of z̃ reveals that ε-scaling amounts to
predicting z∗(γ(t+1)) ≈ (γ(t+1)/γ(t))z∗(γ(t)), i.e., simply scaling the dual variables instead of modelling the
trajectory of z∗ with a Taylor approximation, which we argue is a better approach.

In Fig. 2, we present an empirical study with varying step sizes ∆γ = (q − 1)γ by ablating q, where the
advantage of (12) over the ε-scaling warm-start of Schmitzer (2019) is demonstrated. On the left, MDOT
warm-start initializes each dual problem closer to the solution than the ε-scaling approach. The quality of
initial guesses increase markedly with decreasing temperature (left); at high temperatures dual problems
are initialized very close to the solution with the gradient norm just a small multiple of the target εd. In
contrast, the ε-scaling warm-start stays relatively fixed. For the same decay rate q, this translates to about
10× gains in convergence speed or precision (mid-right). The performance gap widens for slow temperature
decay (lower q), as MDOT benefits from reduced Taylor approximation errors given smaller step sizes ∆γ .

4.2.2 KL Projection Stopping Criteria

Our assignment εd ∝ γ−p for some p ≥ 1 in L4 of MDOT departs from the conventional wisdom of choosing
εd ∝ γ−1 (Altschuler et al., 2017; Dvurechensky et al., 2018; Lin et al., 2019). Here, we provide justification
for this departure. Consider first the fixed-temperature problem (3) for simplicity. Building on the results
of Cominetti & Martín (1994), Weed (2018) showed in his Prop. 4 and Thm. 5 that there is both a uniform
bound ⟨P ∗(γ) − P ∗, C⟩ ≤ log n/γ (slow rate), and a fast asymptotic rate O(exp(−γK)) which takes over
for large enough γ, where the constant K > 0 is problem-dependent. Taking these as a starting point, the
following remark generalizes the third statement of Prop. 4.2.

Remark 4.4. For any constant p ∈ [1,∞) and OT problem given by (r, c, C), there exists a γ0 > 0 such
that for any γ ≥ γ0, we have ⟨P ∗(γ)− P ∗, C⟩ ≤ Hmin(r, c)/γp.
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That is, below some temperature γ−1
0 , a stronger bound Hmin(r, c)γ−p for some p > 1 replaces the uniform

bound Hmin(r, c)γ−1. Thus, the SK algorithm (see Alg. 4 in the Appx.) can be tuned (via the p parameter
in Alg. 1) to enjoy a rate substantially better than O(n2 log n/ε2) given by Dvurechensky et al. (2018).

Proposition 4.5. Sinkhorn iteration, as instantiated by calling Alg. 1 (L6) with p ∈ [1,∞) and a sufficiently
large γi = γf = p

√
5Hmin

(
r, c

)
/2ε, returns a plan P ∈ U(r, c) satisfying ⟨P −P ∗, C⟩ ≤ ε + Õ(ε2) in at most

O
(

n2Hmin
(
r, c

)1/p
/

ε
p+1

p

)
arithmetic operations. (13)

This result is consistent with the empirical findings of Jambulapati et al. (2019), who noted “The [tuned]
Sinkhorn algorithm converged at rates much faster than the predicted ε−2 rate on all experiments, outper-
forming all other methods, which we believe merits further investigation.” We believe Prop. 4.5 sheds some
light on this phenomenon, and further present an ablation of p in Fig. 3 for SK and MDOT algorithms.

For the SK algorithm, Fig. 3 (left) verifies the insight derived from Prop. 4.5. The choice p = 1 is better
at low precision, but the trend gradually shifts in favor of higher p with (sufficiently) higher γf . That is,
for sufficiently low temperature γ−1, it is advantageous to reduce the gradient norm error tolerance, from
Hmin/γ to Hmin/γp for p > 1. In contrast, MDOT is more robust to the p parameter in the high precision
regime (right). Moreover, the use of PNCG projections (Alg. 2) for KL projections in MDOT (L6 of Alg.
1) provides a speedup of 2− 3× over Sinkhorn projections. PNCG is introduced and discussed next.

4.3 Preconditioned Non-linear Conjugate Gradients for KL Projections
SK converges more slowly at low temperatures (Kosowsky & Yuille, 1994). For a faster alternative, we
develop Alg. 2 based on non-linear CG (NCG) methods (Fletcher & Reeves, 1964; Nocedal & Wright, 2006),
which we now briefly review. Given an objective g, NCG takes descent directions p(0) = −∇g(z(0)) and
p(k) ← −∇g(k) + β(k)p(k−1), and iterates z(k+1) ← z(k) + α(k)p(k), where α(k) is the step size. Optimal α(k)

has a closed-form solution for quadratics, but for general non-linear objectives, line search is necessary to find
suitable step sizes α(k). Many formulas for computing β(k) exist; for quadratic objectives, they are equivalent
and guarantee convergence in at most n′ iterations, where n′ ≤ n is the number of distinct eigenvalues of
∇2g. Further, the objective decreases faster if eigenvalues are tightly clustered (Stiefel, 1958; Kaniel, 1966;
Nocedal & Wright, 2006). For example, the Hestenes-Stiefel formula sets (Nocedal & Wright, 2006):

β(k) = ⟨∇g(k) −∇g(k−1),∇g(k)⟩
⟨∇g(k) −∇g(k−1), p(k−1)⟩

. (14)
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A practical way to further improve the convergence rate of CG methods is via preconditioning. By making
a change of variables z = M−1/2ẑ given some symmetric positive-definite matrix M , one reduces the
condition number of the problem or tightens the clustering of eigenvalues for improved convergence (ideally,
M−1 ≈ ∇2g−1). We refer the reader to Hager & Zhang (2006b) for further details on CG methods.

For the EOT problem, recall the 1st and 2nd order derivatives of the dual objective g in (3) at z = (u, v):

∇g =
(
r(P )−r, c(P )−c

)
, ∇2g =

(
D(r(P )) P

P ⊤ D(c(P ))

)
. (15)

A typical choice of a preconditioner M , known to be effective for diagonally-dominant matrices (Golub &
Van Loan, 2013), is the diagonal approximation of the Hessian, which yields the following descent direction:

s̃ = −D
(
diag(∇2g)

)−1∇g =
(

r

r(P ) ,
c

c(P )

)
− 12n. (16)

Observe, however, that if at any point in the optimization r(P ) or c(P ) has infinitesimal entries, numerical
instabilities may occur when evaluating s̃. We propose using the Sinkhorn direction, s, in place of s̃:

s =
(

log r

r(P ) , log c

c(P )

)
. (17)

This has the benefit that it can be evaluated via numerically stable LogSumExp reductions, e.g., see lines 2-3
of Alg. 2. The Sinkhorn direction can be understood as the result of an alternative diagonal preconditioner,
namely M = D (−∇g/s), since s = −M−1∇g. Furthermore, for any sub-optimal (u, v), we have

−
〈
s,∇g

〉
= DKL

(
r(P )|r

)
+ DKL

(
r|r(P )

)
+ DKL

(
c(P )|c

)
+ DKL

(
c|c(P )

)
> 0,

and therefore s is also a descent direction. Empirically we find that this Sinkhorn preconditioner results in
improved numerical stability. Finally, note that near the solution (for r ≈ r(P ) and c ≈ c(P )) we have

s =
(

log r

r(P ) , log c

c(P )

)
≈

(
r

r(P ) ,
c

c(P )

)
− 12n = s̃, (18)

where we have used log x ≈ x−1 for x ≈ 1. Therefore, near the solution, the Sinkhorn direction s approaches
the direction s̃ obtained using the common preconditioner from the diagonal of the Hessian.

Algorithm 2 PNCG(z, γ, C, r, c, εd)
1: (u, v)← z, p← 02n, β ← 0
2: log r(P )← u + LSEr(1nv⊤ − γC)
3: log c(P )← v + LSEc(u1⊤

n − γC)
4: ∇g ←

(
r(P )− r, c(P )− c

)
5: while ∥∇g∥1 > εd do
6: s←

(
log r − log r(P ), log c− log c(P )

)
7: p← s + βp ▷ See (19)
8: if ⟨p,∇g⟩ ≥ 0 then
9: p← s ▷ Reset CG if not a descent dir.

