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Abstract

Understanding behavior requires datasets that capture humans while carrying out
complex tasks. The kitchen is an excellent environment for assessing human
motor and cognitive function, as many complex actions are naturally exhibited in
kitchens from chopping to cleaning. Here, we introduce the EPFL-Smart-Kitchen-
30 dataset, collected in a noninvasive motion capture platform inside a kitchen
environment. Nine static RGB-D cameras, inertial measurement units (IMUs)
and one head-mounted HoloLens 2 headset were used to capture 3D hand, body,
and eye movements. The EPFL-Smart-Kitchen-30 dataset is a multi-view action
dataset with synchronized exocentric, egocentric, depth, IMUs, eye gaze, body
and hand kinematics spanning 29.7 hours of 16 subjects cooking four different
recipes. Action sequences were densely annotated with 33.78 action segments
per minute. Leveraging this multi-modal dataset, we propose four benchmarks
to advance behavior understanding and modeling through 1) a vision-language
benchmark, 2) a semantic text-to-motion generation benchmark, 3) a multi-modal
action recognition benchmark, 4) a pose-based action segmentation benchmark.
We expect the EPFL-Smart-Kitchen-30 dataset to pave the way for better methods
as well as insights to understand the nature of ecologically-valid human behavior.
Code and data are available at https://amathislab.github.io/EPFL-Smart-Kitchen.

1 Introduction

Understanding human behavior is fundamental across multiple domains - from augmented reality[9]
and robotics [18] to neuroscience [52, 54] and neuroengineering [56]. While we have made sig-
nificant progress in behavioral analysis through action recognition [89, 37, 83, 17], action segmen-
tation [86, 45, 98, 77] and motion generation [80, 99, 27], critical gaps remain. Current datasets
face a fragmentation problem (Table 1). Existing datasets excel in isolated aspects of behavioral
capture, but lack integration. Some datasets advance full-body 3D pose estimation but provide
insufficient hand tracking for complex movements. Others offer detailed finger articulations but
are limited to constrained environments, missing the crucial full-body context including the global

∗A.B. and H.Q. contributed equally. Correspondence: alexander.mathis@epfl.ch

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://amathislab.github.io/EPFL-Smart-Kitchen


Figure 1: The EPFL-Smart-Kitchen-30, dataset and benchmarks. (A) Collected data. 3D kitchen
reconstruction, purple points are fixed RGB-D cameras. Subjects cook with a HoloLens 2 headset
recording both egocentric videos and eye gaze. (B) Extracted data. 3D body and hand poses are
extracted from multiple data sources. Fine-grained and coarse-grained action segments are densely
annotated. (C) Benchmarks. We propose four benchmarks based on the EPFL-Smart-Kitchen-30
dataset. A Visual question answering benchmark, an action segmentation benchmark, an action
recognition benchmark and a full-body motion generation benchmark.

position. Moreover, some datasets fail to capture two essential components of natural behavior:
goal-directed actions and eye movements. Human actions are inherently purposeful and guided by
visual attention [28], yet most current datasets do not incorporate these elements, resulting in an
incomplete representation of behavior. Comprehensive datasets of full-body, including hand and eye
tracking alongside synchronized multi-view video and detailed, hierarchical action annotations are
currently missing, and significantly hinder our ability to analyze natural human behavior [28, 52, 77].

We present the EPFL-Smart-Kitchen-30, a dataset that captures humans in authentic cooking scenarios
with multimodality. It features both egocentric and exocentric perspectives through ten synchronized
camera views, providing excellent visual coverage of natural cooking behaviors. EPFL-Smart-
Kitchen-30 includes multiple modalities: RGB and depth images, IMU data, eye gazes, and 3D
hand/body poses (Figure 1A-B).The EPFL-Smart-Kitchen-30 compares favorably to other datasets
(Table 1) and promises to advance multimodal fine-grained action understanding. The scale is substan-
tial: 29.7 hours of multi-view, multimodal recordings from 16 participants across 49 complete cooking
sessions, from recipe reading to cleanup. The dataset defines 763 fine-grained actions, ensuring
dense, hierarchical action annotation and exclusive action definitions. Sessions are densely annotated,
yielding 55,361 fine-grained action segments and 4,828 coarse-grained activity segments—about 33
actions per minute.

With the annotated data, we build four benchmarks for action understanding and modeling (Figure 1C).
First, we introduce Lemonade, a novel approach that transforms our ground truth annotations and pose
estimations into challenging close-ended question-answer pairs (QA). This benchmark specifically
tests the behavioral understanding capabilities of video-language models (VLMs). Second and third,
we propose action recognition and segmentation benchmarks that span multiple modalities, providing
empirical insights into procedural human behavior. Fourth, we present a full-body motion generation
benchmark that highlights EPFL-Smart-Kitchen-30’s unique value for generative tasks, demonstrating
how our integrated data approach enables more natural and contextually appropriate motion synthesis.
In summary, we make the following contributions (Figure 1):

• We capture 30 hours of goal-directed cooking behavior from ego-exo perspectives
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• We densely annotate fine-grained actions and coarse-grained activities.

