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ABSTRACT

Offline reinforcement learning (RL) has achieved notable progress in recent years.
However, most existing offline RL methods require a large amount of training data
to achieve reasonable performance and offer limited out-of-distribution (OOD)
generalization capability due to conservative data-related regularizations. This
seriously hinders the usability of offline RL in solving many real-world appli-
cations, where the available data are often limited. In this study, we introduce
TELS, a highly sample-efficient offline RL algorithm that enables state-stitching
in a compact latent space regulated by the fundamental time-reversal symmetry
(T-symmetry) of dynamical systems. Specifically, we introduce a T-symmetry
enforced inverse dynamics model (TS-IDM) to derive well-regulated latent state
representations that greatly facilitate OOD generalization. A guide-policy can then
be learned entirely in the latent space to optimize for the reward-maximizing next
state, bypassing the conservative action-level behavioral regularization adopted in
most offline RL methods. Finally, the optimized action can be extracted using the
learned TS-IDM, together with the optimized latent next state from the guide-policy.
We conducted comprehensive experiments on both the D4RL benchmark tasks
and a real-world industrial control test environment, TELS achieves superior sam-
ple efficiency and OOD generalization performance, significantly outperforming
existing offline RL methods in a wide range of challenging small-sample tasks.

1 INTRODUCTION

Offline reinforcement learning (RL) has seen rapid progress in recent years. It directly utilizes
pre-collected datasets for policy learning, making them ideal for many real-world tasks that lack
high-fidelity simulators or have restrictions on environment interaction (Levine et al., 2020; Zhan
et al., 2022). However, offline RL is also known to be prone to value overestimation, caused by
extrapolation error when evaluating out-of-distribution (OOD) samples and amplified through the
bootstrapped update procedure in RL (Kumar et al., 2019; Fujimoto et al., 2019). In the past few
years, quite a few offline RL methods have been proposed, which commonly adopt the pessimism
principle using strategies such as adding explicit or implicit policy constraints to prevent the selection
of OOD actions (Kumar et al., 2019; Wu et al., 2019; Fujimoto et al., 2019; Fujimoto & Gu, 2021),
penalizing value function on unseen samples (Kumar et al., 2020; Bai et al., 2021; Lyu et al., 2022),
or adopting in-sample learning to implicit regularize policy optimization (Kostrikov et al., 2022; Xu
et al., 2023; Mao et al., 2024b). Adopting such action-level constraints, although helpful to stabilize
offline value and policy learning, also leads to over-conservatism and crippled OOD generalization
performance (Li et al., 2022; Cheng et al., 2023). Most of the existing offline RL methods only
perform well when trained with sufficiently large offline datasets with reasonable state-action space
coverage (e.g., 1 million samples for simple D4RL benchmark tasks (Fu et al., 2020)). This forms a
stark contrast to the reality in most real-world scenarios, such as industrial control (Zhan et al., 2022;
2025a), robotics (Sinha et al., 2022), and healthcare (Tang et al., 2022), where the real-world data are
often scarce, and scaling up data collection can be rather costly.

Enhancing sample efficiency and OOD generalization capability is essential to making offline RL
widely applicable to real-world applications. This is particularly important for small dataset settings,
as most of the state-action space will become OOD regions. Several recent attempts have been
made to improve the generalization performance of offline RL, which mainly follow three directions.
The first direction builds upon the empirical observation that deep value functions interpolate well
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but struggle to extrapolate, thus allowing exploitation on interpolated OOD actions to promote
generalization (Li et al., 2022). However, this method has a smoothness assumption on the offline
dataset geometry and only applies to the continuous action space. The second class of methods
avoids the conservative action-level constraint and instead performs reward maximization on the
state-space (Xu et al., 2022a; Park et al., 2024), which allows exploitation of OOD actions as long
as the corresponding state transitions are reachable (also referred to as "state-stitching"). Although
these methods offer some promising generalization capabilities, they still require the state-action
space to have reasonable data coverage to enable valid state-stitching. Finally, the last direction
is to learn compact and robust latent representations to enhance sample efficiency. Most methods
in this direction focus on extracting statistical-level information from the data, using techniques
such as contrastive learning (Laskin et al., 2020; Agarwal et al., 2021a; Yang & Nachum, 2021;
Uehara et al., 2021). Due to insufficient consideration of the underlying dynamics inside sequential
data, these methods still struggle to provide generalizable information beyond data distribution.
Some recent methods propose to learn representations that extract fundamental symmetries of
dynamics to facilitate policy learning (Weissenbacher et al., 2022; Cheng et al., 2023), such as
the time-reversal symmetry (T-symmetry) (Cheng et al., 2023), i.e., the underlying physical laws
should not change under the time-reversal transformation. By leveraging such universally held
symmetries in dynamical systems, it is possible to maximally promote OOD generalization without
being restrained by data distribution-related information. Although promising, these methods are
built upon offline RL backbone algorithms with action-level constraints (e.g., CQL (Kumar et al.,
2020) or TD3+BC (Fujimoto & Gu, 2021)), which still suffer from the over-conservatism issue.

In this paper, we find that enabling state-stitching in a coherent, fundamental symmetry-enforced
latent space can lead to a surprisingly strong sample-efficient offline RL algorithm. We refer to
our method as Offline RL via T-symmetry Enforced Latent State-Stitching (TELS). Specifically,
we introduce a T-symmetry enforced inverse dynamics model (TS-IDM) that can not only learn
well-behaved and OOD generalizable latent state and action representations, but also facilitate
effective action inference. Within the learned well-behaved latent state space, we can optimize a
T-symmetry regularized guide-policy to output the next latent state that maximizes the accumulated
reward, bypassing the conservative action-level behavioral regularization adopted in most offline
RL algorithms. Lastly, the optimized action can be easily extracted by plugging the output of the
guide-policy as the goal state in the learned TS-IDM. We evaluate TELS on both the challenging
reduced-size D4RL benchmark tasks and a real-world industrial control test environment. Through
comprehensive experiments, we show that TELS achieves state-of-the-art (SOTA) sample efficiency
and OOD generalization capability, significantly outperforming existing offline RL algorithms on
small datasets.

2 PRELIMINARIES

Offline RL. We consider the standard Markov decision process (MDP) setting (Sutton & Barto,
2018), which is represented as a tuple M = {S,A, r,P, ρ, γ}, and a dataset D, which consists
of trajectories τ = {s0, a0, s1, a1, ..., sT , aT }. Here S and A denote the state and action spaces,
r(s, a) is a scalar reward function, P(s′|s, a) and ρ denote the transition dynamics and initial state
distribution respectively, and γ ∈ (0, 1) is a discount factor. Our goal is to learn a policy π(a|s)
based on dataset D by maximizing the expected return in the MDP: Eπ[

∑∞
t=0 γ

t · r(st, at)].
Offline policy optimization in the state space. Instead of adopting conservative action-level
constraints for offline policy learning, Policy-guided Offline RL (POR) (Xu et al., 2022a) proposes to
decompose the conventional reward-maximizing policy into a guide-policy and an execute policy.
The guide-policy only works in the state space to find the optimal next state that maximizes the
state-value function, and the execute-policy is learned as an inverse dynamics model (Xu et al.,
2022a) or a goal-conditioned imitative policy (Park et al., 2024). Such methods only need to learn a
state-only value function V using the IQL-style expectile regression, as proposed by Kostrikov et al.
(2022), or the sparse value learning objective as discussed in (Xu et al., 2023). We present the former
as follows:

V = argmin
V

E(s,r,s′)∼D
[
Lτ2

(
r(s) + γV̄ (s′)− V (s)

)]
. (1)

where Lτ2(x) = |τ − 1(x < 0)|x2 is the asymmetric expectile regression loss and V̄ denotes
the target value network. Based on the learned state-value function, we can learn a guide-policy
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πg(s
′|s) to serve as a prophet by telling which state the agent should (high reward) and can (logical

generalization) go to, without being constrained to state-action transitions seen in the dataset. This
can be achieved by leveraging an advantage weighted regression (AWR) objective (Neumann &
Peters, 2008; Peng et al., 2019) to maximize the value while implicitly constraining πg to s → s′

transitions observed in the dataset (i.e., state-stitching):

πg = argmax
πg

E(s,r,s′)∼D

[
exp(α ·A(s, s′)) log πg(s′ | s)

]
. (2)

where the advantage A(s, s′) = r + γV (s′)− V (s) serves as the behavior cloning weight, and α is
the temperature parameter to prioritize value maximization over state-wise imitation.

For the execute-policy πe, POR employs a supervised learning framework and trains πe by maximiz-
ing the likelihood of the actions given the states and next states: maxπe

E(s,a,s′)∼D[log πe (a | s, s′)].
During evaluation phase, given the current state s, we can sample the optimized next state s′ from
πg(s

′|s), and get final action simply as a∗ = πe (a | s, πg(s′|s)).
Time-reversal symmetry for generalizable offline RL. Recently, leveraging fundamental, univer-
sally held symmetries of dynamics like T-symmetry discovered in classical and quantum mechan-
ics (Lamb & Roberts, 1998; Huh et al., 2020) has been shown to be a promising approach to enhance
the generalization of offline RL (Cheng et al., 2023; Zhan et al., 2025a). Specifically, if we model
the system dynamics with measurements x as a set of non-linear first-order differential equations
(ODEs) expressed as dxdt = F (x), a dynamical system is said to exhibt time-reversal symmetry if there
is an invertible transformation Γ that reverses the direction of time: i.e., dΓ(x)/dt = −F (Γ(x)).
For the discrete-time MDP setting, the T-symmetry can be extended as learning a pair of ODE
forward dynamics F (s, a) → ṡ and reverse dynamics G(s′, a) → −ṡ, and require them to satisfy
F (s, a) = −G(s′, a), where the time-derivative of state ṡ = ds

dt is approximated as s′ − s.