10: end if
11: α, log r(P ), log c(P )← LineSearch(p, u, v)
12: (u, v)← (u, v) + αp
13: ∇g ←

(
r(P )− r, c(P )− c

)
14: end while
15: Output z ← (u, v)

Plugging the preconditioner M = D (−∇g/s) into the
preconditioned Hestenes-Stiefel formula (Al-Baali &
Fletcher, 1996), we take β(k) in L7 of Alg. 2:

β(k) = ⟨∇g(k) −∇g(k−1),−s(k)⟩
⟨∇g(k) −∇g(k−1), p(k−1)⟩

, (19)

where s(k) is the Sinkhorn direction as in (17), β(1) = 0,
p(0) = 02n. Observe that −s(k) above simply replaces
a ∇g(k) term in the numerator of (14).

We defer details of the line search in L11 of Alg. 2 to
Appx. B, but note that by design, the proposed line
search only carries out the same form of LogSumExp
reductions as the log-domain stabilized SK algorithm
(Alg. 4 in the Appx A), so that its output is reused
when evaluating the Sinkhorn direction s in (17) at the
next iteration (see L11 of Alg. 2). This also allows for
a fair comparison of the two algorithms’ performance.
Indeed, Fig. 4 plots the runtime of the two algorithms in terms of LogSumExp evaluations; PNCG outshines
SK empirically, especially at lower temperatures (higher γ). Further, to see whether the added numerical
stability of the newly proposed Sinkhorn preconditioner comes at a performance trade-off, we implement an
alternative stabilization scheme for the diagonal Hessian preconditioner. In particular, for this alternative we
use s only if the vector (r/r(P ), c/c(P )) has any entries outside the range [0.01, 100] and otherwise assign s̃
given by (16) in L6 of Alg. 2. The results shown in Fig. 4 suggest that, on the contrary, the Sinkhorn pre-
conditioner also provides a performance benefit over the diagonal Hessian in addition to numerical stability.
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5 EXPERIMENTS
In this section, we first detail the MNIST experimental setup in Figs. 2-4. Then, we describe an additional
color transfer task we use for benchmarking. Next, performance evaluations in terms of precision vs. wall-
clock time are discussed given the results over 4 sets of problems shown in Fig. 5. In Appx. H, we add 20
more problem sets from the DOTmark benchmark of Schrieber et al. (2017) showing similar results both in
terms of wall-clock time and operation counts. Lastly, the dependence on problem size n is investigated in
Fig. 6. All experiments were performed on an NVIDIA GeForce RTX 2080 Ti GPU with 64-bit precision.
Exact costs ⟨P ∗, C⟩ are evaluated using the implementation of the CPU-based algorithm of Bonneel et al.
(2011) from the Python Optimal Transport (POT) library (Flamary et al., 2021), which was run on an Intel
Xeon Silver 4110 (2.10GHz) CPU.

5.1 Experimental Setup
Upsampled MNIST. In line with prior work (Cuturi, 2013; Altschuler et al., 2017; Lin et al., 2022;
Tang et al., 2024), we first consider the MNIST dataset, where each pixel represents an event and each
image a probability distribution. Unlike prior work, we form higher dimensional problems by upsampling
the original 28× 28 images to be 64× 64 (with bilinear interpolation) so that n = 4096. Cost matrices C are
constructed by measuring the L1 or squared L2 distances between pixel locations on a 2D grid, and dividing
all entries by the maximum distance value so that all entries of C lie in [0, 1]. The probability of each pixel
is proportional to its intensity value; marginals r, c are obtained by flattening the pixel intensity matrices
and subsequent L1 normalization. To select m random problems, we sample 2m images from the dataset
without replacement, and compute the OT distances between the first and second halves of the samples.
Our selection of n = 4096 is driven by the objective of conducting a large number of tests per configuration
to ensure statistically significant results, rather than by any inherent limitations of the algorithm. In fact,
our MDOT code supports the use of on-the-fly CUDA kernels to evaluate entries of the cost matrix on the
go using the PyKeOps package (Charlier et al., 2021). In this case, MDOT leaves an O(n) memory footprint
(with both Sinkhorn and PNCG projections) rather than O(n2); it has been verified to scale to much larger
problems (n ≈ 100, 000).

Color Transfer. For the color transfer problem, each image is viewed as a point cloud in RGB space
(pixel locations carry no importance). Cost matrices C are constructed by measuring the L1 or L2

2 distances
between pixels in RGB space and dividing all entries by the maximum distance. Marginals r, c are taken
to be uniform over ∆n. With the help of GPT-4, we prompt DALL-E 2 to generate 20 vibrant and colorful
images with intricate details or patterns. To match the dimensionality of the upsampled MNIST problem
set, we downsample the original 1024 × 1024 images to 64 × 64 so that n = 4096. Once again, cost matrix
entries are normalized to lie in [0, 1].
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time to converge (over 18 random problems) for each algorithm at a given hyperparameter setting, which
controls the precision level, and the error ⟨P −P ∗, C⟩ after rounding the output of the algorithm onto U(r, c)
– with the exception of Alg. 3.5 of Feydy (2020); see text. Vertical dashed lines show the median time taken
by the CPU-based exact solver with 80% confidence intervals.

5.2 Wall-clock Time Comparisons With Prior Work

In Fig. 5, we present wall-clock time benchmarking of MDOT (with both Sinkhorn and PNCG projections)
against existing GPU-parallel algorithms on the upsampled MNIST and color transfer problems. All bench-
mark methods were implemented in PyTorch and run on the GPU. For MDOT, we use q=21/3, p = 1.5
and γi=24 in all experiments. For the closely related Mirror Sinkhorn (MSK) algorithm of Ballu & Berthet
(2023) the variable step size schedule prescribed by their Thm. 3.3 is used in our implementation. For Alg.
3.5 of Feydy (2020), we decay temperature at a rate q = 0.7−1, which interpolates their fast (q=0.5−1) and
safe (q=0.9−1) settings. For AAM (Guminov et al., 2021), Mirror Prox Sherman Optimized (Jambulapati
et al., 2019) and APDAGD (Dvurechensky et al., 2018), each implementation closely follows an open-source
NumPy implementation. Our PyTorch implementation was verified to produce identical results to the pub-
licly available NumPy code. We additionally attempted comparison with APDAMD (Lin et al., 2019) and
PDASMD (Luo et al., 2023), but observed extremely long convergence times for n = 4096 and omitted the
results. For further details on the implementation of benchmark methods, see Appx. F.

While MDOT optimizes (3) to satisfy a convergence criterion following each temperature decrease, Alg. 3.5
of Feydy (2020) performs a single (symmetrized) Sinkhorn update instead, i.e., it does not minimize the
sequence of dual objectives sufficiently despite taking increasingly large gradient steps in the dual space (cf.
5a-5b). This causes an accumulation of projection errors and results in the algorithm hitting a precision wall.
Their debiasing option for estimating the OT distance via Sinkhorn divergences (introduced by Ramdas et al.
(2017)) fares slightly better and is used here to comprise a stronger baseline, albeit this approach does not
find a member of U(r, c), which may be a strict requirement in some applications. MSK also runs a single
row/column scaling update after a temperature decrease, but takes increasingly smaller steps and maintains
a running average of transport plans to ensure convergence. It performs well at low precision, but shrinking
step sizes slow it down, so that it exhibits O(n2ε−2) convergence behavior. Sinkhorn iteration (log-domain
stabilized, see Alg. 4 in the Appx. A) benefits substantially from setting p = 1.5 rather than p = 1 at
sufficiently low temperatures for L1 costs (see also Sec. 4.2.2). APDAGD underperforms SK with p = 1
and AAM performs similarly to it. Mirror Prox Sherman Optimized of Jambulapati et al. (2019) overtakes
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lines show f(n) = an5/2 for visual comparison, with a selected to intersect the purple curve at the lowest n.

