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Figure 1: Attributions on ImageNet. Attributions computed as distributions across classes are object-
specific and visually ground correct target objects, are instance-specific, identifying features that
are relevant on a by-part-basis, and are class-discriminative, yielding features that separate closely
related classes. They further reveal shared concepts between closely related classes. In contrast,
the standard approach of computing attributions on the logit of the predicted class does not reveal
any of these properties.

ABSTRACT

Neural networks are regularly employed in high-stakes decision-making, where
understanding and transparency is key. Attribution methods have been developed
to gain understanding into which input features neural networks use for a spe-
cific prediction. Although widely used in computer vision, these methods often
result in unspecific saliency maps that fail to identify the relevant information that
led to a decision, supported by different benchmarks results. Here, we revisit
the common attribution pipeline and identify one cause for the lack of specificity
in attributions as the computation of attribution of isolated logits. Instead, we
suggest to combine attributions of multiple class logits in analogy to how the soft-
max combines the information across logits. By computing probability distribu-
tions of attributions over classes for each spatial location in the image, we unleash
the true capabilities of existing attribution methods, revealing better object- and
instance-specificity and uncovering discriminative as well as shared features be-
tween classes. On common benchmarks, including the grid-pointing game and
randomization-based sanity checks, we show that this reconsideration of how and
where we compute attributions across the network improves established attribu-
tion methods while staying agnostic to model architectures.

1 INTRODUCTION

Neural Networks are prime models for decision-making, yet are inherently opaque. Especially in
high-stakes prediction, but also in a more general context, there is a growing need for transparent
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reasoning that provides the user with an understanding of the model’s decision. In the context of
Explainable Artificial Intelligence (XAI), explanations that describe which input features, such as
image regions, are used for a prediction. This group of approaches is coined attribution methods as
they attribute importance of input features to the output of a model and are among the most popular
in XAI and used in high-stakes domains such as medical imaging |Borys et al.[(2023)).

However, it has been shown that these post-hoc explanations have severe shortcomings; while the
features often seem sensible, they turned out to not properly model the class-relevant features used
by the network Rao et al.| (2022a). Thus, the explanations failed in providing the desired informa-
tion on which input features were actually relevant for the classification. Here, we investigate the
causes of this shortcoming and find that the existing attribution methods are actually capable of
discovering class-relevant features, if only we use them right: the problem is how these methods
are applied. In models for image classification, attributions are typically computed on the logit of
the predicted class. This is, however, not the true classification — the final prediction is determined
through the softmax considering all class logits. Computing attributions instead directly on the soft-
max gradient comes with huge numerical issues as the gradient vanishes as networks become more
confident. Considering one of the example images in Figure 1, we see that seemingly class unrelated
features are highlighted when visualizing a logit in isolation, for example the full animal face for the
class lynx. The subsequent softmax of the classification head would, however, consider the cougar
logit in the denominator, thus each of its features, here the face, would have a negative impact on
the classification of the lynx.

To overcome this issue, we suggest to compute distributions of attributions over multiple classes in
each spatial location (see Fig. 2 bottom). This change in how attribution methods are applied has
only little computational overhead, is training-free, applicable to any existing attribution method,
and agnostic to architectures. The resulting saliency maps on standard vision benchmarks qualita-
tively provide much more focused and class-relevant information across different models, including
convolutional and Transformer-based architectures (see Fig. 4). Picking up on the lynx example, we
see that when we consider the distribution of attributions across classes, the facial features have no
relevance for the lynx class, as most of the probability mass is located at the cougar class.

Quantitatively, this reconsideration of the standard attribution pipeline improves the ability to re-
trieve correctly localized attributions in the grid pointing game |Rao et al.,| (2022a), improves in
insertion ablations [Kapishnikov et al.|(2019), and increases robustness to randomization-based san-
ity check |Adebayo et al.| (2018). Hence, our approach enables identifying the actual class-relevant
features that a network uses for prediction, supercharging any existing attribution method.

2 RELATED WORK

Research in XAI gave rise to three main approaches to discover prediction-relevant input features.
Perturbation techniques such as RISE|Petsiuk et al.|(2018)), extremal perturbations/Fong et al.|(2019),
and SHAP [Lundberg & Lee| (2017) probe model behavior by modifying inputs. While effective,
these methods are computationally expensive, often requiring multiple forward passes and signif-
icant processing time and often consider input features independently. Approximation techniques,
such as LIME Ribeiro et al.|(2016) and FLINT [Parekh et al.| (2021)), create interpretable surrogate
models to mimic complex networks locally. Such surrogates can, however, largely differ from the
target model reasoning, limiting their ability to accurately capture the prediction dependencies.

The third category, activation- and gradient-based attribution methods, strikes a balance between
efficiency and fidelity by leveraging the network’s internal computation graph. Several approaches
have been proposed based on gradients (InputxGradient, Integrated Gradients, GBP) |Simonyan
et al.| (2014); |Sundararajan et al.| (2017); Zhuo & Ge| (2024); |Springenberg et al.| (2015) or upsam-
pling of feature maps taking class information into account, such as GradCAM, |Selvaraju et al.
(2017) or LayerCAM lJiang et al.| (2021). A seminal approach considering flow of activation values
across the network under a conservation property is Layer-wise Relevance Propagation (LRP) Bach
et al.| (2015), which however requires architecture-specific adaptations |Otsuki et al.[(2024)); Chefer
et al.| (2021a). Similarly, DeepLift |Shrikumar et al.| (2017) uses reference activations to determine
neuron importance through custom backpropagation procedures. In the context of transformers,
recent approaches focus on the idea of attention roll-out, which reflects the propagation of informa-
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Figure 2: Reconsidering how to apply attributions. For an image classification, typically done with a
softmax classification head on top of an image encoder (top left), the standard approach to generate
attribution maps as explanation for the decision-making is considering the logit of the predicted
class (bottom left), ignoring that softmax incorporates logits of all classes for the final prediction.
We suggest to compute distributions of attributions across classes by computing the softmax of
attribution values across all logits, reflecting the network decision-making (right). Network parts
considered for the attribution computation are colored in

tion through the layers by multiplying each of their transition matrices, including Bi-attn |Chen et al.
(2023)), T-attn Yuan et al.| (2021b), and InFlow Walker et al.| (2025b).

