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Abstract

Deformable image registration (DIR) involves optimization of multiple conflicting objectives,
however, not many existing DIR algorithms are multi-objective (MO). Further, while there
has been progress in the design of deep learning algorithms for DIR, there is no work in the
direction of MO DIR using deep learning. In this paper, we fill this gap by combining a
recently proposed approach for MO training of neural networks with a well-known deep
neural network for DIR and create a deep learning based MO DIR approach. We evaluate
the proposed approach for DIR of pelvic magnetic resonance imaging (MRI) scans. We
experimentally demonstrate that the proposed MO DIR approach — providing multiple
DIR outputs for each patient that each correspond to a different trade-off between the
objectives — has additional desirable properties from a clinical use point-of-view as compared
to providing a single DIR output. The experiments also show that the proposed MO DIR
approach provides a better spread of DIR outputs across the entire trade-off front than
simply training multiple neural networks with weights for each objective sampled from a
grid of possible values.

Keywords: Deformable Image Registration, Deep Learning, Multi-objective Optimization,
Multi-objective Learning

1. Introduction

Deformable image registration (DIR) refers to the task of finding a non-linear transformation
that aligns two images. The non-linear transformation is characterized by a deformation
vector field (DVF), that maps each location in the target image (also referred to as fixed or
reference image) to a location in the source image (also referred to as moving image). The
source image is then warped by resampling from the mapped locations. Some of the potential
applications of DIR in medical imaging are dose accumulation in radiation treatment, contour
propagation, tumor growth tracking, and creating a digital atlas (Mohammadi et al., 2019;
Rigaud et al., 2019; Zhao et al., 2022; Salehi et al., 2022).

DIR involves optimization of a parameterized DVF to maximize the similarity between
two images. However, optimizing only for maximizing image similarity may yield a highly
irregular or sometimes physically implausible DVF due to model overfitting. Therefore,
an additional objective penalizing irregularity in the DVF is often used, which inherently
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conflicts with the objective of maximizing image similarity (Li and Fan, 2018; Balakrishnan
et al., 2019; De Vos et al., 2019). Further, an additional guidance objective (either maximizing
the similarity between organ contours or minimizing the distance between corresponding
landmarks) is often utilized in challenging DIR problems (Balakrishnan et al., 2019; Hering
et al., 2021). Intuitively, improvement in the additional guidance objective should always
lead to improvement in the image similarity objective. However, in practice, the additional
guidance objective may still conflict with the image similarity objective. This is often caused
when the optimization gets overfitted to the regions where additional guidance is provided,
deteriorating performance in other image regions (Balakrishnan et al., 2019). Another
cause for conflict between the image similarity objective with the additional guidance can
be the uncertainty in the additional guidance, which, in turn, could be caused by either
inter /intra-observer variance in case of manual annotation or modeling error in case of
automatic generation of additional guidance. Therefore, DIR is essentially a multi-objective
(MO) problem (Deb et al., 2016), which involves two or more conflicting objectives. This
implies that fundamentally an MO approach is appropriate for DIR, where multiple DIR
outputs corresponding to a diverse range of trade-offs between the conflicting objectives are
provided to the clinicians to a posteriori choose the best solution. Although the notion of
DIR being multi-objective is well accepted and discussed, not many DIR approaches have
been developed with this perspective. Alderliesten et al. (2015) provided a proof-of-concept
study for MO DIR of 2D images. Pirpinia et al. (2017) used an evolutionary algorithm to
tune the corresponding weights of different objectives for each 3D breast MRI pair and run
single objective DIR multiple times. Nakane et al. (2022) formulated DIR as MO problem
by partitioning the template image into several overlapping regions. Andreadis et al. (2023)
presented the first integral approach to MO DIR that could be used for 3D volumetric scans
using an MO optimization algorithm.

With the advent of deep learning in the past few years, multiple deep learning based DIR
approaches have been proposed (Balakrishnan et al., 2019; de Vos et al., 2017; Li and Fan,
2018; Li et al., 2022; Salehi et al., 2022; Rigaud et al., 2019), which provide the possibility to
predict the DVF for an entire volumetric scan within seconds. However, to the best of our
knowledge, there is no work done in the direction of MO DIR using deep learning. In this
paper, we fill this gap and provide a novel approach for MO DIR using deep learning. To this
end, we employed a well-known deep neural network for DIR, VoxelMorph (Balakrishnan
et al., 2019), and combined it with a recently proposed technique for training neural networks
multi-objectively (Deist et al., 2023). Our main contributions are the following:

e We develop a deep learning based approach for MO DIR so that multiple DIR outputs

corresponding to different trade-offs between multiple objectives can be presented to
the clinical experts for a posteriori decision-making (Hwang and Masud, 2012).

e We demonstrate MO DIR for a challenging real-world registration task: DIR of female

pelvic magnetic resonance imaging (MRI) scans and highlight its potential benefits.