SK (p = 1.0) in one case only (top-left) in the high precision range. Meanwhile, MDOT-Sinkhorn enjoys
faster convergence than the more competitive SK (p = 1.5) owing to warm-started temperature annealing,
especially in the high precision range (near the solution). MDOT-PNCG is the quickest to converge in all
cases. The performance gap with its close second, MDOT-Sinkhorn, grows with higher precision.

5.3 Empirical Dependence on Problem Size of MDOT-PNCG
Our last set of experiments investigates the practical dependence of MDOT-PNCG on the problem size n.
Over the same 4 problem sets as Fig. 5, we change n from 36 to 16, 384 by up- or down-sampling images.
The n values are selected to be approximately equally spaced on a logarithmic scale. In Fig. 6, we plot
the behavior of MDOT-PNCG for a range of final temperature values γf ∈ {26, 29, 212, 215}. At medium
precision (green and blue), we find that the algorithm behaves no worse than O(n2) in practice as implied by
the flatness of the curves. As seen visually, with higher precision (roughly 5-decimals) with γf ∈ {212, 215},
the proposed GPU-parallel algorithm behaves roughly as O(n5/2) at worst and even better for some of the
problems in practice (see the reference line in Fig. 6). These should be compared to the Õ(n5/2) theoretical
and Õ(n3) practical complexity of CPU-based exact solvers (Pele & Werman, 2009; Lee & Sidford, 2014).
Indeed, Figure 5 suggests that the CPU-based solver offers a strictly better precision-time trade-off beyond
an optimality gap of around 10−4−10−5 for this value of n = 4096 and this particular CPU-GPU setup;
however, in Table 1 of the Appendix, we show that the trade-off skews in favor of MDOT-PNCG when n is
increased.

6 CONCLUSION
In this work, we first presented a general procedure, MDOT, for computing OT distances with high precision
and described its relation to a well-known temperature annealing strategy (ε-scaling). MDOT employs a
novel warm-starting of the sequence of EOT dual problems encountered in temperature annealing, which
was empirically shown to be highly effective compared to existing approaches. In addition, a specialized
non-linear CG algorithm was developed as an alternative to Sinkhorn iteration and was shown to be more
effective at low temperatures (under weak regularization). Over 24 different problem sets, the combined
MDOT-PNCG algorithm outperforms aggressively tuned Sinkhorn iteration and many other recent baselines
in terms of convergence of the primal suboptimality gap measured in wall-clock time. The algorithm was also
shown to behave well with respect to the problem size. Interesting directions for future research include the
theoretical convergence behavior of PNCG, bounds on the gradient norm of our warm-started initialization,
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better warm-starting methods, and adaptive dual problem stopping criteria. The development of faster KL
projection algorithms and adaptive temperature decay schedules are also of interest; see also our recent work
in this direction (Kemertas et al., 2025).
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Appendix
The Appendix is organized as follows:

• Appendix A provides the proofs of our theoretical results.

• Appendix B presents the line search routine we used for Alg. 2 after a primer on line search.

• Appendix C investigates our use of Hmin(r, c) when deciding the KL projection stopping criteria in
contrast to the more standard use of log n.

• Appendix D ablates the design decision in MDOT (Alg. 1) to vary the KL projection stopping
criterion based on the present temperature, and shows its performance benefit.

• Appendix E compares MDOT-PNCG to the network simplex solver in higher dimensions (n = 16384)
than the experiments in the main text (n = 4096), and shows better scaling.

• Appendix F discusses implementation details for baseline algorithms.

• Appendix G provides experiments vs. the IPOT algorithm of Xie et al. (2020).

• Appendix H provides additional benchmarking on 20 problem sets from the DOTmark benchmark
(Schrieber et al., 2017).

A Proofs
Here, we provide proofs for the theoretical results in the main text; Lemma 4.1 in Appx. A.1, Proposition
4.2 in Appx. A.2 and Proposition 4.5 in Appx. A.3.

A.1 Proof of Lemma 4.1
Lemma 4.1. Given any initial u, v ∈ Rn, γ ≥ 0 and ∆γ > 0, we have

P (u∗, v∗; γ + ∆γ) = arg min
P ∈U(r,c)

DKL

(
P |P (u, v; γ)⊙ exp{−∆γC}

)
, (9)

where u∗, v∗ ∈ arg min g(γ + ∆γ , r, c).

Proof. First, we emphasize the following observation, from which Lemma 4.1 follows immediately using
P (u, v; γ)⊙ exp{−∆γC} = P (u, v; γ + ∆γ).

Observation A.1. Given any initial u, v ∈ Rn and P (u, v; γ) defined as in (2), we have

P ∗(γ) = arg min
P ∈U(r,c)

DKL

(
P |P (u, v; γ)

)
= P (u∗, v∗; γ), where u∗, v∗ ∈ arg min g(γ, r, c). (20)

In words, (i) minimizing the objective g in (3) given any initial u, v ∈ Rn amounts to a KL projection of
P (u, v; γ) onto U(r, c), and (ii) the set of matrices P (u, v; γ) = exp{u1⊤ +1v⊤−γC} all have the same KL
projection in U(r, c). The intuition here is that since the elements ui, vj of u, v simply rescale the ith row and
jth column of P (u, v; γ), and the unique projection onto U(r, c) is the optimal scaling (with r(P ) = r and
c(P ) = c), the specific initial scaling of rows and columns in the conditioning matrix P (u, v; γ) is irrelevant.

We now start the formal proof by deriving the relationship

P (u∗, v∗; γ) = arg min
P ∈U(r,c)

[
DKL

(
P |P (u, v; γ)

)
+ K

]
, (21)

given any initial u, v ∈ Rn and u∗, v∗ ∈ arg minu,v∈Rn g(u, v; γ). Here we have introduced a constant K
which, of course, does not effect the arg min. We will choose K to simplify the derivation below. Note that
K can depend on the given quantities, such as u, v, and so on, but not on the unknown P . Given the
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definition of DKL in Sec. 2 for un-normalized P ∈ Rn×n
>0 , observe that

DKL
(
P |P (u, v; γ)

)
= ⟨P, log P − log P (u, v; γ)⟩+ ⟨P (u, v; γ)− P, 1⟩
= ⟨P, log P − u1⊤ − 1v⊤ + γC⟩+ ⟨P (u, v; γ)− P, 1⟩
= ⟨P,−1 + γC + log P ⟩ − ⟨u, r(P )⟩ − ⟨v, c(P )⟩+ ∥P (u, v; γ)∥1︸ ︷︷ ︸

constant in P

.

As shown below, it is convenient to use K = ⟨u, r⟩+ ⟨v, c⟩ − ∥P (u, v; γ)∥1, for which we find

DKL
(
P |P (u, v; γ)

)
+ K = ⟨P,−1 + γC + log P ⟩ − ⟨u, r(P )− r⟩ − ⟨v, c(P )− c⟩. (22)

We represent the equality constraints on P , that is, r(P ) = r and c(P ) = c, using Lagrange multipliers α
and β to form the Lagrangian

L(P, α, β) =
[
DKL

(
P |P (u, v; γ)

)
+ K

]
− ⟨α, r(P )− r⟩ − ⟨β, c(P )− c⟩

= ⟨P,−1 + γC + log P ⟩ − ⟨u + α, r(P )− r⟩ − ⟨v + β, c(P )− c⟩, (23)

where we have used DKL + K as in (22). Recall that the Lagrange dual function is given by (Boyd &
Vandenberghe, 2004):

inf
P ∈Rn×n

>0

L(P, α, β),

where Rn×n
>0 is the domain of the KL divergence objective in (21). If strong duality holds, we have

sup
α,β∈Rn

inf
P ∈Rn×n

>0

L(P, α, β) = min
P ∈U(r,c)

[
DKL

(
P |P (u, v; γ)

)
+ K

]
. (24)

In this case, we conclude that strong duality holds since Slater’s condition is satisfied, i.e., there exists a
strictly feasible P ; namely, the independence coupling rc⊤. See Ch. 5.2.3 of Boyd & Vandenberghe (2004).

Now, to find the point-wise minimum of L(P, α, β) with respect to P , we require:

∂L
∂Pij

= γCij + log Pij − ui − αi − vj − βj = 0.