• We propose multimodal behavior understanding (action recognition, segmentation and
vision-language question answering) and modeling benchmarks

These contributions collectively address the fragmentation problem in behavioral analysis and
provide the research community with new possibilities for integrated, context-rich human behavior
understanding.

2 Related work

2.1 Datasets of human behavior

Many datasets have been proposed that record participants executing purposeful motions [72, 47,
65], which were further extended to fitness activities by datasets like EgoExo-Fitness [41] and
FLAG3D [78] to include more complex human body motions. Traditional motion capture approaches
focused on isolated movements, offering high controllability but sacrificing critical contextual
information. Recent research has shifted toward recording behavior in natural settings, enabling the
study of authentic transitions and sequence patterns that characterize genuine human activity. In
particular, absolute positioning determines the agent’s spatial location and facilitates the analysis
of its interactions with the environment [49]. Assembly-based datasets collect structured object
interactions [6, 91, 3, 70], but by using a greater variety of actions and natural environments, cooking
is getting popular for building action datasets such as EPIC-KITCHENS-100 [14], Humans in
kitchens [79] or certain sequences of the large EgoExo4D [24] dataset. The EPFL-Smart-kitchen-30’s
dense annotations suit the characterization of body and hand movement transitions and distinguish
themselves with their unambiguous and rich action descriptions (Table 1).

Language can flexibly describe behavior, and VLMs promise to capture that richness. The general
video understanding of VLMs has been evaluated with exhaustive benchmarks such as MVBench [38]
and Video-MME [20]. More specific challenges subsequently developed to tackle long-term under-
standing [105, 51] and egocentric video understanding [51, 30]. In the case of behavior understanding,
ActivityNet-QA [96] and NExT-QA [94] evaluate the causal and temporal abilities of VLMs. While
subsets of certain benchmarks [13, 38, 105] contain questions related to motion, they mostly focus on
understanding behavior at the event level. EPFL-Smart-Kitchen-30 enables a fundamentally different
approach. Our Lemonade benchmark introduces questions that specifically probe the understanding
of human kinematics and fine-grained behavioral details that previous datasets simply cannot address.

Table 1: Action dataset comparison. # indicates "number of" for simplicity. The remaining columns
mark following features: parametric model for motion representation (PM), structured actions (SA),
markerless video recording (ML), depth recording (DR), and absolute positioning (AP). AP refers
to global positioning (derived from point clouds) that is consistent across different sessions. Note:
EgoExo4D [24] reports 1422h by summing per camera recording time, where the total activity is
180h, yet only 88.8h annotated with MSCOCO keypoints (numbers from [49]).

Datasets
Total
hours

Duration
(min)

#
segments

Seg.
per min

# action
classes

# Ego/
Exo

Body
PM

Hand
PM

Eye
Gaze SA ML DR AP

V
id

eo
-

fo
cu

se
d

Meccano [67] 6.9 20.7 8,857 21.4 61 0/1 ✗ ✗ ✓ ✓ ✓ ✓ ✗
IKEAASM [6] 11.7 1.9 17,577 8.4 33 0/3 ✗ ✗ ✗ ✓ ✓ ✓ ✓
EPIC-100 [14] 100.0 8.6 89,977 15.0 4,053 1/0 ✗ ✗ ✗ ✓ ✓ ✗ ✗
EgoExo4D [24] 180 15.3 20,406 4.5 689 1/4-5 ✗ ✗ ✓ ✓ ✓ ✗ ✗
HoloAssist [91] 166.0 4.5 184,838 18.6 1,887 1/0 ✗ ✗ ✓ ✓ ✓ ✓ ✓

EgoExo-Fitness [41] 32 1.5 6,131 4 12 0/4 ✗ ✗ ✗ ✓ ✓ ✗ ✗

M
ot

io
n-

fo
cu

se
d AMASS [50] 43 0.22 11,451 0.22 - - ✓ ✓ ✗ ✗ ✗ ✗ ✗
BABEL [65] 43 0.39 28,000 10.7 250 - ✓ ✗ ✗ ✓ ✗ ✗ ✗

HumanML3D [26] 28.6 0.12 14,616 8.5 - - ✓ ✗ ✗ ✗ ✗ ✗ ✗
HumanAct12 [25] - - 1,191 - 34 - ✓ ✗ ✗ ✓ ✓ ✓ ✗

V
id

eo
-m

ot
io

n
fo

cu
se

d

Assembly101 [70] 41.8 7.1 84,460 33.1 1,380 4/8 ✗ ✗ ✗ ✓ ✓ ✗ ✓
H2O [34] 5.5 0.33 1,000 3.0 36 1/4 ✗ ✓ ✗ ✓ ✓ ✓ ✗

MotionX [43] 144 0.11 81,100 9.4 - 0/1 ✓ ✓ ✗ ✗ ✓ ✗ ✗
Nymeria [49] 300 15 - - - 1/1 ✓ ✗ ✓ ✗ ✗ ✗ ✓

EPFL-Smart-Kitchen-30 29.7 35.9 60,189 33.78 768 1/9 ✓ ✓ ✓ ✓ ✓ ✓ ✓
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By leveraging our multimodal data integration, we can evaluate models on their ability to reason
about body movements and hand-object interactions (Figure 4).

