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ABSTRACT

Federated learning (FL) as one of the novel branches of distributed machine learn-
ing (ML), develops global models through a private procedure without direct ac-
cess to local datasets. However, access to model updates (e.g. gradient updates in
deep neural networks) transferred between clients and servers can reveal sensitive
information to adversaries. Differential privacy (DP) offers a framework that gives
a privacy guarantee by adding certain amounts of noise to parameters. This ap-
proach, although being effective in terms of privacy, adversely affects model per-
formance due to noise involvement. Hence, it is always needed to find a balance
between noise injection and the sacrificed accuracy. To address this challenge, we
propose adaptive noise addition in FL which decides the value of injected noise
based on features’ relative importances. Here, we first propose two effective meth-
ods for prioritizing features in deep neural network models and then perturb mod-
els’ weights based on this information. Specifically, we try to figure out whether
the idea of adding more noise to less important parameters and less noise to more
important parameters can effectively save the model accuracy while preserving
privacy. Our experiments confirm this statement under some conditions. The
amount of noise injected, the proportion of parameters involved, and the number
of global iterations can significantly change the output. While a careful choice of
parameters by considering the properties of datasets can improve privacy without
intense loss of accuracy, a bad choice can make the model performance worse.

1 INTRODUCTION

With the development of computational and communicational capabilities of distributed systems,
including smart phones, sensor networks, Internet-of-Things (IoT), and the rapid growth of the ap-
plications of these systems in our daily lives, an unprecedented amount of data is being produced
everyday (Sattler et al., 2020). Therefore, utilizing these sources of rich information to upgrade fea-
tures and services offered to people and organizations owning this data, without violating their pri-
vacy, is of great significance. Distributed machine learning (ML) is a promising solution in settings
dealing with large volumes of data as well as privacy concerns about users’ sensitive information
leakage.

Due to an increasing emphasis on users’ privacy, federated machine learning techniques are widely
exploited, and global models are developed by the use of local datasets available only on each
client (McMahan et al., 2017; Yang et al., 2019; Qian et al., 2019). While offering many advan-
tages over conventional machine learning methods, federated learning (FL) has its own challenges,
including expensive communication costs, systems and statistical heterogeneities, and privacy con-
cerns (Li et al., 2020; McMahan et al., 2017; Nishio & Yonetani, 2019; Recht et al., 2011; Sahu
et al., 2018).

Deep learning (DL) is one of the most popular algorithms used in the context of ML, especially
when we are willing to extract features from large image, voice, or text datasets (LeCun et al.,
2015). Therefore, FL can benefit from these algorithms while developing artificial intelligence (AI)
models. In order to optimize FL local models, the stochastic gradient descent (SGD) method is
generally adopted (Wei et al., 2020).

Preserving users privacy and data security is perhaps one of the most debatable topics in all ML
algorithms. Even though the idea of federated learning was first proposed for its better privacy
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guarantees, several experiments have shown that detecting users private data is still possible from
the gradient updates sent from clients to the server (Carlini et al., 2019). Especially, when DL models
are designed for local models, the risk of revealing training data by the access to developed models
increases (Nasr et al., 2018). Besides using cryptographic methods, such as secure multi-party
computations (MPC) and homomorphic encryption (HE) schemes (Kairouz et al., 2019), differential
privacy (DP) is widely used in FL for data protection.

DP tries to reduce the risk of information leakage by adding deliberate noise to data. Laplace, ex-
ponential, and Gaussian mechanisms are three fundamental noise injection mechanisms for imple-
menting DP (Dwork & Roth, 2014). Wei et al. (2020) presented a framework for global differential
privacy, which accurately calculates the Gaussian noise required for DP. It also gives a theoretical
explanation for the convergence behaviour of the suggested scheme. Shokri & Shmatikov (2015)
proved that high privacy DL models can be developed in distributed systems using selective sharing
of small subsets of local key parameters. They showed that sharing only 10 percent of local param-
eters results in better models than non-collaborative models. They also applied differential privacy
by perturbing the gradients of the proportion of local parameters selected for sharing. However,
perturbing model parameters and injecting noise have a definite consequence: accuracy loss!