Based on this intuition, TSRL (Cheng et al., 2023) constructed an encoder-decoder structured T-
symmetry enforced dynamics model (TDM) for representation learning, which embeds a pair of latent
ODE forward and reverse dynamics to enforce T-symmetry. TSRL achieves impressive performance
under small-sample settings, and its variant has been successfully deployed for real-world industrial
control (Zhan et al., 2025a), but it still has some limitations. First, TSRL only uses the learned
encoder from TDM to derive the latent representations, without fully exploiting the rich dynamics-
related information for downstream policy learning. Second, its representation learning scheme
uses both state and action as inputs, forcing TSRL to involve policy-induced actions during policy
optimization, which inevitably requires adding a conservative action-level behavioral constraint as in
TD3+BC (Fujimoto & Gu, 2021) to stabilize training. Moreover, involving action as an input for
representation learning is also prone to capturing biased behaviors in the behavioral policy, which
could impede learning fundamental, distribution-agnostic dynamics patterns in data. Please refer to
Appendix A for a more detailed comparison and discussion.

3 OFFLINE RL VIA T-SYMMETRY ENFORCED LATENT STATE-STITCHING

We now present our proposed method, TELS, which comprises a T-symmetry enforced inverse
dynamics model (TS-IDM) integrated with an effective offline policy optimization procedure operated
in latent state space (illustrated in Figure 1).

3.1 T-SYMMETRY ENFORCED INVERSE DYNAMIC MODEL

As illustrated in Figure 1, if inspecting the input and output of our proposed TS-IDM, it functions
similarly to an inverse dynamics model that takes current and next state (s, s′) as input and outputs
the predicted action a. However, in its interior, TS-IDM comprises a state encoder ϕs(s) = zs and a
corresponding decoder ψs(zs) = ŝ; a latent inverse dynamics module hinv(zs, zs′) = za followed
by an action decoder ψa(za) = â; and most importantly, a pair of T-symmetry enforced latent ODE
forward and reverse dynamics predictors hfwd(zs, za) = żs and hrvs(zs′ , za) = −żs. All these
sub-components are implemented as simple 2-layer MLPs. In the following, we will dive into the
design intuitions and learning objectives of these components.

Encoding and decoding. As previously discussed, constructing an informative and well-structured
latent space is critical for sample-efficient offline policy optimization. To this end, we introduce a
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Figure 1: Overview of T-symmetry Enforced Latent State-Stitching (TELS) framework. Left: The illustrattion
of TS-IDM structure. Right: The process of training T-symmetry regularized guided-policy.

state encoder ϕs(s) = zs to map a state s into corresponding latent representation zs, and also a state
decoder ψs(zs) = s to reconstruct the original state from its latent embedding, ensuring that the
learned latent representations remain faithful to the original state space and avoid excessive distortion.

We then construct a latent inverse dynamics module hinv(zs, zs′) = za, which infers the latent action
za from the latent state transitions (zs, zs′). By inferring actions from state transitions, the learned
latent space implicitly encodes the underlying dynamics of the environment. Moreover, the inverse
dynamic module hinv can be integrated with a pair of latent ODE dynamics predictors (hfwd and
hrvs) to derive the T-symmetry property of the system, which we will introduce in more detail shortly.
Finally, to ensure that the inferred actions are both meaningful and interpretable, we employ an action
decoder ψa(za) = â to map the latent action back to its original action space. We can thus formulate
the reconstruction loss for the states and actions as follows:

ℓrec(s, a, s
′) = ∥ψs(ϕs(s))− s∥22︸ ︷︷ ︸

reconstruction loss of states

+ ∥ψa(hinv(zs, zs′))− a∥22︸ ︷︷ ︸
reconstruction loss of actions

. (3)

Latent ODE forward and reverse dynamics. Drawing inspiration from previous research that
integrates physics-informed insights into dynamical systems modeling (Brunton et al., 2016; Cham-
pion et al., 2019; Huh et al., 2020; Cheng et al., 2023), we embed a pair of latent ODE forward and
reverse dynamics hfwd(zs, za) = żs and hrvs(zs′ , za) = −żs to separately capture the forward and
reverse time evolution in the latent states. We are interested in modeling ODE systems because it
encourages learning parsimonious models helpful to uncover fundamental properties from the data
that can maximally promote generalization (Brunton et al., 2016; Champion et al., 2019). Note that
based on the chain rule, we can derive the supervision signal for the latent dynamics modules with
żs =

dz
dt =

dzs
ds · dsdt = ∇szs · ṡ = ∇sϕs(s) · ṡ to enforce the ODE property. Therefore, we introduce

the following training losses for hfwd and hrvs:

ℓdyn(s, s
′) = ∥(∇szs)ṡ− żs∥22︸ ︷︷ ︸

latent ODE forward dynamics

+ ∥(∇s′zs′)(−ṡ)− (−żs)∥22︸ ︷︷ ︸
latent ODE reverse dynamics

=∥∇sϕs(s)ṡ− hfwd(zs, za)∥22 + ∥∇s′ϕs(s
′)(−ṡ)− hrvs(zs′ , za)∥22, (4)

where the latent action za is obtained from the latent inverse dynamics module hinv(zs, zs′).

ODE property enforcement on state decoder. Note that in ℓdyn(s, s
′), we actually implicitly

enforced the ODE property on the state encoder ϕs, the same should also apply to the state decoder
ψs to ensure compatibility with the T-symmetry formalism, i.e. the time-derivative of the state
encoder dϕs(s)

dt and decoder dψs(zs)
dt should behave in the same way as żs and ṡ. Similar to the

previous treatment on the state encoder, as ṡ = dψs(zs)
dt = dψs(zs)

dzs
· dzsdt = ∇zsψs(zs) · żs, we can

use the following objective to enforce the ODE property for the state decoder ψs:
ℓode(s, s

′) = ∥∇zsψs(zs) · żs − ṡ∥22︸ ︷︷ ︸
enforce ODE of ψs on hfwd

+ ∥∇zs′ψs(zs′) · (−żs)− (−ṡ)∥22︸ ︷︷ ︸
enforce ODE of ψs on hrvs

=∥∇zsψs(zs) · hfwd(zs, za)− ṡ∥22 + ∥∇zs′ψs(zs′) · hrvs(zs′ , za) + ṡ∥22. (5)
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Notably, the ODE property enforcement in Eq. (5) is not considered in the T-symmetry enforced
dynamics model (TDM) proposed by TSRL (Cheng et al., 2023). In other words, TDM only enforces
the ODE properties for encoders but not for decoders. This can cause inconsistency between the
learned dynamics and the underlying ODE structure, leading to inaccurate ODE representations.

T-symmetry enforcement. To further regularize the learned latent representations, we enforce
T-symmetry by requiring hfwd(zs, za) = −hrvs(zs′ , za), which corresponds to the following loss:

ℓT-sym(zs, za) = ∥hfwd(zs, za) + hrvs(zs + hfwd(zs, za), za)∥22. (6)

where we use the fact that zs′ = zs + żs = zs + hfwd(zs, za) and hrvs(zs + hfwd(zs, za), za) =
−żs = −hfwd(zs, za) to further couple the learning process of hfwd and hrvs. Moreover, given a
latent state-action pair (zs, za), the above T-symmetry consistency loss can also serve as an evaluation
metric to assess their agreement with the learned TS-IDM. A large T-symmetry loss indicates that the
latent state-action representation (zs, za) induced by some (s, s′) may not satisfy the fundamental
dynamics pattern, making it more likely to be a problematic or non-generalizable sample.

Overall learning objective. Finally, the complete training loss function of TS-IDM is as follows:

LTS-IDM =
∑

(s,a,s′)∈D

[
ℓrec + β · (ℓdyn + ℓode + ℓT-sym)

]
(s, a, s′). (7)

where β is a hyperparameter that balances extracting fundamental dynamics properties and ensuring
the interpretability of the learned representation. Note that we employ a single shared β for ℓdyn,
ℓode, and ℓT-sym terms. This is to ensure that the ODE property and T-symmetry regularization are
enforced on a consistent scale for these strongly coupled loss terms, while also reducing the number of
unnecessary hyperparameters. This is actually critical, as we have empirically shown in Appendix B.5,
using a shared β enables stable training, while adopting separate weights can cause a substantial
performance drop. Despite containing multiple sub-modules, our proposed TS-IDM is actually quite
small (based on several simple MLP layers), which can be efficiently and stably learned owing to
its highly coupled design. The entire training process can be completed in merely 20 minutes and 5
minutes in our PyTorch and JAX implementations, respectively (see Table 12 in Appendix).

3.2 LATENT SPACE OFFLINE POLICY OPTIMIZATION

Once we have learned TS-IDM, we can extract three highly useful components from it to facilitate
sample-efficient downstream offline policy optimization, including: 1) the state encoder ϕ(s) that
provides an ideal, well-behaved latent space for state-stitching; 2) T-symmetry consistency as an
additional regularizer to prevent erroneous generalization when learning a guide-policy in the latent
state space; and 3) the TS-IDM itself can serve as an execute-policy as in POR (Xu et al., 2022a) to
extract optimized action given a learned guide-policy.