Therefore the minimizer P ∗ must have the form

P ∗
ij = P (u + α, v + β; γ) = exp(αi + ui + βj + vj − γCij). (25)

for some α and β. To eliminate the variable P from infP ∈Rn×n
>0
L(P, α, β), we plug the form above into the

Lagrangian. The first term on the right hand side of (23) is then

⟨P ∗,−1 + γC + log P ∗⟩ = ⟨P ∗,−1 + γC⟩+ ⟨P ∗, (u + α)1T + 1(v + β)T − γC⟩,
= −⟨P ∗, 1⟩+ ⟨u + α, r(P ∗)⟩+ ⟨v + β, c(P ∗)⟩.

Using this in (23), we find

L(P ∗, α, β) = −⟨P ∗, 1⟩+ ⟨u + α, r⟩+ ⟨v + β, c⟩,

= −
∑

ij

exp
(
(ui + αi) + (vj + βj)− γCij

)
+ ⟨u + α, r⟩+ ⟨v + β, c⟩. (26)

where α and β are the only unknowns. Without loss of generality we can change variables in both P ∗ =
P (u + α, v + β; γ) and L(P ∗, α, β) to α′ = α + u and β′ = β + u, in which case the Lagrangian is equal to

L(P (α′, β′; γ), α′, β′) = −
∑

ij

exp(α′
i + β′

j − γCij) + ⟨α′, r⟩+ ⟨β′, c⟩

= −g(α′, β′; γ), (27)
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where g(α′, β′; γ) is the dual objective for the EOT problem in (3). By strong duality and (24) we conclude
that the solution is given by P ∗ = P (α∗, β∗; γ), where α∗, β∗ satisfy:

α∗, β∗ ∈ arg max
α,β∈Rn

L(P ∗(α, β), α, β)

= arg min
α,β∈Rn

g(α, β; γ).

That is, the solution is identical to the optimal dual solution in (3), and therefore Observation A.1 holds.

Lemma 4.1 follows immediately from Observation A.1 using P (u, v; γ)⊙ exp{−∆γC} = P (u, v; γ + ∆γ). ■

A.2 Proof of Proposition 4.2

Proposition 4.2. Let γ(0) = 0 and γ(t+1) = γ(t) +∆(t)
γ , which together imply γ(t+1) =

∑t
t′=0 ∆(t′)

γ . Suppose
P (0) ∈ Rn×n

>0 is rank-1 and P (t) are computed via (8) for t ≥ 0. The following are true.

1. P (t+1) = P ∗(γ(t+1)), i.e., the solution of the EOT problem (1) at γ(t+1).

2. Given any u, v ∈ Rn, P (t+1) = arg minP ∈U(r,c) DKL(P |P (u, v; γ(t+1))).

3. ⟨P (t)−P ∗, C⟩ ≤ Hmin(r, c)
/

γ(t), where P ∗ ∈ arg minP ∈U(r,c)⟨P, C⟩ and Hmin(r, c) := min
(
H(r), H(c)

)
.

4. ⟨P (t)−P (t+1), C⟩ = 1
∆(t)

γ

(
DKL

(
P (t)|P (t+1)) + DKL

(
P (t+1)|P (t)))

for all t ≥ 0.

Proof. We prove each of the four statements in order.

A.2.1 Proof of the 1st statement.
Here, we first provide a step by step derivation for the following expression for P (t+1) for t ≥ 0:

P (t+1) = arg min
P ∈U(r,c)

DKL

(
P |P

(
u∗(γ(t)), v∗(γ(t)); γ(t+1)))

= P ∗(γ(t+1)),

where γ(0) = 0 by construction, and P ∗(γ) = P (u∗(γ), v∗(γ); γ) for u∗(γ), v∗(γ) ∈ arg minu,v∈Rn g(γ), i.e.,
solutions of the EOT primal (1) and dual (3) at γ. Starting with a rank-1 positive matrix P (0) = r̃c̃⊤ =
P (log r̃, log c̃; 0) given vectors r̃, c̃ with positive entries, we obtain using MD updates (8) and Lemma 4.1:

P (1) = arg min
P ∈U(r,c)

DKL

(
P |P

(
log r̃, log c̃; ∆(0)

γ

))
= arg min

P ∈U(r,c)
DKL

(
P |P

(
log r̃, log c̃; γ(1)))

(Since γ(0) = 0 and γ(t+1) = γ(t) + ∆(t)
γ by construction.)

= P ∗(u∗(γ(1)), v∗(γ(1)); γ(1)) (By Observation A.1.)
= P ∗(γ(1)). (By definition.)

Repeatedly using the same and continuing the iteration:

P (2) = arg min
P ∈U(r,c)

DKL

(
P |P

(
u∗(γ(1)), v∗(γ(1)); γ(2)))

= P ∗(γ(2)),

P (3) = arg min
P ∈U(r,c)

DKL

(
P |P

(
u∗(γ(2)), v∗(γ(2)); γ(3)))

= P ∗(γ(3)),

...

P (t+1) = arg min
P ∈U(r,c)

DKL

(
P |P

(
u∗(γ(t)), v∗(γ(t)); γ(t+1)))

= P ∗(γ(t+1)).

(28)

Hence, each iterate P (t+1) = P ∗(γ(t+1)) for t ≥ 0. ■
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A.2.2 Proof of the 2nd statement.
The result follows immediately by applying Observation A.1 to each iterate in (28) to replace u∗(γ), v∗(γ)
terms by arbitrary u, v ∈ Rn. ■

A.2.3 Proof of the 3rd statement.
First, we write the following helper lemma.

Lemma A.2 (A mirror descent bound for linear objectives). Given a linear objective function f(P ) = ⟨P, C⟩,
an initial point P (0) ∈ F , an optimal point P ∗ and any T > 0, a sequence [P (t)]t∈N obtained via (6) satisfies:

f(P (T ))− f(P ∗) ≤ Dh(P ∗|P (0))∑T −1
t=0 ∆(t)

. (29)

Proof. Recall the definition of P̂ (t+1) from mirror descent iterates in (5a):

P̂ (t+1) = ∇h−1
(
∇h(P (t))−∆(t)∇f(P (t))

)
For any P ∈ D,

f(P (t+1))− f(P ) = ⟨∇f(P (t)), P (t+1) − P ⟩ (since f is linear)

= 1
∆(t) ⟨∇h(P (t))−∇h(P̂ t+1), P (t+1) − P ⟩ (due to (5a))

≤ 1
∆(t) ⟨∇h(P (t))−∇h(P (t+1)), P (t+1) − P ⟩ (by Lemma 4.1 in Bubeck (2015))

= 1
∆(t)

(
Dh(P |P (t))−Dh(P |P (t+1))−Dh(P (t+1)|P (t))

)
(by Eq. 4.1 in Bubeck (2015))

≤ 1
∆(t)

(
Dh(P |P (t))−Dh(P |P (t+1))

)
, (since Dh ≥ 0)

which implies

∆(t)(f(P (t+1))− f(P )
)
≤ Dh(P |P (t))−Dh(P |P (t+1)).

The above inequality proves monotonic improvement in each step t once we take P = P (t). Letting P = P ∗,
taking a telescopic sum and dividing both sides by

∑T −1
s=0 ∆(s) we arrive at:∑T −1

t=0 ∆(t)(f(P (t+1))− f(P ∗)
)∑T −1

s=0 ∆(s)
≤ Dh(P ∗|P (0))−Dh(P ∗|P (T ))∑T −1

s=0 ∆(s)

≤ Dh(P ∗|P (0))∑T −1
s=0 ∆(s)

,

which implies (29) since improvement is monotonic and the first term on the LHS is a convex combination
of objective values. ■

By Lemma A.2, for P (0) ∈ U(r, c) we have

⟨P (t) − P ∗, C⟩ ≤ Dh(P ∗|P (0))∑t−1
t′=0 ∆(t′)

γ

.

