
Direct Multi-Turn Preference Optimization for Language Agents

Anonymous ACL submission

Abstract
Adapting Large Language Models (LLMs) for001
agent tasks is critical in developing language002
agents. Direct Preference Optimization (DPO)003
is a promising technique for this adaptation004
with the alleviation of compounding errors, of-005
fering a means to directly optimize Reinforce-006
ment Learning (RL) objectives. However, ap-007
plying DPO to multi-turn tasks presents chal-008
lenges due to the inability to cancel the par-009
tition function. Overcoming this obstacle in-010
volves making the partition function indepen-011
dent of the current state and addressing length012
disparities between preferred and dis-preferred013
trajectories. In this light, we replace the pol-014
icy constraint with the state-action occupancy015
measure constraint in the RL objective and016
add length normalization to the Bradley-Terry017
model, yielding a novel loss function named018
DMPO for multi-turn agent tasks with theoret-019
ical explanations. Extensive experiments on020
three multi-turn agent task datasets confirm the021
effectiveness and superiority of the DMPO loss.022

1 Introduction023

Developing generalist agents capable of solving024

complex tasks has been a central goal in the arti-025

ficial intelligence community (Reed et al., 2022;026

Team et al., 2024). Recently, Language agents (Yao027

et al., 2023) emerge as a prominent research direc-028

tion, leveraging the considerable potential of Large029

Language Models to address intricate tasks involv-030

ing instruction following (Ouyang et al., 2022),031

action planning (Huang et al., 2022), and tool uti-032

lization (Schick et al., 2023). Nevertheless, the033

substantial disparity between the pretraining task034

of Large Language Models and the requirements of035

agent tasks suggests significant potential for future036

advancements in language agent capabilities.037

Behavioral Cloning (BC) (Pomerleau, 1991) is a038

frequently employed approach to bridge the do-039

main gap by fine-tuning LLMs through expert040

agent trajectories. Recent endeavors in BC (Chen041
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Figure 1: Illustration of DMPO loss, which directly opti-
mizes the RL objective by maximizing the likelihood of
the preferred trajectory over the dispreferred trajectory.

et al., 2023; Zeng et al., 2023; Yin et al., 2023) 042

involve the Supervised Fine-tuning of LLMs on 043

optimal state-action pairs. Although these methods 044

enable swift adaptation of LLMs to agent tasks, 045

BC is notably susceptible to compounding errors — 046

minor errors of the learner accumulate along inter- 047

actions between the agent and environment, leading 048

to performance deterioration in non-deterministic 049

environments (Ross et al., 2011). 050

In alleviating compounding errors, Direct Pref- 051

erence Optimization (Rafailov et al., 2023) has 052

demonstrated remarkable success in the single-turn 053

preference alignment task due to its simple imple- 054

mentation and robustness. DPO optimizes RL ob- 055

jectives by maximizing the likelihood of preferred 056

responses over dis-preferred responses, mitigating 057

the need for continuous interaction with the en- 058

vironment and the training instability commonly 059

associated with traditional RL algorithms (Chris- 060

tianos et al., 2023; Liang et al., 2024). Although 061

there has been an initial endeavor to apply the DPO 062

loss on LLMs for agent tasks (Song et al., 2024), 063

it encounters suboptimal performance, as it is tai- 064

lored specifically for the single-turn bandit setting 065

and is ill-suited for multi-turn agent tasks. 066

This work aims to develop a robust loss func- 067

tion capable of directly optimizing RL objectives 068
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in multi-turn scenarios. The crux of this pur-069