Latent state-value functions learning. Based on the state encoder ϕs(s) from the learned TS-
IDM, we can convert the entire offline policy optimization process into the latent state space, which
enjoys both a stable learning process and generalizability due to more compact and well-behaved
representations. Specifically, we can use a similar expectile regression loss as in Eq. (1) to learn a
state-value function V (zs), but in the latent state space:

min
V

E(s,r,s′)∼D

[
Lτ2

(
r + γV̄ (ϕs(s

′))− V (ϕs(s))
) ]
. (8)

T-symmetry regularized guide-policy optimization. A key benefit of learning within the T-
symmetry preserving latent space is that, as T-symmetry captures what is essential and invariant
about the dynamical system, it can provide generalizable information even for OOD samples beyond
the offline dataset. This naturally favors learning a reward-maximizing guide-policy πg in the latent
space, which can enjoy more effective state-stitching. Moreover, by leveraging the T-symmetry
consistency term ℓT-sym(·) in Eq. (6) as an additional regularizer, we can prevent πg from outputting
problematic and non-generalizable latent next state, thereby further enhancing logical state-wise OOD
generalization. In TELS, we provide two instantiations for guide-policy optimization, depending on
the choice of using deterministic policy πg(zs) or stochastic policy πg(zs′ |zs):

- Deterministic policy:

max
πg

E(s,s′)∼D

[
λαV (πg(zs))− η∥ψs(πg(zs))− s′∥22 − ℓT-sym (zs, hinv (zs, πg(zs)))

]
(9)
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- Stochastic policy:

max
πg

E(s,s′)∼D

[
exp(α ·A(zs, zs′)) log πg(zs′ | zs)− ℓT-sym(zs, hinv(zs, πg(·|zs))

]
(10)

where zs = ϕs(s), zs′ = ϕs(s
′), andA(zs, zs′) = r+γV (zs′)−V (zs). For the deterministic policy

πg(zs), we optimize the guide-policy by maximizing the latent state-value function V weighted by a
normalization term λα, together with two extra regularization terms. The first regularizes the next
state decoded from the guide-policy using state decoder ψs should not deviate too much from the
next state s′ in the dataset. The second term regularizes the guide-policy induced latent state-action
pair (i.e., (zs, za) = (zs, hinv(zs, πg(zs)))) to comply with the T-symmetry consistency specified
in the learned TS-IDM. For the stochastic guide-policy πg(zs′ |zs), we adopt a similar AWR-style
objective as in Eq. (2), while also incorporating the T-symmetry consistency regularization as in the
deterministic version. In our experiments, we find that the deterministic version objective Eq. (9)
works well for the MuJoCo locomotion tasks, while the stochastic version Eq. (10) works better for
more complex Antmaze tasks, potentially due to more stochastic nature of the task environment.

Action inference. After learning the guide-policy πg , we can further use it to extract the optimized
action for control. To do this, we can simply use the optimized latent next state z∗s′ obtained from
guide-policy πg(zs) or πg(·|zs) as the goal state, and plug it into the learned latent inverse dynamics
module hinv(zs, zs′) in TS-IDM to replace zs′ . The final action can be extracted by decoding the
resulting latent action from hinv using the action decoder ψa :

a∗ = ψa (hinv (zs, πg(zs))) . (11)

Note that there is no training process needed for this stage. Moreover, throughout our policy
optimization process, actions are not involved, allowing TELS to completely bypass the conservatism
issue caused by the action-level regularization. Please refer to Algorithm 1 in Appendix C for the
detailed implementation, as well as the training and inference procedure of TELS.

4 EXPERIMENTS

In this section, we present the evaluation results of TELS on the D4RL benchmark tasks (Fu et al.,
2020) against behavior cloning (BC), and existing offline RL methods: TD3+BC (Fujimoto & Gu,
2021), CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2021), DOGE (Li et al., 2022), POR (Xu
et al., 2022a), model-based methods MOPO (Yu et al., 2020) and COMBO (Yu et al., 2021b),
diffusion-based method IDQL (Hansen-Estruch et al., 2023), and TSRL (Cheng et al., 2023), the
current SOTA method in small-sample settings. To demonstrate the effectiveness of TELS in solving
real-world tasks, we also validate TELS in a real-world industrial control environment, which is a data
center (DC) cooling control testbed built by a recent work (Zhan et al., 2025b). Moreover, we conduct
additional experiments to evaluate the OOD generalizability of TELS on a challenging task, and the
strengths of the representations learned with TS-IDM in improving small-sample performance.

4.1 COMPARATIVE EVALUATION ON SMALL-SAMPLE SETTING

Evaluation on D4RL benchmarks. In Table 1, we evaluate TELS against baseline methods on
challenging reduced-size D4RL datasets (5k∼100k samples, about 0.5∼10% of their original sizes)1.
These small-sample tasks are particularly challenging for offline RL algorithms, as the data only
sparsely cover the state-action space and require strong OOD generalization capability for algorithms
to achieve reasonable performance. Results on full D4RL datasets can be found in Appendix B.1.

As shown in Table 1, most baselines fail to learn reasonable policies under small datasets, especially in
the challenging 100k Antmaze-medium/large datasets. For example, conventional offline RL methods
like TD3+BC and CQL perform poorly on small datasets, primarily due to their over-conservative
data-related policy constraints. Model-based methods also perform badly due to insufficient samples
to learn accurate dynamics models and the use of problematic model rollout data. Baselines that
have generalization promotion designs, such as DOGE and TSRL, perform slightly better but still

1We use the same reduced-size MuJoCo datasets from the TSRL paper (Cheng et al., 2023), and randomly
sub-sample 100k Antmaze datasets for experiments. We use the original Adroit-human datasets for evaluation,
as they are already small.
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Table 1: Normalized scores on reduced-size D4RL datasets (averaged over the final 10 evaluations with 5 seeds).
We report the standard deviations after the ± sign. Numbers at or above 95% of the best value in the row are
highlighted in bold.

Task Size (ratio) BC TD3+BC MOPO COMBO CQL IQL DOGE IDQL POR TSRL TELS
Hopper-m 10k (1%) 29.7±11.7 40.1±18.6 5.5 ± 2.3 30.2 ± 28.0 43.1±24.6 46.7±6.5 44.2 ± 10.2 44.2±12.1 46.4 ± 1.7 62.0±3.7 77.3 ± 10.7
Hopper-mr 10k (2.5%) 12.1±5.3 7.3±6.1 6.8 ± 0.3 10.6 ± 13.1 2.3±1.9 13.4±3.1 17.9 ± 4.5 21.7±7.0 17.4 ± 6.2 21.8±8.2 43.2 ± 3.5
Hopper-me 10k (0.5%) 27.8±10.7 17.8±7.9 5.8 ± 5.8 13.9 ± 22.0 29.9±4.5 34.3±8.7 50.5 ± 25.2 43.2±4.4 37.9 ± 6.1 50.9±8.6 100.9 ± 6.8
Halfcheetah-m 10k (1%) 26.4±7.3 16.4±10.2 -1.1 ± 4.1 16.5 ± 2.4 35.8±3.8 29.9±0.12 36.2 ± 3.4 36.4±1.5 33.3±3.2 38.4±3.1 40.8 ± 0.6
Halfcheetah-mr 10k (5%) 14.3±7.8 17.9±9.5 11.7 ± 5.2 11.8 ± 15.3 8.1±9.4 22.7±6.4 23.4 ± 3.6 26.7±1.0 27.5±3.6 28.1±3.5 33.2 ± 1.0
Halfcheetah-me 10k (0.5%) 19.1±9.4 15.4±10.7 -1.1 ± 1.4 5.2 ± 6.1 26.5±10.8 10.5±8.8 26.7 ± 6.6 38.8±1.9 34.7±2.6 39.9±21.1 40.7 ± 1.2
Walker2d-m 10k (1%) 15.8±14.1 7.4±13.1 3.1 ± 4.7 3.6 ± 1.1 18.8±18.8 22.5±3.8 45.1 ± 10.2 31.7±14.2 22.2±3.6 49.7±10.6 62.4 ± 5.3
Walker2d-mr 10k (3.3%) 1.4±1.9 5.7±5.8 3.3 ± 2.7 4.2 ± 15.6 8.5±2.19 10.7±11.9 13.5 ± 8.4 12.2±10.5 14.8±4.2 26.0±11.3 54.8 ± 6.0
Walker2d-me 10k (0.5%) 21.7±8.2 7.9±9.1 0.6 ± 2.7 0.1 ± 0.1 19.1±14.4 26.5±8.6 35.3 ± 11.6 21.8±14.5 20.1±8.6 46.4±17.4 87.4 ± 13.3

Antmaze-u 10k (1%) 44.7 ± 42.1 0.7 ± 1.2 0.0 0.0 5.5 ± 2.3 65.1 ± 19.4 56.3 ± 24.4 67.5 ±12.4 6.1 ± 7.3 76.1 ± 15.6 88.7 ± 7.7
Antmaze-u-d 10k (1%) 24.1 ± 22.2 16.27 ± 16.4 0.0 0.0 0.5 ± 0.1 34.6 ± 18.5 41.7 ± 18.9 55.1 ± 36.8 42.1 ± 14.2 52.2 ± 22.1 60.9 ± 16.9
Antmaze-m-d 100k (10%) 0.0 0.0 0.0 0.0 0.0 4.8 ± 5.9 0.0 9.0 ±3.4 0.0 0.0 47.2 ± 17.3
Antmaze-m-p 100k (10%) 0.0 0.0 0.0 0.0 0.0 12.5 ± 5.4 0.0 9.4 ± 14.7 0.0 0.0 62.9 ± 17.8
Antmaze-l-d 100k (10%) 0.0 0.0 0.0 0.0 0.0 3.6 ± 4.1 0.0 16.1 ± 8.4 0.0 0.0 39.8 ± 14.1
Antmaze-l-p 100k (10%) 0.0 0.0 0.0 0.0 0.0 3.5 ± 4.1 0.0 9.7 ±8.5 0.0 0.0 47.3 ± 13.1

Pen-human 5k (100%) 34.4 8.4 9.7 27.7 37.5 71.5 42.6 ± 16.3 67.9 ± 17.3 64.1 ± 25.3 80.1 ± 18.1 77.4 ± 17.2
Hammer-human 5k (100%) 1.5 2.0 0.2 0.2 4.4 1.4 -1.2 ± 0.2 2.7 ± 1.3 0.2 ± 0.1 0.2 ± 0.3 3.6 ± 1.5
Door-human 5k (100%) 0.5 0.5 -0.2 -0.3 9.9 4.3 -1.1 ± 0.2 10.5 ± 1.5 0.1 ± 0.1 0.5 ± 0.3 11.8 ± 1.6
Relocate-human 5k (100%) 0.0 -0.3 -0.2 -0.3 0.2 0.1 0.1 ± 0.2 0.2 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.3 ± 0.2

Figure 2: Performance of TELS against baselines under different data sizes. The error bars represent the standard
deviation calculated over 5 random seeds.

fail miserably in the challenging Antmaze-m/l tasks, as they still adopt conservative action-level
constraints to stabilize policy learning. Recent diffusion-based methods like IDQL, although perform
well on large datasets, struggle to learn when given limited data. By contrast, TELS dominates the
chart and outperforms all other baselines in all tasks, sometimes by a large margin. This is attributed
to the leverage of fundamental, data distribution-agnostic T-symmetry property for policy learning,
which greatly improves the OOD generalization performance. This is evident when observing the huge
performance difference between POR and TELS, as the former shares a similar policy optimization
procedure but does not use the T-symmetry enforced representation and policy regularization.