Because of their widespread use, benchmarking attribution methods in computer vision has been of
growing interest. [Ancona et al. (2018)) study attribution sensitivity and formally proved equivalence
between approaches under specific assumptions, wheras |[Rao et al.| (2022b) systematically studied
how faithful attributions are to an underlying prediction using the grid-pointing game. Insertion ab-
lations|Kapishnikov et al.|(2019) instead study the effect of insertion and deletion of attributed pixels
on downstream performance as a proxy for attribution quality. |Adebayo et al.|(2018) evaluate attri-
bution faithfulness based on stability of explanations with randomization of network components,
which was later critically revisited |Binder et al.| (2023)). We will use each of these metrics to study
the impact of our suggested attribution approach. Orthogonally, different learning objectives have
been suggested to generally improve post-hoc explanation quality such as attributions |Gairola et al.
(2025)), which we later relate to our findings.

3 RECONSIDERING THE ATTRIBUTION PIPELINE

Post-hoc attribution methods have been shown to perform poorly in recovering the classification-
relevant information from the network [Rao et al.| (2022a); [Bohle et al.| (2022)) and arguably fail
network perturbation based sanity checks |Adebayo et al.| (2018). Commonly, the attributions for
a target class—usually the predicted class—are computed using its logit as a target, which, however,
means that the attribution will ignore the information from the other logits (see Fig. 2). The ac-
tual classification uses all logits, with softmax contrasting the logits between classes, which means
we can simply not expect attributions to recover class-relevant features! We, hence, suggest to re-
consider this common paradigm and propose to compute attributions for logits of multiple classes
and then compute distributions over those at each spatial location, similar to how a classification
head computes an output distribution over multiple logits. By doing so, we uncover that common
attribution methods could retrieve class-specific information; however, they are hidden when look-
ing at individual logits. Before describing this approach more formally, we introduce the necessary
notation.

3.1 NOTATION

We consider an input z € Z, where here T = R¥>*W >4 ig typically an image of height H, width
W, and d channels. We describe a classification model as a function S : Z — R, where C is the
number of classes. The final discrete classification is usually performed as an argmax over S(z).

An attribution method provides a map H : Z x S x {1,...,C} — T’ that for an input, a model,

! Attribution methods for outputs are usually applied to logits, as numerical issues caused by the flatness of
the softmax function at the (important) regions hinder using it directly as a target.
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and optionally a target class provides an explanation of a similar shape as the input (for images, we
aggregate attributions across the channel dimension). It attributes scores to each feature 7 in the input
describing in how far S uses x; for the classification (or target class). This broad definition covers
all attribution methods discussed in the related work section, examples are Inputx Gradient (IxG)
as Hna(z, S c) =0 d Se or GradCAM as Haradcam(z, S, ¢) = ReLU(D ., ak AF), where of =

Z Z Z i Ak are the importance weights computed by global average pooling of the gradients.

We will focus on the typical Computer Vision application in the following, so Z = R7*Wxd byt
note that the underlying idea generalizes to different input domains Z.

3.2 DERIVING A CONTRASTIVE ATTRIBUTION

Standard attribution targets come with a natural drawback. Using a single logit S. is non-contrastive
by construction, since it does not take competing classes into account. A more principled alternative
is to consider the softmax probability p., which inherently contrasts between class logits. However,
the gradient of p., which would provide the attribution signal for most attribution methods, exhibits
an important drawback. Let zj, denote the logit Sk (x). The gradient of the softmax probability p,. is

C

k=1
While the subtractive term > pV .25 appears to provide the necessary contrast, it is negligibly
small in practice. In the high-confidence regime where p. — 1, the weighted sum of gradients
converges to the gradient of the class with the highest logit, V,z.. This causes the expression in
parentheses to approach zero, effectively annihilating the gradient signal. The softmax gradient,
therefore, fails to attribute importance to the very features that drive a confident prediction.

To build a robust contrastive attribution, we must therefore preserve the principle of competition
while avoiding this self-canceling behavior. Our core idea is to move the contrastive mechanism
from the model’s output layer, which operates on saturated probabilities, directly into the attribution
maps themselves, computed for the logits. We accomplish this by staging a "local” competition at
each pixel to determine which class has the dominant claim on that feature.

Formally, let H. = V. z. denote the base attribution for class c. For a chosen set of classes C' C C
of size K = |C’|, we compute the standard attribution map H.. for each class ¢ € C’. We then apply
a softmax to each input feature, most typically at each spatial location (i, j):

exp(Hx[i, j1/t)
2 wec XP(Hy [i, 5]/t)
where ¢ is a temperature to amplify the contrast. This yields a distribution of attribution over classes
at each input feature ), _ ., Hyli,j] = 1. We denote qy(i,j) := Hyli, j] for readability. These
local class probabilities express how dominant each class is in each spatial location. One might now
attempt to directly mimic Eq. (1) by replacing the global softmax weights py with the local g (4, j),
resulting in an attribution of the form:

k

Hyli, ] = 2)

However, this naive substitution reintroduces the vanishing behavior in another way. The sum in-
cludes the self-term . (4, j) H.[¢, j], so when class ¢ dominates a pixel, i.e., g.(¢,j) = 1, the full
expression again tends to zero. Summing only over k # c is also problematic, as ¢ and Hj, are
strongly correlated, which may lead to overshooting.

Instead, we seek to reduce attribution in proportion to how strongly other classes (not the target
class) claim a pixel. Rather than modifying all class gradients, we subtract the share of the target
class’s own attribution that is explained by its rivals. This leads to the following contrastive form:

V= > awiy ) Heliy j] = Heli, ] | 1= aw(isd) | = Heli, 5] - ae(is ).

k#c k#c

Thus, each pixel’s attribution is scaled down in proportion to how strongly rival classes explain it,
while dominant pixels for class c are preserved.
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Figure 3: Contrastive attributions across architectures and methods. For each baseline (top), our
refinement (bottom) sharpens class-specific regions (keyboard, laptop, monitor, mouse). In ResNet-
50 the effect is strongest, revealing clear class-specific signals often assumed absent. In ViT-base-
16, attributions already cover relevant areas but remain diffuse; our method reduces this blur and
highlights the important regions more cleanly.