2.2 Models for behavior understanding

The ability to predict movement patterns provides a valuable approach to understanding behavior.
Movement can be captured in various forms, including video recordings, pose estimation data, and
IMU recordings. Improvements in deep learning models together with their increase in computational
power levels have led to the development of many multi-view, multimodal action understanding
algorithms [71, 88, 104, 7, 93, 73]. Shah et al. [71] leverage contrastive learning to align the feature
spaces from different views. Wang et al. [88] use an adversarial generative network to constrain
RGB and depth modality information. HandFormer [73] combines 3D hand poses and RGB frames
together for action recognition. LaViLa [104] learns video representations from pre-trained large
language models. TIM [7] designs time interval encodings to incorporate visual and audio events.
Despite progress, current methods are limited in views and modalities, partially due to the lack of
large-scale multi-view, multimodal action datasets. With our EPFL-Smart-Kitchen-30 dataset, we
set up multi-view, multimodal action understanding benchmarks taking and comparing exocentric
videos, egocentric videos, full-body pose estimations, and eye gaze modalities as input, with the
possibility to also include depth videos and IMU recordings.

Another approach for behavior understanding is through the ability to generate movement of a target
behavior. Recently, text-to-motion generation gained a lot of attention [80, 8, 99, 27, 81, 63, 101].
We propose a novel semantic text-to-motion generation benchmark that considers full-body pose
representations, including eye gaze. for situated motion generation. This contrasts with the commonly
used KIT [64] and HumanML3D [26], which do not incorporate hand models or gaze information.

By integrating language, VLMs provide more flexible ways to understand behavior. VideoL-
LaMA3 [97] captures fine-grained details and temporal dynamics in videos through its dynamic
resolution mechanisms and advanced positional embedding strategies, whereas Qwen2.5-VL [5]
and Intern VL2.5 [11] better integrate multimodal inputs. Specific tasks such as long-term video
understanding usually rely on video compression [36, 74, 40, 42] or on extending their context
length [102, 92, 10, 46]. We challenge these models to operate beyond their conventional perfor-
mance by proposing a benchmark that leverages behavioral context and kinematics.

3 The EPFL-Smart-Kitchen-30

Here we introduce the EPFL-Smart-Kitchen-30 dataset, which features multi-view, multimodal data
of human cooking with fine-grained and coarse-grained action annotations (Figure 1B). We will

Figure 2: Full-body 3D pose estimation (A) Pipeline for 3D pose estimation (B) Poses and camera
positions are defined relative to a global coordinate system comparable in the same environment. We
illustrate several reprojected 3D poses on camera 6. (C) Characterization of right-hand poses to show
the captured kinematic diversity: (Top) examples of hand poses for four actions, (Bottom) Number of
principal components necessary to capture the right-hand poses during cooking for the Exo-Hand in
each recipe, around 14 degrees of freedom (DoF) are necessary to explain 95% of the variance.
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describe the setup (Sec. 3.1) and the data collection procedure (Sec. 3.2). Then, we illustrate the 3D
pose regression (Sec. 3.3) and detail the action annotation characteristics (Sec. 3.4).

3.1 The EPFL-Smart-Kitchen setup

Capturing multi-view, multimodal data is a challenging task that requires the synchronization and
calibration of multiple sensors. To capture naturalistic cooking behaviors, we built the EPFL-Smart-
Kitchen, a fully functional kitchen with appliances and utensils. Cooking materials, including pots,
pans, and other utensils, were provided to the subjects along with the ingredients and spices necessary
for preparing the recipe (Supp. Sec. A).

To minimally affect the subjects’ natural movements while capturing multimodal information, we
installed nine Microsoft Kinect Azure RGB-D cameras [57] at strategic points inside the kitchen,
four focusing on the global exocentric view and five focusing on local exocentric views (counters,
stove, and sink, see Figure 1A). We additionally equipped the kitchen with eight IMU sensors on
the frequently used equipment (e.g., fridge door, five cupboard doors, knife, and spatula). Subjects
wore a Hololens 2 headset [85], a mixed-reality headset that can capture egocentric views and eye
gaze data under global calibration. We synchronized all devices using audio signals and a trigger, and
calibrated all the cameras (Supp. Sec. A.2).