We also evaluate the performance of the algorithms across different dataset sizes in Figure 2. The
results show that TELS can robustly maintain reasonable performance even with only 5k samples,
surpassing all the other methods, while most baseline methods suffer from significant performance
drop when training samples are decreased.

Evaluation on real-world industrial control test environment. To further demonstrate the ef-
fectiveness of TELS in solving real-world industrial control tasks, we deploy TELS in a real-world
DC cooling control testbed (Zhan et al., 2025b) and compare against CQL, IQL, and TSRL. The
testbed comprises 22 servers with oscillating server loads and an Air-Cooling Unit (ACU) for cooling
control. A small historical operational dataset (43k real-world samples collected over 61 days) with
105 state-action features is used for policy learning. The goal is to improve the energy efficiency
of the DC’s cooling systems (minimizing the Air-side Cooling Load Factor (ACLF), calculated as
the ratio of energy consumption of ACU to servers), while satisfying thermal safety constraints (no
overheating). We follow the same real-world experiment setup as in (Zhan et al., 2025b) and present
the details in Appendix D.2. As shown in Table 2, under a similar server energy consumption level,
TELS learns the best control policy, achieving 20.17% ACLF while maintaining zero thermal safety
violations. CQL learns a naive policy that achieves lower ACLF but with significant thermal safety
violations. This shows TELS’s effectiveness in solving real-world complex industry control tasks.

OOD generalization capability. To further examine the OOD generalizability of TELS, we
construct a very challenging task based on the reduced-size 100k Antmaze-m-d dataset, as illustrated
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Table 2: Evaluation results in the real-world DC cooling control testbed (6-hour length experiments). Results
with the lowest ACLF under zero thermal safety violations are highlighted in bold.

Testbed CQL IQL TSRL TELS
Server energy consumption (kWh) 41.44 39.80 40.30 40.61
ACU energy consumption (kWh) 4.16 16.27 10.95 8.19
Energy efficiency measure: ACLF (the lower the better) 10.3% 40.89% 27.16% 20.17% ↓
Percentage of thermal safety violation (the lower the better) 40.99% 0.00% 0.00% 0.00%

Figure 3: Left: Illustration of the 100k Antmaze-m-d task with multiple deletion areas, where the red cross
denotes the start point, the yellow star denotes the goal locations, and the red shaded areas denote the data
deletion regions. Right: Visualization of the training dataset and policy rollout trajectories generated by trained
policies from various algorithms under varying deletion ratios.

in Figure 3. Specifically, we randomly remove samples within 5 critical regions along the critical
paths from the start to the goal locations. This task requires extremely strong OOD generalization
capability to solve, as the vital information for the optimal trajectory is extremely scarce or completely
OOD. We train IQL, POR, and TELS on the remaining data and plot their policy rollouts over 20
episodes for performance evaluation and behavior analyses (due to page limit, we include results
for IDQL, DOGE, TSRL in Appendix B.3). As shown in Figure 3, IQL can only achieve some
success when the deletion ratio is 0%, and POR fails to reach the goal in all cases. By contrast,
TELS consistently learns optimal policy even with 70% and 100% deletion rates. It can effectively
utilize the limited information provided in the sparse remaining data samples at the boundaries of the
deletion areas for policy learning. These highlight the extraordinary OOD generalization capability
of TELS in extremely challenging low-data regimes.

4.2 ANALYSIS AND ABLATION OF TELS

Table 3: Ablation on the components of TS-IDM. The
standard deviations are noted by ±. Numbers at or above
95% of the best in the column are highlighted in bold.

Hopper-me Halfcheetah-me Walker2d-me

ϕ/ψ+ hinv 17.2 ± 7.0 29.7 ± 3.6 24.5 ± 10.1
↑ + hfwd, hrvs 35.5 ± 7.3 31.3 ± 1.1 33.6 ± 9.2
↑ + ℓode 61.4 ± 23.7 31.2 ± 1.2 58.5 ± 18.1
↑ + ℓT-sym 100.9 ± 6.8 40.7 ± 1.2 87.4 ±13.3

Ablations on the design of TS-IDM. To ex-
amine the impact of each sub-module in TS-
IDM, we evaluate various variants of TS-IDM,
starting with a vanilla latent inverse dynamics
module with encoder and decoders, denoted as
“ ϕ/ψ+ hinv”, gradually adding latent forward
and reverse dynamics “hfwd, hrvs”, ODE prop-
erty enforcement “ℓode”, and eventually the T-
symmetry consistency loss “ℓT-sym”, resulting
in the full TS-IDM. Results on 10k datasets are shown in Table 3. We observe that the naïve
autoencoder-based inverse dynamics module fails to provide reasonable representations. Incorporat-
ing dynamics-related information via latent dynamics is helpful, but the performance gain remains
mild. Enforcing ODE properties on decoders greatly enhances the quality of learned representations.
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Figure 4: Left: Performance of IQL and TD3+BC on 10k datasets with or
without using the representation from TS-IDM. Right: The performance of
TELS with different representation models on 10k datasets.The error bars
represent the standard deviation calculated over 5 random seeds.

Figure 5: Impact of ℓT-sym
on policy optimization.

Lastly, enforcing T-symmetry consistency proves to be the strongest performance improvement factor,
which greatly enhances the quality of the learned representations for downstream policy learning.

Effectiveness of the learned representations. As demonstrated in Figure 4(left), we further verify
the effectiveness of the learned latent representation in TS-IDM. Specifically, we use TS-IDM’s
state encoder ϕs(s) as the representation learning module on top of two offline RL methods: IQL
and TD3+BC. The results reveal significant performance improvements and variance reduction
when IQL and TD3+BC are trained within the latent state space induced by ϕs(s), suggesting
that TS-IDM learns compact and generalizable representations that benefit policy learning. To
further evaluate the quality of TS-IDM’s representations, in Figure 4(right), we replace TS-IDM in
TELS with other representation learning methods, including autoencoder (“AE-rep”), variational
autoencoder (“VAE-rep”) (Kingma & Welling, 2014), and contrastive learning method SimCLR
(“Contras-rep”) (Chen et al., 2020). The results show that the TS-IDM representation achieves
substantially better performance as compared to AE, VAE, and contrastive representations.

Ablations on regularizer terms in policy optimization. We also conduct ablation experiments in
Figure 5 to validate the effectiveness of the T-symmetry consistency regularizer term ℓT-sym during the
guide-policy optimization process of TELS. The results demonstrate that incorporating this term can
effectively enhance performance while reducing variance, highlighting the importance of utilizing
T-symmetry consistency regularization to promote OOD generalization and learning stability. We
present more ablation experiment results in Section B.5.

5 RELATED WORK

Offline RL faces unique challenges in mitigating the risk of OOD exploitation. Evaluating value
functions in OOD regions often results in inaccurate estimates, which can lead to severe value
overestimation and misguiding policy learning. To mitigate this, most offline RL methods leverage
data-related regularizations to stabilize the learning process. These include explicit behavior constraint
techniques that penalize action divergence (Wu et al., 2019; Kumar et al., 2019; Fujimoto & Gu,
2021; Liu et al., 2024), value regularization schemes to discourage policies from selecting OOD
actions via modifying Bellman update (Kumar et al., 2020; Xu et al., 2022b; Bai et al., 2021; Lyu
et al., 2022) or introducing uncertainty penalities (Wu et al., 2021; An et al., 2021; Bai et al., 2021),
and in-sample learning methods (Brandfonbrener et al., 2021; Kostrikov et al., 2022; Xu et al., 2023;
Mao et al., 2024b), which stabilize training by only using in-sample data for value and policy learning.
While these methods perform reasonably well on datasets with sufficient state-action coverage, they
often struggle in small-sample settings where exploiting OOD generalization is vital for achieving
good performance. Recently, leveraging expressive model architectures such as Transformers and
diffusion models (Wang et al., 2022; Ajay et al., 2022; Janner et al., 2022; Hansen-Estruch et al.,
2023; Li et al., 2024; Mao et al., 2024a; Zheng et al., 2025; Liu et al., 2025) have gained popularity
in offline RL, due to their strong capability to fit complex data distributions. However, these models
are overly heavy and require extensive amounts of data to learn, making them hardly usable for the
small-sample setting.