3.3 FROM GRADIENTS TO GENERAL ATTRIBUTIONS

Most attribution methods can be understood as functions of the gradient: they either use it directly
(Inputx Gradient), pool it spatially (Grad-CAM), or transform it through propagation rules (Guided
Backpropagation, DeepLIFT, etc.). One way to extend our derivation would be to modify each
method individually and insert the contrastive reweighting at the gradient level. However, such an
approach would be cumbersome and method-specific.

We instead propose a plug-and-play refinement that operates directly on attribution maps, which
we call VAR, standing for Visualizing Actually Relevant Features. For a subset C’ of classes, we
compute the class-wise attributions H(z, S, ¢) and normalize them at each pixel using the local
spatial softmax of Eq. (2). We denote the resulting distribution by

QC[ivj] = H(l‘, S, C)[lvj] s

which expresses the relative dominance of class ¢ at location (i, 7). To increase robustness, we
average q.[i, j] over multiple temperatures ¢, producing smoother distributions that capture contrast
at different granularities. We then refine the attribution of the target class c* as

/ *\ *
H (‘T,S,C )_H(xvsvc )®qc* QHQC*—%>O7

where © denotes element-wise multiplication. Pixels where the target class attribution is near ran-
dom chance (g.~ =~ 1/K) are suppressed, preventing ambiguous regions from diluting the signal.
By keeping only ¢. > 1/K, we focus on features where c¢* clearly dominates. This refinement
provides any attribution method with the ability to detect contrastive attributions. In practice, the
averaging across temperatures t € {1, 5,100} stabilizes the competition between classes and remov-
ing the requirement to tune this hyperparameter, while the thresholding enforces discriminativeness.
The resulting maps ' thus highlight features that are relevant for the target class c¢*.

Having defined our class-relevant attribution operator ', an important consideration is the selec-
tion of the Having defined H’, an important consideration is the selection of the set of classes K
used for calculation. Predefined sets are natural when the task structure already specifies meaning-
ful contrasts, such as quadrants in location-based metrics or disease subtypes in medical imaging.
Model-driven alternatives, such as selecting the top predicted classes or contrasting best with worst,
highlight the evidence that separates or defines extreme predictions. In our experiments we adopt
predefined sets for location metrics, and the top most probable classes for insertion and randomiza-
tion tests. Further details and examples are provided in the appendix.
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Quad-ImageNet Part-Quad-ImageNet COoCco
Method RA ToU F1 RA ToU Fl1 RA ToU Fl1
0.11+16%  0.17+12%

GradCam 0.88+25% 0.67+64% 0.79+38% 0.31428%  024+112%  0.36+87% 0.18+19%

2 GBP 0.86-+144%  0.26+32% 0.41+25Y9 0.44+146%  0.08-+43% 0.14+38% 0.19+: 0.09+3% 0.154+2%
% Guide-GC 0.91+21% 0.344+31% 0.50+23% 0.50+24% 0.12+49% 0.214+42% 0.23+ 0.10+8% 0.16+8%
5 IxG 0.55+37% 0.20-+0 0.33-+0 0.25+47% 0.06-+0% 0.114+0% 0.13+11%  0.09+0 0.15+0%
~ IG 0.56+36% 0.20-+0 0.34-+0 0.28-+48% 0.06-+0% 0.12-+0% 0.14+11%  0.09+0 0.154+0%
LRP 0.88+56% 0.69+97% 0.79+55% 0.374+49%  022+117%  0.34+90% 0.13+8% 0.20+7%
Avg. Improvement +53.17% +37.33% +23.50% +57.00% +53.50% +5.83% +4.83%
Bi-attn 0.94+31%  0.71+180%  0.82+103% 0.51+40%  0.28+309% 0.16+52%  0.23+42%
o GradCam 0.91+6% 0.62+16% 0.75+10% 0.58+11% 0.274+39% 0.15+11%  0.22+9%
5 InFlow 0.86+21%  0.56+126%  0.71+78% 0.534+23%  0.20+198% 0.13+23%  0.20+21%
§ Grad-Rollout 0.73+76%  0.53+113%  0.68+71% 0.40+94%  0.20+197% 0.12+19%  0.19+17%
& T-attn 0.93+32%  0.71+180%  0.82+102% 0.47+38%  0.29+432 0.16+53%  0.23+43%
5 TLRP 0.77+35%  0.51+105% 6 0.47+36%  0.204-20 0.12+20%  0.19+18%

Gradient 0.93+4% 0.57+3%
Avg. Improvement +29.29% +103.29%

0.50+8% 0.34+11% 0.47+9% 0.30-+10%  0.17+2% 0.25+2%
+35.71% +182.29% +135.00% +26.29% +28.57% +25.71%

Table 1: Consistent improvement of attributions. Across 11 different attribution methods consider-
ing convolutional and transformer based architectures, quantitative metrics measured using Region
Attribution (RA), Intersection over Union (IoU), and F1 get consistently improved by a wide mar-
gin. We provide results for more architectures in App. Tab. 1 showing similar trends. We show the
value that the method achieves when augmented with VAR and in percent the level of improvement.

4 EXPERIMENTS

We empirically evaluate our novel attribution pipeline, which we call VAR, with 11 common attribu-
tion scores on three benchmark settings: ability to localize, insertion tests, and randomization-based
sanity checks. To assess localization ability, we consider the validation set of ImageNet|Russakovsky
et al.[ (2015), MS-COCO [Lin et al.| (2014), and the Grid Pointing Game on ImageNet Rao et al.
(2022a). We assess the quality of attributions by measuring how well these match annotated bound-
ing boxes and segmentation masks. For insertion tests, we quantitatively evaluate attributions using
standard perturbation testing, which measures the importance of pixels. We employ the insertion
method following the approaches of XRAI Kapishnikov et al.| (2019), which allows for systematic
evaluation of how the addition of information impacts model confidence. Given the computational
complexity, we use the first 1k. To validate robustness, we conduct sanity checks using randomiza-
tion tests on 10k images on ImageNet|Adebayo et al.[(2018).

