
HeatSnap: A Hot Page-Aware Continuous Snapshots System for Virtual
Machines in Web Infrastructure

Anonymous Author(s)
Submission Id: 255

Abstract

Snapshot technology is crucial for data protection and system recov-
ery in virtualized environments, particularly with the growing need
for continuous snapshots to maintain the integrity of long-running
web-based and distributed applications. However, traditional snap-
shot methods often suffer from performance bottlenecks, and inef-
ficient storage usage. These challenges are closely tied to the way
memory pages are accessed during VM execution, where memory
access patterns show significant disparities between frequently
accessed "hot" pages and less-used "cold" pages.In this paper, we
introduce HeatSnap, a continuous snapshot system designed to
address these issues by leveraging the uneven access frequencies
of memory pages. HeatSnap distinguishes between intensive hot
pages and dirty pages, applying specialized snapshotting and stor-
age strategies to optimize the handling of both hot and cold memory
regions. This approach aims to optimize snapshot efficiency, mini-
mize performance impact on the VM, and decrease storage costs.Our
implementation of HeatSnap on QEMU/KVM demonstrates sig-
nificant improvements in VM performance loss, snapshot duration,
and storage efficiency compared to existing methods, as evidenced
by evaluations on common web and cloud-based workloads.

1 Introduction

In recent years, with the rapid evolution of cloud computing plat-
forms, virtualization has become a core technology, widely applied
in web-scale infrastructure. Through virtualization, these platforms
achieve flexible resource allocation and management, enhance hard-
ware utilization, reduce costs, and offer users elastic computing
environments [12, 18]. To ensure compliance with Service Level
Agreements (SLAs), cloud computing platforms must provide reli-
able data protection and recovery mechanisms. Snapshot technol-
ogy has emerged as a crucial solution for this purpose, capturing
the state and data of virtual machines and saving them as images for
future recovery needs. By leveraging snapshot technology, cloud
platforms can perform data backup, recovery, and migration opera-
tions with increased reliability and flexibility [8, 21, 29].

Continuous snapshot technology builds on traditional meth-
ods, enabling frequent snapshots to enhance data protection and
recovery in large-scale, web-based environments. By employing
continuous snapshots, cloud platforms can perform regular data
backups, minimizing the risk of data loss and improving system
resilience [8, 22, 27, 30]. This approach typically uses incremental
backups, storing only modified data blocks, which conserves stor-
age space and reduces backup time [11]. Additionally, continuous
snapshots offer fast recovery options, enabling web platforms to
restore services from specific time points with minimal disruption.
Existing methods often use stop-copy [7, 31], pre-copy [30], and
post-copy [13] techniques, combined with incremental mechanisms
to store changes between snapshots.

Downtime Duration Perf. Loss Size

Stop-copy Long very Short None Med
Pre-copy Med Long Small Big
Post-copy very Short Med Med Med
HeatSnap Short Short Small Small
Table 1: Snapshot solutions comparison with HeatSnap

For virtual machine snapshots, key evaluation metrics include
VM downtime, duration time, performance loss, and snapshot size.
VM downtime signifies the period during which the virtual machine
is paused for snapshotting, while duration time reflects the overall
time required for the snapshot process. Performance loss quantifies
the performance reduction experienced by the virtual machine (ex-
cluding downtime) during its operation due to snapshot activities,
impacting runtime smoothness and user experience. Snapshot size
indicates the volume of the stored snapshot file. Existing solutions
exhibit certain limitations, as depicted in Table 1.

Stop-copy pauses the VM entirely during snapshot creation,
leading to longer downtime but without extra overhead. Pre-copy
iterates several times to transfer modified memory pages, extending
the snapshot duration as new changes occur in each iteration. Post-
copy saves the VM’s basic state during downtime and transfers
memory pages in the background, competing with other VMs for
CPU and I/O resources, which can degrade performance. Further-
more, existing continuous snapshot methods often neglect storage
costs, a critical factor for ensuring business continuity and avail-
ability.

This study presents HeatSnap, a system that optimizes contin-
uous snapshots by capitalizing on hot page characteristics. The
approach involves addressing two key questions: (1) Identifying
hot page features and associated technical challenges, and (2) In-
corporating hot page traits in snapshot mechanism design.

Initially, we outline three features and challenges of hot pages
during virtual machine execution to tackle the first question. Firstly,
efficiently identifying hot pages from a large pool of memory pages
is a challenge due to the concentrated distribution of hot and cold
pages. Secondly, tracking the dynamic changes in hot pages and
promptly responding to alterations pose significant challenges.
Lastly, managing the fluctuating load of hot pages to maintain
an optimal saving strategy presents an ongoing challenge.

Subsequently, we introduce HeatSnap, a continuous snapshot
system tailored to address the second question. Leveraging the
Post-copy method,HeatSnap implements a mechanism to preserve
dirty pages separately as hot and cold pages. Specifically, during
downtime, a select few hot pages are pre-saved to minimize page
faults during virtual machine operation. Additionally, a dynamically
incremental strategy adjusts storage tactics based on the virtual
machine’s load pressure to maintain a balance between real-time
snapshot performance and virtual machine efficiency. Moreover, a

1

snapshot compression mechanism is devised to reduce snapshot
storage expenditures.

To verify these concepts, we implemented a prototype on QEMU
[25] / KVM [19] and conducted a series of experiments. In the
process, we compared HeatSnap’s performance with simplified
adaptations of existing techniques. Specifically, sRemus is a stream-
lined version of Remus [7] that employs the stop-copy method; sQE
is a streamlined version of Quick-Eviction [10], utilizing pre-copy;
and siConSnap is a streamlined version of iConSnap [13], following
the post-copy strategy. This comparison demonstrated clear im-
provements in performance. HeatSnap reduces snapshot duration
by 17.4% and diminishes VM performance loss by 48.4% compared
to siConSnap. Furthermore, storage costs and snapshot boot time
are slashed by 46.7% and 72.2%, respectively, in contrast to original
methodologies.

The contributions of this article are as follows:
● We summarize the characteristics of hot pages and analyze the
technical challenges they pose to snapshot technologies.
● We present a case of snapshot system integrated with hot page
management, offering an efficient solution for designing hot
page-aware snapshot systems.
● We implemented a prototype called HeatSnap, equipped with a
set of effective techniques, on QEMU/KVM.
● Extensive experiments validate the effectiveness of HeatSnap.