6 CONCLUSION

We propose a highly sample-efficient offline RL algorithm that learns an optimized policy within
the latent space regulated by the fundamental T-symmetry property. Specifically, we develop a T-
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symmetry enforced inverse dynamics model, TS-IDM, to construct a well-behaved and generalizable
latent space, effectively mitigating the challenges of OOD generalization. By learning a T-symmetry
regularized guide-policy within this latent space, we can obtain the reward-maximizing next state
to serve as the goal state input in the learned TS-IDM for optimal action extraction. Through
extensive experiments, we show that TELS achieves strong OOD generalization capability and SOTA
small-sample performance. Moreover, we empirically show that TS-IDM can also function as a
representation learning model to provide informative representations and enhance the performance
of existing methods under the small-sample setting. One potential limitation of TELS is that strong
ODE and T-symmetry property regularizations, although helpful for capturing fundamental patterns
in data, sometimes could limit the model’s expressive power (see Appendix B.5). Furthermore,
the current TELS framework is primarily optimized for deterministic dynamics. Future studies
could explore improved designs to optimally balance fundamental pattern extraction with model
expressivity, and investigate the adaptation of TS-IDM to capture T-symmetry properties within
stochastic environments.
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APPENDIX

A ADDITIONAL DISCUSSION ON RELATED WORKS

In this section, we present a detailed discussion of the connections and differences between our
proposed method, TELS with TSRL (Cheng et al., 2023), POR (Xu et al., 2022a), and conventional
model-based approaches (Janner et al., 2019; Yu et al., 2020; Kidambi et al., 2020; Yu et al., 2021b;
Wang et al., 2021; Zhan et al., 2022).

Figure 6: Comparison of the architecture between TDM in TSRL and our proposed TS-IDM in TELS.

Connection and differences with TSRL. As illustrated in Figure 6, both TSRL and TELS leverage
the T-symmetry consistency enforcement to construct the latent space. Specifically, in Figure 6(a),
TSRL employs a T-symmetry-enforced dynamics model (TDM), which models system dynamics by
incorporating paired latent ODE forward and reverse dynamics to enforce T-symmetry. In contrast,
Figure 6(b) illustrates our proposed T-symmetry-enforced inverse dynamics model (TS-IDM), which
integrates T-symmetry constraints into both forward and reverse dynamics while incorporating an
inverse dynamics model. We emphasize the main differences between TELS and TSRL as follows:

• Architecture: As presented in Figure 6(a), TDM jointly encodes state-action pairs to form the
latent space, which may capture behavioral biases from the dataset (e.g., expert-specific action
patterns) and impede learning fundamental, distribution-agnostic dynamics patterns in data. In
contrast, Figure 6(b) illustrates that TS-IDM overcomes these limitations by adopting a state-only
modeling approach, focusing on the underlying latent state variations. Additionally, the only
useful component of the learned TDM for downstream policy learning is its encoder ϕ(s, a),
wasting the dynamics-related information captured by the model. In contrast, TS-IDM trains an
inverse dynamics model within the T-symmetry-enforced latent space, which can be reused as an
execute-policy to extract optimal actions.

• Detailed model design: As shown in Figure 6(a), TDM only enforces the ODE property for its
encoder but not the decoder, which could lead to inconsistency between the learned dynamics
and the underlying ODE structure, resulting in inaccurate or misaligned ODE representations. To
address this problem, we introduce the loss term ℓode in Eq. (5) specifically to achieve this goal.
This design is very important as it can greatly enhance the coupling among the different elements
in the model and results in a more stable learning process.

• Training procedure: In TSRL, the TDM encoder and decoders must be pre-trained before joint
training on other components to avoid stability issues. In contrast, our proposed TS-IDM does
not require pre-training; all components can be learned jointly in a single stage. Additionally,
TDM requires adding L1-norm regularization to the parameters of the latent forward and reverse
dynamics models to stabilize the learning process. This is unnecessary in TS-IDM (see Eq. (7)), as
the design of our proposed TS-IDM enables strongly coupled and consistent relationships among
all its internal components. The learning curves of TS-IDM can be found in Appendix F.

• Policy optimization: Since TDM requires both state and action as inputs to derive the latent
representations, it is constrained to Q-function maximization for policy optimization. Consequently,
TSRL adopts the TD3+BC framework as its backbone for policy optimization, which inherently
suffers from over-conservative action-level constraints, particularly in small dataset settings. In
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contrast, TELS performs policy optimization entirely within the compact and generalizable latent
state space derived from TS-IDM, enabling state-level optimization that avoids the limitations of
action-space constraints.

Connection and differences with POR. As discussed in Section 2, while both POR and TELS
share similarities in utilizing a state-stitching approach in state space for policy optimization, they
exhibit the following fundamental differences:

• Original state-space vs. latent state-space optimization: POR relies on policy optimization in
the original state space, which inherently requires sufficient state-action coverage for valid state-
stitching. In contrast, TELS mitigates this limitation by constructing a compact and generalizable
latent space via TS-IDM.

• Unregularized T-symmetry vs. T-symmetry regularized policy optimization: POR optimizes
the guide-policy solely through an AWR formulation (Neumann & Peters, 2008; Peng et al.,
2019), constraining πg to stay close to the dataset via state-stitching as in Eq. (2), but lacks
additional regularization to ensure generalizable state transitions. In contrast, TELS enforces an
additional T-symmetry consistency regularization ℓT-sym, which plays a critical role in preventing
πg from outputting problematic and non-generalizable latent next states, thereby enhancing its
OOD generalizability.

Naïvely combining TSRL and POR does not work. Simply combining TSRL and POR actually
performs notably worse than each method alone, as shown in Table 4. This performance degradation
stems from a fundamental incompatibility between the TDM in TSRL and POR’s state-stitching
mechanism. In contrast, our proposed TELS successfully exploits both T-symmetry and state-stitching,
leading to substantial improvements over all baselines.

Differences from model-based approaches. We emphasize that our proposed TELS framework
fundamentally differs from MBRL methods (Janner et al., 2019; Yu et al., 2020; Kidambi et al.,
2020; Yu et al., 2021b; Wang et al., 2021; Yu et al., 2021a; Zhan et al., 2022; Rigter et al., 2022).
Conventional MBRL methods prioritize learning forward dynamics models to predict future states and
generate rollouts for policy learning. In contrast, our proposed TS-IDM is primarily designed for state
representation learning and action extraction via inverse dynamics, rather than for data generation.
Furthermore, as evidenced by Table 1, in the small-sample setting, limited data samples are insufficient
for the model-based approach to learn an accurate dynamics model, causing high approximation
errors during model rollouts, which significantly deteriorate policy learning performance.

Table 4: Performance comparison between TELS, TSRL, POR, and TSRL+POR on reduced-size D4RL datasets.
The highest score in the row is bolded.

Task TELS TSRL POR TSRL+POR

Hopper-m 77.3 ± 10.7 62.0 ± 3.7 46.4± 1.7 38.5 ± 2.4

Hopper-mr 43.2 ± 3.5 21.8 ± 8.2 17.4± 6.2 25.9 ± 5.9

Hopper-me 100.9 ± 6.8 50.9 ± 8.6 37.9± 6.1 30.3±9.7

Halfcheetah-m 40.8 ± 0.6 38.4 ± 3.1 33.3± 3.2 35.2± 7.5

Halfcheetah-mr 33.2 ± 1.0 28.1 ± 3.5 27.5± 3.6 28.3± 4.2

Halfcheetah-me 40.7 ±1.2 39.9 ± 21.1 34.7± 2.6 38.9 ± 1.6

Walker2d-m 62.4 ± 5.3 49.7 ± 10.6 22.2± 3.6 25.7± 16.9

Walker2d-mr 54.8 ± 6.0 26.0 ± 11.3 14.8±4.2 12.9± 3.2

Walker2d-me 87.4 ± 13.3 46.4 ± 17.4 20.1± 8.6 23.8± 9.8

Antmaze-u 88.7 ± 7.7 76.1 ± 15.6 42.1± 40.4±18.1

Antmaze-u-d 60.9 ± 16.9 52.2 ± 22.1 6.1± 6.7±3.1

Antmaze-m-d 47.2 ± 17.3 0.0 0.0 0.0

Antmaze-m-p 62.9 ± 17.8 0.0 0.0 0.0

Antmaze-l-d 39.8 ± 14.1 0.0 0.0 0.0

Antmaze-l-p 47.3 ± 13.1 0.0 0.0 0.0
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B ADDITIONAL RESULTS

B.1 EVALUATION ON THE FULL DATASETS

We also evaluate the performance of TELS on the original full datasets of D4RL tasks, and the results
are presented in Table 5. Our proposed method achieves comparable or better performance than
existing offline RL methods. Note that although TSRL also adopts a similar T-symmetry regularized
representation learning scheme as ours, it performs poorly in Antmaze medium and large datasets.
Primarily due to its use of the conservative TD3+BC backbone for policy optimization.

Table 5: Normalized scores on full-size D4RL datasets (averaged over the final 10 evaluations with 5 seeds).
The highest score in the row is bolded.