2. Approach

We first provide a brief background on the concepts of MO optimization that we apply to
deep learning based DIR. MO optimization refers to minimizing! a vector of n objectives

1. In this paper, we assume minimization as objectives correspond to losses in deep learning.
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Figure 1: Illustration of the proposed deep learning based MO DIR approach. Ispyree: source
image, Itmget: target image, Segsource and Segtmget: organ segmentation masks for source
and target image, respectively. The weights of the encoder are shared among p DIR networks,
which output p DVFs (Ay, Ag, ..., Ap) to warp Isource and Segsource- The network is trained
to Simultaneousb’ minimize p loss vectors [leageSimilarity7 LDVFSmoothnesm LSegSimilarity]
using MO learning.

simultaneously. The goal is to find a set (often referred to as ‘approximation set’) of p
solutions that are both close to as well as diversely-spread along the Pareto front — the set of
all Pareto optimal solutions in objective space. A solution is Pareto optimal if none of the
objectives can be improved without a simultaneous detriment in performance in at least one
of the other objectives (Van Veldhuizen and Lamont, 2000).

Our deep learning based MO DIR implementation consists of a DIR network within
the MO learning framework proposed in Deist et al. (2023). We selected VoxelMorph
(Balakrishnan et al., 2019) for DIR because it is a well-known neural network for DIR.
VoxelMorph uses an encoder-decoder style neural network for predicting a DVF, which is a
basis for many deep learning based DIR approaches proposed afterwards. We selected the MO
learning framework proposed in Deist et al. (2023) for two reasons: a) it achieves MO training
of neural networks through hypervolume (HV) maximization - a process that inherently
ensures Pareto optimality? and diversity between the solutions, b) it is the only MO approach
that allows training neural networks multi-objectively without a priori knowledge of the
exact preference between different objectives. It should be noted that the latter is crucial in
the task of DIR. This is because earlier literature suggests that the exact preference between
different objectives may be different between different image pairs, which may only be known
a posteriori after inspecting multiple solutions (Pirpinia et al., 2017).

In this paper, we aim to minimize p loss vectors (corresponding to p solutions or
DIR outputs in the approximation set), each comprising of three losses: L rmageSimilaritys
Lpv Fsmoothness, and LSegSimilarity- Here, for LImageSimilaritya we used normalized cross-
correlation loss. Lpy psmoothness 18 the squared sum of spatial gradients of the predicted DVF
in all directions, and LgegSimitarity i the Dice loss between the fixed image’s organ mask

2. If HV is maximal, all the solutions are Pareto optimal.
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and the moving image’s organ mask warped by the predicted DVF (refer to Balakrishnan
et al. (2019) for details). In the original formulation of MO learning in Deist et al. (2023), p
neural networks are required corresponding to p solutions in the approximation set. Due to
the memory intensive nature of training a 3D DIR network, this poses a challenge due to
limited GPU memory. To tackle this, we modified the original implementation by sharing
the weights of the encoder between p DIR networks as shown in Figure 1. The DIR network
predicts p DIR outputs (DVFs). This is followed by calculation of p loss vectors, which are
used in the MO learning framework. The parameters of the DIR network are updated using
a dynamic loss formulation, that, for each DIR output is defined as:

L'= wiLImageSimilam:ty + wéLDVFSmoothness + wéLSegSimilarity Vi e {17 s 7p} (1)
Where, the weights w], w5, w; are calculated in each iteration using HV maximization
described in Deist et al. (2023). This ensures that at the end of the training the DIR outputs
(that are used to calculate the p loss vectors) are close to, and diversely distributed along
the Pareto front of the three objectives.

MO DIR as described above can be understood as training p DIR networks simultaneously,
each with different weights for the loss terms, and the weights being selected automatically
such that the HV is maximal. That said, MO DIR is fundamentally different from the
traditional single DIR following hyperparameter search for the loss weights. In the traditional
set up, the selection of a weight (which translate to a trade-off on the approximation front)
for each loss is done a priori based on quantitative comparison of a single aggregated (on a
validation set) performance metric. Whereas in MO DIR, the selection is done a posteriori by
clinical experts based on qualitative evaluation of multiple criteria specific to each patient.