2 Background and Motivation

2.1 Single Snapshot

Most existing snapshot methods rely on stop-copy, pre-copy [7,
30, 31], or post-copy techniques [13–15]. In stop-copy, the VM is
paused to capture its full state, followed by a complete state save,
after which the VM is resumed. This method is commonly used in
virtualization platforms like KVM [19], Xen [2], and VMware [16],
but its extended downtime limits its usefulness in cloud environ-
ments.

Pre-copy was introduced to address this issue, running snapshot
processes concurrently with VM operations to reduce downtime
[4, 17]. Dirty pages are transferred in multiple iterations, with
the VM pausing briefly at the end to flush remaining pages. This
reduces downtime, but in write-heavy workloads, repeated dirty
page transfers can prolong the total snapshot process.

Post-copy, on the other hand, delays memory page transfer [14].
After a brief pause to save device and CPU states, the VM resumes
while pages are transferred in the background. Any modifications
to unsaved pages trigger page faults, which forces the system to
save the page before resuming the VM. Although this method min-
imizes downtime, background transfers compete with the VM for
resources, which can degrade performance, especially in multi-VM
environments with high write activity, impacting user experience
during the snapshot process.

Current research aims to further process snapshot data to min-
imize the IO process overhead during snapshot periods. These
research techniques include memory compression [5], duplicate
page merging [24], and idle page detection [1, 6, 20]. The objective
is to reduce persisting data time in the snapshot storage process
by compressing data size and consolidating duplicate data. How-
ever, these approaches introduce substantial performance overhead

and impact the system’s overall execution. Adaptive methods such
as snapshot buffers and asynchronous writing [13] strive to bal-
ance CPU and IO resources to prevent excessive CPU utilization
by the aforementioned methods. Nonetheless, their effectiveness
diminishes under heavy workloads, potentially creating additional
unnecessary overhead.

2.2 Continuous Snapshots

Currently, continuous snapshots predominantly employ an incre-
mental snapshot mechanism to store the updated data since the
last snapshot, minimizing duplicated data between consecutive
snapshots [7, 9, 11, 31, 34, 37]. Recent research mainly concen-
trates on diminishing redundant data, deferring data availability,
and delaying storage to reduce the size of the incremental data.
This strategy enhances the efficiency of continuous snapshots and
mitigates storage overhead.

Remus [7] specifically introduced an approach using pre-copy
for the initial full snapshot and optimizing stop-copy with vari-
ous techniques for subsequent incremental snapshots to achieve
frequent snapshots. However, although this method facilitates high-
frequency snapshots, it still involves notable downtime due to the
necessity of copying altered memory pages during downtime. Egger
et al. [9] aimed to reduce the snapshot size and duration by exclud-
ing memory pages recoverable from the hard disk during the stop-
copy phase. Despite these efforts, the method results in relatively
prolonged downtime, particularly for memory-intensive operations.
iConSnap [13] implemented a lazy saving mechanism that tracks
dirty page information using a bitmap between snapshots, delaying
saving until the snapshot phase. While this technique lessens the
snapshot size and virtual machine downtime, it impacts virtual
machine performance and snapshot real-time capabilities.

To curb the storage expenses associated with continuous snap-
shots, Ta-Shma et al. [30] proposed discarding all VM states beyond
the accessible window. This simplistic recycling strategy, however,
leads to the loss of valuable information, rendering it impossible
for the VM to revert to a previous state.

2.3 Hot page Characteristic and Challenge

Most mainstream virtual machine snapshot systems treat all mem-
ory pages uniformly, without leveraging the differing access fre-
quencies of pages during VM operations. To address this, we an-
alyzed hot page data across six workloads—Idle, Redis, 7zip, FIO,
Memcached, and MPlayer—summarizing three key characteristics
of hot pages, as shown in Figure 1.

Concentrated cold and hot distribution. The analysis shows
that most memory pages in a snapshot are cold, with a small pro-
portion being hot, and an even smaller fraction having medium
access frequencies. Continuous snapshots primarily involve hot
pages, requiring a more refined method to identify them. Efficiently
locating hot pages at low cost from large memory sets is a key
challenge.

Rapid change. Hot pages shift frequently in real-world work-
loads, driven by transient tasks. As virtual machine operations
rapidly transition between tasks, hot page distributions change
abruptly. Simple sampling methods based on page modification

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Page Dirty Counts

0

10

20

30

40

50

60

70

Pr
op

or
tio

n
(%

)

Idle
Redis
7Zip

FIO
Memcached
MPlayer

(a) Single Snapshot

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Page Dirty Counts

0

5

10

15

20

25

30

35

Pr
op

or
tio

n
(%

)

Idle
Redis
7Zip

FIO
Memcached
MPlayer

(b) Continuous Snapshots

Figure 1: Statistics of Hot pages in the Snapshots of VM Running CommonWorkloads

frequency fail to capture these rapid shifts, making efficient hot
page detection a major challenge.

Large load fluctuations. Hot pages display strong temporal
locality, with high access rates during memory-intensive tasks and
significantly lower rates during less demanding tasks. Adapting
snapshot strategies dynamically to accommodate these fluctuations
is critical for balancing snapshot efficiency and VM performance.

Table 1 outlines the limitations of existing snapshot methods,
which fail to account for varying memory access patterns. This has
motivated the development of a new system that leverages hot page
characteristics to enhance snapshot performance, reduce downtime,
and optimize storage with minimal overhead.

3 HeatSnap Design

3.1 Overview

HeatSnap is a swift, low-overhead, hot page-aware continuous
snapshot system, as depicted in Figure 2. It comprises four key com-
ponents: hot page detection, single snapshot, continuous snapshots,
and snapshot compression mechanism. The hot page detection
mechanism swiftly identifies hot pages and handles hot pages and
cold pages differently during the snapshot process, thereby reducing
snapshot duration. The continuous snapshot employs a dynami-
cally incremental strategy to adjust the number of pages written to
disk based on dirty page generation, ensuring a balance between
performance and availability. The snapshot compression mecha-
nism introduces two lossless techniques to eliminate redundant
data in snapshots, thus reducing storage costs.

Hot page Detection

Single Snapshot

Continuous Snapshots

Space Compression

+
Sampling

Hot Page Cold Page

Hot page
Pre-save

Cold Page Post-save

Page-Fault DMABackground

Dynamic Lazy
Preservation

Snapshot
n

Snapshot
n+1

Finer Granularity Redundancy Merge

Figure 2: HeatSnap Overview

3.2 Hot page Detection

We assert that an effective hot page detection method should exhibit
four key characteristics: low overhead, locality, high accuracy, and
high responsiveness. Low overhead necessitates that the method
minimizes the burden on CPU and memory, particularly by reduc-
ing unnecessary sorting operations. Locality mandates that the
method prioritize recent memory page accesses, assigning more
weight to recent accesses to enhance hot page detection accuracy.
Additionally, high responsiveness demands that the method swiftly
detects alterations in hot pages.

