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Abstract

Predicting in vivo transcription factor (TF) bind-
ing remains challenging due to interactions with
cofactors and dynamic chromatin remodeling that
modulate site accessibility. In this regard, accu-
rate characterization of TF binding loci is essen-
tial for predictive performance. We introduce
EpiBinder, a multimodal deep neural network
that augments base-resolution DNA sequence
models with single-nucleotide epigenetic infor-
mation—cytosine methylation levels from whole-
genome bisulfite sequencing and chromatin ac-
cessibility from DNase I hypersensitivity—to im-
prove in vivo TF binding predictions. Trained
on human cell-lines, EpiBinder demonstrates
that integrating epigenetic information in a cell-
type—specific manner reduces the epistemic un-
certainty that current sequence-only DNA models
suffer. Our model achieves up to a 14-point gain
in area under the precision—recall curve compared
the state-of-the-art. Our code is publicly available
at GitHub.

1. Introduction

While cytosine methylation was previously thought to uni-
versally disrupt transcription factors (TFs), recent experi-
ments in vitro reveal a wider map of methylation effects
on TFs binding sites (Hernandez-Corchado & Najafabadi,
2022). In this work, we learn the impact of cytosine methy-
lation from in-vivo data and use it to analyze its effect on TF
binding. We extract binding occupancy de-novo from TF
chromatin immunoprecipitation experiments (ChIP-seq) and
connect it to key factors affecting in vivo binding, such as
chromatin accessibility and base-resolution cytosine methy-
lation levels. The extensive experimental data available in
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the ENCODE (de Souza, 2012) and ROADMAP (Kundaje
et al., 2015) projects is used to build a cell-line specific
deep-learning model that enables this association. Our work
offers a biophysical interpretation of in vivo binding and
suggests that current deep learning models can benefit from
epigenetic markers currently available.

In order to learn the complex rules governing in vivo TF
interactions with DNA in various cell conditions, we de-
velop a deep learning model that integrates epigenetics mark-
ers at single base resolution. This model aims to improve
current DNA model that only rely on the DNA sequence
by incorporating cell-specific epigenetic information such
as cytosine methylation and chromatin accessibility. We
particularize our analysis on human cell-lines GM 12878,
K562, and HepG2, for which extensive ChIP-seq data for
numerous TFs is available in the ENCODE project. Specifi-
cally, methylation levels are obtained from Whole-Genome
Bisulfite Sequencing (WGBS) experiments for CpG, CHG
and CHH sites; and the accessibility data from DNase I-
hypersensitive (see Appendix A).

Our approach significantly surpasses current deep learning
models in predicting in vivo TF binding accuracy that rely
only on the DNA sequence (Ji et al., 2021; Zaheer et al.,
2020; Zhou & Troyanskaya, 2015), revealing that epistemic
uncertainty in current models can be reduced by incorpo-
rating epigenetic data. Furthermore, in this work, we use
this model to investigate the effects of DNA methylation
on transcription factor binding sites (TFBS) and analyze its
impact on downstream gene expression regulation, causal
variant interpretation, and epigenome-wide association stud-
ies (EWAS). A comprehensive overview of the experimental
setup is provided in Figure 1.

2. Related work

Several works in the literature have approached the prob-
lem of predicting in vivo TF binding; however, the com-
plexity of this problem resides in the interactions with
other proteins, cofactors and the cell-type specific chro-
matin state that defines the physical accessibility of the
binding site. DeepBind (Alipanahi et al., 2015) set a
precedent by demonstrating that a deep learning approach
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Figure 1. Overview of the EpiBinder framework and downstream tasks. Left: Multimodal architecture that encodes base-resolution DNA
sequence alongside single-nucleotide epigenetic tracks (cytosine methylation and DNase I hypersensitivity) via parallel encoder streams,
which are then fused to predict transcription factor binding. Right: Overview of the downstream tasks evaluated in this work, including
zero-shot cross-cell TF prediction, causal variant eQTL prediction, and identification of methylation-sensitive loci via eQTMs and EWAS.