suit involves eliminating the partition function in070

the Bradley-Terry (BT) model (Bradley and Terry,071

1952; Christiano et al., 2017). This entails ensuring072

the partition function’s independence from the cur-073

rent state and neutralizing the impact of the length074

disparity between preferred and dis-preferred tra-075

jectories. To achieve this, we substitute the policy076

constraint with the state-action occupancy measure077

(SAOM) (Johnson et al., 2000) constraint in the078

RL objective and introduce length normalization079

into the BT model. These adjustments culminate080

in the development of a new and simple loss func-081

tion DMPO for multi-turn agent tasks. As shown082

in Figure 1, DMPO directly optimizes the RL ob-083

jective by maximizing the likelihood of preferred084

("win") trajectory over dis-preferred ("lose") trajec-085

tory. Notably, the SAOM constraint has advantages086

in mitigating compounding errors compared to the087

policy constraint (Xu et al., 2020; Ghasemipour088

et al., 2019). Furthermore, the derivation offers a089

theoretical rationale for the efficacy of the length090

normalization technique in DPO loss (Meng et al.,091

2024).092

To summarize, our contributions are threefold:093

• We introduce a new loss function called DMPO,094

which directly optimizes RL objectives in multi-095

turn scenarios, thereby mitigating the compound-096

ing errors associated with BC methods.097

• We provide a theoretical explanation for the effi-098

cacy of the length normalization technique, illus-099

trating how it cancels out the partition function100

in the BT model and improves performance.101

• Extensive experiments on three multi-turn agent102

task datasets validate the effectiveness and the103

superiority of the DMPO loss function.104

2 Related Work105

In this section, we first introduce the in-context106

learning methods and fine-tuning methods of lan-107

guage agents and then review the literature in108

preference-based RL.109

In-Context Learning Inspired by the superior110

in-context learning capabilities of LLMs (OpenAI111

et al., 2024), researchers have designed various in-112

struction prompts for LLMs, equipped with mem-113

ory modules (Zhang et al., 2024), toolkits (Qu et al.,114

2024), and various workflows (Sumers et al., 2023),115

to build language agents for various real-world do- 116

mains. ReAct (Yao et al., 2023) incorporates CoT 117

reasoning (Wei et al., 2022) into action generation. 118

Reflexion (Shinn et al., 2023) and PROMST (Chen 119

et al., 2024) refine the prompt using environment 120

feedback. However, these in-context learning meth- 121

ods fail to fully exploit the potential of LLMs, since 122

most LLMs are not specifically trained for agent 123

tasks. This work focuses on adapting the LLMs to 124

agent tasks through fine-tuning. 125

Agent Tuning Recent studies, including Fire- 126

Act (Chen et al., 2023), AgentTuning (Zeng et al., 127

2023), Lumos (Yin et al., 2023), MIMIR (Deng 128

et al., 2024), AUTOACT (Qiao et al., 2024), and 129

α-UMi (Shen et al., 2024) supervised fine-tuning 130

LLMs with self-instruct or expert trajectories. How- 131

ever, such BC approaches suffer from compound- 132

ing errors when interacting with dynamic envi- 133

ronments. Taking a step further, Pangu (Chris- 134

tianos et al., 2023) and CMAT (Liang et al., 2024) 135

utilize RL technologies to further fine-tune the 136

LLMs, which may result in a complex and unsta- 137

ble training procedure. To simplify the procedure, 138

ETO (Song et al., 2024) and EMMA (Yang et al., 139

2023) directly employ the DPO loss (Rafailov et al., 140

2023) to optimize the RL objective for the agent 141

task. Nevertheless, the DPO loss is designed for 142

single-turn bandit settings and is ill-suited for multi- 143

turn scenarios. Along this line, this work extends 144

the DPO loss in multi-turn scenarios and derives 145

the DMPO loss. 146

Preference-Based RL In multi-turn scenarios, 147

preference-based RL typically starts by explicitly 148

learning a reward function from preference data 149

and then optimizing it (Fürnkranz et al., 2012; 150

Christiano et al., 2017; III and Sadigh, 2022; Shin 151

and Brown, 2021). However, this two-stage learn- 152

ing process presents challenges regarding train- 153

ing efficiency and instability. This work instead 154

presents a single-stage policy learning approach us- 155

ing DMPO loss that directly optimizes a policy to 156

satisfy preferences. While IPL (Hejna and Sadigh, 157

2023) and CPL (Hejna et al., 2023) share a simi- 158

lar idea with our work in eliminating the reward 159

learning stage, their loss functions are limited to 160

trajectory pairs of equal length, significantly re- 161

stricting their applicability. 162
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3 Preliminary163