Task BC TD3+BC MOPO COMBO CQL IQL DOGE IDQL POR TSRL TELS (ours)

Hopper-m 52.9 59.3 28.0 97.2 58.5 66.3 98.6 ± 2.1 63.1 78.6 ± 7.2 86.7±8.7 94.3 ± 2.8

Hopper-mr 18.1 60.9 67.5 89.5 95.0 94.7 76.2±17.7 82.4 98.9 ± 2.1 78.7±28.1 99.5 ± 2.3

Hopper-me 52.5 98.0 23.7 111.1 105.4 91.5 102.7± 5.2 105.3 90.0 ± 12.1 95.9±18.4 105.4 ± 8.5

Halfcheetah-m 42.6 48.3 42.3 54.2 44.0 47.4 45.3± 0.6 49.7 48.8 ± 0.5 48.2 ±0.7 44.3 ± 0.4

Halfcheetah-mr 36.6 44.6 53.1 55.1 45.5 44.2 42.8 ±0.6 45.1 43.5±0.9 42.2 ± 3.5 41.1 ± 0.1

Halfcheetah-me 55.2 90.7 63.3 90.0 91.6 86.7 78.7±8.4 94.4 94.7±2.2 92.0±1.6 93.1 ± 1.5

Walker2d-m 75.3 83.7 17.8 81.9 72.5 78.3 86.8 ± 0.8 80.2 81.1 ± 2.3 77.5 ±4.5 81.3± 5.1

Walker2d-mr 26.0 81.8 39.0 56.0 77.2 73.9 87.3 ± 2.3 79.8 76.6 ± 6.9 66.1±12.0 86.0 ± 3.3

Walker2d-me 107.5 110.1 44.6 103.3 108.8 109.6 110.4±1.5 111.6 109.1 ± 0.7 109.8±3.1 110.7 ± 1.4

Antmaze-u 65.0 78.6 0.0 80.3 84.8 85.5 97.0 ± 1.8 93.8 90.6 ± 7.1 81.4 ± 19.2 94.5 ± 10.3

Antmaze-u-d 45.6 71.4 0.0 57.3 43.4 66.7 63.5 ± 9.3 62.0 71.3 ± 12.1 76.5 ± 29.7 79.7 ± 15.3

Antmaze-m-d 0.0 0.0 0.0 0.0 54.0±11.7 74.6±3.2 77.6±6.1 86.6 79.2±3.1 0.0 82.4 ± 4.5

Antmaze-m-p 0.0 0.0 0.0 0.0 65.2±4.8 70.4±5.3 80.6±6.5 83.5 84.6 ±5.6 0.0 86.7 ± 5.7

Antmaze-l-d 0.0 0.0 0.0 0.0 31.6±9.5 45.6±7.6 36.4 ±9.1 56.4 73.4 ±8.5 0.0 75.7 ± 11.2

Antmaze-l-p 0.0 0.0 0.0 0.0 18.8±15.3 43.5±4.5 48.2±8.1 57.0 58.0 ± 12.4 0.0 60.7 ± 13.3

B.2 ADDITIONAL RESULTS ON ADROIT TASKS

We conduct additional experiments on Adroit-cloned/expert tasks. Since these tasks have much larger
datasets (500k) as compared to Adroit-human tasks (5k samples), substantially reducing the learning
difficulty, we therefore test our methods against baselines on a more challenging reduced-size setting
with 10k samples. The results in Table 6 demonstrate TELS still achieves strong performance.

Table 6: Performance comparison of TELS against baseline algorithms on Adroit tasks with limited data (10k).
Numbers at or above 95% of the best in the row are highlighted in bold.

Task Size (ratio) BC TD3+BC MOPO COMBO CQL IQL DOGE IDQL POR TSRL TELS
Pen-cloned 10k (2%) 37.4± 37.6 0.1± 3.0 0.1± 0.1 0.7± 0.2 1.5± 4.8 35.6± 30.5 30.1± 19.7 64.4± 15.1 43.6± 5.8 41.6± 27.5 69.7± 12.6

Pen-expert 10k (2%) 27.6± 21.3 5.2± 2.7 1.2± 0.3 2.5± 0.4 3.6± 4.5 68.9± 24.3 31.1± 19.3 104.6± 3.8 61.2± 21.0 65.6± 22.8 105.7± 12.1

Hammer-cloned 10k (2%) 0.3± 0.4 0.2± 0.1 0.1± 0.1 0.2± 0.1 0.2± 0.1 0.4± 0.2 0.3± 0.1 0.8± 0.3 0.1± 0.1 0.6± 0.3 0.6± 0.2

Hammer-expert 10k (2%) 0.2± 0.1 0.5± 0.2 0.1± 0.1 0.2± 0.1 1.2± 1.1 70.3± 30.3 0.6± 0.3 91.7± 12.9 2.7± 2.6 77.6± 31.2 91.5± 25.9

Door-cloned 10k (2%) 0.1± 0.1 0.3± 0.1 0.2± 0.1 0.1± 0.3 0.2± 0.1 1.5± 0.8 0.5± 0.5 0.1± 0.1 0.1± 0.1 0.1± 0.3 7.6± 2.3

Door-expert 10k (2%) 1.2± 1.1 5.2± 3.1 1.5± 1.2 3.5± 1.1 20.3± 15.7 79.2± 8.8 0.5± 0.1 98.3± 5.5 0.7± 0.3 46.3± 12.5 101.8± 8.5

Relocate-cloned 10k (2%) 0.2± 0.1 0.3± 0.1 0.3± 0.2 0.1± 0.1 0.3± 0.1 0.1± 0.5 0.1± 0.1 0.2± 0.2 0.1± 0.1 0.2± 0.1 0.2± 0.1

Relocate-expert 10k (2%) 0.6± 0.1 0.1± 0.1 0.1± 0.2 1.5± 1.2 0.2± 0.1 31.1± 8.4 0.3± 0.5 87.5± 12.7 0.2± 0.1 45.2± 15.3 85.6± 12.1

B.3 ADDITIONAL OOD GENERALIZABILITY VALIDATION EXPERIMENTS

We further investigate the generalization capabilities of DOGE (Li et al., 2022), IDQL (Hansen-
Estruch et al., 2023), and TSRL (Cheng et al., 2023) under the variation deletion degrees in the
Antmaze environment. Specifically, we train each algorithm on the modified dataset after the deletion
operation. We then evaluate their behaviors by visualizing rollouts over 20 evaluation episodes.

As illustrated in Figure 7, only IDQL occasionally succeeds in reaching the goal under the 0%
deletion setting, while both DOGE and TSRL fail consistently. As the deletion ratio increases to 70%
and 100%, none of the three methods achieves meaningful policy learning. These results highlight the
inherent challenges of this setting, which requires both a compact yet expressive latent representation
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Figure 7: Left: Illustration of the 100k Antmaze-m-d task with multiple deletion areas, where the red cross
denotes the start point, the yellow star denotes the goal locations, and the red shaded areas denote the data
deletion regions. Right: Visualization of the training dataset and policy rollout trajectories generated by trained
policies from various algorithms under varying deletion ratios.

space and a highly generalizable policy capable of operating with extremely sparse and limited data.
While TSRL integrates TDM to distill underlying patterns from the dataset, the scarcity of available
data undermines its action-level constraints approach, preventing it from deriving a viable policy.

B.4 ADDITIONAL RLIABLE PLOTS

To further statistically justify the performance of TELS, we use Rliable (Agarwal et al., 2021b) to plot
the aggregate results across all locomotion tasks with 10k avaliable dataset. As shown in Figure 8,
the results demonstrate that TELS consistently yields the highest score with the minimal optimality
gap compared to all baselines.

Figure 8: Rliable plots for locomotion tasks with 10k dataset over 5 random seeds.

B.5 ADDITIONAL ABLATION EXPERIMENTS

Ablations of β in TS-IDM. We find that a good weighting parameter β value typically corresponds
to low TS-IDM training loss Eq. (7). As shown in Figure 9, β = 0.1 yields the lowest loss for
HalfCheetah, while β = 1 is better for Hopper and Walker2d. Table 7 further confirms that the same
β setting with β = 1 gives the highest score on Hopper and Walker2d, whereas β = 0.1 performs
best on HalfCheetah. This shows that the better the TS-IDM is trained, the higher quality latent
representation can be learned to facilitate downstream policy optimization. This is important, as it
indicates that we do not require any environmental interaction or policy evaluation for β selection.
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Figure 9: The learning curves for training TS-IDM on 10k dataset with different β hyperparameter. The standard
deviations are noted by ±. Numbers at or above 95% of the best in the row are highlighted in bold.

Table 7: TELS performance with different β under
small-sample setting. Numbers at or above 95% of
the best in the column are highlighted in bold.

β = 10 β = 1 (Used) β = 0.1

Hopper-m 77.3 ± 5.4 77.3 ± 10.7 61.4 ± 5.6

Hopper-mr 15.3 ± 6.6 43.2 ± 3.5 19.7 ±3.4

Hopper-me 37.6 ± 17.9 100.9 ± 6.8 64.7 ± 3.3

Halfcheetah-m 32.9 ± 2.3 40.8 ± 0.6 41.2 ± 1.1

Halfcheetah-mr 8.6 ± 1.8 33.2 ± 1.0 34.0 ± 2.2

Halfcheetah-me 7.5 ± 2.2 40.7 ±1.2 41.5 ± 2.1

Walker2d-m 37.2 ± 7.9 62.4 ± 5.3 54.6 ± 8.2

Walker2d-mr 17.1±2.9 54.8 ± 6.0 39.2 ± 8.6

Walker2d-me 20.4 ± 10.4 87.4 ± 13.3 44.7 ± 9.8

Table 8: TELS performance under various weight-
ing terms on 10k Hopper-me dataset.

Weight of
ℓdyn

Weight of
ℓode

Weight of
ℓT-sym

Evaluation scores

1 1 1 100.9 ± 6.8 (Used)

1 1 0.1 56.4 ±0.6

1 0.1 1 51.1 ± 2.2

0.1 1 1 56.2 ± 3.1

1 0.1 0.1 56.3 ± 3.2

0.1 1 0.1 54.8 ± 11.4

0.1 0.1 1 56.1 ± 5.7

Simply looking at the supervised training loss of TS-IDM on offline datasets will already provide a
good sense of the proper scale.

Empirically, we observe that smaller datasets benefit from a relatively larger β, whereas in large
datasets, a smaller β is typically required to reduce training loss. This is as expected, as β controls
the strength of T-symmetry and ODE regularization. Large datasets contain sufficient information
from data samples, thus requiring less regularization, while small datasets benefit from stronger
regularization to enable the extraction of additional information from limited samples. To keep it
simple, in our main results, we use β = 1 for all MuJoCo locomotion tasks in the small-sample
setting without hyperparameter tuning. For tasks with large datasets and other domains, we select β
from the set {0.01, 0.1, 1} as the one with the lowest TS-IDM training loss.