outperformed previous machine-learning methods in the
DREAMS competition (Marbach et al., 2012). Along these
lines, DeepSEA (Zhou & Troyanskaya, 2015) is regarded
as the first foundational model for transcriptional predic-
tion, framing the binding prediction as a multi-task binary
classification problem by training a single network on an
extensive set of transcription factors. Novel approaches
utilizing Masked Language Models (MLM) have been in-
troduced into the problem as DnaBERT (Ji et al., 2021;
Zhou et al., 2023) or the Nucleotide Transformer (Dalla-
Torre et al., 2023). These approaches use a genome-wide
pre-trained model, which is then fine-tuned for each of the
downstream genomic tasks. Long context-aware models
have also been utilized as Enformer (Avsec et al., 2021a) or
HyenaDNA (Nguyen et al., 2024) with 200k bp sequence
lengths and 1 million tokens, respectively. Although in-
creasing the context length—and consequently the number
of parameters—of these models substantially benefits ge-
nomics tasks that rely on long-range interactions (e.g., gene
expression prediction), it offers no advantage for chromatin-
state prediction, which depends on localized sequence con-
text (Nguyen et al., 2024). In these scenarios, models with
a localized context excel, e.g., HyenaDNA shows the best
performance in the chromatin prediction task is achieved
using a reduced 1kbp context.

Recent efforts to integrate epigenetic information into TF-

binding prediction include analytical tools such as SEM-
pIMe (Nishizaki & Boyle, 2022), which correlate ChIP-seq
peaks with local methylation levels to generate “methy-
lation effect” logos. More closely related to our ap-
proach, (Hernandez-Corchado & Najafabadi, 2022) pro-
posed a linear model that incorporates CpG methylation to
predict TF ChlIP-seq peaks. Other studies focus on directly
predicting DNA methylation itself (e.g., DeepCpG (Anger-
mueller et al., 2017)) or employ methylation-aware masked
language models such as CpGPT (de Lima Camillo et al.,
2024) and MethylGPT (Ying et al., 2024). In this work, we
harness multiple epigenetic markers to uncover the mecha-
nistic principles governing regulatory regions at single base
resolution.

3. Main Results

3.1. Epigenetic markers enhance TF binding prediction

DNA methylation is a fundamental epigenetic mark that
governs gene expression and chromatin organization. In this
paper, we enrich the features used to train DNA models with
cell-specific epigenetic information. In that sense, we train
a deep learning model to learn the cell-specific dynamics. In
order to evaluate this approach, we use a subset of the dataset
introduced in (Zhou & Troyanskaya, 2015). This dataset
is compiled from 919 chromatin features collected from
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Table 1. Mean auPRC per cell-line grouped for Transcription factor
binding (TF) and Polymerase (Pol). The same testing conditions
on chromosomes 8 and 9 are preserved from (Zhou & Troyanskaya,
2015).

MI12 H 2 K562
MODEL LEN G 878 epG 6
TF Pol TF Pol TF Pol
DNA sequence
DeepSea lkbp 261 357 293 361 258 318
HyenaDNA lkbp 269 376 305 333 265 323
DNABERT  512bp 267 353 291 357 260 313
BigBird 8kbp 274 348 317 344 267 309
DNA sequence + epigenetics
EpiBinder lkbp 391 484 431 454 411 447
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Table 2. Histone mark predictions on K562 cell-line reported as
auPRC. Testing conditions are preserved from (Zhou & Troyan-
skaya, 2015).