In this section, we present multi-turn agent task164

formulation and briefly introduce Direct Preference165

Optimization (DPO) loss.166

3.1 Task Description167

The agent task can be formulated as a Markov168

decision process (MDP). A MDP is a 5-tuple169

(S,A, T ,R, γ), where S denotes the state space,170

A denotes action space, T denotes dynamic transi-171

tion function S ×A → S , R denotes reward func-172

tion S ×A → [0, 1], and γ ∈ [0, 1) is the discount173

factor. The goal for the agent is to choose actions174

at each time step that maximize the expected future175

discounted reward E
[∑T−1

t=0 γtr(st, at)
]
, where176

T is the trajectory length.177

In the language agent setting (Christianos et al.,178

2023), the state space and action space are both179

subsets of the language space. For the initial180

state s0 ∈ S, it contains the task instruction and181

prompt. At each time step t, LLMs generate ac-182

tion at according to the policy πθ(at|st) with the183

parameter θ. Then the environment will return184

dynamic feedback ot and transport the state into185

st+1. Note that the new state st+1 is just a simple186

combination of st, at, and ot, and the trajectory187

τ = (s0, a0, s1, a1, · · · , sT , aT ).188

3.2 Direct Preference Optimization189

The aim of the DPO loss is to directly optimize RL190

objectives with KL divergence constraints on the191

policy function:192

max
πθ

Eτ [

T−1∑
t=0

γtr(st, at)]193

− βDKL[πθ(at|st)||πref (at|st)], (1)194

where E is the expectation function, DKL[·||·] de-195

notes the KL divergence between two distributions,196

πref denotes a reference policy, and the β is a pa-197

rameter controlling the deviation from the base198

reference policy πref . The DPO loss is tailored for199

the single-turn preference alignment setting, where200

the trajectory length (T ) is limited to 1.201

Notably, the reward function is learned through202

the Bradley-Terry (BT) model (Bradley and Terry,203

1952; Christiano et al., 2017):204

p(aw0 ≻ al0|s0) =
exp(r(s0, a

w
0 ))

exp(r(s0, aw0 )) + exp(r(s0, al0))
,

(2)205

which gives the probability that the “win” action 206

aw0 is preferred to the “lose” action al0 given the 207

state s0. 208

Then DPO leverages the established closed-form 209

solution for the single-turn formulation of the re- 210

inforcement learning problem in Eq (1) presented 211

in (Ziebart et al., 2008; Ziebart, 2010): 212

π∗(a|s) = 1

Z(s)
πref (a|s)er(s,a), (3) 213

where π∗ denotes the optimal policy and Z(s) de- 214

notes the partition function that normalizes it. We 215

can easily rearrange Eq (3) and substitute it into 216

Eq (2) to get the BT model over policy: 217

p(aw0 ≻ al0|s0) = 218

σ

(
β

πθ(a
w
0 |s0)

πref (a
w
0 |s0)

− β
πθ(a

l
0|s0)

πref (a
l
0|s0)

)
, (4) 219

where the partition function Z(s) is canceled from 220

the BT model and σ is the sigmoid function. The 221

DPO loss obtains the optimal policy π∗
θ by maxi- 222

mizing the likelihood: 223

LDPO = −E(s0,aw0 ,al0)∼D log
[
p(aw0 ≻ al0|s0)

]
,

(5) 224

where D represents the preference dataset. 225

Nonetheless, such concise and elegant derivations 226

are only suitable for single-turn preference opti- 227

mization tasks. As shown in Eq (3), the partition 228

function Z(s) is dependent on the current state s, 229

which precludes its cancellation under the policy 230

constraint in the multi-turn setting. 231

4 Method 232

In this section, we will outline the definition and 233

benefits of the state-action occupancy measure. 234

Subsequently, we will introduce two adjustments 235

to derive the DMPO loss. Finally, we will delve 236

deeper into the analysis of the DMPO loss. 237

4.1 State-Action Occupancy Measure 238

The discounted state-action occupancy measure 239

dπ(s, a) of a policy π describes the distribution of 240

state-action pairs that an agent visits in the space 241

with policy π: 242

dπ(s, a) =
1− γ

1− γT

T−1∑
t=0

γtP(st = s, at = a|π),

(6)
243
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Figure 2: Illustration of expert trajectories and trajec-
tories learned under the constraints of policy and state-
action occupancy measure.

where P(·) denotes the probability and the coeffi-244

cient (1 − γ)/(1 − γT ) is used to normalize the245

probability distribution.246

First, we will provide an intuitive explanation247

of how the SAOM constraint can reduce the com-248

pounding error. In imitation learning, the conven-249

tional SFT learning objective aims to minimize the250

KL divergence between the expert policy and the251

current policy:252

min
πθ

E(s,a)∼dE [DKL(πE(a|s)||πθ(a|s)]