Most of the existing works on DP of federated systems inject a constant amount of noise into all
parameters. This approach, although protects data, impacts the model performance. Since each pa-
rameter doesn’t have an identical effect on the model’s output, it seems that adding noise based on
this difference can enhance the developed model performance. This idea may be able to address the
challenge of losing accuracy in exchange for a better privacy in DP algorithms, to some extent. To
the authors’ knowledge, the only work on adaptive DP is Liu et al. (2020), which injects Laplace
noise based on the contributions of neurons to the output. The contributions of input features are cal-
culated from the contributions of the next layer neurons.This backward scenario, which is repeated
until finding the input features’ contributions, can be both time-consuming and computationally ex-
pensive for clients, considering a large number of iterations and high-dimensional weight matrices.
Consequently, the adaptive noise is injected to the contributions themselves.

On the other extreme, there are numerous works with the terms “adaptive” and “personalized”
DP (Thakkar et al., 2019; Hu et al., 2020), which choose fixed noise parameters for each client
based on the whole local database it has. These parameters may differ from one device to the other,
but remains the same for all the parameters of each local model. The main concern of adaptive
clipping or personalized DP methods is statistical heterogeneities between the clients.

In this paper, however, we propose an adaptive differential privacy framework with Gaussian noise
for deep learning models developed in federated learning. This adaptive approach is based on fea-
tures’ and parameters’ importance. In fact, adding noise to less important features does not affect
accuracy as adding noise to important features does, and at the same time, it can preserve privacy.
So, we first present a solution for prioritizing neurons, which can depend on the inputs and outputs
only, and then, try to distinguish the relations between perturbing important and unimportant fea-
tures and the accuracy by simulations. Our main concern is to attain a balance between accuracy
and privacy.

Although for an adaptive DP, it is often assumed that more noise should always be added to irrelevant
features, our studies show a contrary result. The amount of noise, the proportion of important and
unimportant features involved, and the number of global iterations can have significant effects on
the outcome. When we add noise to 20 percent of parameters with high importance, we observe
a noticeable reduction in accuracy compared with when the same amount of noise is added to 20
percent of low importance parameters. However, when a larger number of parameters are involved
in the adaptive approach, the outcome is not that straightforward. Generally, there is a trade-off
between noise and accuracy. With a reasonable compromise, we can preserve privacy without a
significant accuracy loss, but otherwise, it can ruin model performance.

The remainder of this paper is organized as follows. In Section 2, we review some preliminaries
on DL, FL, and DP. In Section 3, we introduce our approach for making DP adaptive in FL. The
experimental evaluations and results are presented in Section 4, and the summary and conclusion
are given in Section 5.
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2 PRELIMINARIES

In this section, we review some key materials for DL, FL, and DP.

2.1 DEEP LEARNING

Deep learning is an AI function that tries to extract important features of big data by imitating the
work of the human brain. Neural networks as a subset of deep learning models have a web-like
multi-layer structure through which inputs are connected to outputs (Bengio, 2009). Fig. 1 depicts a
simple neural network with one hidden layer. Nodes in each layer, known as neurons, are connected
to the next layer neurons via weight vectors, which are updated through the learning process to
perfectly extract the relations between inputs and outputs. Each neuron output is calculated by a
non-linear activation function f(W k, ak−1, bk), where W k is the weight matrix of the k-th layer,
ak−1 is the previous layer neuron outputs and bk is the bias vector.

Figure 1: A simple neural network with one hidden layer. bk vectors contain the bias values for each
neuron. W k is the weight matrix of each layer.