DeepSea  HyenaDNA DNABERT  BigBird  EpiBinder
—40M— —M— —86M— —110M— —46M—

H2AZ 0.45 0.43 0.42 0.44 0.65
H3K27ac 0.46 0.44 0.42 0.46 0.70
H3K27me3 0.09 0.08 0.08 0.09 0.25
H3K36me3 0.14 0.13 0.15 0.15 0.42
H3K4mel 0.33 0.34 0.31 0.35 0.67
H3K4me2 0.56 0.54 0.52 0.58 0.78
H3K4me3 0.58 0.56 0.54 0.60 0.78
H3K79me2 0.33 0.32 0.29 0.35 0.47
H3K9%ac 0.52 0.50 0.49 0.53 0.75
H3K9mel 0.04 0.04 0.04 0.04 0.08
H3K9me3 0.06 0.06 0.10 0.07 0.12
H4K20mel 0.13 0.13 0.12 0.13 0.21
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Figure 2. Results on TF-binding prediction. (a) Density distributions of per-cell auPRC for EpiBinder. (b-d) Scatterplots of per-TF
auPRC comparing DeepSEA (x-axis) vs EpiBinder (y-axis) perdictions on (b) GM 12878, (c) HepG2, and (d) K562 cell-lines.

Encode (de Souza, 2012) and Roadmap (Bernstein et al.,
2010) projects. This collection includes 690 TF binding
profiles for 160 different TFs collected from 148 different
human cell lines. In this work, we particularized our study
on the 3 most overrepresented cells in the dataset, GM 12878,
K562, and HepG2; which combined represent 47.4% of the
dataset.

Despite the fact that many works target multiple cells in a
multi-task learning approach (Zhou & Troyanskaya, 2015;
Avsec et al., 2021a;b). We argue that learning a common
representation from various cells is not always advantageous.
For instance, while promoter regions tend to be more con-
sistent across different cells, enhancers are more dependent
on cell-specific conditions (Shigaki et al., 2019). Therefore,
models that account for the unique chromatin conditions
within each cell can significantly enhance performance.

Our results (see Tables 1 and Fig. 2), show that our multi-
modal approach improves the area under the precision-
recall curve (auPRC) metric when compared to current
state-of-the-art models on TF binding prediction as Hye-
naDNA (Nguyen et al., 2024), DNABert (Ji et al., 2021),
BigBird (Zaheer et al., 2020) or DeepSEA (Zhou & Troyan-
skaya, 2015). We select auPRC metric as it is more appro-

priate for imbalanced datasets, rather than auROC reported
in these works (see Appendix C), as the Chip-seq peaks are
sparse, on average presenting ~ 17k peaks genome-wide. As
observed, despite the fact that each of our single cell-lines
models is trained on significantly fewer data (i.e. chip-seq
of TF belonging to the same cell), the auPRC on binding
prediction increases significantly in almost every TF. Fur-
thermore, Table 2 demonstrates that EpiBinder’s multimodal
integration also boosts the prediction of histone-mark occu-
pancy. These results confirm that incorporating cell-specific
epigenetic information substantially reduces the epistemic
uncertainty inherent to sequence-only models, and this trans-
lates into improved accuracy not only for TF-binding but
also for histone-modification prediction.

3.2. Zero-shot across cell-line predictions for TF binding

Currently, most of the TFs ChIP-seq data available belong to
a limited number of cell-lines that have been well character-
ized in the literature, while for most of the cell-lines usually
only a few key TFs are profiled. Therefore, transferring the
knowledge from well-characterized to uncharacterized cell
lines would a valuable asset. In that regard, we evaluate the
zero-shot TF binding prediction capabilities of the model on
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Figure 3. A. Zero-shot TF binding prediction across different cell-lines for the model including the epigenetic features (in color) or
shadowed for the model relying only the nucleotide sequence. B. Correlation on the zero-shot predictions for a subset of TF concurrently

available in the studied cell-lines.

unseen cell lines. We test a model trained on one reference
cell in predicting TFs for a different cell line under different
epigenetic conditions from the training ones. For each pair
of cell lines, for all TFs whose data are shared between all of
them, we evaluate auPRC obtained in zero-shot predictions.
As summarized in Fig. 3, our model shows the ability to
predict well, showing that epigenome markers account for
a significant proportion of the TF prediction. Furthermore,
as reflected in Table S6 for TFs with a small number of
binding instances, zero-shot from a different cell-line could
lead to better predictions when compared to a model directly
trained on the target cell.