We consider different architectures, including ResNet-50 He et al.|(2016)), Vision Transformer B/16
(ViT) Dosovitskiy et al.| (2020), and provide further results for DenseNet-121 |Huang et al|(2017),
Wide ResNet-50-2 Zagoruyko & Komodakis| (2016), and ConvNeXt Liu et al.|(2022) in the Ap-
pendix. All models are ImageNet-pretrained (from PyTorch) and used in standard classification
mode.For attribution, we adopt widely used methods for CNNs Grad-CAM, Guided Backprop, IG,
IxG, Guided Grad-CAM |Selvaraju et al.| (2017); |Springenberg et al.| (2015); [Sundararajan et al.
(2017); Shrikumar et al.| (2017); Kokhlikyan et al.| (2020) and for ViTs Grad-CAM, InFlow, Grad-
Rollout, Bi-Attn, T-attn, T-LRP, gradient saliency [Walker et al.[|(2025a)); |/Abnar & Zuidema, (2020);
Chen et al.| (2022); 'Yuan et al.[(2021a)); |Chefer et al.| (2021b). Because transformer saliency maps
are blurry, we multiply them with the input (similar to IxG) for illustration..

4.1 LOCALIZATION ABILITY

Metrics We assess attribution quality by measuring how well attributions align with the actual
object regions. The Region Attribution (RA) metric quantifies what portion of the total attribu-
tion weight falls within the target region, providing insight into attribution focus. The Intersection
over Union (IoU) measures the spatial overlap between the attribution map and the ground truth
region, and the F1-score score is computed between attributed and true pixels of the target object.
Before evaluation, to prevent methods from being unduly rewarded for producing diffuse attribu-
tions, we apply a Gaussian blur to the attribution maps and ensure a fair comparison across different
approaches following Rao et al.|(2022b). For both setups we use the target classes for C'.

Grid Pointing For the grid-pointing game, we compile a 2 x 2 grid of random images from Im-
ageNet validation set, which we call Quad-ImageNet resulting in 12500 images. Across attribution
scores and architectures, we observe that VAR never degrades performance, at minimum we see that
for specific methods and benchmark setups it is on par with the standard pipeline. Most of the time,
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Integrated Gradients Guided Backprop Inputx Gradient

Figure 4: VAR on the Grid Pointing Game. We show examples from the grid pointing game for
methods most affected by our framework (as columns: Integrated Gradient, Guided Backpropaga-
tion, Input x Gradient) for ResNet50. Input Images are given on the left, for each we provide vanilla
attribution methods (top rows) and augmented with VAR (bottom rows). For each, we show the
attribution for the four different classes in the grid as columns.

we see that the VAR pipeline greatly improves localization ability (see Tab. 1). For ResNet50, we
observe substantial gains in RA, ToU, and F1, with an average improvement of upto +53%, +37%
and +42% across different attribution scores. For specific methods, such as Guided Backpropaga-
tion, the RA score even doubles on the Quad-Imagenet benchmark. For the ViT model, IoU and F1
scores more than double. This strong improvement can be partially attributed to VAR filtering out
uniformly unimportant regions in the noisy attribution maps produced for ViT.

Qualitatively, we also observe these improvements, now capturing both the distinguishing as well as
common features of closely related classes (cf. Fig. 4). These results show that the VAR pipeline
enhances attribution methods in precisely localizing features most relevant to the classification.

MS-COCO For MS-COCO, we use the whole validation set. We filter objects that are smaller
than 1% of the image and objects for which the model has a confidence less than 10~4. We ob-
serve similar trends, albeit more modest than on Quad-Imagenet, achieving an average improve-
ment of +17.83%, +5.83%, and +4.83% on RA, IoU, and F1 respectively. Again we observe that
through VAR, the attributions focus on more discriminative features rather than entire object re-
gions. COCO’s natural images contain multiple objects with complex backgrounds, making precise
localization more challenging, yet with VAR we do improve F1 scores across regardless of attri-
bution scoring approach on both ResNet50 and ViT, indicating better overall localization despite
the more challenging context. We provide results for different convolutional and transformer-based
architectures in App. Tab. 1 showing similar improvements through VAR.

4.2 INSERTION ABLATIONS

We follow the benchmark evaluation scheme for saliency maps of |[Kapishnikov et al.|(2019) measur-
ing how effectively an attribution method identifies the relevant image regions for a model’s decision.
We use the Performance Information Curve (PIC) framework, where we start with a blurred image,
progressively restoring high-attribution pixels, measuring model confidence, and when the model
returns to its initial prediction. This process produces Performance Information Curves that track
how classification performance evolves as information is reintroduced. To quantify overall perfor-
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Original Image Attribution Map Ablated Image Original Image  Attribution Map Ablated Image Original Image Attribution Map Ablated Image
: 100 Zebra: 0.00 (-1.00) Echidna: 0.00 Echidnas 0.00 (-0.00) Cougar: 0.99 C 0 (-0.99)
Bison: 0.00 Target: Zebra Bison: 0.06 (+0.06) Colobus: 0.00 Target: Echidna Colobus: 0.00 (-0.00) yix: 0. Target: Cougar

Zebra: 1.00 Zebra: 0.00 (-1.00) Echidna: 0.00 3 0.00 (+0.00)
Bison: 0.00 Target: Bison Bison: 0.02 (+0.02) Colobus: 0.00 0.00 (-0.00)

Guided Backprop

Zebra: 1.00 Zebra: 0.01 (-0.99) Echidna: 0.00 Echidna: 0.00 (-0.00)
Bison: 0.00 Target: Zebra Bison: 0.03 (+0.03) Colobus: 0.00 Target: Echidna Colobus: 0.01 (+0.01)

Zebra: 100
Bison: 0.00 Target: Bison

Zebra: 0.96 (-0.04) Echidna: 0.00 Echidna: 0.33 (+0.33) Cougar: 0.99 Cougar: 0.00 (-0.99)
Bison: 0.00 (+0.00) Colobus: 0.00 “olobus: 0.00 (-0.00) : Lynx: 0.0 (-0.00)

GBP + VAR

Figure 5: Qualitative example of the ablation study. For GBP (top) and GBP with VAR (bottom) we
provide examples from the insertion/deletion ablation. For each, we show the original image with
class softmax scores for two classes, the attribution map for each of the classes, and the attribution-
based intervention mask on each of the classes with resulting changes in class softmax scores.