3.2 Data collection procedure

To capture realistic cooking scenarios, subjects prepared a meal from reading a recipe to cleaning
up, leading to significantly longer recordings than in most existing action datasets (Table 1). We
recruited 16 subjects (four males and twelve females, two left-handed, ages 20-46) to cook for up to
five sessions in the EPFL-Smart-Kitchen (Supp. Sec.A.3). During each session, subjects are asked to
follow one of four different recipes (omelet, pad thai, risotto, ratatouille), adapted to their preferences
and requirements. Overall, we recorded and processed 29.7h of cooking experiments, corresponding
to 3,207,600 frames per camera for 49 cooking sessions. All procedures were approved by the
EPFL-Ethical Board. Subjects’ faces are anonymized across all videos to address privacy concerns.
All subjects consented and were informed about the ethics (Supp. Sec. D.1).

3.3 Estimation of 3D motions

We placed the cameras so that both the body and the hands of the participants are visible from at
least three angles. Four cameras captured global body information, while five cameras captured local
hand information. Using multi-view RGB-D video, we conduct body/hand mesh fitting and tracking
using all 10 camera views, extracting 2D and 3D pose information from each view with existing pose
estimation tools. Specifically, we extract 2D body and hand poses using RTMPose [31], available in
DeepLabCut v3 [53], 3D body poses and tracklets using the Kinect body tracking SDK [58], and 3D
hand poses using the HoloLens 2 hand tracking toolkit [59]. We lift 2D poses to 3D poses and fit
the SMPL [62] body mesh by minimizing the 3D joint, 2D reprojection, temporal smoothing, and
regularization loss, as well as the hand 3D joint loss to fit the MANO hand mesh [68] (Figure 2A
and Suppl. Sec. C). The average absolute error compared to triangulated manually-annotated 2D
poses is 6.22cm± 5.16cm and 3.30cm± 5.12cm for the body and hand respectively, our margins
are comparable with those of [24, 34] (Supp. Sec. C.5).

To illustrate the richness of the captured movement data (Figure 2B-C), we estimate the number
of degrees of freedom (kinematic synergies) in pose space based on a common method in neu-
roscience [82, 69, 12]. We found that the dataset exhibits a large number of degrees of freedom
(Figure 2C), which foreshadows the potential for studies on human behavior.

3.4 Annotation of fine-grained actions and coarse activities

The annotated action classes were defined with the following considerations. Firstly, many contem-
porary datasets (e.g.,[14, 91]) tend to allow the annotators to freely describe the actions and then
post-hoc group the actions based on action similarity. This might lead to different names for similar
actions (e.g., pour and fill [14]) and thus introduce ambiguity. We instead curated a set of verbs
and nouns. We annotated with temporal overlaps between actions. For example, when labeling cut
tomato, we also label carry knife and may label hold tomato. This enriches the annotation at a given
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Figure 3: Hierarchical action annotations: (A) List of verbs, nouns and activities used for action
annotation, each action (verbs) is specifically defined as shown for "Hold". (B) Statistics of annotation
segments for fine-grained actions. (C) Example ethogram with selected egocentric frame to illustrate
the richness of the actions (turquoise) and activity (pink) annotations comprising short and long
segments that can overlap.

timestep and attempts to reduce ambiguity. Based on the above rationale, we define 33 verbs and 79
nouns, which compose 763 fine-grained actions. Each verb is defined by a rule-based description
intended to prevent confusion (see example in Figure 3A and Supp. Sec. B). During the annotation
procedure, we asked annotators to watch videos and annotate the start and stop times of actions. To
define the behavioral contexts for each action, six coarse-grained exclusive activities were annotated,
summing up to 4,828 segments. Thus, behavior is annotated in a hierarchical fashion [4, 77, 21].

The quality and reliability of annotations were validated following the protocol outlined in Supp. Sec.
B.5 In total, 60,189 action segments were annotated, resulting in 33.78 action segments per minute
(Figure 3B). The richness of the action annotation is demonstrated by a large variety of action lengths
(from 1 second to 100 seconds, Figure 3C). Overall, the different views and modalities contribute
to fine-grained action understanding in different aspects: 1) RGB frames focus on coarse-grained
information while depth frames rather focus on geometric aspects; 2) the egocentric view and the
eye gaze data captured from the HoloLens 2 are related to (part of) what the subject sees; 3) global
exocentric views and the body poses capture the overall context; 4) local exocentric views, hand
poses, and tool IMU data capture fine-grained movements and hand-object interactions.