We designed a dynamic working set based on recent page modi-
fications, adjusting the set size and page weights to dynamically
recalibrate the hot page threshold. The core steps of the algorithm
are as follows:

3.2.1 Definition of the Working Set and Page Weight Assignment.
The working set initially consists of the most recent modifications
of a page. We assign weights to the pages in the working set, where
the weights increase as the modification is more recent. The weights
are distributed as follows:

weight = {1, 2, 4, . . . , 2𝑛}

When a page is modified within the working set, its corresponding
weight is incremented. Based on the accumulated modification
history, we assign a dirty page weight to each page, ranging from 0
to 2𝑛+1 − 1.

3.2.2 Initial Threshold for Hot page Identification. The initial thresh-
old is set at 9, meaning that pages with a weight of 9 or higher are
classified as hot pages. This threshold is determined by the fixed
working set size and the modification history of the pages.

3.2.3 Increasing the Threshold and Heat Level. When the system de-
tects an excessive proportion of hot pages due to memory-intensive
tasks, it increases the criteria for classifying a page as a hot page
by expanding the working set.

For example, expanding the working set to 5 results in weights of
1, 2, 4, 8, 8, and the threshold is raised to 19. Under this configuration,
a page must have been modified in at least three of the most recent
five samples to qualify as a hot page.

As the heat level 𝑛 increases, the working set expands to 𝑛 + 3,
and the page weights follow:

weight = {1, 2, 4, . . . , 2𝑛, 2𝑛+1, 2𝑛+1}

The threshold for hot page identification is then calculated as:

𝑇 = 3 × 2𝑛+1 − 1 − 2[︂
𝑛+1
2 ⌉︂

3

Consequently, within the most recent 𝑛 + 3 samples, a page must
have been modified in all but the (𝑛+3)⇑2+1-th most recent sample,
or modified in all of the most recent samples, to be classified as a
hot page.

3.2.4 Heat Level Adjustment Mechanism. The system dynamically
adjusts the heat level through an "increase heat" or "decrease heat"
mechanism, aiming to maintain the desired ratio of hot pages. If
the system detects an oscillation in the heat level, such as "increase-
decrease-increase" patterns, it enters a slow adjustment phase, in
which the threshold is incremented or decremented by 1 unit at
a time. This slow phase lasts for up to 10 samples before switch-
ing back to the fast adjustment phase for larger, more responsive
changes.

This approach ensures that the system dynamically adapts to
varying memory loads, efficiently managing the ratio of hot pages
and minimizing system downtime.

3.3 Single Snapshot

A virtual machine snapshot is crucial for capturing the complete
state of the virtual machine at a specific moment, encompassing the
CPU, memory, disk, and other device states. HeatSnap primarily
emphasizes optimizing the preservation of memory states through
efficient methods tailored to the memory page’s hot or cold status.

Upon receiving a snapshot creation command, HeatSnap ini-
tiates by pausing the virtual machine to lock its state precisely
when the snapshot command is issued. Subsequently, it records the
CPU state, disk state, and other device states. Saving the CPU state
primarily involves preserving register values, while employing the
Redirect-on-Write method for disk and device states, both of which
are swift processes.

Following this, the memory state is archived. During this down-
time, the primary task involves analyzing hot page data, storing
hot pages in a buffer, and enforcing write protection on cold pages.
Given that hot pages are a minority in the memory pool, this proce-
dure is likewise rapid. Once completed, the virtual machine resumes
operation, while a background thread continues saving the remain-
ing pages. Throughout this phase, modifications to write-protected
pages prompt page faults, inducing the passive preservation of al-
tered pages and subsequent removal of their write protection. To
ensure coherence between these actions, a dirty page bitmap is
employed.

3.4 Continuous Snapshots

Continuous snapshots of a virtual machine involve a complete
snapshot at the outset and subsequent modifications. Traditional
incremental snapshot storage methods capture real-time dirty page
data through Copy-on-Write (COW). However, this approach be-
comes problematic during peak virtual machine activity, as the
heightened incremental storage exerts a substantial toll on the
virtual machine’s already burdened performance. In contrast, iCon-
Snap introduces a lazily incremental method that monitors page
modifications between two snapshots, deferring actual data storage
until the following snapshot. While this method mitigates the per-
formance impact of real-time saving, it compromises real-time and
availability of snapshots. In contrast, HeatSnap proposes a dynam-
ically incremental strategy that achieves an optimal equilibrium

Unsaved Hot page

Saved Hot page

Unsaved Cold page

Saved Cold page

Unsaved Modified Page

Saved Modified Page
1. Hot page

Pre-Save
2. Cold page

Post-Save

Snapshot

3.1 VM is extremely idle, degenerates into COW

Interval Snapshot

3.2 Batch is full, save dirty pages

3.3 Timer is triggered, save dirty pages

3.4 VM is extremely busy, degenerates into lazily incremental method

Figure 3: Dynamically Incremental Strategy in Continuous

Snapshots

between immediate performance and overall system performance
by dynamically adjusting to the current virtual machine workload.

As presented in Figure 3, HeatSnap aggregates multiple mod-
ification records into batches and stores dirty page data in batch
units. Adjustments are made to the batch size dynamically based
on the virtual machine’s workload: increasing the batch size dur-
ing high load periods to mitigate incremental saving performance
degradation and decreasing it during low load intervals to enhance
real-time snapshot performance. A periodic timer supervises the
batch status, triggering adjustments accordingly. If the batch fills
before the timer expires, signaling high load, the batch size dou-
bles to reduce disk write frequency and alleviate performance loss.
Conversely, if the timer activates before the batch reaches capac-
ity, indicating low load, the batch size halves to increase the write
frequency and elevate snapshot real-time.

To prevent excessive fluctuation in batch size under extreme
conditions, HeatSnap sets limits on batch adjustments. In times of
extensive idleness, the batch size progressively halves until reaching
one, converging the continuous snapshot strategy to a conventional
COW method with immediate saving for each modification. Con-
versely, during intensive virtual machine activity, the batch size
continually doubles until reaching the upper threshold. In this sce-
nario, the continuous snapshot method transitions into a lazily
incremental method.

