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ABSTRACT

This work presents a novelty method for generating a random self-similarity curve
by fractal dimension. Fractal dimension is the main feature of self-similarity ob-
jects, which can be used for for efficient representation of complex structures.
Experiments show that the proposed method can be used to design a wire dipole
antenna.

1 INTRODUCTION

The present work proposes a deterministic algorithm to generate a random self-similarity curve,
which was inspired by the box counting method (Falconer, 2003). A fractal is an object whose frac-
tal dimension is greater than its topological dimension (Mandelbrot, 1983). Fractal dimension in a
broad sense characterizes the complexity of a fractal. An algorithm can be considered deterministic
if it is not required to generate a random curve for each dimension value. Related works (Brown
et al., 2010; Ringl & Urbassek, 2013) for generating objects by fractal dimension are not intended
for generating curves. The generation of continuous curves is necessary in some applications, such
as those related to miniature antenna modeling (Tumakov et al., 2020), calculating molecular com-
plexity for drug discovery (von Korff & Sander, 2019), etc.

2 METHOD

The calculation of fractal dimension (Minkowski dimension) d of set F is based on the coverage by
boxes with side ε

d = lim
ε→0

log |Nε(F )|
− log ε

, (1)

where Nε(F ) is set and contains minimum number |Nε(F )| of boxes, which cover the set F .

Box-counting algorithm is the numerical approach for estimation of fractal dimension. The algo-
rithm is based on covering a set with boxes of different sizes and calculating the dimension as the
slope of a straight line, which is constructed using the values of ε and Nε. The calculated dimension
is called the box-counting dimension. To do this, equation 1 is represented as

d log ε+ log |Nε(F )| = 0. (2)

Let us impose a constraint on the connectivity of neighboring elements on the set F . The sequence
E of side of boxes is defined as follows:

E = {3−i}nk=1, (3)

which is that all boxes from the previous step are divided into 9 smaller boxes.

Let a set F (i) be constructed that satisfies the connectivity condition on the subset E(i) =
{ε1, ε2, ..., εi} ⊂ E . At the next (i + 1)-th step, the curve with a step 3 times smaller (accord-
ing to equation 3), which was at i-th step is resampled. As a result, we get a resampled set F̃ (i)

(figure 1b).

From equation 1 follows the number of boxes N(ε, d) = ε−d. At the next step each filled box from
the previous step must be broken into 9 parts and filled L =

⌈
N(εi+1, d)/|Nεi(F

(i))|
⌉

boxes. To do
this, for each box b̃ ∈ Nεi(F̃

(i)) the corresponding subset of the constructed curve M̃ (i) = F̃ (i) ∩ b̃
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(a) Generated curve F (i) on
step i.

(b) Resampled curve F̃ (i). (c) Generated curve F (i+1) on
step i+ 1.

Figure 1: Algorithm steps for generating a random curve on the value of the fractal dimension. The
colored squares mark the starting and ending points of the generated local curves.

Table 1: Root mean squared error (RMSE) and relative mean absolute error (rMAE) for regressional
models of the base frequency f dependent on the length L and fractal dimension d of the dipole arm.

Error Model

linear, by L nonlinear, by L linear, by d

RMSE 65.6 40.6 29.52
rMAE 12.25% 7% 5.14%

is obtained. Take the first m(i)
first ∈ M̃ (i) and the last m(i)

last ∈ M̃ (i) elements of subset M̃ (i).
An example of the first and last curve points inside each box is shown in figure 1b. Generate a
random local curve C = {c1, c2, ..., cL} inside each box (using the recursive Breadth First Search
algorithm), where c1 = m

(i)
first and cL = m

(i)
last. The set F (i+1) is constructed by combining all

local curves. The resulting curve is shown in figure 1c. The process is repeated until the resulting
set F (n) is constructed. To construct the set F (1) the first and last elements are chosen randomly,
without resampling.

3 WIRE DIPOLE MODELING EXPERIMENTS

A symmetric wire dipoles with a linear arm length of 7.5 cm made of a wire with a diameter of 1 mm
are considered. We randomly generate the geometry of the arms, as described in the 2 section, with
the fractal dimension d from 1.1 to 1.7 with a step of 0.003. For each fractal dimension value we
generate two curves: with ε = 3−2 (second iteration of generation) and ε = 3−3 (third iteration of
generation). We did not use more complex curves because such antennas are difficult to produce in
practice. For each generated antenna geometry, we numerically simulate the electrodynamic charac-
teristics (base frequency f and bandwidth BW ). The simulation was performed using professional
computational electromagnetics software.