Given γ = γ(t) =
∑t−1

t′=0 ∆(t′)
γ , it remains to show that Dh(P ∗|P (0)) ≤ Hmin(r, c).
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Recall that for the negative entropy h(x) =
∑

i xi log xi, we have Dh(x|y) = DKL(x|y). Suppose we take
P (0) = rc⊤:

DKL(P ∗|P (0)) =
∑

ij

P ∗
ij(log P ∗

ij − log ricj)

=
∑

ij

P ∗
ij(log P ∗

ij − log ri − log cj)

= −H(P ∗)−
∑

i

log ri

∑
j

P ∗
ij −

∑
j

log cj

∑
i

P ∗
ij

= −H(P ∗)−
∑

i

ri log ri −
∑

j

cj log cj (since P ∗ ∈ U(r, c))

= H(r) + H(c)−H(P ∗)
= max(H(r), H(c)) + min(H(r), H(c))−H(P ∗)
≤ min(H(r), H(c)).

The last inequality holds since H(P ) ≥ H(r) and H(P ) ≥ H(c) for any P ∈ U(r, c) (Cover, 1999), which
together imply H(P ) ≥ max(H(r), H(c)). ■

Proof of the 4th statement. First, note that given h(P ) =
∑

ij Pij log Pij , we have ∇h(P )ij = 1 + log Pij

and ∇h−1(Q)ij = exp(Qij − 1). Then, given the definition of P̂ (t+1) from mirror descent iterates in (5a):

P̂ (t+1) = ∇h−1
(
∇h(P (t))−∆(t)

γ ∇f(P (t))
)

= exp(log P (t) −∆(t)
γ C)

= exp
(
u∗(γ(t))1⊤ + 1v∗(γ(t))⊤ − (γ(t) + ∆(t)

γ )C
)
. (given u∗(γ(t)), v∗(γ(t)) ∈ arg min g(u, v; γ(t)))

= exp
(
u∗(γ(t))1⊤ + 1v∗(γ(t))⊤ − γ(t+1)C

)
. (30)

In the third equality, we used the known closed-form expression (2) to expand P (t).

In the special case that the feasible set F = U(r, c),

⟨P (t), C⟩ − ⟨P (t+1), C⟩
= ⟨∇f(P (t)), P (t) − P (t+1)⟩ (since f(P ) = ⟨P, C⟩ is linear, ∇P f(P ) = C.)

= 1
∆(t)

γ

⟨∇h(P (t))−∇h(P̂ t+1), P (t) − P (t+1)⟩ (due to (5a))

= 1
∆(t)

γ

⟨∇h(P (t))−∇h(P (t+1)), P (t) − P (t+1)⟩ (see below)

= 1
∆(t)

γ

(
Dh(P (t)|P (t+1)) + Dh(P (t+1)|P (t))

)
(by definition of the Bregman divergence as in (4))

= 1
∆(t)

γ

(
DKL(P (t)|P (t+1)) + DKL(P (t+1)|P (t))

)
.

To see why the third equality holds, observe that P t+1
ij = P̂ t+1

ij exp{û∗
i + v̂∗

j } for some optimal update vectors
û∗, v̂∗ ∈ Rn given the closed-forms (2) and (30). Then, for any P, P ′ ∈ U(r, c),

⟨∇h(P (t+1)), P − P ′⟩

=
∑

ij

(1 + log P̂ t+1
ij + û∗

i + v̂∗
j )(Pij − P ′

ij)

= ⟨∇h(P̂ t+1), P − P ′⟩+
∑

i

û∗
i

∑
j

(Pij − P ′
ij) +

∑
j

v̂∗
j

∑
i

(Pij − P ′
ij)

= ⟨∇h(P̂ t+1), P − P ′⟩+ ⟨û∗, r − r⟩+ ⟨v̂∗, c− c⟩ (since P, P ′ ∈ U(r, c) by construction)
= ⟨∇h(P̂ t+1), P − P ′⟩. ■
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Algorithm 3 Round(P, r, c) (Altschuler et al., 2017)
1: X ←D(x) with x = r/r(P ) ∧ 1
2: F ← XP
3: Y ←D(y) with y = c/c(F ) ∧ 1
4: F ′ ← FY
5: errr ← r − r(F ′), errc ← c− c(F ′)
6: Output G← F ′ + errrerr⊤

c / ∥errr∥1

Algorithm 4 Sinkhorn(z, γ, C, r, c, εd)
1: (u, v)← z
2: log r(P )← u + LSEr(1nv⊤ − γC)
3: while ∥∇g∥1 = ∥r − r(P )∥1 > εd do
4: u← u + log r − log r(P )
5: v ← log c− LSEc(u1⊤

n − γC)
6: log r(P )← u + LSEr(1nv⊤ − γC)
7: end while
8: Output z ← (u, v)

A.3 Proof of Proposition 4.5
In the remainder of this section, the L1 norm ∥P∥1 of a matrix denotes the L1 norm of the vectorized form
of the matrix, and not the L1 matrix norm.

First we state the following lemma, which is a simple combination of Lemmas 6 and 8 by Weed (2018).

Lemma A.3 (Entropy increase from mixing (Weed, 2018)). Let r1, r2, r3 ∈ ∆n and r2 = (1 − ε)r1 + εr3,
where ε ∈ (0, 1]. We have,

H(r2) ≤ (1− ε)H(r1) + εH(r3) + ε(1− log ε) < H(r1) + ε(1 + log n

ε
). (31)

Next, we provide a simple proof for Remark 4.4

Remark 4.4. For any constant p ∈ [1,∞) and OT problem given by (r, c, C), there exists a γ0 > 0 such
that for any γ ≥ γ0, we have ⟨P ∗(γ)− P ∗, C⟩ ≤ Hmin(r, c)/γp.

Proof. Recall from Thm. 5 of Weed (2018) that the quantity ⟨P ∗(γ)−P ∗, C⟩ decays at an exponential rate
with increasing γ for sufficiently large γ. Since the exponential function exp{−γK} decays more quickly
than γ−p for any constant K > 0 and finite p, we conclude that there exists some constant γ0 > 0 such that

⟨P ∗(γ)− P ∗, C⟩ ≤ Hmin(r, c)/γp (32)

for all optimal transport problems given by r, c, C provided that γ ≥ γ0. ■

Proposition 4.5. Sinkhorn iteration, as instantiated by calling Alg. 1 (L6) with p ∈ [1,∞) and a sufficiently
large γi = γf = p

√
5Hmin

(
r, c

)
/2ε, returns a plan P ∈ U(r, c) satisfying ⟨P −P ∗, C⟩ ≤ ε + Õ(ε2) in at most

O
(

n2Hmin
(
r, c

)1/p
/

ε
p+1

p

)
arithmetic operations. (13)

Proof. Let B ∈ U(r′, c′) be the transport plan P (u, v) = exp{u1⊤ + 1v⊤ − γfC} after the termination of
the main loop (before rounding in L13) of Alg. 1, which takes place after a single outer loop iteration in
this setting, since γi = γf by construction. Since B is the output of Sinkhorn iteration (Alg. 4), it lies on
the simplex, as do its row and column marginals (specifically, we have c′ = c(B) = c̃ ∈ ∆n from Alg. 4).
Furthermore, B is the unique optimizer of the EOT problem over U(r′, c′) due to Prop. 4.2 and the fact
that it has the form Bij = exp{ui + vj − γfCij}:

B = arg min
P ∈U(r′,c′)

⟨P, C⟩ − 1
γf

H(P ). (33)

Sinkhorn iteration returns a solution u, v such that

∥r̃ − r(B)∥1 + ∥c̃− c(B)∥1 ≤ ε′/2
=⇒ ∥∇g∥1 = ∥r − r(B)∥1 + ∥c− c(B)∥1

≤ ∥r − r̃∥1 + ∥r̃ − r(B)∥1 + ∥c− c̃∥1 + ∥c̃− c(B)∥1 (triangle inequality)
≤ ∥r − r̃∥1 + ∥c− c̃∥1 + ε′/2.
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Then, given mixing weights ε′/4 in L5 of Alg. 1:

∥∇g∥1 ≤ ε′. (34)

Now, we make the following definitions:

• B̂ = Round(B, r, c), the rounding of B onto U(r, c) via Alg. 2 of Altschuler et al. (2017), returned
by our Alg. 1,

• B∗ ∈ arg minP ∈U(r′,c′)⟨P, C⟩, an optimal plan in the feasible set U(r′, c′),

• P ∗ ∈ arg minP ∈U(r,c)⟨P, C⟩, an optimal plan in the feasible set U(r, c).