Similar to all the other ML algorithms, the goal in neural networks is to find the weights matrix
minimizing the defined loss function. Generally, in supervised learning, random weights will be first
considered and the output will be found by these parameters through the feed-forward procedure.
After calculating the error between the computed and expected outputs, gradient descent in the back-
propagation mode will be used in order to update the weights of the network. Since using gradient
descent for all data samples in large datasets seems irrational, SGD, which operates over randomly
chosen smaller subsets of datasets, is an alternative. If we transform the weights matrix to a vector
and let Ei be the loss function over the mini-batch i, the updated weights are calculated by

wj = wj − α
∂Ei
∂wj

, (1)

where α is the learning rate controlling the step size.

Generally, neurons and weights in the lower layers have stronger effects on learning (Shokri &
Shmatikov, 2015). For instance, in image processing, raw pixels of a picture are the first layer
neurons, and hence, the parameters directly in touch with them are the most effective parameters for
the value of the network output. We further use this observation for feature importance rating.

2.2 FEDERATED LEARNING

The goal in a standard federated learning problem is to develop a global ML model for tens to
millions of clients without direct access to their local data (Li et al., 2020). The only messages
transmitted from the clients to the server, in this framework, are the training parameter updates of
the local objective functions. To formalize this goal, consider N clients as depicted in Fig. 2. We
wish to minimize the following loss function:

min
w
F (w), whereF (w) :=

N∑
i=1

piFi(w) (2)
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Figure 2: FL training model.

Here, Fi is the local loss function for the i-th client and the parameter pi is defined based on the
relative impact of each client. Let pi > 0 and Σipi = 1. The impact factor pi can be defined by
ni

n , where ni is the number of data samples of client i and n = Σini is the total number of data
samples available. The outline of the training process of FL is as the following steps (Qian et al.,
2019; Bonawitz et al., 2019):

Step 1: A central server sends a primary model to all or a subset of clients selected for the training.

Step 2: The clients update model parameters using their local data and send the ML parameters to
the server.

Step 3: The server aggregates the received parameters using a defined algorithm, such as weighted
averaging.

Step 4: The server returns the updated global parameters to the selected clients for another iteration
until the acceptable accuracy is acquired or a sufficient number of iterations is completed.

We assume a trustworthy server and hence, based on the aforementioned FL procedure, information
leakage can only happen during transferring model parameters from the clients to the server and
vice versa. Privacy protection in this framework is defined as global privacy (Yang et al., 2019).

2.3 DIFFERENTIAL PRIVACY

DP gives strong guarantees to preserve data in ML algorithms. A randomized mechanism M is
supposed to be differentially private if its output is robust to any change of one sample in input data.
The following definition formally clarifies this statement for (ε, δ)-DP (Dwork & Roth, 2014):

Definition 2.1 ((ε, δ)-DP). : A mechanism M satisfies (ε, δ)-differential privacy for two non-
negative numbers ε and δ if for all adjacent datasets D and D′ such that d(D,D′) = 1, and all
subsets S ofM’s range, there holds

Pr[M(D) ∈ S] 6 eεPr[M(D′) ∈ S] + δ (3)

Here, the difference between two datasets D and D′, d(D,D′), is typically defined as the number of
records on which they differ.

It is concluded from this definition that, with a probability of δ, the output of a differentially private
mechanism on two adjacent datasets varies more than a factor of eε. Thus, smaller values of δ
enhance the probability of having the same outputs. Smaller values of ε narrow the bound for
privacy protection. The smaller ε and δ are, the lower the risk of privacy violation.