4 Multimodal action and motion understanding benchmarks

Cooking involves many different actions that are sequenced in a goal-directed fashion to achieve
a tasty outcome. In each experimental session, subjects go from reading the recipe and preparing
the ingredients to creating the dish and ultimately cleaning up. To make progress towards analyzing
such complex human behavior, we created four behavior understanding benchmarks (Figure 1C).
Two benchmarks focus on multimodal behavior analysis: action recognition and action segmenta-
tion. These benchmarks are complemented by a full-body behavior synthesis benchmark (motion
generation). Furthermore, we designed a question-answering benchmark (Lemonade) to understand
human cooking behavior. Lemonade is structured for zero-shot evaluation. For the other benchmarks,
we split the sessions into train, validation, and test sets. The training/validation sets are split into
26/7 sessions chosen so that every recipe is present in the validation set and to balance the number of
rare action segments in both sets. The test set is composed of 16 sessions which also include new
subjects. The curated dataset used for the benchmark excludes actions with less than 3 instances and
is composed of 31 verbs, 78 nouns, and 581 actions together with six activities.

4.1 Lemonade: Language models Evaluation of MOtion aNd Action-Driven Enquiries

Rationale. VLMs exhibit remarkable potential for understanding human behavior [90, 100, 36, 95].
They raise intriguing questions: Can they accurately predict preceding or subsequent actions in
behavioral sequences? Are they able to infer long-term behavioral patterns from just a few frames?

6



Ground truth 
annotations

Demographic 
information

3D pose 
estimation

Filtering

Calibrated difficultiesSampled answers

Lemonade

A B

C

For how long am I stirring the 
ratatouille ?

A. 1.667s

B. 2.4s

C. 3.1s

D. 3.8s

How many times am I tasting in 
this session ?

A. 15

B. 13

C. 1

D. 3

The clip lasts 1.6s, at what speed 
am I putting the bowl down ?

A. 0.000e+00 m/s

B. 6.849e-02  m/s

C. 1.416e-01 m/s

D. 2.123e-01 m/s

Behavior understanding - Reasoning

Long-term understanding - Summarization

Motion and Biomechanics - Kinematics

Figure 4: Lemonade: (A) Examples of video question pairs for each category. More examples
in Supp. Sec. F.1 (B) Questions are designed from ground truth annotations. (C) Distribution of
questions for all subcategories.

Furthermore, can their general knowledge enable precise distance and velocity estimations from
video data alone? EPFL-Smart-Kitchen-30 provides the ideal testbed to explore these fundamental
questions about machine understanding of natural human behavior (Figure 4A). Thus, we introduce
Lemonade: Language models Evaluation of MOtion aNd Action-Driven Enquiries. The Lemonade
framework (Figure 4B) is designed to generate millions of unique QA pairs by combining various
video clips, question formats, and answer types. Lemonade consists of 36,521 closed-ended QA pairs
linked to egocentric video clips, categorized into three groups and six subcategories (Figure 4C).
18,857 QAs focus on behavior understanding, leveraging the rich ground truth behavior annotations
of the EPFL-Smart-Kitchen to interrogate models about perceived actions (Perception) and reason
about unseen behaviors (Reasoning). 8,201 QAs involve longer video clips, challenging models in
summarization (Summarization) and session-level inference (Session properties). The remaining
9,463 QAs leverage the 3D pose estimation data to infer hand shapes, joint angles (Physical attributes),
or trajectory velocities (Kinematics) from visual information. More examples and details on QA
design can be found in the Supp. Sec. F.1

Baselines and Metrics. Based on state-of-the-art results from other recent benchmarks [84], we
evaluated three open-source and one closed-source VLM SoTA models, namely InternVL2.5 [11],
LLaVA-OneVision [36], Qwen2.5-VL [5] and Gemini 2.0 Flash [15]. To ensure consistent evaluation
and enable future comparisons, all models are evaluated using lmms-eval [100], where Lemonade
is implemented as a new evaluation task. To interpret the results, we manually answered 1,662
questions. As is commonly done for question answering, we evaluate the model performance as
average accuracy [20, 38, 94, 96].

Results. Different VLMs achieved high accuracy in identifying ongoing actions and activities, as well
as predicting immediate next and previous actions. However, Lemonade exposed critical limitations
in VLMs in predicting general context information, distances, timings, and body kinematics (Table
2). However, this benchmark is also challenging for humans. Merely relying on visual input and
language proved insufficient for these precise kinematic estimations, which require accurate frame
timing and depth reference data. To overcome these challenges, future models could benefit from
explicitly integrating additional modalities, which is becoming possible with multimodal language
models [48, 19].