We fit regression models of electrodynamic characteristics on the length L and fractal dimension d
of the dipole arm. Table 1 shows values of the root mean squared error (RMSE) and relative mean
absolute error (rMAE). The smallest values of RMSE and rMAE corresponds to the linear models
on the fractal dimension.

4 CONCLUSION

The new method for generating a random self-similarity curve by fractal dimension on a set of length
scales is proposed. This approach is used to generate the geometry of the arms for the symmetric
wire dipole antenna. Empirical evaluation demonstrated significant outperformance of linear models
on fractal dimension compared to the nonlinear models on the length of dipole arm.
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segments of the length ε he found that the total length leads to infinity when tends to ε → 0 and the
equation is fulfilled

N(ε, γ) ∼ cε−γ (4)

where N(ε, γ) is the minimum number of length segments ε, which cover the object, and c, γ are
constants.

From equation 4 can be expressed

γ = lim
ε→0

logN(ε, γ)

− log ε
. (5)

3

https://doi.org/10.1016/j.physd.2010.02.018
https://doi.org/10.1016/j.physd.2010.02.018
http://dx.doi.org/10.1002/0470013850
http://dx.doi.org/10.1002/0470013850
https://doi.org/10.1016/j.cpc.2013.02.012
https://doi.org/10.1016/j.cpc.2013.02.012
http://dx.doi.org/10.3390/fractalfract4020025
https://doi.org/10.1038/s41598-018-37253-8
https://doi.org/10.1038/s41598-018-37253-8


Published as a Tiny Paper at ICLR 2024

(a) Fractal dimension d = 1.1. (b) Fractal dimension d = 1.28. (c) Fractal dimension d = 1.64.

Figure 2: Example of a symmetric dipole geometry based on a random second order prefractal.

Box-counting dimension. An arbitrary non-empty bounded set F ⊂ Rd can be covered by a set
Nε(F ) of boxes of a side ε > 0. Then box-counting dimension of the set F is defined as

d = lim
ε→0

log |Nε(F )|
− log ε

, (6)

where Nε(F ) contains minimum number |Nε(F )| of boxes, which cover the set F . The equation 6
can be represented as

d log ε+ log |Nε(F )| = 0. (7)

Equation 7 is the equation of a straight line with slope coefficient d. It is necessary to calculate log ε
and | logNε(F )| to estimate it for different values ε ∈ E. At the same time, it is inconvenient to
operate with the size value of the ε box side, therefore, one often operates with the number of boxes
s = ε−1, that are contained in the side of the grid (for example, when calculating the dimension of
objects in an image). Then equation 7 can be rewritten as

−d log s+ log |Ns(F )| = 0

and write a ratio based in equation 4 and equation 6

N(s, d) = sd, (8)

where d is the value of the fractal dimension.

The set S is often formed as power values. As a result, the value in the set S = {log si}ni=1 will be
distributed evenly.

B VISUALIZATION OF GENERATED CURVES AND RELATIONSHIP BETWEEN
ELECTRODYNAMICS AND GEOMETRIC CHARACTERISTICS

Figure 1 shows the steps of the algorithm for self-similarity curve generation by fractal dimension
value. Figure 1a shows the resulting curve from iteration i. On the next iteration i + 1, the curve
is resampled with less discretization step (figure 1b) and a curve is generated from the first to last
point with length L in each box(figure 1c).

Figure 2 and 3 shows a visualization of generated symmetrical wire dipole geometries for second
and third iteration, retrospectively.

Figure 4 shows the relationship between the base frequency and the geometric features of the dipole
arm. For the relationship with the length of the dipole arm, a linear (figure 4a and nonlinear (fig-
ure 4b) regression model was fitted. For the relationship with the fractal dimension of the dipole arm,
only a linear model (figure 4c) was fitted. Figure 5 shows a similar visualization for the relationship
with base frequency.
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(a) Fractal dimension d = 1.106. (b) Fractal dimension d = 1.292. (c) Fractal dimension d = 1.628.

Figure 3: Example of a symmetric dipole geometry based on a random third-order prefractal.

(a) Linear model dependent on
length L (cm) of dipole arm.

(b) Nonlinear model dependent
on length L (cm) of dipole arm.

(c) Linear model dependent on
fractal dimension d of dipole arm
geometry.

Figure 4: Regression models of base frequnecy f (MHz).

(a) Linear model dependent on
length L (cm) of dipole arm.

(b) Nonlinear model dependent
on length L (cm) of dipole arm.

(c) Linear model dependent on
fractal dimension d dipole arm
geometry.

Figure 5: Regression models of bandwidth BW (MHz).
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