We have that,

⟨B̂ − P ∗, C⟩ = ⟨B̂ −B, C⟩+ ⟨B −B∗, C⟩+ ⟨B∗ − P ∗, C⟩

= ⟨B̂ −B, C − 1
21n×n⟩+ ⟨B −B∗, C⟩+ ⟨B∗ − P ∗, C⟩ (since B̂, B ∈ ∆n×n.)

≤ 1
2

∥∥∥B̂ −B
∥∥∥

1
+ ⟨B −B∗, C⟩+ ⟨B∗ − P ∗, C⟩ (Hölder’s ineq., given Cij ∈ [0, 1] ∀i, j ∈ [n])

≤ ∥∇g∥1 + ⟨B −B∗, C⟩+ ⟨B∗ − P ∗, C⟩ (by Lemma 7 of Altschuler et al. (2017))

≤ ∥∇g∥1 + Hmin(r′, c′)
γp

f
+ ⟨B∗ − P ∗, C⟩ (given (32-33), assuming γf sufficiently large)

≤ ε′ + Hmin(r′, c′)
γp

f
+ ⟨B̃ − P ∗, C⟩, (35)

where B̃ is any transport plan in U(r′, c′). We take B̃ to be the “shadow” of P ∗ in the sense of Definition
3.1 of Eckstein & Nutz (2022), under the discrete metric. In other words, letting

B̃ = arg min
P ∈U(r′,c′)

∥P − P ∗∥1 ,

and noting that the 1-Wasserstein distance under the discrete metric is equal to the total variation (TV)
distance, the first equation in Lemma 3.2 of Eckstein & Nutz (2022) yields the equality (∗) below:

1
2

∥∥∥B̃ − P ∗
∥∥∥

1
= TV(B, P ∗) (∗)= TV(r, r′) + TV(c, c′) = 1

2 ∥∇g∥1 . (36)

Then, continuing from (35),

⟨B̂ − P ∗, C⟩ ≤ ε′ + Hmin(r′, c′)
γp

f
+ ⟨B̃ − P ∗, C⟩

= ε′ + Hmin(r′, c′)
γp

f
+ ⟨B̃ − P ∗, C − 1

21n×n⟩ (since B̃, P ∗ ∈ ∆n×n.)

= ε′ + Hmin(r′, c′)
γp

f
+

∥∥∥B̃ − P ∗
∥∥∥

1

∥∥∥∥C − 1
21n×n

∥∥∥∥
∞

≤ 3
2ε′ + Hmin(r′, c′)

γp
f

(given (34-36))

≤ 3
2ε′ + Hmin(r, c)

γp
f

+ ε′

γp
f

(1 + log(n/ε′)) (by Lemma A.3)

= 5Hmin(r, c)
2γp

f
+ Õ(γ−2p

f ) (since ε′ = Hmin(r,c)
γp

f
in L4 of Alg. 1)

= ε + Õ(ε2). (since γf =
(

5Hmin
(
r, c

)
/2ε

)1/p

by construction)

The computational complexity of the algorithm follows simply from the same line of reasoning as Thm. 1 and
Thm. 2 of Dvurechensky et al. (2018). In particular, they show that Sinkhorn iteration converges in O(R/ε′)

25



Published in Transactions on Machine Learning Research (06/2025)

steps, where R = O(γf) = O(Hmin(r, c)1/pε−1/p) in our case. The complexity result O(n2Hmin(r, c)1/p/ε
p+1

p )
follows since ε′ = O(Hmin(r, c)γ−p

f ) = O(ε−1), and each Sinkhorn step costs O(n2).

■

B An Efficient Line Search Algorithm
In Section 4.3, we developed the PNCG algorithm, which required a line search procedure. Here, we develop
the line search used in our implementation, following a short background on relevant aspects of line search
in numerical optimization.

B.1 Background: Line Search
Given a descent direction p(k) ∈ Rn, i.e., a direction that satisfies ⟨p(k),∇f(x(k))⟩ ≤ 0, line search algorithms
aim to find an appropriate step size α, where x(k+1) ← x(k)+αp(k). Perhaps the most well-known of desirable
properties that a step size α should satisfy at any given optimization step are the Wolfe conditions (Wolfe,
1969; 1971). Given ϕ(α) := f(x(k) + αp(k)):

ϕ(α)− ϕ(0)
α

≤ c1ϕ′(0) (37a)

ϕ′(α) ≥ c2ϕ′(0). (37b)

where 0 < c1 < c2 < 1 and (37a) and (37b) are known as the sufficient decrease and curvature condi-
tions respectively (Nocedal & Wright, 2006). It is well-known that given step sizes satisfying the Wolfe
conditions and descent directions p(k) that are not nearly orthogonal to the steepest descent directions
−∇f(x(k)), line search methods ensure convergence of the gradient norms to zero (Zoutendijk, 1966; Wolfe,
1969; 1971). Instead of satisfying (37), some algorithms or theoretical analyses consider exact line search,
where α∗ ∈ arg minα∈R ϕ(α), which has a unique closed-form solution for quadratic objectives with a posi-
tive definite Hessian. However, a rule of thumb for general non-linear objectives is to not spend too much
time finding α∗ (Nocedal & Wright, 2006). Hager & Zhang (2006a) proposed approximate Wolfe conditions,
derived by replacing the ϕ(α) and ϕ(0) terms in (37a) with q(α) and q(0), where q is a quadratic interpolant
of ϕ such that q(0) = ϕ(0), q′(0) = ϕ′(0) and q′(α) = ϕ′(α):

(2c1 − 1)ϕ′(0) ≥ ϕ′(α) ≥ c2ϕ′(0). (38)

A key advantage of replacing (37) by (38) stems from the fact that one only needs to evaluate ϕ′ rather than
both ϕ and ϕ′ to check whether the conditions are satisfied, thereby halving the amount of computation
necessary per iteration in cases where their evaluation has similar computational cost.

Bisection is a line search strategy with convergence guarantees when the objective is convex. One simply
maintains a bracket [αlo, αhi], where ϕ′(αlo) < 0 and ϕ′(αhi) > 0, and recursively considers their average and
updates either endpoint of the bracket given the sign of ϕ′((αhi + αlo)/2

)
.

B.2 PNCG Line Search
To perform line search in PNCG (Alg. 2), we adopt a hybrid strategy combining bisection and the secant
method to find αk satisfying approximate Wolfe conditions (38). Given αlo, αhi, the secant method computes
the minimizer of a quadratic interpolant q̂ that satisfies q̂′(αlo) = ϕ′(αlo) and q̂′(αhi) = ϕ′(αhi) as follows:

αsec = αloϕ′(αhi)− αhiϕ
′(αlo)

ϕ′(αhi)− ϕ′(αlo) . (39)

Thanks to the convexity of the objective g, by ensuring ϕ′(αlo) < 0 and ϕ′(αhi) > 0 with simple algorithmic
checks, we can guarantee that αlo < αsec < αhi. Thus, the updated bracket is guaranteed to be smaller once
we replace either of αlo or αhi by αsec for the next bracket given the sign of ϕ′(αsec). If ϕ behaves like a
quadratic inside the bracket, the secant method converges very quickly, but convergence can be arbitrarily
slow otherwise. For this reason, we simply average the bisection estimate and αsec for a less aggressive but
more reliable line search that still converges quickly, i.e., αhybrid = 0.5αsec + 0.5(αhi + αlo)/2.
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Figure 7: We control the problem parameter Hmin(r, c) over synthetically sampled OT problems (r, c, C)
and show that using the entropy-aware stopping criterion can yield substantial performance gains, with
the gap between the two approaches growing proportionally to the gap between Hmin(r, c) and log n. The
experiments carried out use γ ∈ {24, 25, · · · , 214} to control precision. We sample 18 problems for each γ
value and plot the median along both axes. The results are consistent between L1 (left) and L2

2 (right) costs.