3.5 Snapshot Compression

Continuous snapshots result in a proliferation of snapshot files
during long-term operations, leading to substantial increases in
storage costs. To address this, conventional methods typically estab-
lish a time window, restricting the virtual machine state restoration
period and eliminating data older than this window [26]. While ex-
isting optimizations aim to identify and preserve critical historical
data, they do not fully resolve the issue of losing old snapshots. In
response, we present two lossless snapshot compression techniques,
fine-grained compression and redundancy merging, designed to
reduce snapshot storage overhead without compromising data in-
tegrity.

Fine-grained Extraction. Throughout our discussions on mem-
ory hotspots, we have predominantly addressed the page as the
smallest unit. However, within a hot page, modified data may only
occupy a fraction of the entire page. Storing the entire hot page
each time results in redundant data consumption and significant
space wastage. Hence, we advocate for a finer granularity in storing

4

incremental data in continuous snapshots. By saving solely the ac-
tual modified data within the page, a notable reduction in snapshot
space consumption is achieved, facilitating snapshot compression.
The optimal granularity size selection is elaborated on in §5.2.4.

RedundancyMerging. Conversely, when dealing with multiple
single snapshots and virtual machines, it is probable that identical
virtual machines operate the same OS, libraries, and applications
across various snapshots, while simultaneous virtual machines may
run identical software. Consequently, numerous memory pages are
identical. Exploiting this scenario, we exclusively save the actual
data of duplicate pages once and assign references, in the format
𝑣𝑚_𝑖𝑑, 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡_𝑖𝑑, 𝑝 𝑓 𝑛, to replace redundant sections. Compared
to storing complete 4kB page data, this triplet substantially min-
imizes data space, effectively eliminating redundancy. Utilizing
hashing to identify duplicate data, we compute hash values of mem-
ory page data from recent snapshots for each virtual machine.When
saving a new snapshot, if a matching hash result is present in the
hash table, solely a reference to the corresponding memory page is
retained; otherwise, the complete data is stored, and the hash result
is incorporated into the hash table.

4 HeatSnap Implementation

We implemented HeatSnap using QEMU 2.5.0 and Linux 4.15.0,
totaling 2980 lines of C code.

For the background save mechanism, a dirty page bitmap (
dirty_bitmap) was devised to represent all pages requiring preser-
vation. During the intervals between continuous snapshots, an
inc_bitmap logs modified pages. During system downtime, these
modified pages are transferred to the dirty_bitmap for protection,
and the inc_bitmap is then reset. Meanwhile, a background pro-
cess saves the dirty page data based on the updated dirty_bitmap,
enabling the virtual machine to resume normal operation while the
save process continues.

In terms of snapshot compression, we utilized a hash table based
on open addressing to store hash values and related metadata, em-
ploying the MurmurHash3 algorithm with an initial size of ap-
proximately 1 million entries. Additionally, a B+ tree structure
organized and indexed vast metadata, incorporating virtual ma-
chine ID, snapshot ID, and page frame numbers. Data in snapshot
files were compartmentalized into the hash table, metadata index,
and actual page data to enhance compression.

5 Evaluation

5.1 Experimental Setup

For our experimental framework, we utilized QEMU version 2.5.0.
The virtual machine was configured with 2GB of memory and 2
vCPUs. Alpine 3.16, running kernel version 5.15.158-0-lts, served as
the operating system within the virtual environment. Additionally,
the host or physical machine ran on an Ubuntu 16.04 operating
system, with a kernel version of 4.15.0. We further constrained the
CPUs accessible to QEMU to 2 as to emulate an environment with
restricted CPU resources.

Workloads. We selected the following workloads to evaluate
our system’s performance under various tasks relevant to web
infrastructure:

(1) Idle: Measures system behavior when the virtual machine
is inactive, providing a baseline for resource usage.

(2) 7zip: Tests memory usage during data compression, a key
operation for reducing bandwidth in web applications that
handle large data transfers.

(3) Redis: Benchmarks an in-memory key-value store, widely
used in web applications for caching and fast data access,
using YCSB [3] as a workload generator.

(4) FIO: Simulates I/O-intensive tasks to assess storage perfor-
mance, essential for web services that handle high volumes
of data transactions.

(5) Memcached: Evaluates memory performance for caching,
critical for reducing database load and latency in dynamic
web applications, using mcperf [33] as a client.

(6) MPlayer: Streams a 1.5GB video to test the system’s ability
to handle continuous data reading, relevant for web plat-
forms offering media streaming services.

Metrics. As mentioned earlier, we evaluate snapshot perfor-
mance based on the following metrics: stop time, duration time,
and performance loss. We compared HeatSnap with the following
three systems:

(1) sRemus: A system that implements continuous snapshots
using stop-copy and incremental methods (a streamlined
version of Remus [7]).

(2) sQE: A system that implements continuous snapshots using
pre-copy and incremental methods (a streamlined version of
Quick-Eviction [10]).

(3) siConSnap: A system that implements continuous snap-
shots using post-copy and incremental methods (a simplified
variant of iConSnap [13]).

In the following sections, we first test the proposed snapshot op-
timization methods to demonstrate their correctness and potential
for efficiency improvements. Then, we compare the performance
of various snapshot systems under different workloads using our
proposed metrics.

5.2 Key Technique Analysis

5.2.1 Evaluating Hot page Detection. In this section, we evaluate
the accuracy and overhead of theHeatSnap hot page detection algo-
rithm. We define the accuracy as ∑detected ⇑∑real.where ∑detected
is the number of hot pages identified by our algorithm, and ∑real
represents the actual number of hot pages. The actual hot pages are
determined by sampling every 30 seconds, counting accesses over
60 samples, and sorting these counts in descending order.We also
compared HeatSnap with a traditional sorting-based method, de-
noted as HeatSnap+Rank. In this approach, we sample the number
of accesses in the last 10 samples and select a specified proportion
of hot pages based on this sorted list.

As depicted in Figure 4, our technique attains a hotspot detection
accuracy remarkably similar toHeatSnap+Rank, displaying a mere
2% disparity in the 7zip task, which presents the most significant
difference. Notwithstanding this, our method’s temporal overhead
is notably lower than HeatSnap+Rank, with the gap widening as
memory size increases. At a memory size of 2G, our method’s tem-
poral overhead registers at 55ms, just 57.2% of HeatSnap+Rank’s
overhead. As memory size escalates to 32G, the temporal overhead

5

Idle Redis 7zip FIO Memcached MPlayer
80

90

100

A
cc

ur
ac

y
(%

)

HeatSnap+Rank HeatSnap

(a) Accuracy

2G 8G 32G
Memory Size

0

100

200

300

Ti
m

e
C

os
t (

m
s)

HeatSnap+Rank
HeatSnap

(b) Time Cost

Figure 4: Hot page Detection Accuracy and Time Cost

for HeatSnap+Rank surges to 327ms, while ours remains stead-
fast at 55ms – a 272ms advantage over the conventional approach.
Given that the downtime averages only a few hundred milliseconds,
such a discrepancy holds considerable significance.