=−max
πθ

E(s,a)∼dE [log(πθ(a|s)],
(7)253

where πE is the expert policy and dE is the SAOM254

with policy πE . As shown in Figure 2, the trajec-255

tories learned under policy constraints are suscep-256

tible to significant compounding error. This vul-257

nerability stems from the fact that expert datasets258

are unable to comprehensively cover all possible259

states. Consequently, the SFT loss leads the model260

to choose random actions in states that are not repre-261

sented in the expert datasets. As a result, the model262

gradually deviates from the expert trajectories after263

the initial error, illustrating the phenomenon known264

as compounding error.265

To alleviate the compounding error, subsequent266

imitation learning research such as (Abbeel and Ng,267

2004; Ghasemipour et al., 2019; Ho and Ermon,268

2016) employ the SAOM constraint:269

min
πθ

E(s,a)∼dE [D(·)(d
πθ(a|s)||dπE (a|s))], (8)270

where different approaches utilize different distri-271

bution distance measures D(·). The strength of272

SAOM constraint lies in its ability to steer action273

selection towards distributions that closely mimic274

expert state-action pairs, especially in unexplored275

states within the expert datasets. Illustrated in Fig-276

ure 2, at state s2, policy constraints lead the model277

to choose actions uniformly, whereas SAOM con-278

straints aim to lead the model toward actions that279

bring the next state back onto the expert trajectory. 280

This effectively mitigates compounding errors and 281

enhances the cumulative reward. 282

4.2 DMPO 283

Inspired by imitation learning, we substitute the 284

policy constraint with the SAOM constraint in 285

Eq (1) and get the following RL objective: 286

max
πθ

E(s,a)∼dπθ (s,a)[r(s, a)] 287

− βDKL[d
πθ(s, a)||dπref (s, a)], (9) 288

where πref represents the reference policy. Similar 289

to (Rafailov et al., 2023), it is straightforward to 290

show that the optimal solution to the RL objective 291

in Eq (9) takes the form: 292

dπ
∗
(s, a) =

1

Z
dπref (s, a) exp(

1

β
r(s, a)), (10) 293

where π∗ represents the optimal policy, Z is the 294

partition function that normalizes the probability. 295

It’s noteworthy that as dπ(s, a) is a function of 296

(s, a) pairs, normalizing it results in the partition 297

functions Z being independent of the current state 298

s. Consequently, Z remains constant for all (s, a) 299

pairs, providing us with the opportunity to elimi- 300

nate them. Easily, we can rearrange Eq (10) into: 301

r(s, a) = β log
dπ

∗
(s, a)

dπref (s, a)
+ β logZ. (11) 302

Similar to Eq (2), we learn the reward function for 303

multi-turn scenarios through the BT model: 304

p(τw ≻ τ l|s0) = 305

σ

(
Tw−1∑
t=0

γtr(swt , a
w
t )−

Tl−1∑
t=0

γtr(slt, a
l
t)

)
, (12) 306

where τw and τ l represent the "win" and "lose" 307

trajectories respectively, Tw and Tl represent the 308

"win" and "loss" trajectory length respectively. 309

However, since Tw ̸= T l, the partition function 310

Z cannot be canceled directly in Eq (12). 311

To overcome this obstacle, we introduce the 312

length normalization technique to Eq (12): 313

p(τw ≻ τ l|s0) = σ

(
1− γ

1− γTw

Tw−1∑
t=0

γtr(swt , a
w
t ) 314

− 1− γ

1− γTl

Tl−1∑
t=0

γtr(slt, a
l
t)

)
. (13) 315
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In this way, we can eliminate the partition function316

Z in Eq (13) by substituting the reward function317

r(s, a) in Eq (11). Then we maximize the likeli-318

hood and obtain:319

LDMPO = −E(s0,τw,τ l)∼D log σ

[
1− γ

1− γTw

Tw−1∑
t=0

320

γtdπθ(swt , a
w
t )

dπref (swt , a
w
t )

− 1− γ

1− γTl

Tl−1∑
t=0

γtdπθ(slt, a
l
t)

dπref (slt, a
l
t)

]
,

(14)

321

where the dπ(st, at) can be further written as:322

dπ(swt , a
w
t ) = γt · P (s0)·323

t∑
k=1

π(awk |swk )P (swk+1|swk , awk ), (15)324

where P (s0) represents the probability of the ini-325

tial state s0 and P (sk+1|sk, ak) denotes the tran-326

sition functions. In general, obtaining the SAOM327

dπ(st, at) is challenging because we do not know328

the transition function P (sk+1|sk, ak) in dynamic329

environments. However, in Eq (14) we simply330

calculate the ratio between the current SAOM331

dπθ(st, at) and the reference SAOM dπref (st, at).332

It is important to note that the transition function333

remains consistent for both, allowing for cancella-334

tion. By substituting the Eq (15) into Eq (14), we335

can obtain the DMPO loss function:336

LDMPO = −E(s0,τw,τ l)∼D log σ

[
Tw−1∑
t=0

ϕ(t, Tw)337

πθ(a
w
t |swt )

πref (a
w
t |swt )

−
Tl−1∑
t=0

ϕ(t, Tl)
πθ(a

l
t|slt)

πref (a
l
t|slt)