Evaluation of ϕ′ has computational complexity O(n2) as does a single step of Sinkhorn’s algorithm (given
by the two LogSumExp reductions seen in L5-6 of Alg. 4):

ϕ′(α) = ⟨pu, r(Pα)− r⟩+ ⟨pv, c(Pα)− c⟩, (40)

where (pu, pv) is the descent direction. Since evaluating ϕ′ requires the computation of r(Pα) and c(Pα) for
the new matrix Pα := exp{(u + αpu)1⊤ + 1(v + αpv)⊤− γC}, the last step of the line search readily carries
out the LogSumExp reductions necessary for computing the Sinkhorn direction in the next step of PNCG
(see L11 of Alg. 2). Observe also that at the next PNCG iteration, ϕ′(0) can also be computed in O(n) time
rather than O(n2) since r(P0), c(P0) are already known from the last line search step of the previous PNCG
iteration. With these important implementation details in place, we find that the average number of ϕ′

evaluations necessary to find an α that satisfies (38) is typically between 1.5− 2.5 for the PNCG algorithm.
While the approach outlined here is easy to implement (including as a batch process) and works well in
practice, better line search methods may further benefit Alg. 2.

C Entropy-aware Stopping Criteria on the Dual Objective Gradient Norm
Here, we show the effect of choosing Hmin(r, c) over the weaker bound log n in L4 of Alg. 1, where the
stopping criterion ε′ is selected. To control the problem setting Hmin(r, c), we construct synhetic problems
by randomly sampling r from the simplex via a Dirichlet distribution constructed to meet a target entropy
level H(r) as a fraction of the maximum possible entropy log n. The column marginal c is simply taken to
be the uniform distribution 1n/n, so that Hmin(r, c) = H(r). Cost matrices are constructed by sampling n
points x ∈ R3 from a multivariate normal distribution and assigning Cij = ∥xi − xj∥r

r for r ∈ {1, 2}, before
entrywise division by maxij Cij to ensure Cij ∈ [0, 1].

Fig. 7 illustrates the effect of this choice by ranging Hmin(r, c)/ log n ∈ {0.03, 0.1, 0.3, 0.9}. Towards the
RHS of the plots, we observe an improvement in precision roughly proportional to log n/Hmin(r, c) for the
same number of operations, which agree with our complexity result O(n2Hmin(r, c)/ε−2) for p = 1 in (32)
vs. the O(n2 log n/ε−2) result by Dvurechensky et al. (2018).

D Variable vs. Fixed Smoothing of the Marginals in MDOT
As discussed in Sec. 4.2, MDOT smoothes the marginals r, c (by mixing in the uniform distribution) with
a weighting factor that tracks the temperature. Since MDOT anneals the temperature, this means that
the smoothing weight is higher in earlier iterations of MDOT. In particular, the mixture weight gradually
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Figure 8: The variable smoothing scheme has almost no impact on the convergence behavior of MDOT-
Sinkhorn (left) for both settings q = 2 (rapid temperature decay) and q = 21/8 (slow temperature decay).
MDOT-PNCG (right) enjoys a speedup of nearly 2× under rapid decay and a more modest speedup under
slow decay. All curves show the median over 36 sample problems from the MNIST dataset (L1 cost).

decays from Hmin(r, c)
/

4γp
i to Hmin(r, c)

/
4γp

f given input parameter p ≥ 1. Here, we study the effect of
this design choice as it influences the convergence of two KL projection algorithms used in L6 of Alg. 1:
Sinkhorn iteration and the newly proposed PNCG algorithm (Alg. 2). The approach is benchmarked against
a baseline that fixes the smoothing weight at Hmin(r, c)

/
4γp

f all throughout instead. For these experiments,
we fix p = 1.5 following our experimental setup in Sec. 5. Fig. 8 shows that while MDOT-Sinkhorn is largely
unaffected by this design choice, MDOT-PNCG enjoys a notable speedup from variable smoothing. We thus
conclude that the approach provides a performance benefit.

E Comparison with CPU-based Solver for Higher n

In Figure 5, we displayed via a vertical line the time taken on a CPU by the network simplex solver from
the Python Optimal Transport package of Flamary et al. (2021). Clearly, a faster CPU would benefit the
network simplex and a faster GPU would benefit the MDOT family of algorithms, which makes them difficult
to compare in a fair setup. However, given the known Õ(n3) complexity of the network simplex and the
Õ(n2)− Õ(n2.5) empirical dependence of MDOT-PNCG seen in Fig. 6, we suspect that the precision-speed
trade-off posed by MDOT-PNCG improves with increasing n. In Table 1, we provide a comparison of the
two algorithms, with several values of γf used for MDOT-PNCG and n increased from 4, 096 to 16, 384. We
observe the same trend across both L1 and L2 cost functions on the MNIST dataset; for a comparable level
of relative error achieved by MDOT–PNCG (at a fixed γf), the speedup over the network simplex solver is
better for n = 16, 384. We expect the trend to continue with higher n, and note that MDOT stands to benefit
from ongoing rapid developments in GPU hardware innovation, as well as faster projection algorithms than
PNCG; see also our concurrent work in this direction showing substantial speedups (Kemertas et al., 2025).

F Details of Baseline Algorithm Implementations
Here, we provide details and sources on the implementation of various algorithms shown in Fig. 5. Our
implementations of other algorithms will be open-sourced for transparency.

Mirror Prox Sherman Optimized (Jambulapati et al., 2019). For this algorithm, the source code is
originated in the NumPy code at this repository. The owner of the repository notes that this NumPy
implementation is based on a Julia implementation by the original authors, which was provided in a private
exchange. The code used in this paper is a PyTorch adaptation of the NumPy code and has been verified
to produce identical output as the NumPy version over multiple problems. The algorithm was called with
entropy factor parameter set to the default 2.75 in all experiments. The number of iterations for the algorithm
was varied from 2 to 215 to achieve different levels of precision.
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APDAGD (Dvurechensky et al., 2018). For APDAGD, a similar strategy was used, except with this code
repository. A PyTorch version of the original NumPy code was written and verified to produce identical
output. For different levels of precision, the ε parameter of the algorithm was varied from 2−1 to 2−6. For
smaller ε, non-convergence was observed.

AAM (Guminov et al., 2021). The implementation is based on NumPy code by the original authors at this
repository. A PyTorch version was verified to produce identical output for GPU execution. The ε parameter
was varied from 2−1 to 2−10. For smaller ε, numerical errors were encountered.

Feydy, Alg. 3.5 (Feydy, 2020). The implementation is based on the algorithm as presented in the original
work. For different levels of precision, the number of total iterations was varied from 2 to 212. Beyond
the upper bound, numerical errors were observed. As it produced better estimates than the alternative,
the algorithm was called with debiasing turned on; hence, the error ⟨P − P ∗, C⟩ was instead measured in
absolute value as |⟨P − P ∗, C⟩| for this algorithm only. Scaling ratio was set to an intermediate 0.7, which
is between the listed 0.5 (fast) and 0.9 (safe) settings.

Sinkhorn (Cuturi, 2013). A log-domain stabilized implementation was used. For different precision levels,
γ was varied from 25 to 214 for L1 distance cost and to 215 for L2

2 distance cost. Stopping criteria were given
by our formula in L4 of Alg. 1, and the results obtained by calling Alg. 1 with γi = γf , so that the algorithm
terminates after a single KL projection via SK iteration.

Mirror Sinkhorn (MSK) (Ballu & Berthet, 2023). The implementation is based on the algorithm pre-
sented in the original paper. For different levels of precision, the number of total iterations was varied from
25 to 216.