5.2.2 Evaluating Reaction to Hot page Transitions. We evaluate
the adaptability of our algorithm to hot page transitions through
continuous snapshots. The algorithm’s performance is tested during
a workload shift from Memcached to FIO, focusing on the changes
in hotspot detection accuracy. Snapshots are taken at 30-second
intervals. For comparative analysis, we also utilizeHeatSnap+Rank
to assess its effectiveness in handling hot page transitions relative
to our algorithm.

0 5 10 15 20 25 30
Snapshot #

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

HeatSnap+Rank
HeatSnap

Figure 5: Reaction to Hot page Transitions

Figure 5 shows the temporal changes in hotspot detection ac-
curacy for both our method and the traditional algorithm. Un-
der a Memcached load, both approaches maintain high accuracy.
However, as load changes and hotspot transitions occur, accuracy
declines significantly for both. Our method quickly recovers to
a reliable accuracy level within 5 samples, while the traditional
technique takes 8 samples to reach a comparable accuracy level.

5.2.3 Evaluating Dynamically Incremental Strategy. This section
evaluates our proposed dynamic incremental strategy, focusing
on its feasibility and potential performance trade-offs. The analy-
sis includes continuous snapshots taken bi-minutely across three
scenarios: idle, 7zip, and a combination of CPU spin and 7zip. We
define usability as log10 (100 ⋅

𝑁flush
𝑁dirty

), where 𝑁flush is the number
of times dirty data is flushed to disk during the snapshot interval,
and 𝑁dirty is the number of dirty pages in the same timeframe. A
maximum usability value of 2 corresponds to copy-on-write (COW),
while a value below zero indicates minimal retention of dirty data.
We characterize performance loss as the ratio of additional time
cost to the standard execution time cost.

Figure 6a illustrates the availability of flushing dirty data to disk
over a 30-second duration under various workloads. In the idle

Idle 7zip Mix (50%) Mix (20%) Mix (10%)
0.0

0.5

1.0

1.5

2.0

Av
ai

la
bi

lit
y

Availability
Average Batch Size (log2)

0

2

4

6

8

10

Av
er

ag
e

B
at

ch
 S

iz
e

(lo
g2

)

(a) Availability

Idle 7zip Mix (50%) Mix (20%) Mix (10%)
0

10

20

30

Pe
rf

or
m

an
ce

 L
os

s (
%

)

COW
HeatSnap

(b) Performance Loss

Figure 6: Dynamically Incremental Strategy Performance

workload condition, availability reaches 2, indicating substantial
flushing frequency. However, under the 7zip workload, availability
falls below zero. This is due to the virtual machine’s extreme idle-
ness during the idle workload, prompting our dynamic incremental
strategy to downgrade to the copy-on-write (COW) method, where
every write operation is retained to ensure satisfactory real-time
snapshot performance. In contrast, under the 7zip workload, the
high activity level leads our strategy to revert to a lazily incremen-
tal approach, skipping flushing dirty data between snapshots. In a
mixed scenario, the number of flushes decreases as the proportion
of 7zip increases. Specifically, as the 7zip workload rises from 10%
to 50%, the flushing ratio drops from 1.35 to 0.23, resulting in an
average save granularity that expands from 4.5 pages to 59 pages.

Regarding performance loss, as shown in Figure 6b, the dynamic
incremental strategy defaults to COW in the idle scenario. As the
workload shifts to a blend of CPU spin and 7zip, the performance
loss initially increases with the 7zip proportion, then decreases,
reaching a minimum at full 7zip load. This fluctuation is due to the
dynamic adjustment of batch size. With a low proportion of 7zip,
our strategy employs a smaller batch size for dirty page data saving
to enhance real-time snapshot performance. Consequently, more
resources are allocated for flushing dirty data, resulting in maximal
performance loss. However, as the 7zip proportion increases and the
virtual machine load rises, our algorithm significantly enlarges the
batch size, providing greater CPU and I/O resources to the virtual
machine and effectively reducing performance loss. In contrast, the
COWmethod experiences greater performance loss under increased
virtual machine load, peaking at 29.7% during a heavily loaded 7zip
task, leading to a degraded user experience.

5.2.4 Evaluating the Feasibility of Snapshot Compression Mecha-
nism. As previously discussed, improving granularity can reduce re-
dundant data, leading to smaller snapshot sizes. Therefore, we con-
duct experiments to determine the optimal granularity dimension.
We capture a single snapshot of virtual machines under six distinct
workloads: idle, 7zip, Redis, FIO,Memcached, andMPlayer, and com-
pute the compression ratio of dirty data across various granularities.
Additionally, we analyze the overlap between different task loads
by determining the percentage of memory pages in the snapshots
of virtual machines running each workload that can be traced in the
memory pages of other workloads. We calculate the redundancy
rate of each snapshot, defined as Redundancy Rate = ∑redundant

∑all
,

where ∑redundant is the count of memory pages matching data in
other snapshots, and ∑all is the total count of memory pages.

Figure 8a illustrates that the compression ratio of dirty data
increases as granularity decreases. A significant improvement is
observed when granularity is reduced from 4096B to 1024B, and

6

Idle Redis 7zip FIO Memcached MPlayer
0
2
4
6
8

10
12
14
16
18
20
22
24
26

V
M

 D
ow

nt
im

e
(s

)

sRemus sQE siConSnap HeatSnap

(a) VM Downtime

Idle Redis 7zip FIO Memcached MPlayer
0

5

10

15

20

25

30

35

40

45

D
ur

at
io

n
Ti

m
e

(s
)

sRemus
sQE

siConSnap
HeatSnap

(b) Duration Time

Idle Redis 7zip FIO Memcached MPlayer
0

1000

2000

3000

N
um

be
r o

f P
as

si
ve

 S
av

in
gs siConSnap

HeatSnap

(c) Number of Passive Savings

Figure 7: Snapshot Metrics of Single Snapshot

Idle Redis 7zip FIO Memcached MPlayer
0

20

40

60

80

100

C
om

pr
es

si
on

 R
at

io
 (%

)