Method ResNet50  WideResNet50-2  DenseNetl121  ConvNeXT Method ViT-base-8  ViT-base-16  ViT-base-32
1G 0.49-+0% 0.53+2% 0.48+2% 0.37-+0% Bi-attn 0.78+8% 0.75+9% 0.65+8%
GBP 0.57+2% 0.60+2% 0.53+2% 0.34—3% T-attn 0.75+10% 0.74+9% 0.65+14%
IxG 0.46+2% 0.49+2% 0.43+2% 0.35+0% InFlow 0.79+411% 0.79+14% 0.66+12%
Guide-GC 0.58+0% 0.61-+0% 0.53+0% 0.51+0% Gradient 0.75—-1% 0.72—3% 0.67+3%
GradCam 0.614+11% 0.63+9% 0.49+2% 0.50—2% Grad-R1 0.76410% 0.76+10% 0.66+16%
LRP 0.66-+0% 0.71+1% 0.41+0% - T-LRP 0.74412% 0.75+10% 0.67+14%
Avg. Improvement +2.50% +2.67% +1.33% —1% Avg. Improvement +8.33% +8.17% +11.17%
(a) CNN-based architectures (b) Transformer-based architectures

Table 2: Improving transformer attributions on insertion ablations. Our proposed pipeline provides
on par performance in terms of AIC for convolutional architectures and improve almost all trans-
former attribution methods by 10% across architectures.
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Input X Gradient Inputx Gradient + VAR Grad-Rollout Grad-Rollout + VAR
(a) Sanity check for ResNet50 (b) Sanity check for ViT-base-16

Figure 6: Sanity check by network randomization. We show similarity between attributions before
and after randomization of x% of network layers for standard attribution (dashed) and when aug-
mented with VAR (solid). Lower is better. Randomization is from back to front of the network

following the strategy of |Adebayo et al.|(2018]).
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mance, we report the Area under Accuracy Information Curve (AIC), which summarizes accuracy
across different information levels. We evaluate on ImageNet and report results in Table 2. We find
that our pipeline keeps performance on par with the vanilla pipeline for convolutional architectures,
and greatly improves performance for transformer-based architectures across a wide range of
transformer-specific attribution methods.

4.3 SANITY CHECKS

To verify that attribution methods reflect the representation the model learned, we conduct cascading
randomization tests following |Adebayo et al.| (2018). These tests progressively randomize model
parameters from output to input layers, measuring how attribution maps change as model knowledge
is systematically destroyed. We follow the same procedure as in the original paper. We measure the
Spearman correlation (Fig. 6) between attributions before and after randomization and additionally
provide cosine similarity and Pearson correlation across different architectures in App. Figure 8-14,
which show similar trends. As the later parts of the network is randomized, ideally there is little
information left about the target in the attribution maps. However, as discussed by Binder et al.
(2023)), this randomization-based approach has shortcomings as it preserves scales of forward pass
activations with high probability”. Hence, we are primarily interested in the relative change between
attributions with and without VAR.

We find that attribution maps using the VAR pipeline yield better results for all baseline methods and
across randomization percentages. For Guided-Backprop and Input x Gradient, the improvement is
most pronounced, as well as for randomizing the latest layers, which carry most of the conceptual
meaning for the classification. Intriguingly, for ViT models, we observe that after randomization
at any point in the network the similarity score is virtually zero, meaning that specific attribution
methods correctly taking class contrast into account can pass the sanity check.

5 DISCUSSION & CONCLUSION

Attribution methods are widely employed, yet also critically discussed for seemingly not faithfully
describing the classification-relevant features in the input. In this work, we reconsidered the com-
mon paradigm of computing attributions on a target logit. We found that this does not adequately
reflect the actual decision-making process of a classification model and instead propose to com-
pute distributions of attributions across multiple classes. This change led to drastically improved
attributions that reflect object- and instance-specific features, highlight class-discriminative as well
as shared features, which attributions on logits in isolation cannot provide. Most importantly, we
demonstrate that even the most common attribution methods—especially for CNNs-already encode
rich class-specific information, but this signal has remained largely hidden by vanishing gradients.

To quantitatively substantiate these claims, we provided extensive evaluation across attribution
methods, convolutional as well transformer-based architectures, and different benchmarks for
saliency maps, including the grid pointing game [Rao et al. (2022a)), sanity checks for saliency
maps |Adebayo et al.| (2018)), and insertion tests [Kapishnikov et al.| (2019). Our evaluation of in-
terpretability is by no means exhaustive, as a wide array of different benchmarks has been proposed
over time. We here focused on the most common evaluation protocols in the literature.

The reconsideration of where and how to apply attributions is method and model agnostic, training-
free, and faithful to the target model in that we do not use surrogates or other, eg. generative, models
that could introduce new biases. Interestingly, |Gairola et al.|(2025) recently found that training with
binary cross-entropy loss significantly improves attributions in terms of downstream benchmarks,
arguing for BCE for improved post-hoc explanations. Our findings provide a reason why this is
the case, as BCE incentivizes the network to learn class-specific features, which will consequently
appear in attributions even in the standard attribution pipeline looking at a logit in isolation. Here,
we compute attributions as distributions over classes, which is training-free, thus maintaining the
accuracy of the model, and not only reveals class-specific but also features shared across classes,
which BCE discourages in training, and reveals object-specific attributions in multi-object settings.

We anticipate that this pipeline supercharges existing attribution methods to understand the distin-
guishing features a model uses for prediction and is a versatile tool that can be combined with any
current and future attribution method independent of target architecture or attribution type.
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A METHOD

A.1 SELECTING THE SET OF CLASSES

Having defined our class-relevant attribution operator Cy;, an important consideration is the selection of the
set of classes K used for calculation. We explore three approaches for class selection, each offering distinct
advantages depending on the specific analysis goals and application context.