]
, (16)338

where the discount function ϕ(t, T ) = (1 −339

γT−t)/(1 − γT ). It’s noteworthy that DMPO340

reweights state-action pairs at various steps using a341

discount function ϕ(t, T ).342

4.3 In-Depth Analysis343

In this subsection, we will explore the advantages344

of the DMPO loss and present some lemmas and345

observations.346

Corollary 4.0.1. The DMPO loss assigns higher347

weights to state-action pairs at early steps, where348

the weight is related to discount factor γ.349

Proof. To prove the lemma, we analyze the gradi-350

ent of the loss function LDMPO according to θ:351

∇θLDMPO = −E(s0,τw,τ l)∼Dσ[Φ(τ
l)−Φ(τw)] 352[

Tw−1∑
t=0

ϕ(t, Tw)∇θ log πθ(a
w
t |swt ) 353

−
Tl−1∑
t=0

ϕ(t, Tl)∇θ log πθ(a
l
t|slt)

]
, (17) 354

where function Φ(τ) =
∑T−1

t=0 ϕ(t, T ) πθ(at|st)
πref (at|st) 355

and ϕ(t, T ) = (1− γT−t)/(1− γT ). The discount 356

function ϕ(t, T ) decreases as t increases and is 357

related to the discounted factor γ. This completes 358

the proof. 359

Corollary 4.0.2. The DMPO loss degenerates into 360

the single-turn DPO loss when the discount factor 361

γ approaches zero. 362

Proof. When γ equals 0, the function ϕ(t, T ) is 1 363

at t = 0, and 0 otherwise, which is equivalent to a 364

single-turn DPO loss. 365

Based on the analysis above, we have the follow- 366

ing observations: 367

Observation 4.0.1. Similar to the DPO loss, the 368

DMPO loss increases the likelihood of the pre- 369

ferred trajectories τw and decreases the likelihood 370

of the dispreferred trajectories τl. 371

Observation 4.0.2. If the reward Φ(τl) of dispre- 372

ferred trajectory is estimated higher by the policy 373

πθ, the weight σ[Φ(τ l)− Φ(τw)] will be larger. 374

Length Normalization Explanation In 375

SimPO (Meng et al., 2024), the effectiveness 376

of the length normalization technique was em- 377

pirically demonstrated. However, a theoretical 378

explanation was not provided. Our derivation 379

shows that it assists in eliminating the partition 380

function. Without length normalization in Eq (??), 381

a length-dependent bias term arises in the BT 382

model, degrading model performance as the 383

disparity in trajectory lengths between preferred 384

and dispreferred samples increases. 385

Further Discussion As discussed in Section 4.2, 386

the optimal solution to the RL objective in Eq (9) 387

takes the form shown in Eq (10). However, it is 388

contended that achieving the optimal solution may 389

not always be feasible when dealing with an arbi- 390

trary reward function r(s, a) within the context of 391

a language agent setting. This limitation arises due 392

to the definition of the new state st+1 as a compos- 393

ite of st, at, and ot, which introduces an inherent 394

constraint on the transition function between states. 395
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Dataset WebShop ScienceWorld ALFWorld

Train 1938 1483 3321
Test-Seen 200 194 140
Test-UnSeen - 134 134

Table 1: Statistics of three agent datasets. “Train”, “Test-
Seen”, and “Test-Unseen” refer to the number of tasks
in each set respectively.