3.3. Identify CpGm loci associated with regulation

In this section, we apply EpiBinder to identify CpGm loci
where methylation plays a critical role in transcription. For
each CpG in the reference genome, we compare the pre-
dicted TF-binding score before and after setting its methy-
lation level to zero, and flag as “high-sensitivity” those
sites with A(binding score) exceeding a predefined thresh-
old. Across GM12878, K562, and HepG2, we recover two
classes of loci: (i) demethylation-enhanced sites, where
loss of methylation substantially increases binding affinity,
and (ii) demethylation repressing sites, which are rare and
predominantly observed in K562 and HepG2.

To identify these loci, we integrated our model’s predic-
tions with data from the Illumina EPIC BeadChip—a high-
throughput platform that profiles DNA methylation at over
850,000 CpG sites across the genome. By cross-referencing
the EPIC BeadChip data with our model predictions, we
pinpoint regions of potential regulatory significance.

In this experiment we evaluate whether methylation-driven
changes in TF binding predict corresponding shifts in
gene expression. We retrieve CpG—expression associations
from the EWAS Atlas (Li et al., 2019), and—for each lo-
cus—compare the sign of the modeled A(binding score) to
the sign of the observed methylation—expression correlation
provided on that study. We particularize the study on CpGm
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Figure 4. Left: F1 score for gene expression predictions based on
distance to the nearest transcription start site (TSS). Right: F1
score as a function of average CpG methylation level in the tissue.

loci detected for HepG2. We summarize this agreement via
a confusion matrix between predicted TF-binding effects
and EWAS-reported expression changes.

Results are summarized in Figure 4(left), our in silico
demethylation screen achieves F1-scores above 0.9 for close-
by genes in all tissues evaluated. Predictive accuracy grad-
ually declines with increasing distance from the transcrip-
tion start site. Moreover, as shown in Figure 4(right), the
magnitude of the predicted methylation effect correlates
strongly with experimentally measured CpG methylation
levels (r = 0.87) on the studied CpGs.

4. Conclusions

In this work, we demonstrated that augmenting base-
resolution DNA sequence models with cell-line specific
epigenetic information substantially enhances the predictive
performance in transcription factor binding. Our multimodal
framework effectively reduces epistemic uncertainty and
yields more precise maps of regulatory interactions. We fur-
ther showed its robust transferability to unseen cell types and
its capacity to pinpoint functionally relevant methylation-
sensitive loci. These results underscore the importance of
embedding rich cellular context into current models and
pave the way for future extensions to additional epigenetic
marks and deeper effect prediction tasks, thereby deepening
our mechanistic understanding of genome regulation.
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A. Model design and training data

The dataset compiled in (Zhou & Troyanskaya, 2015) comprises 919 chromatin features across 148 human cell types,
collected from ENCODE (de Souza, 2012) and ROADMAP (Bernstein et al., 2010). These include 690 transcription factor
(TF) binding profiles covering 160 TFs, 125 DNase I hypersensitivity site (DHS) profiles, and 104 histone modification
(HM) profiles. Each sample consists of a 1000-base-pair (bp) sequence from the hg19 human reference genome. Labels
indicate the presence or absence of a peak for a given chromatin feature within the central 200 bp of the sequence, while the
400 bp flanking regions provide broader contextual information. The training and testing sets are split by chromosome to
ensure strict non-overlap. In total, the dataset contains 2.2 million training samples, with 227,512 held-out samples from
chromosomes 8 and 9 used for testing.

We augmented the dataset with epigenetic features corresponding to base-resolution methylation levels at CpG, CHH, and
CHG derived from ENCODE Whole-Genome Bisulfite Sequencing, alongside DNase I hypersensitivity profiles (DNase-seq)
to quantify chromatin accessibility. Details of these datasets, including accession identifiers are summarized in the following
Table 3.