4.2 Action recognition benchmark

Rationale. Given a trimmed action segment, the action recognition model needs to predict the
corresponding action class [89, 37, 83, 17]. We built a fine-grained action recognition benchmark
for 763 classes with a long-tailed distribution and allow different data types as input. Specifically,
we formulated flexible masked auto-encoding baselines taking the egocentric view, one exocentric
view, the 3D body poses, the 3D hand poses, and the eye gaze rays as input and compared different
combinations of those data sources.
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Table 2: Accuracy of VLMs (8 frames) on the lemonade benchmark per category; chance level is
25%. Human carried out answered 1,662 samples. Detailed results in Supp. Table. F.2

Models Perc. Reas. Sess. Summ. Phys. Kin. All

Human* 62.32 52.38 62.38 44.40 70.78 38.34 54.75

Gemini-2.0-Flash 41.47 41.03 49.10 35.09 40.26 21.69 37.39
LLaVa-OneVision 47.23 41.46 36.76 41.87 34.03 34.09 40.85
InternVL2 5-8B 43.94 41.52 45.76 33.80 39.89 27.74 38.70
Qwen2.5-VL-32B (4fr.) 43.72 45.87 46.25 42.75 32.22 28.52 40.67
Qwen2.5-VL-7B 42.86 43.58 48.14 37.66 38.93 25.64 39.30

Baselines and Metrics. We adapted VideoMAE [83, 21] model into a multi-modal MAE, enabling
it to take multi-view videos, 3D poses, and eye gazes as inputs (Supp. Sec. F.4). Like others, we
evaluate the model performance by Top-1 and Top-5 accuracy for verb, object, and action classes
[91, 70]. Considering that the number of action samples across different actions has a long-tail
distribution, we selected the top 180 most frequent actions as head actions and report the performance
for both head actions and tail actions separately.

Results. Simple concatenation of all modalities as inputs yielded slightly better performance
compared to single video modality (Table 3). Meanwhile, transfer learning from a ViT model
trained on EPIC-KITCHENS-100 [14] boosted the performance for baselines with visual inputs and
reduced the performance for pose only. Furthermore, adding (hand and body) pose information to
the video-based models yielded better overall performance, which mainly benefits from the verb
prediction improvements. However, simply concatenating tokens from different modalities barely
improved the performance. To efficiently utilize multiple modalities without significant computational
cost, we integrate egocentric view, multi-exocentric views, and hand pose data (3) (Supp. Sec. F.4.4)
to boost the performance by 21.6% when trained from scratch (Supp. Table F.3) and 6.3% when
trained from the pretrained model, over the egocentric-only model. Overall, we hope this benchmark
will inspire the community to create models that can effectively use multiple modalities.

Table 3: Fine-grained action recognition benchmark results from pretrained model. �: ego-
centric view, �: global exocentric view, �: 3D body pose, �: 3D hand pose, �: eye gaze,
3(�×multiple �) : hand cropped videos. Combining modalities has the potential to increase
the performance. Our best results are achieved by cleverly merging these modalities together.

Modalities All Classes Accuracy Top1/5 Head Classes Accuracy Top1/5 Tail Classes Accuracy Top1/5

Action Verb Noun Action Verb Noun Action Verb Noun

� 37.51/62.94 57.72/92.18 52.03/79.05 41.12/67.00 59.74/93.36 55.62/82.11 16.64/39.51 46.06/85.35 31.27/61.38
�� 37.87/63.56 58.90/93.59 52.56/79.64 41.55/67.67 60.56/94.66 56.43/82.84 16.66/39.85 49.28/87.44 30.19/61.11
�� 37.57/63.13 58.38/92.92 52.29/78.45 41.14/67.31 60.43/93.90 55.90/81.62 16.97/39.00 46.54/87.24 31.46/60.15
�� 11.80/25.49 38.67/78.80 19.83/42.23 13.55/28.77 39.87/80.65 22.31/46.29 1.70/6.57 31.77/68.15 5.49/18.79
��� 38.31/64.75 60.41/93.78 52.51/79.91 41.83/68.89 61.96/94.79 56.27/83.14 17.97/40.90 51.45/87.94 30.81/61.27
���� 37.35/62.34 60.78/93.04 50.58/77.30 40.91/66.05 62.20/93.92 54.15/80.48 16.85/40.97 52.55/87.94 30.02/58.99
����� 37.49/62.76 61.04/93.59 50.94/77.52 41.09/66.50 62.53/94.51 54.75/80.57 16.66/41.21 52.42/88.29 28.95/59.91
�3(�×�) 40.03/67.01 60.80/94.65 55.38/82.58 43.60/71.25 62.60/95.76 59.00/85.62 19.44/42.52 50.41/88.25 34.48/65.02

4.3 Action segmentation benchmark

Rationale. Given an untrimmed video, action segmentation requires the model to predict one or multi-
ple action classes for every frame [86, 45, 98, 77]. Given the absence of popular (and comprehensive)
action segmentation benchmarks from 3D pose data (Section 2), we built an action segmentation
benchmark that compares the impact of different input data (body, hand, eyes, video features). One
might expect that actions such as moving through the kitchen will be better predicted from the body,
while motions like cutting require hand pose keypoints. Therefore, we used combinations of body
pose (�), hand poses (�) and eye gazes (�) to form the input as they are computationally more
efficient than deep visual features. We additionally compared the performance when using video
features from VideoMAE as input.