Furthermore, as we have discussed in the main paper, we need to use a single shared β for loss terms
ℓdyn, ℓode, and ℓT-sym. To provide some evidence, we also conducted an extra ablation experiment
by re-weighting each term in Eq. (7) differently as in Table 8. The results confirm that inconsistent
β weighting schemes lead to significant degradation in policy performance and unstable learning,
ultimately resulting in poor outcomes. By contrast, simply using the same β value achieves doubled
evaluation scores. The reason behind this is what we have explained in the main paper, the internal
components of TS-IDM are strongly coupled and have to be regulated at the same strength (i.e., using
the same β). Specifically, both the latent ODE forward and reverse dynamics modules (hfwd,hrvs)
use the same latent actions za from hinv as input. The T-symmetry consistency ℓT-sym is also enforced
on both hfwd,hrvs. These make the latent forward, reverse, and inverse dynamics modules strongly
coupled. Moreover, the state encoder ϕs and decoder ψs also need to satisfy the ODE property as
required in the hfwd and hrvs, as enforced through the loss terms ℓdyn and ℓode respectively. Hence,
if different levels of regularizations are applied to these loss terms, internal inconsistency will emerge
and impair the learning of TS-IDM.
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Impact of regularizer terms η in policy optimization. The hyperparameter η governs the strength
of regularization in TELS, balancing exploration and adherence to dataset states during policy
updates. To evaluate the robustness of TELS, we test multiple η values (η = {1, 5, 10}) to examine
its sensitivity to the state-level behavioral constraint in Eq. (9). Higher η values impose stronger
constraints on the guide-policy, requiring generated states s′ to align closely with dataset states. As
shown in Figure 10, TELS demonstrates consistent robustness across η settings, achieving reliable
performance under varying constraint strengths.

Figure 10: TELS with various η.

Impact of each component in TS-IDM for policy optimiza-
tion. To further validate the impact of the T-symmetry regular-
izer ℓT-sym in Eq. (10), we conduct additional ablation studies
on 100k-sample Antmaze tasks. From the evaluation results
presented in Table 9, the naïve auto-encoder based inverse dy-
namics module “ϕ/ψ + hinv” fails to form a reasonable latent
space, yielding 0 average normalized scores across all Antmaze
tasks. The introduction of latent dynamics models “hfwd” and
“hrvs” provides marginal improvements by capturing partial
system dynamics, yet remains insufficient for effective policy
learning. Notably, enforcing ODE properties on decoders and
applying T-symmetry consistency emerge as the most significant factors driving performance improve-
ments, substantially enhancing the reliability of learned representations for downstream guide-policy
optimization.

Table 9: Ablations on the components of TS-IDM with 100k Antmaze datasets. Numbers at or above 95% of the
best in the row are highlighted in bold.

Antmaze-m-d Antmaze-m-p Antmaze-l-d Antmaze-l-p

ϕ/ψ+ hinv 0 0 0 0
↑ + hfwd, hrvs 23.6 ± 18.4 30.4 ± 9.3 14.4 ± 5.6 7.8 ± 3.4
↑ + ℓode 34.1 ± 15.7 48.7 ± 13.3 20.1 ± 8.9 22.6 ± 16.7
↑ + ℓT-sym 47.2 ± 17.3 62.9 ± 17.8 39.8 ± 14.1 47.3 ± 13.1

Impact of T-symmetry regularizer term in guide-policy optimization with stochastic policy
instantiation. We further conduct ablation experiments in Figure 11(left) to validate the effective-
ness of the T-symmetry consistency regularization term ℓT-sym during the stochastic guide-policy
optimization process of TELS. The results demonstrate that in stochastic policy optimization schemes,
integrating this term significantly improves performance while reducing variance, underscoring the
critical role of T-symmetry consistency regularization in enhancing OOD generalization and training
stability.

Effectiveness of learned representations for guide-policy optimization with stochastic policy
instantiation. As illustrated in Figure 11(right), we evaluate TELS across diverse representation
learning approaches in Antmaze tasks. The results demonstrate that baseline models struggle to
construct meaningful latent spaces as task complexity increases and data scarcity intensifies (with
only 100k usable samples). In contrast, TS-IDM uniquely learns a compact, well-structured latent
space that remains informative and generalizable, providing a more reliable latent space for policy
learning.

B.6 VISUAL ANALYSIS ON THE LEARNED LATENT SPACE

Effectiveness of learned latent state space. To illustrate the compactness and effectiveness of
the learned latent state space through TS-IDM, in Figure 12, we plot the t-SNE visualization of
the original data trajectories of the Hopper-m 10k task, as well as the rollout trajectories of learned
TELS and IQL policies on both the original state space and the latent state space (encoded using our
TS-IDM state encoder). We can clearly observe that the learned latent space is much more compact
and well-behaved. The policy rollout trajectories form clear, continuous line patterns in our learned
latent space, but can be quite noisy in the original state space. Such a more compact and structured
latent space greatly facilitates robust policy learning via latent stitching and OOD generalization.
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Figure 11: Left: Impact of ℓT-sym on policy optimization with 100k Antmaze datasets. Right: Performance of
TELS with different representation models on Antmaze 100k datasets.

Figure 12: The t-SNE visualization of state representations on the Hopper-medium 10k task. The plots compare
the original state space (left) with the latent space encoded by the pre-trained TS-IDM encoder ϕs (right). The
data trajectory samples are colored by reward value. Overlaid points represent rollout trajectories (two episodes
of 1,000 steps each) generated by the TELS policy (green) and the IQL policy (blue).

Also, from the t-SNE visualization, we can observe that the IQL’s rollout trajectories deviate sub-
stantially from the data distribution, generating numerous OOD states that violate the offline dataset
distribution boundaries. Even when projected through the pre-trained TS-IDM encoder, these ir-
rational states remain outside the meaningful latent manifold, elucidating the primary cause of
IQL’s performance degradation in data-scarce scenarios. In contrast, TELS demonstrates superior
state-space utilization by maintaining good alignment with the dataset distribution while effectively
navigating toward high-reward regions.

C IMPLEMENTATION DETAILS

C.1 ALGORITHM PSEUDOCODE

The pseudocode of TELS is listed in Algorithm 1.
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Algorithm 1 Offline RL via T-symmetry Enforced Latent State-Stitching (TELS).
Require: Offline dataset D.
1: / / TS-IDM learning
2: Learning the state encoder ϕs, state decoder ψs, action decoder ψa, latent inverse dynamics hinv , latent

forward and reverse dynamics hfwd and hrvs using the TS-IDM learning objective Eq. (7).
3: Initialize Vθ , Vθ′ , πσ

4: / / Policy training
5: for t = 1, · · · ,M training steps do
6: Sample transitions (s, r, s′) ∼ D and compute their representations (zs, zs′) using the state encoder ϕs.
7: Use (zs, r, zs′) to update the latent state-value function V using Eq.(8).
8: Use (zs, zs′) to update the latent guide-policy πg using Eq. (9) or (10).
9: end for

10: / / Evaluation
11: Get initial state s from environment
12: while not done do
13: Get optimized next state z∗s′ using guide-policy πg .
14: Extract action a using Eq. (11).
15: end while

C.2 IMPLEMENTATION DETAILS OF TS-IDM

Network structure. For all MuJoCo locomotion and Antmaze tasks, we deployed 3-layer feed-
forward neural networks for the state encoder ϕs, latent inverse dynamics module hinv , forward and
reverse dynamics models hfwd and hrvs, and decoder models ψs and ψa for the latent states and
actions. The activation function is ReLU and uses the Adam optimizer to update the parameters.
We present the hyperparameter details of training TS-IDM in Table 10, including the details of the
structure we have implemented as well as the deployed hyperparameters.

ODE property enforcement on ϕs and ψs. We adopt a similar approach to TSRL (Cheng et al.,
2023) to train the ODE enforced forward and reverse dynamic models. Specifically, we compute
the time-derivative of the state encoder ϕs(s) by calculating its Jacobian matrix through vmap()
function in Functorch 2. This allows us to derive the supervision values dϕs(s)

ds · ṡ and dϕs(s
′)

ds′ · (−ṡ)
for the forward dynamics module and reverse dynamics module respectively as in Eq. (4). This
approach implicitly enforces the ODE property on the state encoder ϕs as the encoder is required to
produce state representations that satisfy the ODE constraints. Unlike TSRL, which enforces ODE
properties only on the encoders and not on the decoders, our method further regularizes the state
decoder ψs. Specifically, ψs is trained to decode the predicted latent state variables generated by
hfwd(zs, za) = żs and hrvs(zs′ , za) = −żs ensuring that it also satisfies the ODE constraints in Eq.
(5). To achieve this, we apply the same approach to compute dψs(zs)

dt and train the state decoder
accordingly.

C.3 IMPLEMENTATION DETAILS OF T-SYMMETRY REGULARIZED GUIDE-POLICY

Network structure. For all D4RL MuJoCo-v2 and Antmaze-v1 tasks, we deployed 2-layer feed-
forward neural networks for the guide-policy πg and the value function V . The activation function is
ReLU and uses the Adam optimizer to update the parameters. The parameter details are presented in
Table 11.

Hyperparameters for policy optimization. Under both small-sample and full datasets settings,
we employ a deterministic policy update strategy for MuJoCo locomotion tasks, as defined in Eq. (9),
with learning rates of 1e-4 for both value and policy functions. The normalization term λ is computed
as λα = α/[

∑
si
|V (ϕs(si))|/N ], where α controls the trade-off between value maximization and

policy regularization and N denotes the number of samples in the training batch. For Antmaze tasks,
we employ a stochastic policy optimization strategy, as outlined in Eq. (10), with learning rates of
1e-3 for both the value and policy functions.

2https://pytorch.org/functorch/stable/functorch.html

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 10: Hyperparameters of TS-IDM.