Based on Dwork & Roth (2014), considering s as an arbitrary d-dimensional function applied
on a dataset, for ε ∈ (0, 1) and c >

√
2 ln (1.25/δ), a Gaussian mechanism with parameter σ >

c∆s/ε that adds noise scaled toN (0, σ2) to each component of the output of s is (ε, δ)-differentially
private. Here, ∆s is the sensitivity of the function s defined by ∆s = maxD,D′‖s(D)− s(D′)‖.
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3 FEDERATED LEARNING WITH ADAPTIVE DIFFERENTIAL PRIVACY

In this section, we first briefly discuss the DP algorithm presented in Wei et al. (2020) and then
try to make it adaptive based on feature and parameter importance in each client. Here, As we
cannot use those those straightforward feature selection techniques offered for other ML methods
in DL algorithms due to its black box structure, we tried our best to propose two practical ways for
computing features relative importance for FL.

3.1 FEDERATED LEARNING WITH DIFFERENTIAL PRIVACY

We first consider all clients to participate in learning. For each global iteration, neural network
weights developed locally are sent to the server for aggregation. Based on the threat model and the
analysis in Wei et al. (2020), in order to ensure (ε, δ)-DP for uplink parameter transmission, the
Gaussian noise should be added to every single neuron-to-neuron weight with the noise distribution
N (0, σ2

U ), where
σU = cL∆sU/ε (4)

Here, L is the maximum number of exposures of the local parameters during uplink transmission.
sU for each client is the output of the local training process of that client, wi. So, the maximum
possible value of the sensitivity of sU , defined as the maximum change of sU seen by a change in
one sample of the local datasets, is 2C

m , with C defined as the clipping parameter, ‖wi‖ 6 C, and m
the minimum size of local datasets.

After perturbing local weights in the client side, the server receiving the parameters decides whether
more noise should be added to the aggregated parameters for downlink transmission or not. Con-
sidering T global iterations and N clients, the standard deviation of the Gaussian noise added to
aggregated parameters in order to ensure (ε, δ)-DP for downlink channel is

σD =

{
2cC
√
T 2−L2N
mNε T > L

√
N

0 T 6 L
√
N

(5)

3.2 ADAPTIVE DIFFERENTIAL PRIVACY IN FEDERATED LEARNING

We are interested in developing an adaptive DP framework to lower the risk of accuracy loss. Pre-
vious DP algorithms in FL, including NbAFL, proposed in Wei et al. (2020), tried to add noise with
a fixed distribution to parameters to ensure global privacy. However, it seems selecting noise dis-
tribution based on the relevance of each feature to the model efficiency can satisfactorily enhance
accuracy while preserving privacy. In order to evaluate this hypothesis, it is required to first prioritize
parameters’ importance based on their effect on the model output.

Assume deep neural networks are used for training local models in FL. As noise should be added
to the clients parameters before uploading for the server in each iteration, we cannot use feature
selection methods (Verikas & Bacauskiene, 2002) that rely on the final developed models. In other
words, prioritizing parameters should be done in each iteration for every client, so that the result
could be used for the selection of the noise value. FL with non-IID data will also benefit from a
personalized adaptive perturbing mechanism, which works in parallel for all devices. Moreover,
this synchrony of local computations on the new improved and powerful distributed GPUs reduces
delays in the overall training process.

3.3 SENSITIVITY-BASED METHOD

The first method we propose for the aforementioned parameter ranking in neural networks is based
on output sensitivity. Here, after the local parameters are updated in the clients, the accuracy of the
local model is calculated as a reference and saved in accref . Then, an adequate value proportionate
to the standard deviation of the Gaussian noise proposed in equation 4 is chosen. Since a random
variable with a Gaussian distribution with mean µ = 0 and standard deviation σ has an expected

absolute value equal to σ
√

2
π , this value can be a good choice. Based on the importance of the

first layer weights, we use them as our leader through this task. Hence, considering m features, the
selected noise value is added to all the weights connected to each input featureW 1

p (p = 1, 2, . . . ,m)
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at a time. In other words, if (W 1)+ denotes the new model’s first layer weights matrix, (W 1
i )+ =

W 1
j ∀i 6= j and (W 1

i )+ = W 1
i + r, where r is the vector with the appropriate size containing values

equal to the selected noise. At the same time, the accuracy of each new m model is calculated and
saved in an m element vector acc+. The absolute difference between each of these elements and
accref is defined as the relevance factor of that feature and its related weights to output. Larger
output differences specify parameters more sensitive to the change. As a result, the accuracy loss
employing DP on these parameters are more significant.