In general, in multi-turn dynamic environments,396

no loss function can rigorously optimize the RL397

objective, and the DMPO loss serves as a good ap-398

proximation. In many cases, the DMPO loss can399

precisely optimize the RL objective in Eq (9).400

5 Experiments401

In this section, we conduct extensive experiments402

on three agent tasks to demonstrate the effective-403

ness of the proposed DMPO loss function. Our ex-404

periments aim to address the following questions:405

• RQ1: Can the DMPO loss function exhibit ro-406

bustness to noisy training trajectories data and mit-407

igate compounding errors?408

• RQ2: How does the DMPO loss function per-409

form compared to other baselines?410

• RQ3: What is the impact of the discount factor411

γ and the trajectory length on the DMPO loss?412

5.1 Experiment Setting413

Datasets Following prior work (Song et al.,414

2024), we conduct experiments on three representa-415

tive agent datasets, including WebShop (Yao et al.,416

2022), ScienceWorld (Wang et al., 2022), and ALF-417

World (Shridhar et al., 2021).418

• WebShop is a simulated shopping website envi-419

ronment where agents find and purchase products420

according to specifications provided in a natural421

language instruction. The final reward r ∈ [0, 1]422

is calculated based on how closely the purchased423

products match the specified criteria.424

• ScienceWorld is an interactive text environment425

that tests agents’ scientific reasoning abilities in426

elementary science experiments with 10 task types.427

The final reward r ∈ [0, 1] is computed based on428

the number of subgoals the agent successfully ac-429

complishes within each task.430

• ALFWorld is a simulated text-based environment431

that enables agents to complete embodied house-432

hold tasks from the ALFRED benchmark (Shridhar433

et al., 2020). The final binary rewards signify the434

completion status of the task.435

All three environments can be formally de- 436

scribed as MDP and conducted by language agents. 437

The statistical details of our datasets are outlined 438

in Table 1. Following (Song et al., 2024), in ad- 439

dition to the in-distribution “seen” test sets, both 440

ScienceWorld and ALFWorld include “unseen” test 441

sets that include out-of-distribution tasks. These 442

additional test sets enable us to evaluate the gener- 443

alization capabilities of different agents. 444

Training Setting We assess the robustness and 445

effectiveness of the DMPO loss function by em- 446

ploying two distinct training scenarios: Noisy set- 447

ting and Clean setting. Following (Song et al., 448

2024), we adopt the experts’ trajectories as the 449

"win" trajectories to form preference trajectory data 450

in both noisy setting and clean setting. Initially, we 451

utilize the LLMs, which have been fine-tuned with 452

expert trajectories, to generate new trajectories on 453

the training set. We observe that the LLMs have 454

a tendency to generate trajectories with repeated 455

actions or meaningless words. In the noisy setting, 456

these noisy trajectories are used as "lose" trajecto- 457

ries for preference data. Conversely, in the Clean 458

setting, we eliminate the noisy trajectories and em- 459

ploy the remaining ones as "lose" trajectories for 460

preference data. 461

Parameter Settings In this work, we utilize two 462

different base models Llama-2-7B-Chat (Touvron 463

et al., 2023) and Mistral-7B-Instruct-v0.2 (Jiang 464

et al., 2023) to build language agents. Follow- 465

ing (Song et al., 2024), we utilize the AdamW 466

optimizer. When supervised fine-tuning the base 467

models to get the reference model, we set the batch 468

size to 64. The learning rate is selected from {1e-5, 469

2e-5, 3e-5} with 3% warm up and a cosine sched- 470

uler. When refining the agents with DMPO loss 471

function, we set the batch size to 32 and tune the 472

hyperparameters β and γ within the ranges of {0.1, 473

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 } and {0.1, 0.2, 474

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99} respectively. 475

We conduct all experiments on 8 NVIDIA A100 476

GPUs. 477

Evaluation Setting Following (Song et al., 478

2024), we evaluate all methods using the ReAct- 479

style interaction format (Yao et al., 2023), which 480

generates both reasoning traces and actions in an in- 481

terleaved manner. For each task, we add 1-shot ex- 482

amples for each task, which can be found in (Song 483

et al., 2024). Unless otherwise stated, we set the 484

decoding generate temperature as 0.0. 485
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Method WebShop ScienceWorld ALFWorld

Seen Unseen Seen Unseen

Llama-2-7B-Chat + DPO 0.641 0.601 0.576 0.474 0.540
Llama-2-7B-Chat + DMPO 0.666 0.619 0.584 0.433 0.550

Mistral-7B-Instructv0.2 + DPO 0.637 0.700 0.629 0.745 0.883
Mistral-7B-Instructv0.2 + DMPO 0.643 0.708 0.651 0.742 0.888

Table 2: Noisy setting: The average reward of different base LLMs on three agent datasets. "Seen" denotes
in-distribution test sets, while "Unseen" denotes out-of-distribution test sets. The results are averaged with three
distinct random seeds. The best results for each base model are highlighted in bold.

Method WebShop ScienceWorld

Seen Unseen

GPT-4* 63.2 64.8 64.4
GPT-3.5-Turbo* 62.4 16.5 13.0

Base* 0.179 0.380 0.310
Best-of-N* 0.638 0.702 0.576
RFT* 0.636 0.716 0.543
PPO* 0.642 0.594 0.517

SFT 0.631 0.568 0.560
ETO 0.698 0.685 0.611

DMPO 0.701 0.724 0.617

Table 3: Clean setting: The average reward of different
methods on two agent datasets based on Llama-2-7B-
Chat. The best results of tuning methods are highlighted
in bold. *Results are taken from (Song et al., 2024).