64 KB 256 KB 1024 KB 4096 KB

(a) Compression Ratio with Differ-

ent Granularity

Idl
e

Red
is

7z
ip FIO

Mem
cac

he
d

MPlay
er

Red
un

da
nt

Rati
o

Idle

Redis

7zip

FIO

Memcached

MPlayer

72

21

69

41

66

71

5.8 0.35 0.2 4.2 62

5.8 15 0.63 0.01 0.01

5.6 15 20 28 0

5.5 15 20 0.01 0

9.6 14 42 0.01 0.22

71 0.2 0.02 0 0.22

30

40

50

60

70

R
ed

un
da

nt
 R

at
io

 (%
)

0

10

20

30

40

50

60

70

Si
m

ila
rit

y
(%

)

(b) Redundancy Rate of Multi

Snapshots

Figure 8: Evaluating the Feasibility of Snapshot Compression

Mechanism

further to 256B. However, the effect becomes less pronounced when
granularity decreases from 256B to 64B. Thus, a granularity of
256B emerges as the most practical choice, as smaller granularities
yield marginal gains in compression ratios at the cost of increased
overhead.

Figure 8b presents results from multi-virtual machine experi-
ments, revealing a high redundancy rate across most snapshot data,
with over 70% of the pages being redundant. Redis shows the lowest
redundancy rate at 21%, indicating that replacing redundant pages
with references could significantly reduce duplicate data, enhanc-
ing compression. The analysis also highlights a high similarity rate
of around 60% between Idle and MPlayer, suggesting that although
MPlayer frequently modifies memory while reading video files, the
number of modified pages does not increase substantially, leading
to a significant overlap with the Idle state. Additionally, the similar-
ity between the 7zip and Memcached tasks ranges from 30% to 40%,
while the remaining workloads exhibit no significant similarity.

5.3 Macrobenchmark Performance

5.3.1 Single Snapshot. In this section, we evaluate the performance
of four continuous snapshot systems: sRemus, sQE, siConSnap, and
HeatSnap using three metrics: VM downtime, duration time, and the
number of passive savings during post-copy, which directly reflects
performance loss.

VM downtime. As shown in Figure 7a, HeatSnap maintains a
stable downtime of only a few milliseconds across tasks, shorter
than sRemus and between sQE and siConSnap. This is due to Heat-
Snap’s hot page detection, which requires slightly more time than
siConSnap but less than sQE, which processes a larger number of
pages. The downtime is stable due to the efficiency of the hotspot
detection algorithm, which limits the number of pages saved during
downtime.

Duration time. Figure 7b shows that sRemus achieves the shortest
duration time as it saves all pages during downtime. HeatSnap
follows, reducing duration time by 13.3% compared to siConSnap.
This is attributed to efficient hot page saving during downtime and
larger batch sizes for cold page saving. sQE has the longest duration
due to repeated page savings. HeatSnap benefits from avoiding
CPU competition between the VM and the snapshot algorithm,
making its duration time comparable to sRemus even when running
multiple VMs on the same machine.

Passive savings during post-copy. Figure 7c compares passive sav-
ings, triggered when unsaved pages are modified during snapshots.
HeatSnap consistently shows 62.3% fewer passive savings than
siConSnap, with only 19.9% under Idle. This reduction is due to
HeatSnap’s efficient selection of pages to save during downtime, re-
ducing the need for writebacks and minimizing page faults, leading
to better user experience.

5.3.2 Continuous Snapshots. In this section, we evaluate the per-
formance of four continuous snapshot systems: sRemus, sQE, siCon-
Snap, and HeatSnap using 60 continuous snapshots taken at 30-
second intervals. The performance is quantified using three metrics:
VM downtime, duration time, and the number of passive savings dur-
ing post-copy. The results are averaged across all snapshots. For
consistency, the dynamic incremental strategy was deactivated,
and only the lazily incremental method, similar to siConSnap, was
employed.

VM downtime. Figure 9a shows that the VM downtime behavior
for continuous snapshots closely matches that of single snapshots.
sRemus exhibits the longest downtime, followed by sQE, with siCon-
Snap showing the shortest downtime. HeatSnap falls between sQE
and siConSnap. However, compared to single snapshots, the down-
time of HeatSnap relative to siConSnap increases noticeably.

Duration time. As seen in Figure 9b, the results for duration time
also align with the single snapshot scenario. sRemus shows the
shortest duration, followed by HeatSnap, siConSnap, and sQE.
In continuous snapshots, HeatSnap’s duration time is, on aver-
age, 17.9% shorter than siConSnap’s, marking an additional 4.6%
reduction compared to the single snapshot case.

Number of passive savings during post-copy. Figure 9c reveals that
HeatSnap records significantly fewer passive savings than siCon-
Snap across different workloads, averaging 51.6% of siConSnap’s
count, a 10.7% improvement over the single snapshot scenario.

These improvements stem from focusing on hot pages that ex-
perience frequent modifications during downtime. In continuous
snapshots, hot pages represent a larger proportion of the workload,
leading to more pre-saved pages. While this slightly increases VM

7

Idle Redis 7zip FIO Memcached MPlayer
0

2

4

6

8

10

12

14

V
M

 D
ow

nt
im

e
(s

)

sRemus sQE siConSnap HeatSnap

(a) VM Downtime

Idle Redis 7zip FIO Memcached MPlayer
0

5

10

15

20

25

30

35

D
ur

at
io

n
Ti

m
e

(s
)

sRemus
sQE

siConSnap
HeatSnap

(b) Duration Time

Idle Redis 7zip FIO Memcached MPlayer
0

1000

2000

3000

N
um

be
r o

f P
as

si
ve

 S
av

in
gs siConSnap

HeatSnap

(c) Number of Passive Savings

Figure 9: Snapshot Metrics of Continuous Snapshots with 30 s interval

downtime, it results in a notable reduction in both the duration time
and passive savings, thus minimizing performance overhead.

5.3.3 Storage Costs. This section examines two techniques of the
snapshot compression mechanism: fine-grained extraction and re-
dundancy merging. The former is conducted employing the optimal
granularity of 256B, as established in §5.2.5. The aim is to evaluate
the extent to which these methods can optimize the compression
for storage occupancy of snapshot files. The experiments are per-
formed on virtual machine snapshots under various workloads
comprising Idle, 7zip, Redis, FIO, Memcached, and MPlayer.