3.4 VARIANCE-BASED METHOD

Another approach for discovering feature importance is the variance-based method. The idea that
weights connected to more important features undergo more change during the training process of
neural network (de Sá, 2019), is the underlying principle for this approach. This probably is due to
the fact that utilizing gradient descent for updating parameters, those parameters, having more effect
on minimizing the loss function, have larger gradients. So, combing the variances of all weights
connected to each input neuron through the learning process leads to a value roughly proportional to
its impact on the output. Here, in the context of FL, we have several limitations. First, storing all the
weights during the learning process to compute variances is computationally expensive. Moreover,
clients participating in learning are not fixed and each of them can update parameters only once.
Finally, we want to use the feature importance data during training for choosing appropriate DP
parameters. Hence, our proposed method should work for each client in each iteration and before
uplink transmission. For this sake, we assume the updated local weights are the final weights for that
client and compute the variance between the new local and last global weights sent to the clients.
Considering wab as the weight connecting input feature a to neuron b of the first hidden layer, the
relative feature importance FI is defined as

FIi =

q∑
j=1

V ar(wij)× |wi,j | i = 1, 2, . . . ,m (6)

where q is the number of neurons in the first hidden layer.

Now the question is how to use this information for adaptive (ε, δ)-DP. One possible method is to
first choose the appropriate ε and δ that satisfy the least level of privacy guarantee we desire. Then,
we can lower the ε value for the first layer parameters based on parameters importance for a stronger
guarantee. A lower ε leads to a higher noise level. Thus, it seems the addition of more (higher values
of) noise to irrelevant parameters, in comparison to more important ones, has a less adverse effect
on model accuracy.

4 SIMULATION RESULTS

In this section, we evaluate the proposed adaptive noise addition for FL on the real-world Modified
National Institute of Standards and Technology (MNIST) dataset (LeCun et al., 1998). The multi-
layer perceptron (MLP) is employed for developing a global model and global differential privacy
parameters are chosen based on the principles proposed in NbAFL (Wei et al., 2020). Then, adaptive
DP is applied by the use of both sensitivity and variance-based feature importance methods. These
simulations are performed under different protection levels (ε), proportions of weights chosen for
more noise addition, and values of the added adaptive noise.

MNIST is a dataset for handwritten digit identification, divided into training and testing examples,
which is widely used for ML experiments. Each example is a 28 × 28 pixel image. A subset of
42000 images from its training set is used for this simulation with a 20 percent split for testing.
The MLP model designed for this FL task has 256 neurons in its single hidden layer with a ReLU
activation function. For the output layer, a softmax of 10 classes is used. The learning rate and the
clipping value for the SGD optimizer are set to 0.02 and 5, respectively.

In this simulation, we set the number of clients and the number of global iterations equal to 30 and
25, respectively. To show the results of the proposed feature importance methods, we applied them
in a non-private FL setting. For a client with an average of local samples depicted in Fig. 3, the
output of four iterations of sensitivity and variance-based feature importance algorithms is shown
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in Fig. 4(a) and 4(b), respectively. The darker spots identify the most irrelevant features, and as
expected, unlike central points, the outer region of the handwritten digit images do not have a sig-
nificant effect on predicting their class.
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Figure 3: Average of each 784 pixels of all local samples in the first client.
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(a) Sensitivity-Based Method
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(b) Variance-Based Method

Figure 4: The relative feature importance assigned to the first client samples for four different global
iterations.

Here, we first present the results of applying normal DP for various noise parameter ε in Fig. 5. We
also include a non-private result for comparison. With a fixed σ = 0.01, lower ε values bring a
better protection level in exchange for diminishing accuracy. The noise here is added to both layers’
parameters with the same distribution. It is observed from this figure that ε > 1 does not affect the
quality of the model in comparison with ε values equal or lower than 1.