5.2 Noisy Setting Results (RQ1)486

In the noisy setting, we utilize the noisy trajectories487

as "lose" trajectories for preference data to inves-488

tigate the robustness of the DMPO loss function.489

As shown in Table 2, we evaluate the DMPO loss490

function with two different base models on two491

representative agent tasks and observe that:492

• In all Unseen test sets and most Seen test sets493

for both base models, the DMPO loss function out-494

performs the DPO loss function. This superiority495

stems from DMPO assigning greater importance to496

initial state-action pairs, prioritizing high-quality497

expert actions from the early stages, and reducing498

the influence of noisy "lose" actions in later stages.499

This mitigates the influence of noise, endowing the500

model with enhanced generalization capabilities.501

Meanwhile, the DPO loss is not appropriate for502

multi-turn settings and cannot cancel out the parti-503

tion function in the BT model, thereby resulting in504

its inferior performance.505

• The performance of Mistral-7B-Instruct-v0.2 is506

significantly better than that of Llama-2-7B-Chat507

on Scienceworld and AlfWorld. This observation508

suggests a positive correlation between the effec- 509

tiveness of the base model and its performance 510

enhancement after fine-tuning for agent tasks using 511

the DMPO loss function. 512

5.3 Clean Setting Results (RQ2) 513

In clean setting, we filter out the noisy trajectories 514

and select high-quality trajectories as the "lose" tra- 515

jectories for preference data, enabling us to utilize 516

the DMPO loss function fully. 517

Baselines Following (Song et al., 2024), we com- 518

pare our models trained by DMPO loss function 519

with the following representative baselines. 1) 520

Base: default LLM without tuning. 2) SFT: LLM 521

fine-tuned through supervised learning on expert 522

trajectories. 3) Best-of-N: This approach involves 523

using an SFT-based agent for sampling and se- 524

lecting the trajectory with the highest reward out 525

of N samples. Here, N is specified as 10. 4) 526

RFT (Rejection sampling Fine-Tuning) (Yuan et al., 527

2023): This approach augments the expert trajec- 528

tory dataset by incorporating successful trajecto- 529

ries and subsequently trains the agent on the aug- 530

mented dataset. 5) PPO (Proximal Policy Opti- 531

mization) (Schulman et al., 2017) directly optimize 532

RL objectives to maximize the cumulative rewards. 533

6) ETO (Exploration-based Trajectory Optimiza- 534

tion) (Song et al., 2024) iteratively explores the en- 535

vironment to enhance the training preference data 536

and utilizes DPO loss to learn from preference data. 537

Results Based on the Llama-2-7B-Chat model, 538

we show the comparison results under clean setting 539

in Table 3. Notably, we observe that: 540

• All fine-tuning methods significantly outperform 541

the base model on both datasets, with improve- 542

ments of at least 49%. On Webshop, they even sur- 543

pass the performance of advanced closed-source 544

LLMs. This underscores the significant gap be- 545

tween the pre-training tasks of LLMs and the agent 546
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Figure 3: The effect of hyperparameter γ on the relative
performance of the model trained with DMPO loss on
the WebShop dataset in both noisy and clean settings.

tasks. By fine-tuning LLMs, language agents ex-547

hibit substantial potential for improvement.548

• The model trained using DMPO loss achieved549

optimal performance on both datasets, highlighting550

the effectiveness of DMPO loss in learning from551

preference data. The improvement over the SFT552

model suggests that DMPO reduces the compound-553

ing errors, resulting in higher rewards.554

• The model trained using DMPO loss exhibits555

substantial performance improvements compared556

to the noisy setting, achieving an average increase557

of 5.2% on Webshop and 11.3% on Scienceworld.558

This highlights the importance of selecting high-559

quality "lose" trajectories in constructing prefer-560

ence data, as opting for such trajectories yields561

superior performance.562

5.4 Ablation Study (RQ3)563

Hyperparamter Analysis To verify the impact564

of reweight function ϕ(t, T ) in Eq (17), we tune565

the the hyperparameter γ on WebShop and present566

the results in Figure 3. Our findings reveal that both567

base models achieve optimal performance with a568

smaller γ in the noisy setting and a larger γ in the569

clean setting. According to Eq (17), a smaller γ570

implies that the DMPO loss assigns reduced weight571

to the state-action pairs in later steps. This indi-572

cates that DMPO can balance the impact of noise573

by adjusting the parameter γ. When faced with574

noisy "loss" trajectories, selecting a smaller γ can575

help alleviate noise impact. Conversely, when deal-576

Figure 4: The effect of "loss" trajectories length on the
performance of the model trained with DPO and DMPO
loss in the noisy setting on ScienceWorld. The base
model is Mistral-7B-Instruct-v0.2.