Predefined Class Sets. The canonical approach is to use a predefined set of classes K that are of particular
interest. This is especially useful in contexts where specific class comparisons have natural interpretations. For
example, in a grid-pointing game where users must identify the quadrant containing a particular object, the
four quadrant classes directly correspond to the task structure. Similarly, in medical applications, contrasting
disease subtypes can highlight discriminative features that aid differential diagnosis. This approach ensures
that the resulting attributions focus on distinctions that are meaningful to the particular application domain.
However, this approach requires specific knowledge about the task, which is often not available. The following
approaches are data- and model-driven and, hence, do not require prior knowledge to select classes.

Top-k Most Probable Classes. A model dependent approach to class selection involves choosing the k classes
with highest predicted probabilities and the class with the lowest probability for a given input. This approach
is particularly effective for highlighting the features that distinguish between the most plausible classifications
for a given input, but also reveal information that is shared between highly related classes that are likely among
the highest probabilities. As these classes represent the top candidates for the final classification, contrasting
their attribution maps reveals the most decision-relevant features.

Best-vs—Worst Classes. The third approach compares the highest-probability class against the lowest-
probability class: K = {cmax, Cmin } Where cmax = arg max, Se(x) and cmin = arg min, Se(x). Such extreme
can surprisingly reveal the most distinctive characteristics of the input as interpreted by the model, by showing
which features are most critical for pushing the model toward or away from certain classifications.

B EVALUATION METRICS

In our experimental setup, we evaluate attribution methods across several metrics to assess their efficacy in
highlighting relevant features for model predictions. We define an input as a vector z € R<, and a model
as a function S : R? — RE, where C is the number of classes in the classification problem. The final
classification is performed via an argmax over S(z). An explanation method provides an explanation map
H:R%x S x{1,...,C} — R? that maps an input, a model, and optionally a target class to an attribution map
of the same shape as the input.

B.1 LOCALIZATION METRICS

We evaluate attribution methods using two datasets: a Grid Pointing Game based on ImageNet and COCO
dataset with segmentation masks. For both evaluations, we apply the same set of metrics, treating both bounding
boxes and segmentation masks as regions of interest R in the image. We match the region of interest with the
correct attribution map H. i.e. for the first quadrant we also take the first attribution map. We only take the
positive part of H.. Before evaluation, we apply a Gaussian blur with a kernel size of 11 x 11 to the attribution
maps

Hc = gcr * Hc )
where G, is a Gaussian kernel with standard deviation o and * denotes the convolution operation. This prepro-

cessing is common to prevent methods from being unduly rewarded for producing diffuse attribution maps. We
then compute the following metrics:

B.1.1 REGION ATTRIBUTION

We quantify what fraction of the total positive attribution falls within the region of interest by

_ YierHeli)
S He(i)

RA

B.1.2 INTERSECTION OVER UNION (IoU)

We compute the overlap between the attribution map and the region of interest as
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Coffee mug Beer glass
. s

Figure 7: VAR highlights discriminative features. Standard Guided Backpropagation (GBP) pro-
duces nearly identical attributions for both “coffee mug” and “beer glass” classes (top row), while
our approach (bottom row) clearly emphasizes the distinguishing features of each class—the handle
for coffee mug and the cup shape for beer glass. This focus on discriminative features aids inter-
pretability but can result in lower insertion test scores which reward highlighting the entire object.

fou = (e NE[

B.1.3 PRECISION AND RECALL

To calculate precision and recall, we use the commen intersection-based formulas

|H.N R _ |H.NR|

Precision = —.
IR

,  Recall

el

B.1.4 F1 SCORE

To calculate F1, we make use of the previously defined precision and recall metrics, caluclating

Fl — 2 - Precision - Recall

Precision + Recall

C LLM USE

In this work, we used GPT-5 for both writing and coding support. On the writing side, it assisted with editing
and condensing text to improve clarity. For coding, GPT-5 was used for debugging, providing autocomplete
suggestions in VS Code, and generating code for LaTeX figures.

D ADDITIONAL RESULST

D.1 LOCALIZATION
We provide additional results for all the architectures mentioned in the Experiments in Table 3. The trend
remains the same across architectures and methods; if they are augmented using VAR they improve the local-

ization metrics and trade-off recall. Additionally we provide plots similar to Figure 4 for all these architectures
in Figure 15-21.