Fig. 6 compares the model performance after adding adaptive noise for the most and the least im-
portant features. Using the variance-based method, a relative feature importance value is assigned
to each input. 20 and 40 percent of the whole features with the lowest importance values and 20
percent of them with the highest values are chosen for a protection level of ε = 0.5 while setting
ε = 10 for all of the other parameters (including the second layer parameters). The proportion of the
weights of the network directly connected to 20 percent of features to the whole network weights
(including biases) is actually ( 20

100 × 784× 256)/(785× 256 + 257 ∗ 10) ≈ 0.19.
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Figure 5: The comparison of model accuracies with different protection levels ε = 0.5, ε = 1, ε = 5
and ε = 10, for 30 clients. The additive Gaussian noise distribution is considered the same for all of
the parameters.

As Fig. 6 shows, although the number of parameters receiving more noise is equal for the green
and red plots, there is a profound difference between the accuracy achieved. In fact, even having
additional noise for twice more parameters of the least important features (the blue plot) doesn’t
have an impact as adverse as adding more noise on the top 20 percent. This property can be used
to achieve a better privacy level without loss of accuracy. In fact, we can find and preserve the most
important parameters and perturb others. Fig. 6 also proves the validity of our feature prioritization
methods.
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Figure 6: The comparison of model accuracies after applying adaptive noise for the least and the
most important features.

We now increase the number of parameters involved in the adaptive approach to observe their effect
on the results. Fig. 7 represents the impact of additional noise on 50 and 80 percent of the first
layer parameters, respectively. As the number of selected parameters increases, the importance of
selective DP and prioritizing parameters diminishes. This can be due to the fact that the MNIST
dataset has few important features. In other words, a small number of image pixels are informative
and by increasing the features involved, noise shifts to be the decisive factor and deteriorates the
model performance.

Moreover, the difference between accuracies is more obvious at several first iterations and as time
passes, the worse model improves itself and it is even possible that this model’s accuracy overtakes
the other one as in Fig. 7(a). Neural network shows outstanding ability in enhancing its performance
even in very noisy environments. Once it is properly designed, it is fairly robust. So, it can be a
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good choice for DP approaches. Comparing Fig. 6 and Fig. 7 emphasizes the necessity of choosing
appropriate proportions and noise distributions for adaptive DP.
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Figure 7: Comparison of model accuracies after applying adaptive noise for the least and the most
important features.

As Fig. 8 depicts, repeating the same procedure with the sensitivity-based approach yields to similar
overall results. The slight differences seen between the results of the sensitivity and the variance
methods, especially between Fig. 8(a) and Fig. 6, states that the variance-based feature importance
method prioritizes features more precisely. A more accurate feature importance method leads to
more accurate results while applying adaptive DP, as variance-based method did.
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Figure 8: Comparison of model accuracies after applying adaptive noise for the least and the most
important features using sensitivity-based method.

5 CONCLUSIONS

In this paper, we presented an adaptive differential privacy framework in federated learning based on
prioritizing parameters in deep neural networks. It’s proved that selective noise injection can make
a profound difference in the accuracy of the global model. As it is shown, adding the same amount
of noise to different parts and proportions of data, although brings the same overall privacy level,
affects the model performance differently. In each simulation result, we compared various aspects
of the curves from the best to the worst accuracy. These results not only confirmed the validity of
the two proposed prioritizing techniques,The sensitivity-based and variance-based approaches, but
also can open up a new area of research for optimizing DP in FL.

For future possible research directions, the effect of intentionally adding irrelevant features between
other features on protecting privacy should be checked. Perturbing these irrelevant features is also an
alternative. Another approach is to choose noise distribution based on each parameter importance,
rather than applying a fixed distribution for a proportion of the features.
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