ing with high-quality "loss" trajectories, a larger 577

gamma can be selected to better learn strategies 578

from the state-action pairs in later steps. 579

Length Analysis To examine the impact of tra- 580

jectory length on model performance, we con- 581

ducted an experiment by categorizing the noisy 582

trajectories into three groups based on their maxi- 583

mum length. We ensure that the number of prefer- 584

ence data in each group is the same. As shown in 585

Figure 4, we observe that the performance of the 586

model trained with DPO loss function decreases 587

rapidly as the length of noisy "loss" trajectories 588

increases. In contrast, the model trained with the 589

DMPO loss function exhibits robustness against 590

noisy "loss" trajectory length. This is attributed to 591

the length normalization employed in the DMPO 592

loss, which mitigates the influence of inconsistent 593

lengths between "win" and "lose" trajectories. 594

6 Conclusion 595

In this work, we propose a simple and robust loss 596

function DMPO loss, which directly optimizes the 597

RL objective for multi-turn agent tasks. By sub- 598

stituting the policy constraint with the SAOM con- 599

straint and introducing the length normalization 600

into BT model, we eliminate the partition function 601

in the BT model and derive the DMPO loss func- 602

tion. The SAOM constraint has played a pivotal 603

role in mitigating compounding errors. Meanwhile, 604

this derivation offers a theoretical rationale for the 605

efficacy of the length normalization technique. Ex- 606

tensive experiments on three agent datasets demon- 607

strate the effectiveness of DMPO loss, highlighting 608

its capability to reduce compounding errors and its 609

resilience to trajectory length disparity. 610
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7 Limitation611

This paper primarily focuses on issues when fine-612

tuning LLMs on the agent tasks and derives a sim-613

ple and robust loss function. However, our study614

has several limitations: 1) We solely concentrate on615

turn-wise task formulation which results in sparse616

rewards for LLMs. Exploring token-wise task for-617

mulation as suggested in (Rafailov et al., 2024)618

would be a valuable avenue for future investigation.619

2) The experiments in this work are conducted us-620

ing 7B-sized models on simulated datasets. Future621

experiments on larger models and datasets can pro-622

vide stronger validation of our conclusions.623

8 Ethical Considerations624

In this paper, we present a new DMPO loss function625

for refining LLMs in agent tasks, without bringing626

forth additional ethical dilemmas. We utilize pub-627

licly accessible data while conscientiously steering628

clear of sensitive information. Additionally, the629

use of LLMs could perpetuate unnoticed societal630

biases. We suggest thorough risk assessments and631

advise users to be mindful of the potential risks632

linked to model deployment.633
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A Case Study 990

In this part, we compared the performance of DPO and DMPO using an example from WebShop. In 991

the example, DPO lost the price information required in the first step of the answer. In contrast, DMPO 992

provided comprehensive answers in the initial steps, leading to a successful outcome. 993

Case Study of WebShop

DPO
Task Instruction: I want green modern velvet
dining chairs for the dining room, and price
lower than 200.00 dollars
Thought 1: I should search for g̈reen modern
velvet dining chairsf̈irst.
Action 1: search[green modern velvet dining
chairs]
Observation 1: <searching results>
Thought 2: The chair with the code
B08TW9LTLM seems to be a green modern
velvet dining chair within the price range. I
should click on it to get more information.
Action 2: click[B08TW9LTLM]
Observation 2: <product details>
Thought 3: The item has options for different
quantities and colors. I should select the quan-
tity that matches my needs.
Action 3: click[2]
Observation 3: <product details>
Thought 4: Now I should click on the B̈uy
Nowb̈utton to purchase the item.
Action 4: click[Buy Now]
Reward: 0.33

# The selected item does not meet the price
requirement.

DMPO
Task Instruction: I want green modern velvet
dining chairs for the dining room, and price
lower than 200.00 dollars
Thought 1: I need to find green modern velvet
dining chairs that are less than $200.00, so I’ll
start by searching for that specific description.
Action 1: search[green modern velvet dining
chairs]
Observation 1: <searching results>
Thought 2: There are several options, but many
are over my budget. The ZHENGHAO Mod-
ern Velvet Dining Chairs Set of 2 for $173.99
seems to fit my criteria, even though it’s slightly
over my budget. I’ll click on it to see more de-
tails.
Action 2: click[B07R9KFCKY]
Observation 2: <product details>
Thought 3: This set of chairs is available in
emerald green, which is the color I want. I’ll
select this color option.
Action 3: click[emerald green]
Observation 3: <searching results>
Thought 4: Now I need to decide if I want a
set of 2 or a set of 4. Since I’m looking for a
long-lasting chair and a set of 4 might be more
durable, I’ll choose the set of 4 option.
Action 4: click[set of 4]
Observation 4: <searching results>
Thought 5: I’ve selected the color and the set of
chairs I want, and the price is slightly over my
budget. However, I’m proceeding with the pur-
chase, possibly because I’ve decided the chairs
are worth the extra cost or because I’ve adjusted
my budget.
Action 5: click[buy now]
Reward: 1.0

994

Figure 5: Case study of WebShop.
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