Baselines and Metrics. We consider state-of-art pose estimation models proposed in
DLC2Action [32] to perform action segmentation. The toolbox adapted state-of-the-art models for
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RGB-based action segmentation tasks (Breakfast [33] and 50Salads [76]), such as MS-TCN++ [39],
EDTCN [35], and C2F-TCN [75], to work directly on pose estimation data (vs deep visual features):
MS-TCN3 and C2F-Transformer. We used kinematic features and VideoMAE [83] features as input
to the models (Supp. Sec. F.6.3). Each action is evaluated separately using standard metrics in action
segmentation (Frame-wise F1, F1@50, edit distance) and ultimately averaged over action groups. All
models were trained and evaluated using the DLC2Action toolbox [32].

Results. We observed that the benchmark is challenging for current action segmentation algorithms
(Table 4 and Supp. Table F.4). Exo-Body performs similarly to Exo-Hand with a slight improvement
for Exo-Hand albeit for different behaviors. We note that video information provided a boost
in performance. These baselines showed an F1-score of 35.2% for verbs and 35.0% for nouns,
highlighting significant potential for future advancements.

Table 4: F1 scores for action segmentation benchmark. �: 3D body pose, �: 3D hand pose, �:
eye gaze, �: egocentric view. *models modified to use pose as input data instead of image features.

Verbs Nouns Activity

� � � �� ��
�

��
��

� � � �� ��
�

��
��

� � � �� ��
�

��
��

MS-TCN3 18.1 20.2 11.7 20.9 21.1 30.1 10.6 13.4 7.6 15.6 11.3 31.2 51.8 58.6 31.9 54.4 58.5 72.9
C2F-TCN* 18.8 20.1 12.2 22.1 22.2 34.6 12.0 14.3 7.9 16.1 10.8 35.2 54.5 55.4 41.3 61.8 61.2 72.2
C2F-Transf. 19.9 22.4 13.1 22.8 22.2 35.0 11.1 12.9 7.8 13.4 9.2 29.0 51.2 56.9 38.8 62.1 59.9 70.5
EDTCN* 19.6 23.0 11.9 22.1 25.2 34.3 11.9 11.2 7.1 12.3 11.9 24.3 49.0 53.5 32.0 53.1 54.2 71.0

4.4 Situated full-body motion generation benchmark

Rationale. With the diverse actions and motions in EPFL-Smart-Kitchen-30, our motion generation
benchmark has three key innovations over the commonly used KIT [64] and HumanML3D [26]
benchmarks. Existing motion generation benchmarks mainly focus on broad daily activities, sports,
and dance, whereas the EPFL-Smart-Kitchen-30 contains hundreds of fine-grained behaviors. We
extend motion generation beyond the body to include hands and eye gaze, defining it as full-body
motion generation. Additionally, we provide egocentric visual features alongside action text as the
condition, allowing situated motion generation.

Pre-processing, Baselines and Metrics To achieve robust full-body motion representation, we
combine joint locations and angles for the body, hands, and eye gaze, resulting in a 327-dimensional
redundant motion representation. We process fine-grained action text with linguistic tags and extract
egocentric visual features with CLIP’s text and image encoders [66]. As baselines, we adapt three
strong motion generation models, T2M-GPT [99], MARDM-SiT [55] and MoMask [27], training
them with verb-noun pairs and verb-only prompts (Supp. Sec. F.7). Like in HumanML3D [26], we
train the quantitative evaluator on EPFL-Smart-Kitchen-30 to measure the R-Precision top-1 to top-3
(T1 to T3), multimodal distance (MMd), Fréchet Inception Distance (FID), Diversity (DIV), and
Multimodality (MM).

Results. Our qualitative analysis (from MoMask [27]) revealed compelling examples of successfully
generated full body motion sequences that accurately represent natural cooking behaviors (Figure 5).
Quantitatively, we found that just like on HumanML3D[26], MoMask [27] consistently outperforms
T2M-GPT [99] and MARDM-SiT [55] in different settings and metrics (Table 5), possibly due to the
hierarchy and quantized tokenization way working better for the high-dimensional properties of the

Figure 5: Qualitative motion generation samples from MoMask trained with Verb-Noun action
pairs. The model creates realistic hand, body and eye gaze (dashed line).
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full-body representation. Furthermore, when conditioning on the egocentric view, the model was able
to find some clues to minimize the global distribution, and thus make the FID score lower.

Table 5: Full-body motion generation results. Models trained and evaluated on the EPFL-Smart-
Kitchen-30. FID:Fréchet Inception Distance, DIV:Diversity, MM:Multimodality, MMd:Multimodal
distance.