Table 3. References for epigenetic data on ENCODE project.
CELL WGBS DNASE-SEQ

CpG ENCFF570TIL
GM12878  CHH ENCFF187KAK  ENCFF264NMW
CHG ENCFF910HOG

CpG ENCFF817LMT
HepG2 CHH ENCFF158FZM ENCFF867UYB
CHG ENCFF101UQI

CpG ENCFF660IHA
K562 CHH  ENCFF294NMQ ENCFF352SET
CHG ENCFF571AGF

CpG ENCFF948WVD
A549 CHH ENCFF589SGV ENCFF674WCO
CHG ENCFF461YYK

CpG ENCFF434CNG
HI1-hESC CHH  ENCFF036NWK ENCFF233CHA
CHG ENCFF780ECA

Model description

EpiBinder processes input tensors of shape (B, L, 8) through a three-stage 1D convolutional backbone, where each stage
comprises a convolutional layer with ReLU activation, followed by pooling and dropout. This design gradually reduces the
sequence length while projecting features into a shared embedding space. Linear positional embeddings are then added to
the resulting feature sequence, which is passed through a single Transformer encoder layer with 8 attention heads. Finally,
the encoded representation is flattened and fed into a multilayer perceptron (MLP) to produce the class logits.

Table 4. Model config.

Stage Layer(s) & Configuration Output Shape

Input One-hot nucleotide + 4 normalized epigenetic (B, L,8)

Conv Stage 1 Convld (82320, k=8, padding=4) (B, |L/4],320)

Conv Stage 2 Convld(320-480, k=8, padding=4) (B, |L/16],480)

Conv Stage 3 Convld (480+d.model, k=8, padding=4) (B, L, dmodel)

Positional Embedding ~ Embedding (num_embeddings=L’, (B, L, dmodel)
embedding_-dim=dmodel)

Transformer Encoder N X EncoderLayer (dmodel, Mheads) (B, L, dmodel)

Flatten — (B, L X dmodel)

Classifier MLP MLP (L’ X dmodel — deif —> dcif — Miabels) (B, Nabels)

Ablation experiments on performance

Ablation analysis of TF-binding prediction performance. Incorporating cytosine methylation or DNase I hypersensitivity
individually into the sequence-only model each individually increases the auPRC. The combined “sequence + methylation
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+ DNase” configuration yields the highest auPRC, demonstrating that methylation and chromatin-accessibility features
contribute complementary improvements.

. szm& ! ' ) Km
- HH *1” - HH ”p” Efj m im

B Bases M Bases+Methyl B Bases+DNase B Bases+Methyl+DNase

Figure 5. Performance of the single cell model in ablation studies: AUPRC obtained adding methylation and DNase features to base
sequence training.

GM12878
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Figure 6. Scatter plot of transcription factor prediction performance versus training data availability. The x-axis shows the number
of ChIP-seq peaks available for each TF, and the y-axis shows the corresponding in-domain auPRC. In red, the best-fit regression,
highlighting the positive correlation between peak count and predictive accuracy.

B. Tools

To ensure all data reside on a common reference, we first converted each raw BED file from hg38 to hg19 coordinates
using the UCSC liftOver utility with the hg38ToHg19 chain file. For our signal and annotation tracks in BigWig format,
we applied CrossMap to perform the equivalent coordinate transformation directly on those indexed files. Finally, the
merged, hgl19-lifted BedGraph outputs were converted into indexed, binary BigWig coverage tracks using the UCSC
bedGraphToBigWig tool.

C. Reproducing efforts on the Chromatin profile prediction task.
DeepSEA We reproduce the dataset construction and retrain the model following (Lipinski, 2024).

HyenaDNA. We fine-tune a HyenaDNA-7M model to reproduce the results obtained in the original work (Nguyen et al.,
2024). For the downstream task of chromatin profile prediction, we utilize a pre-trained Hyena encoder in combination with
sequence-level pooling and a fully connected decoder to perform multilabel sequence classification. In the original work,
two variants with sequence lengths of 1k and 8k were fine-tuned. As reported in the paper, the 1k model outperforms the 8k
model in predicting short-range tasks such as transcription factor (TF) binding. Therefore, we reproduce this setting for
performance comparison.

GENA-LM We finetune a Gena-LMs Bert and BigBrid model using the downstream code provided in (GENA_LM, 2024).
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Table 5. Performance comparison between reported in the original work and reproduced efforts on the Chromatin profile prediction
task. Mean area under the ROC curve (auROC), averaged across three assay types: transcription factor binding profiles (TF), DNase
I-hypersensitive sites (DHS), and histone modifications (HM).