Idle Redis 7zip FIO Memcached MPlayer
0.0

0.5

1.0

1.5

2.0

Sn
ap

sh
ot

 S
iz

e
(G

B
)

 -71.6%

 -15.7%

 -66.5%

 -46.3%
 -57.4%

 -72.9%

No Compression Redundancy Merging

(a) Fine-grained Extraction

Idle Redis 7zip FIO Memcached MPlayer
0.0

0.5

1.0

1.5

2.0

Sn
ap

sh
ot

 S
iz

e
(G

B
)

 -86.2%

 -12.8%
 -1.7%

 -60.6%
 -71.5%

 -2.1%

No Compression Fine-grained Extraction

(b) Redundancy Merging

No Compression Redundancy Merging Fine-grained Extraction RM+FGE
0

2

4

6

8

10

12

Sn
ap

sh
ot

 S
iz

e
(G

B
)

Snapshot Size
Compression Ratio

0

20

40

60

80

100

C
om

pr
es

si
on

 R
at

io
 (%

)

(c) Redundancy Merging and Fine-grained Extraction

Figure 10: Snapshot Compression Mechanism Performance

Figure 10a shows that the fine-grained extraction method per-
forms well under idle, FIO, and Memcached workloads, yielding
compression rates of 13.8%, 28.5%, and 39.4%, respectively. In con-
trast, other workloads exhibit lower compression due to significant
spatial locality in memory page modifications, where most of the
data in a dirty page is modified. Overall, fine-grained extraction
effectively reduces redundant data in continuous snapshots, achiev-
ing an average compression rate of 60.9% over 12GB of memory
across 6 snapshots.

Figure 10b demonstrates that redundancy merging provides high
compression rates across most workloads, with the exception of
Redis. Other workloads maintain approximately a 50% compression
rate, with idle, 7zip, and MPlayer workloads showing around 30%.
In summary, redundancy merging effectively compresses snapshot
data, reaching an aggregate compression rate of 75.9% over 6 snap-
shot files, with the compression rate increasing as more snapshots
are added.

Finally, as shown in Figure 10c, combining both methods further
compresses redundant data, yielding a 53.4% compression rate for 6
snapshots. This demonstrates that nearly half of the redundant data
is eliminated, underscoring the effectiveness of these techniques in
minimizing redundant snapshot data.

6 Related Works

Hot page Identification. ShuangWu et al. [36] proposed a method
for hybrid-copy migration of hot pages in cloud computing using an
LRU-based algorithm for hotspot detection. MLLM [28] introduced
a technique that utilizes pre-copy or post-copy migration based on
the hot and cold characteristics of data pages, employing a CLOCK
algorithm to monitor page temperature changes. Decongest [35]
created a detection algorithm that uses a write access counter to
identify hot pages by setting a threshold.

Snapshot Techniques. FVMM [32] enhanced traditional stop-
copy and pre-copy methods with template technology to optimize
migration time. For continuous snapshots, existing methods often
use incremental snapshots to minimize redundant data. iConSnap
[13] proposed a lazy incremental saving approach that postpones
incremental saving until each snapshot is created, sacrificing real-
time performance for better virtual machine efficiency.

Storage Compression. Snapshot storage can consume substan-
tial space. Syed Zahed K. et al. [38] introduced an rsync algorithm
that segments data into blocks and generates signatures to eliminate
redundancy. iConSnap [13] addresses the growth of incremental
snapshot data by reducing the granularity of early snapshots with
lower access probabilities. The SnapStore [23] algorithm segments
memory regions to streamline deduplication based on program
memory mapping structure.

7 Conclusion

This study introduces HeatSnap, an effective continuous snapshot
system that exploits the characteristics of hot and cold pages in vir-
tual machine memory access patterns to expedite snapshot saving
process.HeatSnap employs a dynamic hot spot detection algorithm
to pinpoint hot spot pages. For continuous snapshots, HeatSnap
utilizes a dynamically incremental strategy to delicately balance
the operational efficiency of virtual machines with the availability
of continuous snapshots. Furthermore, HeatSnap presents two
snapshot compression techniques (fine-grained extraction and re-
dundancy merging) that significantly reduce the storage overhead
of snapshots.

8

References

[1] Soramichi Akiyama, Takahiro Hirofuchi, Ryousei Takano, and Shinichi Honiden.
2013. Fast wide area live migration with a low overhead through page cache
teleportation. In 2013 13th IEEE/ACM International Symposium on Cluster, Cloud,
and Grid Computing. IEEE, 78–82.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the art of
virtualization. ACM SIGOPS operating systems review 37, 5 (2003), 164–177.

[3] brianfrankcooper. 2024. YCSB. https://github.com/brianfrankcooper/YCSB
[4] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-

tian Limpach, Ian Pratt, and Andrew Warfield. 2005. Live migration of virtual
machines. In Proceedings of the 2nd conference on Symposium on Networked Sys-
tems Design & Implementation-Volume 2. 273–286.

[5] Oracle Corporation. 2024. VirtualBox. https://www.virtualbox.org/
[6] Lei Cui, Zhiyu Hao, Lun Li, and Xiaochun Yun. 2018. SnapFiner: A page-aware

snapshot system for virtual machines. IEEE Transactions on Parallel and Dis-
tributed Systems 29, 11 (2018), 2613–2626.

[7] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson,
and Andrew Warfield. 2008. Remus: High availability via asynchronous virtual
machine replication. In Proceedings of the 5th USENIX symposium on networked
systems design and implementation. San Francisco, 161–174.

[8] George W Dunlap, Samuel T King, Sukru Cinar, Murtaza A Basrai, and Peter M
Chen. 2002. ReVirt: Enabling intrusion analysis through virtual-machine logging
and replay. ACM SIGOPS Operating Systems Review 36, SI (2002), 211–224.

[9] Bernhard Egger, Younghyun Cho, Changyeon Jo, Eunbyun Park, and Jaejin Lee.
2016. Efficient checkpointing of live virtual machines. IEEE Trans. Comput. 65,
10 (2016), 3041–3054.

[10] Dinuni Fernando, Hardik Bagdi, Yaohui Hu, Ping Yang, Kartik Gopalan, Charles
Kamhoua, and Kevin Kwiat. 2016. Quick eviction of virtual machines through
proactive live snapshots. In Proceedings of the 9th International Conference on
Utility and Cloud Computing. 99–107.

[11] Roberto Gioiosa, Jose Carlos Sancho, Song Jiang, and Fabrizio Petrini. 2005.
Transparent, incremental checkpointing at kernel level: a foundation for fault
tolerance for parallel computers. In SC’05: Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing. IEEE, 9–9.

[12] Mohammad Hamdaqa and Ladan Tahvildari. 2012. Cloud computing uncovered:
a research landscape. Advances in computers 86 (2012), 41–85.