Hyperparameters Value

State encoder hidden units 512× 256
State encoder activation function ReLU
Latent forward module hidden units 256× 256
Latent forward module activation function ReLU
Latent reverse module hidden units 256× 256
Latent reverse module activation function ReLU

TS-IDM latent inverse module hidden units 1024× 1024
Architecture Latent inverse module activation function ReLU

Latent inverse module dropout True
Latent inverse module dropout rate 0.1
State decoder hidden units 256× 512
State decoder activation function ReLU
Action decoder hidden units 512× 512
Action decoder activation function ReLU

Optimizer type Adam
Weight of ℓrec 1
Learning rate 3e-4
Batch size 256

Training Training epoch 1000
Parameters State normalize True

Weight of β Selected from {0.01,0.1,1} as the one with the
lowest TS-IDM training loss (see Figure 9)

Weight decay 0 (MuJoCo locomotion 10k setting)
1e-5 (Other tasks)

Table 11: Structure and training parameters of guide-policy optimization.

Hyperparameters Value

Value network hidden units 1024× 1024
Guide-policy Value network activation function ReLU

structure Policy network hidden units 1024× 1024
Policy network hidden units ReLU

Optimizer type Adam
Target Value network moving average 0.05
Batch size 256
Training steps 100,000

Training State normalize True

Perparameters Weight of τ 0.9 (Antmaze tasks)
0.7 (Other tasks)

Weight of α 10 (Antmaze tasks)
0.01 (Other tasks)

C.4 MODEL COMPLEXITY AND TRAINING TIME.

As we presented the model structure details in Table 10, TS-IDM is actually a relatively small model,
consisting of only 2-layer MLP sub-modules. Its parameter size (~2.8M parameters) is significantly
smaller compared to many recent Transformer-based (~12M parameters) and diffusion-based (~16M
parameters) offline RL methods. To further demonstrate the learning speed of TELS, we present a
comparative analysis of training times with other baseline methods on the hopper-medium-v2 10k
dataset, utilizing the official codebases. All the algorithms are trained on a workstation with an
AMD Ryzen 9 7950X 16-Core Processor, NVIDIA GeForce RTX 4090 GPU, and 16GB of memory,
running on Ubuntu 22.04.2 LTS 64-bit. As illustrated in Table 12, the Jax implementation of TELS
completes training in merely 20 minutes, whereas the PyTorch version requires 120 minutes. This
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result not only matches but often surpasses the efficiency of most baseline methods, underscoring the
exceptional training efficiency of the method.

Table 12: Training time cost comparison on 10k Hopper-m datasets across various algorithms.

Algorithm Dynamics model
training (min)

Policy optimization
(min)

Total run time
(min) Evaluation scores

TELS (JAX) 5 15 20 75.2 ± 6.3

TELS (PyTorch) 20 100 120 77.3 ± 10.7

TSRL (github.com/pcheng2/TSRL) 30 130 160 62.0 ± 3.7

POR (github.com/ryanxhr/POR) - 450 450 46.4 ± 1.7

IDQL (github.com/philippe-eecs/IDQL) - 470 470 44.2 ± 12.1

DOGE (github.com/Facebear-ljx/DOGE) - 410 410 44.2 ± 10.2

IQL (github.com/ikostrikov/implicit_q_learning) - 50 50 46.7 ± 6.5

CQL (github.com/aviralkumar2907/CQL) - 780 780 43.1 ± 24.6

COMBO (github.com/Shylock-H/COMBO_Offline_RL) - 1200 1200 30.2 ± 28.0

MOPO (github.com/junming-yang/mopo) - 780 780 5.5 ± 2.3

TD3+BC (github.com/sfujim/TD3BC) - 240 240 40.1 ± 18.6

BC - 100 100 29.7 ± 11.7

D DETAILED EXPERIMENT SETUPS

D.1 EXPERIMENT SETUP FOR SIMULATION BENCHMARK TASKS

Reduced-size dataset generation. To create reasonably reduced-size D4RL datasets for a fair
comparison, we use the identical small samples as in the TSRL paper (Cheng et al., 2023) for
the locomotion tasks training. For Antmaze tasks, we adopt a similar approach by randomly sub-
sampling trajectories from the original dataset to construct smaller training datasets. Specifically, for
the “Antmaze-umaze” tasks, we randomly sample 10k data points for training, and for the “Antmaze-
medium” and “Antmaze-large” tasks, we utilize 100k random samples as the training dataset of
TELS.

The rationale behind this adjustment is the “medium” and “large” environments are significantly
more expansive than the “umaze” environment. Sampling only 10k data points would likely result
in trajectories that lack the fundamental information necessary to describe the task. Therefore, we
relax the small-sample constraints for these environments to ensure that the reduced datasets at least
contain enough successful trajectories for effective training.

Experiment setups for various representation learning. To validate the effectiveness of the
representations learned by TS-IDM, we integrate it as the representation module in two offline RL
frameworks (IQL and TD3+BC), verifying the usability of the learned latent space as illustrated in
Figure 4(left). Specifically, we process the original states s and next states s′ from the dataset using
the pre-trained state encoder ϕs of TS-IDM to derive the latent representations: ϕs(s) → zs and
ϕs(s

′) → zs′ . Then, train IQL and TD3+BC within the latent space to evaluate their performance
under the small-sample setting.

Furthermore, in Figure 4(right), we benchmark TELS against three established representation learning
baselines (“AE-rep”, “Contras-rep” and “VAE-rep”) to rigorously assess TS-IDM’s representation
quality. Implementation details for all baseline models are provided below:

• “AE-rep”: We implement a naïve autoencoder-based inverse dynamics framework, consisting of a
state encoder and decoders ϕs and ψs to construct the latent state space. As in TELS, the inverse
dynamics model hinv is built within this latent space, serving as the execute-policy. For a fair
comparison, we use the same network parameters for the encoder, decoder, and inverse dynamics
module as in TS-IDM. The “AE-rep” model is trained with a reconstruction loss to capture the
essential features of the input, and the inverse dynamics model is simultaneously trained on the
latent representations to predict actions.
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Figure 13: The layout illustration of the real-world DC cooling control testbed environment.

• “VAE-rep”: The variational autoencoder (VAE) (Kingma & Welling, 2014) is built based on the
“AE-rep” model by introducing additional KL divergence loss terms. Specifically, the encoder
outputs parameters of a Gaussian distribution in the latent space, and the latent representations are
sampled using the reparameterization trick. The VAE is trained using a combined loss function
that includes both the reconstruction loss and the KL divergence loss, which regularizes the latent
space to follow a prior distribution. The inverse dynamic module is trained simultaneously with the
VAE, sharing the latent space and optimizing for both the reconstruction of the input data and the
prediction of actions.

• “Contras-rep”: We utilize the NT-Xent loss (Normalized Temperature-Scaled Cross Entropy
Loss) used in SimCLR (Chen et al., 2020) within the latent representation space on top of the
“AE-rep” model. The overall loss function combines the contrastive loss with the reconstruction loss,
ensuring that the latent space not only captures the structure of the data but also learns semantically
meaningful representations that are robust to variations. The inverse dynamic module is trained
simultaneously within the latent space to predict actions.

D.2 EXPERIMENT DETAILS OF REAL-WORLD INDUSTRIAL CONTROL TEST ENVIRONMENT.

We adapted the figure from (Zhan et al., 2025b) to illustrate the layout structure of the real-world
DC cooling control testbed. As shown in the Section D, the testbed comprises 22 server units and
an inter-rack air conditioning unit (ACU) positioned between Rack 1 and Rack 2, supplemented by
24 temperature and humidity sensors (organized into six monitoring sets) to capture spatial thermal
dynamics within the environment. Notably, the ACU employs compressor-driven cooling, with fan
operation and compressor workload constituting the primary sources of energy expenditure. The
thermal regulation is achieved by modulating the ACU’s entering air temperature (EAT) setpoint to
maintain the cold aisle temperature (CAT) below a predefined safety threshold. The energy-saving
objective is to improve the energy efficiency of the DC’s cooling systems (minimizing the ACLF)
while satisfying thermal safety constraints.

We leverage a dataset of 43k real-world operational samples recorded at 2-minute intervals over
61 days with 105 state-action features. During the training process, we utilize the identical reward
function and follow the same experimental protocols outlined in (Zhan et al., 2025b). To ensure
rigorous benchmarking, we adopt the same challenging thermal constraint (set the CAT threshold
as 22°C) for comparative evaluation of TELS performance. Following the testing protocol in (Zhan
et al., 2025b), we ran our RL policy on the testbed continuously for 2 hours, which issues control
commands every 2 minutes. We collected and aggregated all the energy-saving measurements at
2-minute intervals to calculate the final ACLF metric.

E BROADER IMPACT

While training reinforcement learning (RL) agents on large-scale offline datasets has been extensively
studied, real-world applications often face prohibitive data scarcity and collection costs. This
necessitates offline RL methods that achieve reliable performance in small-sample regimes. To
address this challenge, we introduce a highly sample-efficient offline RL algorithm to learn high-
performing policies from extremely limited data. We empirically validate its efficacy through
deployment on a real-world data center cooling control testbed, establishing its practical viability.
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Our approach highlights a promising pathway for advancing sample-efficient offline RL in resource-
constrained settings. A potential limitation is the inherent risk of unreliable or unsafe actions within
historical datasets, which may mislead policy learning.

F LEARNING CURVES

The following are the learning curves of TS-IDM and the T-symmetry regularized guide-policy
optimization in TELS on the reduced-size D4RL MuJoCo and Antmaze datasets. We evaluate the
policy with 10 episodes over 5 random seeds.
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Figure 14: Learning curves of the overall and each individual loss terms in TS-IDM for Hopper tasks.
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Figure 15: Learning curves of the overall and each individual loss terms in TS-IDM for Halfcheetah tasks.
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Figure 16: Learning curves of the overall and each individual loss terms in TS-IDM for Walker2d tasks.
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Figure 17: Learning curves of policy optimization in TELS for D4RL MuJoCo and Antmaze tasks with reduced-
size datasets. We evaluate the policy within 10 episodes over 5 random seeds.
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