Model Params Len O/R AUROC
TF DHS HM
. orignal 94.7 91.5 85.2
Deepsea 40M - Ikbp reprod. 934 907 842
orignal 96.4 93.0 86.3
HyenaDNA — 7M 1kbp reprod. 950 916 849
original 96.3 92.7 86.1
DNABERT — 86M  SIZbp .04 (GENA-LM) 965 928 866
original 96.1 92.1 88.7

BigBird TIOM — 8Kbp  orod. (GENA-LM) 968 920 853

D. Additional results.

Table 6. Comparison of zero-shot performance across different cell-lines. The top label indicates the cell-line the model was trained
on, whereas the bottom label indicates the cell-line being tested. InCell refers to the scenario in which the model is both trained and tested
on the same cell-line, included here for comparison. As observed, some cases show an improvement when transferring prediction from
one cell-line to another.

Source cell GM12878 HepG2 K562

Target cell in-domain HepG2 K562 in-domain GM12878 K562 in-domain HepG2 GM12878
SMC3 0.73 0.60 0.69 0.67 0.65 0.60 0.73 0.59 0.70
CTCF 0.65 0.64 0.55 0.72 0.54 0.53 0.65 0.63 0.55
Rad21 0.63 0.61 0.55 0.65 0.57 0.56 0.64 0.59 0.54
GABP 0.61 0.64 0.47 0.65 0.57 0.46 0.58 0.59 0.50
TAF1 0.51 0.56 0.49 0.70 0.39 0.47 0.58 0.62 0.45
MAZ 0.57 0.44 0.52 0.52 0.50 0.49 0.67 0.26 0.39
ELF1 0.62 0.36 0.41 0.50 0.42 0.41 0.53 0.44 0.49
NRSF 0.25 0.25 0.15 0.48 0.34 0.25 0.23 0.09 0.03
Nrfl 0.51 0.32 0.37 0.42 0.28 0.36 0.41 0.40 0.35
USF1 0.50 0.36 0.35 0.56 0.37 0.38 0.48 0.41 0.35
Max 0.50 0.37 0.39 0.50 0.45 0.41 0.61 0.42 0.38
YY1 0.34 0.20 0.17 0.52 0.17 0.31 0.46 0.50 0.19
USF2 0.53 0.39 0.53 0.57 0.40 0.49 0.57 0.42 0.41
Mxil 0.51 0.48 0.26 0.58 0.45 0.26 0.38 0.52 0.47
CEBPB 0.30 0.03 0.04 0.53 0.04 0.22 0.48 0.31 0.07
TBP 0.42 0.37 0.27 0.44 0.35 0.32 0.48 0.41 0.31
JunD 0.34 0.05 0.08 0.54 0.04 0.23 0.57 0.23 0.05
SP1 0.54 0.18 0.34 0.45 0.28 0.15 0.45 0.23 0.43
c-Myc 0.37 0.10 0.21 0.26 0.20 0.31 0.50 0.25 0.15
ATF3 0.30 0.28 0.19 0.35 0.23 0.28 0.39 0.24 0.12
CHD2 0.51 0.15 0.26 0.23 0.40 0.27 0.34 0.18 0.38
BHLHE40 0.43 0.21 0.25 0.31 0.29 0.24 0.42 0.24 0.30
p300 0.45 0.09 0.08 0.38 0.21 0.10 0.36 0.13 0.19
RFX5 0.28 0.20 0.05 0.29 0.19 0.07 0.10 0.21 0.13
ZNF274 0.03 0.00 0.10 0.00 0.30 0.00 0.39 0.00 0.00
COREST 0.20 0.13 0.10 0.22 0.11 0.13 0.39 0.09 0.06
TR4 0.11 0.06 0.01 0.20 0.02 0.04 0.04 0.15 0.02
SRF 0.20 0.04 0.09 0.06 0.10 0.08 0.14 0.05 0.14
ZBTB33 0.13 0.08 0.05 0.20 0.10 0.05 0.13 0.06 0.07