[13] Zhiyu Hao, Wei Wang, Lei Cui, Xiaochun Yun, and Zhenquan Ding. 2019. icon-
snap: An incremental continuous snapshots system for virtual machines. IEEE
Transactions on Services Computing 15, 1 (2019), 539–550.

[14] Michael R Hines, Umesh Deshpande, and Kartik Gopalan. 2009. Post-copy live
migration of virtual machines. ACM SIGOPS operating systems review 43, 3 (2009),
14–26.

[15] Takahiro Hirofuchi, Hidemoto Nakada, Satoshi Itoh, and Satoshi Sekiguchi. 2011.
Reactive consolidation of virtual machines enabled by postcopy live migration.
In Proceedings of the 5th international workshop on Virtualization technologies in
distributed computing. 11–18.

[16] Broadcom Inc. 2024. VMware. https://www.vmware.com/
[17] Ardalan Kangarlou, Patrick Eugster, and Dongyan Xu. 2009. VNsnap: Taking

snapshots of virtual networked environments with minimal downtime. In 2009
IEEE/IFIP International Conference on Dependable Systems & Networks. IEEE, 524–
533.

[18] Jussi Kantola and Waldemar Karwowski. 2016. Knowledge service engineering
handbook. CRC Press.

[19] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007. kvm:
the Linux virtual machine monitor. In Proceedings of the Linux symposium, Vol. 1.
Dttawa, Dntorio, Canada, 225–230.

[20] Akane Koto, Hiroshi Yamada, Kei Ohmura, and Kenji Kono. 2012. Towards
unobtrusive vm live migration for cloud computing platforms. In Proceedings of
the Asia-Pacific Workshop on Systems. 1–6.

[21] Jianxin Li, Jingsheng Zheng, Lei Cui, and Renyu Yang. 2014. ConSnap: Taking
continuous snapshots for running state protection of virtual machines. In 2014
20th IEEE International Conference on Parallel and Distributed Systems (ICPADS).
IEEE, 677–684.

[22] Heiner Litz, Benjamin Braun, and David Cheriton. 2016. EXCITE-VM: Extending
the virtual memory system to support snapshot isolation transactions. In Proceed-
ings of the 2016 International Conference on Parallel Architectures and Compilation.
401–412.

[23] Abhisek Panda and Smruti R Sarangi. 2023. SnapStore: A Snapshot Storage
System for Serverless Systems. In Proceedings of the 24th International Middleware
Conference. 261–274.

[24] Eunbyung Park, Bernhard Egger, and Jaejin Lee. 2011. Fast and space-efficient
virtual machine checkpointing. ACM SIGPLAN Notices 46, 7 (2011), 75–86.

[25] qemu project. 2024. QEMU. https://www.qemu.org/
[26] Feng Ren, Kang Chen, and YongweiWu. 2022. libcrpm: Improving the Checkpoint

Performance of NVM. In Proceedings of the 59th ACM/IEEE Design Automation
Conference. 811–816.

[27] Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. 2018. Accelerating
analytical processing in mvcc using fine-granular high-frequency virtual snap-
shotting. In Proceedings of the 2018 International Conference on Management of
Data. 245–258.

[28] Bin Shi and Haiying Shen. 2019. Memory/disk operation aware lightweight
vm live migration across data-centers with low performance impact. In IEEE
INFOCOM 2019-IEEE Conference on Computer Communications. IEEE, 334–342.

[29] Borja Sotomayor, Kate Keahey, and Ian Foster. 2008. Combining batch execu-
tion and leasing using virtual machines. In Proceedings of the 17th international
symposium on High performance distributed computing. 87–96.

[30] Paula Ta-Shma, Guy Laden, Muli Ben-Yehuda, and Michael Factor. 2008. Virtual
machine time travel using continuous data protection and checkpointing. ACM
SIGOPS Operating Systems Review 42, 1 (2008), 127–134.

[31] Yoshi Tamura. 2008. Kemari: Virtual machine synchronization for fault tolerance
using domt. Xen Summit 2008 (2008).

[32] Wen-Hsiu Tsai, Po-Jui Tsao, and Che-Rung Lee. 2022. FVMM: Fast VM Migration
for Virtualization-based Fault Tolerance Using Templates. In 2022 IEEE Interna-
tional Conference on Cloud Computing Technology and Science (CloudCom). IEEE,
9–16.

[33] twitter archive. 2014. twemperf. https://github.com/twitter-archive/twemperf
[34] Long Wang, Zbigniew Kalbarczyk, Ravishankar K Iyer, and Arun Iyengar. 2014.

VM-𝜇checkpoint: Design, modeling, and assessment of lightweight in-memory
VM checkpointing. IEEE Transactions on Dependable and Secure Computing 12, 2
(2014), 243–255.

[35] Rujia Wang, Sparsh Mittal, Youtao Zhang, and Jun Yang. 2017. Decongest: Accel-
erating super-dense PCM under write disturbance by hot page remapping. IEEE
Computer Architecture Letters 16, 2 (2017), 107–110.

[36] ShuangWu, Bei Wang, Ce Yang, Qinming He, and Jianhai Chen. 2016. A hot-page
aware hybrid-copy migration method. In 2016 IEEE International Conference on
Cloud Engineering (IC2E). IEEE, 220–221.

[37] Yaodong Yang, BoMao, Hong Jiang, Yuekun Yang, Hao Luo, and SuzhenWu. 2018.
SnapMig: Accelerating VM live storage migration by leveraging the existing VM
snapshots in the cloud. IEEE Transactions on Parallel and Distributed Systems 29,
6 (2018), 1416–1427.

[38] K Syed Zahed, P Sabitha Rani, U Vijaya Saradhi, and Anupama Potluri. 2009.
Reducing Storage Requirements of Snapshot Backups based on rsync utility. In
2009 First International Communication Systems and Networks and Workshops.
IEEE, 1–2.

9

https://github.com/brianfrankcooper/YCSB
https://www.virtualbox.org/
https://www.vmware.com/
https://www.qemu.org/
https://github.com/twitter-archive/twemperf

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Single Snapshot
	2.2 Continuous Snapshots
	2.3 Hot page Characteristic and Challenge

	3 HeatSnap Design
	3.1 Overview
	3.2 Hot page Detection
	3.3 Single Snapshot
	3.4 Continuous Snapshots
	3.5 Snapshot Compression

	4 HeatSnap Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Key Technique Analysis
	5.3 Macrobenchmark Performance

	6 Related Works
	7 Conclusion
	References