D.2 SaNITY CHECKS

We show the sanity check plots for these additional architectures in Figure 8-14.
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Quad-ImageNet Part-Quad-ImageNet COoCco
Method RA IoU F1 RA IoU F1 RA IoU F1
GradCam 0.88+25% 0.67+64% 0.79+38% 0.31428%  024+112%  0.36+87% 0.18+19%  0.11+16%  0.17+12%
< GBP 0.86+144%  0.26+32% 0.41+25% 0.44+146%  0.08+43% 0.14+38% 0.19+30%  0.09+3% 0.15+2%
‘% Guide-GC 0.91+21% 0.34+31% 2 0.50+-24% 0.124+49% 0.214+42% 0.23+16%  0.10+8% 0.16+8%
5 IxG 0.55+37% 0.20-+-0% 0.25+47% 0.06-+0% 0.11+0% 0.13+11%  0.09-+( 0.15+0%
~ IG 0.56+36% 0.20-+-0% 0.28+48% 0.06-+0% 0.12+4+0% 0.14+11%  0.09-+( 0.15+0%
LRP 0.88+56% 0.69+97% 0.37+49%  0.22+117%  0.34+90% 0.21+20%  0.13+8% 0.20+7%
Avg. Improvement +53.17% +44.8% +57.0% +80.25% +64.25% +18.33% +6.17% +5.33%
« GradCam 0.88+22% 0.66+62% 0.78+37% 0.30+423%  0.24+108%  0.36+84% 0.18+14%  0.11+11%  0.17+9%
% GBP 0.89+109%  0.28+42% 0.43+32% 0.47+108%  0.09+57% 0.16+51% 0.20+24%  0.10+2% 0.16+2%
2 Guide-GC 0.92+17% 0.35+32% 0.51+24% 0.51420% 0.134+53% 0.224+46% 0.24+13%  0.10+6% 0.17+6%
‘q;; IxG 0.62+38% 0.20+0% 0.33 0.27+48% 0.06-+0% 0.11+0% 0.15+12%  0.10-+( 0.154+0%
5 1G 0.62+37% 0.20-+0° 0.34-+ 0.314+48% 0.06-+0% 0.12+ 0.15+12%  0.10-+( 0.15+0%
§ LRP 0.89+49%  0.72+115%  0.82+65% 0.374+46%  0.22+132%  0.34-+102% 0.22+22%  0.13+1 0.20+9%
Avg. Improvement +45.33% +41.83% +26.33% +48.83% +58.33% +47.17% +16.17% +5.0% +4.33%
GradCam 0.60+17% 0.37+6% 0.48—2% 0.224+30% 0.15+51% 0.234+39% 0.11-11% 0.07-25% 0.11-25%
< GBP 0.85+158%  0.25+27% 0.40+21% 0.41+159%  0.08+35% 0.14+32% 0.19+36%  0.10+3% 0.15+3%
3 Guide-GC 0.71+28% 0.26+12% 0.40+9% 0.37434% 0.104+30% 0.17426% 0.17+3% 0.08—5% 0.14—5%
s IxG 0.46+31% 0.20+0% 0.33+0% 0.20+42% 0.06-+0% 0.11+0% 0.13+10%  0.09-+0% 0.15+0%
é 1G 0.50+34% 0.20-+0° 0.34-+ 0.24+46% 0.12+ 0.14+11%  0.09-+( 0.15+0%
A LRP 0.44+24% 0.25-+0% 0.40+0% 0.19+35% 0.12+0% 0.15+5% 0.12+0% 0.18+0%
Avg. Improvement +48.67% +7.5% +4.67% +57.67% +19.33% +16.17% +9.0% —4.5% —4.5%
GradCam 0.96+2% 0.55—-7% 0.70—-6% 0.48+8% 0.29+31% 0.42+24% 0.28+8% 0.15+2% 0.23+2%
< GBP 0.52+26% 0.20-+-0% 0.33+0% 0.194+33% 0.06-+0% 0.11-+0% 0.15+13%  0.09 0.15+0%
2  Guide-GC 0.96+1% 0.35+1% 0.52+1% 0.58+5% 0.16+2% 0.26+2% 0.31+5% 0.14+ 0.22+1%
% IxG 0.51+27% 0.20+0% 0.33+0% 0.194+33% 0.06-+0% 0.11+0% 0.15+13%  0.09+0% 0.15+0%
o IG 0.64+35% 0.21+0% 0.34+0% 0.26-+49% 0.06+1% 0.12+1% 0.15+16%  0.09+0% 0.15+0%
Avg. Improvement +18.20% -1.20% -1% +25.60% +6.80% +5.40% +11.00% +0.60% +0.60%
Bi-attn 0.91+48%  0.62+149%  0.76+89% 0.56+61%  0.25+272%  0.36+199% 0.29+45%  0.14+32% 0.21+27%
o GradCam 0.83+8% 0.49+18% 0.64+12% 0.61+11% 0.28+46% 0.40+36% 0.30-+13%  0.14+9% 0.214+7%
o InFlow 0.82+18% 0.47+89% 0.63+58% 0.59+19%  0.18+165% 0.28+131% 0.32+18%  0.12+14%  0.19+13%
& Grad-Rollout 0.71+51% 0.45+80% 0.61+53% 0.48+60%  0.20+197%  0.30+147% 0.26+27% 0.12+14%  0.19-+12%
£ Tattn 0.90+53%  0.63+152%  0.76+90% 0.514+76%  0.28+322%  0.40+230% 0.28+56%  0.14+34%  0.22+29%
> LRP 0.76+25% 0.42+69% 0.58+46% 0.54+24%  0.20+195%  0.30+148% 0.28+16%  0.12+14%  0.19+13%
Gradient 0.90+7% 0.49+7% 0.64+5% 0.57+11% 0.35+20% 0.48-+16% 0.31+17%  0.16+2% 0.234+1%
Avg. Improvement +30.0% +80.57% +50.43% +37.43% +173.86% +129.57% +27.43% +17.0% +14.57%
Bi-attn 0.94+31%  0.71+180%  0.82-+103% 0.514+40%  0.28+309%  0.40+222% 0.30+43%  0.16+52%  0.23-+42%
o GradCam 0.91+6% 0.62+16% 0.75+10% 0.58-+11% 0.27+39% 0.39+32% 0.31+10% 0.15+11%  0.224+9%
& InFlow 0.86+21%  0.56+126%  0.71+78% 0.534+23%  0.20+198%  0.31+153% 0.29+20%  0.13+23%  0.20+21%
§ Grad-Rollout 0.73+76%  0.53+113%  0.68+71% 0.40+94%  0.20+197%  0.30+148% 0.24+30%  0.12+19%  0.19+17%
g T-attn 0.93+32%  0.71+180%  0.82-+102% 0.47+38%  0.29+4321%  0.40+229% 0.29+44%  0.16+53%  0.23+43%
> LRP 0.77+35%  0.514+105%  0.66+65% 0.474+36%  0.20+201%  0.31+152% 0.274+17% 0.12+20% 0.19+18%
Gradient 0.93+4% 0.57+3% 0.70+2% 0.50+8% 0.34+11% 0.47+9% 0.30+10%  0.17+2% 0.25+2%
Ave. Improvement 129290%  +10329%  +61.57% [3571%  +18229%  +135.0% [2486%  +2571%  +21.71%
Bi-attn 0.86+71%  0.62+149%  0.75+87% 0.36+80%  0.24+263%  0.36+195% 0.21+37%  0.13+33%  0.20+27%
Q GradCam 0.78+18% 0.51+50% 0.65+30% 0.41428%  022+119%  0.32+91% 0.22+25%  0.13+15%  0.20+13%
& InFlow 0.78+21%  0.56-+124%  0.70+75% 0.38424%  0.19+176%  0.29+136% 0.22+19%  0.12+21%  0.19+17%
§ Grad-Rollout 0.66+91%  0.51+106%  0.66+66% 027+112%  0.17+151%  0.27+119% 0.17428%  0.11+13%  0.18+12%
g T-attn 0.84+70%  0.62+146%  0.74+86% 0.35+77%  0.254267%  0.36-+197% 0.204+35%  0.14+34%  0.20+27%
> LRP 0.66-+49% 0.46+85% 0.61+53% 031451%  0.17+147%  0.26+115% 0.20+16%  0.11+11%  0.18+9%
Gradient 0.79+19% 0.51+19% 0.65+12% 0.36427% 0.23+53% 0.344-42% 0214+17%  0.13+11%  0.20+8%
Avg. Improvement +48.43% +97.0% +58.43% +57.0% +168.0% +127.86% +25.29% +19.71% +16.14%