Condition Vocab. Model T1 ↑ T2 ↑ T3 ↑ FID ↓ DIV ↑ MM ↑ MMd ↓

Text
Verb T2M-GPT 0.254 0.432 0.567 2.640 7.288 1.555 3.379

MARDM-SiT 0.262 0.473 0.637 2.242 7.590 1.849 4.155
Momask 0.306 0.508 0.652 3.124 8.347 2.940 2.048

Actions T2M-GPT 0.271 0.434 0.542 2.378 7.031 0.852 4.015
MARDM-SiT 0.320 0.548 0.650 1.230 7.704 1.427 4.103
Momask 0.372 0.566 0.683 0.930 7.859 1.641 3.407

Text-Image
Verb T2M-GPT 0.174 0.295 0.387 2.415 6.558 0.822 4.524

MARDM-SiT 0.187 0.355 0.466 1.498 6.579 1.581 4.691
Momask 0.197 0.333 0.436 0.858 6.696 1.665 4.121

Actions T2M-GPT 0.243 0.398 0.506 1.982 6.633 0.717 4.125
MARDM-SiT 0.255 0.469 0.597 0.917 7.176 1.322 4.725
Momask 0.276 0.441 0.552 0.627 7.141 1.554 3.937

5 Conclusion, future work and impact

We collected 30 hours of RGB-D video from ten synchronized views, 3D pose data, and hierarchical
action annotations in a calibrated kitchen environment. All participant data has been anonymized
to protect privacy (Table 6). The dataset’s multimodal nature and fine-grained annotations enable
analysis of complex behavioral patterns, object interactions, and visual attention mechanisms during
goal-directed activities (Figure 2C). Our work complements recent large-scale datasets such as
EPIC-KITCHENS-100, EgoExo4D, and Humans in Kitchens [14, 79, 24] by providing integrated
multimodal data streams within a controlled environment. While these datasets excel in scale
and environmental diversity, EPFL-Smart-Kitchen-30 offers synchronized multi-view video, pose
estimation, and eye tracking data that enables new research directions in multimodal behavior
understanding.

The four benchmarks we propose—action recognition, action segmentation, motion generation, and
video question answering—demonstrate both the potential and current limitations of existing models
on fine-grained behavioral tasks. Future work could leverage additional modalities in our dataset
(IMU data, depth information) and develop models that more effectively integrate multiple data
streams for robust behavior understanding. Additionally, we are collecting data from older and non-
healthy participants (stroke and amputee patients) for future release, aiming to improve treatments
for subjects with neurological disorders [56]. This will also increase the demographic representation
of our dataset. Overall, we share multi-view, multimodal action understanding, modeling, and
video question answering benchmarks to leverage the potential of multi-modality for improving
action understanding and to fuel foundation models. This is particularly interesting for emerging
multi-modal models [48, 19, 60, 95].

Acknowledgments: We thank members of the Mathis Group for Computational Neuroscience & AI
(EPFL) for their feedback throughout the project. This work was funded by EPFL, Swiss SNF grant
(320030-227871), Microsoft Swiss Joint Research Center, and a Boehringer Ingelheim Fonds PhD
stipend (H.Q.). We are grateful to the Brain Mind Institute for providing funds for hardware and to
the Neuro-X Institute for providing funds for services.

Dataset and Code Release: Please check https://amathislab.github.io/
EPFL-Smart-Kitchen for the latest updates.

Table 6: Data and Code Availability

Resource Location

Code Repository https://github.com/amathislab/EPFL-Smart-Kitchen

Dataset (Collected Data) https://zenodo.org/records/15535461

Annotations (Pose & Behavior) https://zenodo.org/records/15551913

Benchmark dataset and checkpoints https://huggingface.co/collections/amathislab/esk-benchmarks
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We describe the dataset, benchmark, and baselines.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Certain limitations are described in the last section (Sec. 5).

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the data and the code to reproduce the results will be released upon
acceptance. Our team has a history of providing widely used datasets and code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The dataset is available on Zenodo at https://zenodo.org/records/
15535461.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We mention training and test details in the main text and also provide more
details in the supplemental material
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We followed those guidelines for the statistics of our novel dataset, including
the average duration of the sessions, pose variance analyses and action annotation statistics.
Note that our benchmark performances do not rely on statistical tests due to the running cost
(as it is common in ML).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We detail the used computational resources in the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conducted research following the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We addressed this in the final section (Sec. 5). In brief, we do not think that
there are negative implications, but many potentially positive ones as our work enables
characterizing basic human cooking behavior, which is useful for assessing and improving
motor function.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We will include a permissive license for academic research (likely CC BY-
NC) along with our dataset upon acceptance. Following our institution’s ethics guidelines,
participants have been anonymized and gave consent to be remunerated participants.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All models and datasets that we used are cited and credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper discusses the data collection process as well as the content of the
dataset. The supplementary materials contain more information. Participants had to give
consent, and signed a form explaining the purpose of the work. This procedure followed the
IRB guidelines and was approved.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: All methods were approved by our Ethics board, subjects were remunerated,
and consented. Details are contained in the supplementary text.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: We did receive the mandatory IRB approval from our institution and have
followed all guidelines.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The usage of LLMs in this paper is exclusive to the utilization of Video
Language models for evaluation on the Lemonade benchmark.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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