Table 1: Comparison of the exact Network Simplex solver with MDOT–PNCG method on MNIST transport
problems under L1 and L2 costs. Relative error is computed as 100 ∗ ⟨P − P ∗, C⟩/⟨P ∗, C⟩.

n = 4, 096 n = 16, 384
Cost Fn. Algorithm γf RelErr % Time (s) Speedup RelErr % Time (s) Speedup

L1

Net. Simplex – 0.0000 5.45 1.00 0 236.46 1.00

MDOT–PNCG
26 16.556 0.18 30.55 22.580 1.72 137.24
29 0.167 2.28 2.39 0.585 26.94 8.78
212 0.002 11.85 0.46 0.002 318.58 0.74

L2

Net. Simplex – 0.000 11.74 1.00 0 728.40 1.00

MDOT–PNCG
29 26.877 0.52 22.66 23.827 5.53 131.83
212 3.166 3.85 3.04 3.372 38.12 19.11
215 0.044 39.38 0.30 0.303 294.12 2.48
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Figure 9: Optimality gap ⟨P − P ∗, C⟩ of rounded (feasible) plans vs. number of O(n2) operations for IPOT
(Xie et al., 2020) and MDOT (with Sinkhorn and PNCG for KL projections, using p = 1.5, q = 21/3 as
in Section 5). Both methods are run up to a final γf = 215 on the upsampled MNIST dataset (n = 4096)
with L1 (left) and L2

2 (right) cost functions. MDOT reaches the target γf satisfying its stopping criterion
∥∇g(γf)∥1 = O(γ−p) in fewer operations than IPOT takes until termination, so we continue the KL projection
at γf until the same number of operations as IPOT is reached, without increasing γ further (dashed lines).

G Similarities and Differences with IPOT
In this section, we discuss the similarities and differences between MDOT and the Inexact Proximal point
method for exact Optimal Transport (IPOT) algorithm of Xie et al. (2020) in more detail. In IPOT, authors
propose to update (in our notation) the γ parameter by fixed increments and typically choose ∆(t)

γ = 1 for
all t ≥ 0, while we took ∆γ = (q−1)γ for a hyperparameter q > 1. Following each temperature update, they
run a fixed number of L row+column scaling (Sinkhorn) updates and recommend L = 1, whereas MDOT
requires that the KL projection is continued until the dual objective gradient norm reaches below a threshold
at each γ. A small number of L Sinkhorn updates clearly does not amount to an “exact” KL projection onto
the feasible set U(r, c), but Xie et al. (2020) show that under some conditions there exists some finite L that
guarantees linear convergence of ⟨P (u, v; γ), C⟩ to the ⟨P ∗, C⟩. On the other hand, (i) MDOT naturally
adapts the number of optimization updates to the difficulty of the problem and the strictness of the stopping
criterion at γ, and (ii) it stands to benefit from potentially faster convex optimization algorithms besides
Sinkhorn iteration, e.g., our PNCG approach proposed in Sec. 4 or any other approach that may be developed
in the future. A similarity between the approaches is that IPOT also includes an implicit warm-start of the
dual variable, which can be considered a special case of our warm-start proposed in Section 4.2.1, where
∆(t)

γ = 1 for all t.

In Figure 9, we compare IPOT with MDOT (p=1.5, q=21/3, γi=2) on the upsampled MNIST dataset. For a
fair comparison, we followed the conventions of Xie et al. (2020) and implemented all algorithms by computing
row/column sums of P (u, v; γ) explicitly rather than via LogSumExp reductions as in Algorithms 2 and 4.4
Each matrix-vector product, row/column sum, row/column scaling of a matrix and entry-wise operations on
matrices is counted as one operation of cost O(n2). Since MDOT satisfies its stopping criterion (reaches γf
and satisfies ∥∇g(γf)∥1 ≤ Hmin(r, c)/γ−p) up to 10× more quickly, we continue minimizing g(u, v; γ, r, c)
using the respective KL projection algorithm (Sinkhorn or PNCG) until the same number of O(n2) operations
as IPOT are executed (namely, 5× γf).

Overall, the methods behave similarly for the L1 cost, while MDOT is up to 10× faster for the L2
2 cost.

These results also reveal an interesting contrast between the L1 and L2
2 cost functions. For the L1 cost the

optimality gap rapidly approaches 0 as the KL projection becomes more precise (see dashed lines), even
4In this implementation, we evaluate the Sinkhorn direction (17) for PNCG by adding a small constant ≈10−30 to each

entry of r(P ) and c(P ) for numerical stability.
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though γf is fixed. This suggests that the entropic gap, namely ⟨P ∗(γ) − P ∗, C⟩, is small at γf for these
MNIST problems, and the optimality gap is dominated by the inexactness of the projection onto U(r, c).
We believe that the fast rate O(exp{−γK}) of Weed (2018) discussed in Section 4.2.2 is active here for the
entropic gap, although this requires further study. On the other hand for the L2

2 cost, continuing to iterate
on the projection error to improve the approximation of P ∗(γf) does not reduce the optimality gap any
further, which implies the entropic gap ⟨P ∗(γf)− P ∗, C⟩ is still dominant at γf in these problems.
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H Additional Benchmarking on DOTmark
Figs. 10-19 add further benchmarking on 10 more datasets from the DOTmark benchmark of Schrieber et al.
(2017), which include various kinds of randomly generated images, classical test images and real data from
microscopy. Each dataset contains 45 unique pairs of marginals (r, c) obtained from pixel values. The cost
matrix is constructed from distances in 2D pixel locations; we evaluate on both L1 and L2 distance costs for
n = 4096 following our setup in Sec. 5.

Besides clock time, we additionally plot here the total number of O(n2)-costing operations for each algorithm,
e.g., matrix-vector products, row/column sums of matrices, vector outer products, element-wise operations
on matrices. We count primitive operations for consistency across algorithms; counting a higher-level function
call such as the number of gradient evaluations would be unfair due to inherent differences in the design
of various algorithms. For instance, some require costly line search between gradient evaluations. These
plots show that operation counts of the baseline algorithms follow similar trends to wall-clock time and no
algorithm is unfairly advantaged via low-level optimizations.

For each of 20 problem sets (10 image datasets × 2 cost functions), 20 out of 45 problems are sampled
without replacement. The wall-clock time plots for the respective cost functions (L1 and L2

2) follow similar
trends as Fig. 5. In addition to the median, we also include 75% confidence intervals along both axes, which
show that MDOT is generally robust.
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Figure 10: CauchyDensity problem with L1 (top) and L2
2 (bottom) costs, showing excess cost (error) vs.

number of O(n2) operations (left) and wall-clock time (right).
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Figure 11: ClassicImage problem with L1 (top) and L2
2 (bottom) costs, showing excess cost (error) vs.

number of O(n2) operations (left) and wall-clock time (right).
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Figure 12: GRFSmooth problem with L1 (top) and L2
2 (bottom) costs, showing excess cost (error) vs. number

of O(n2) operations (left) and wall-clock time (right).
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Figure 13: GRFModerate problem with L1 (top) and L2
2 (bottom) costs, showing excess cost (error) vs.

number of O(n2) operations (left) and wall-clock time (right).
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Figure 14: GRFRough problem with L1 (top) and L2
2 (bottom) costs, showing excess cost (error) vs. number

of O(n2) operations (left) and wall-clock time (right).
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Figure 15: LogGRF problem with L1 (top) and L2
2 (bottom) costs, showing excess cost (error) vs. number of

O(n2) operations (left) and wall-clock time (right).
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Figure 16: LogitGRF problem with L1 (top) and L2
2 (bottom) costs, showing excess cost (error) vs. number

of O(n2) operations (left) and wall-clock time (right).

10 6

10 5

10 4

10 3

10 2

10 1

MDOT-Sinkhorn
MDOT-PNCG
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

102 103 104 105

Number of O(n2) operations

10 6

10 5

10 4

10 3

10 2

10 1

10 2 10 1 100 101 102

Wall-clock time (s)

Op
tim

al
ity

 g
ap

 P
P

* ,
C

  L1
cost

  L2
2

cost

MicroscopyImages

Figure 17: MicroscopyImage problem with L1 (top) and L2
2 (bottom) costs, showing excess cost (error) vs.

number of O(n2) operations (left) and wall-clock time (right).
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Figure 18: Shape problem with L1 (top) and L2
2 (bottom) costs, showing excess cost (error) vs. number of

O(n2) operations (left) and wall-clock time (right).
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Figure 19: WhiteNoise problem with L1 (top) and L2
2 (bottom) costs, showing excess cost (error) vs. number

of O(n2) operations (left) and wall-clock time (right).
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