Table 3: Consistent improvement of attributions. Across 11 different attribution methods consider-
ing convolutional and transformer based architectures, quantitative metrics measured using Region
Attribution (RA), Intersection over Union (IoU), and F1 get consistently improved by a wide mar-
gin. We provide results for more architectures in App. Tab. 1 showing similar trends.
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Figure 8: ResNet50: VAR improves all base methods under randomization [Lower is better]. For
all methods and for varying level of randomization, we measure the similarity between the attention
map for the unperturbed network and the randomized network. Dashed lines are base methods, solid
lines when augmenting with VAR, which improve the corresponding baseline method.
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Figure 9: DenseNet121: VAR improves all base methods under randomization [Lower is better]. For
all methods and for varying level of randomization, we measure the similarity between the attention
map for the unperturbed network and the randomized network. Dashed lines are base methods, solid
lines when augmenting with VAR, which always improve the corresponding baseline method.
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Figure 10: WRNS50-2: VAR improves all base methods under randomization [Lower is better]. For
all methods and for varying level of randomization, we measure the similarity between the attention
map for the unperturbed network and the randomized network. Dashed lines are base methods, solid
lines when augmenting with VAR, which always improve the corresponding baseline method.
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Figure 11: ConvNext: VAR improves all base methods under randomization [Lower is better]. For
all methods and for varying level of randomization, we measure the similarity between the attention
map for the unperturbed network and the randomized network. Dashed lines are base methods, solid
lines when augmenting with VAR, which improve the corresponding baseline method.
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Figure 12: ViT-base-8: VAR improves all base methods under randomization [Lower is better]. For
all methods and for varying level of randomization, we measure the similarity between the attention
map for the unperturbed network and the randomized network. Dashed lines are base methods, solid
lines when augmenting with VAR, which improve the corresponding baseline method.
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Figure 13: ViT-base-16: VAR improves all base methods under randomization [Lower is better]. For
all methods and for varying level of randomization, we measure the similarity between the attention
map for the unperturbed network and the randomized network. Dashed lines are base methods, solid
lines when augmenting with VAR, which improve the corresponding baseline method.



Under review as a conference paper at ICLR 2026

Similarity Score

0 20 40 60 80 100
Layers Randomized (%)

Inflow
Inflow + VAR
Bi-attn
Bi-attn + VAR

@, T e 0.8
~".‘ 0.6
0 0.4
PRI
0 20 40 60 80 100
Layers Randomized (%)
- = - Grad-Rollout - = - Grad
—e— Grad-Rollout + VAR —o— Grad + VAR
T-attn Bi-attn
T-attn + VAR T-LRP + VAR

0 20 40 60 80 100

Layers Randomized (%)

Figure 14: ViT-base-32: VAR improves all base methods under randomization [Lower is better]. For
all methods and for varying level of randomization, we measure the similarity between the attention
map for the unperturbed network and the randomized network. Dashed lines are base methods, solid
lines when augmenting with VAR, which improve the corresponding baseline method.
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Figure 15: ResNet50: VAR on the Grid Pointing Game. We show examples from the grid point-
ing game for methods most affected by our framework (as columns: Integrated Gradient, Guided
Backpropagation, Input x Gradient). Input Images are given on the left, for each we provide vanilla
attribution methods (top row) and augmented with VAR (bottom row). For each, we show the attri-
bution for the four different classes in the grid as columns.
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Figure 16: DenseNet121: VAR on the Grid Pointing Game. We show examples from the grid point-
ing game for methods most affected by our framework (as columns: Integrated Gradient, Guided
Backpropagation, Input x Gradient). Input Images are given on the left, for each we provide vanilla
attribution methods (top row) and augmented with VAR (bottom row). For each, we show the attri-
bution for the four different classes in the grid as columns.
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Figure 17: WideResNet50-2: VAR on the Grid Pointing Game. We show examples from the
grid pointing game for methods most affected by our framework (as columns: Integrated Gradi-
ent, Guided Backpropagation, InputxGradient). Input Images are given on the left, for each we
provide vanilla attribution methods (top row) and augmented with VAR (bottom row). For each, we
show the attribution for the four different classes in the grid as columns.
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Figure 18: ConvNeXt: VAR on the Grid Pointing Game. We show examples from the grid point-
ing game for methods most affected by our framework (as columns: Integrated Gradient, Guided
Backpropagation, Input x Gradient). Input Images are given on the left, for each we provide vanilla
attribution methods (top row) and augmented with VAR (bottom row). For each, we show the attri-
bution for the four different classes in the grid as columns.
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Figure 19: ViT-base-8: VAR on the Grid Pointing Game. We show examples from the grid point-
ing game for methods most affected by our framework (as columns: Integrated Gradient, Guided
Backpropagation, Input x Gradient). Input Images are given on the left, for each we provide vanilla
attribution methods (top row) and augmented with VAR (bottom row). For each, we show the attri-
bution for the four different classes in the grid as columns.
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Figure 20: ViT-base-16: VAR on the Grid Pointing Game. We show examples from the grid point-
ing game for methods most affected by our framework (as columns: Integrated Gradient, Guided
Backpropagation, Inputx Gradient). Input Images are given on the left, for each we provide vanilla
attribution methods (top row) and augmented with VAR (bottom row). For each, we show the attri-
bution for the four different classes in the grid as columns.
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Figure 21: ViT-base-32: VAR on the Grid Pointing Game. We show examples from the grid point-
ing game for methods most affected by our framework (as columns: Integrated Gradient, Guided
Backpropagation, Inputx Gradient). Input Images are given on the left, for each we provide vanilla
attribution methods (top row) and augmented with VAR (bottom row). For each, we show the attri-
bution for the four different classes in the grid as columns.
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