2.1. Data

We retrospectively used data from cervical cancer patients who received brachytherapy
treatment at Leiden University Medical Center (LUMC), The Netherlands. We received 136
MRI scan pairs (along with associated contours generated for clinical use of four organs at risk:
bladder, bowel bag, rectum, and sigmoid) corresponding to two fractions of brachytherapy
treatment in anonymized form after approval from the medical ethics committee. The
original resolution of the MRI scans was 0.5 mm x 0.5 mm X 4 mm. We resampled the MRI
scans to isotropic voxel spacing of 1 mm x 1 mm X 1 mm because the convolution kernels,
downsampling, and upsampling operations in VoxelMorph are symmetric. We used randomly
cropped patches of size 192 x 192 x 32 as an input to the neural network. We separated
the scans at patient level based on their chronological order of acquisition into train and
validation (126 scan pairs), and test (10 scan pairs) splits. On the test scans, a radiation
therapy technologist annotated 23 anatomical landmarks (details in Appendix B), which
were selected by a radiation oncologist on the basis of their importance in brachytherapy
treatment for cervical cancer patients. The placement of landmarks was cross-checked by
another radiation oncologist.

3. Experiments and Results

We implemented® our proposed approach using Python and PyTorch. The training hyper-
parameters were: number of solutions p = 27, initialization = Kaiming He, optimizer =

3. The implementation is available at https://github.com/monikagrewal /DL-MODIR /tree/public.
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Figure 2: (a) Approximation set. (b) and (h): A transverse slice from the target and source
image, respectively. (c)-(g) top row: Warped source images corresponding to five solutions
(highlighted with matching frame color) in the set with bladder and rectum contours in cyan
and magenta colors, respectively. Solid contours represent the contour in the target image
and dashed contours represent the warped source image contour. (c)-(g) bottom row: DVFs
overlaid on the source image. Displacement in the x-y plane is represented by direction and
scale, and in the z-direction by color (red for cranial, and blue for caudal motion) of arrows.

Adam, learning rate (Ir) = le~%, number of training iterations = 20K, reference point for HV
calculation = (1, 1, 1) (details in Appendix C). For each experimental setting, we trained 5
models, each corresponding to a different data split. We report their performance on the test
set without model selection. To assess the DIR performance, we calculated target registration
errors (TREs) of the 23 manually annotated landmarks by transforming the landmarks in
the target image with the predicted DVF and calculating the Euclidean distance with the
corresponding landmarks in the source image. We also calculated the percentage of voxels
with a negative determinant of the spatial Jacobian of the DVF, as an indication of folding
in the transformation.

3.1. Comparison of MO DIR with Single DIR Output

Contrary to traditional DIR, in MO DIR, the decision maker (in our case a clinical expert) is
provided with multiple DIR solutions spread across a range of trade-offs between conflicting
objectives. This is demonstrated in Figure 2 (a). The figure shows that there are multiple
possible ways to align the two images. In DIR, the solutions at the extremes of the
approximation set are likely not interesting because they might be overfitted to a single
objective and consequently may yield sub-optimal performance in other objectives. For
example, the solution highlighted in the red frame (Output 1) corresponds to minimum
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LmageSimilarity, but maximum L py psmoothness causing a lot of folding in the DVF. Similarly,
the solution highlighted in brown (Output 5) corresponds to no deformation at all. To
assist the a posteriori decision-making, such uninteresting solutions can be filtered out by
setting acceptance thresholds on each objective. The region of interest in the objective
(loss) space where all the acceptance criteria are met, could be considered the preferred
region. In Figure 2 (a), we show this region with arbitrarily selected acceptance thresholds
(leageSimilarity < 055, LDVFSmoothness < O-L and LS@gSimilarity < 0025)

Within a preferred region of interest, one solution cannot be selected over another based
on quantitative comparison of performance metrics as demonstrated in Figure 2. The solution
highlighted in green (Output 2) has minimum folding in the DVF, magenta (Output 3)
has minimum mean TRE of landmarks, and blue (Output 4) has maximum Dice similarity
between organ masks while other metrics are worse. While Output 2 and Output 3 have
less folding in the DVF and smaller mean TRE between landmarks, the warped bladder
contours (dashed cyan color) considerably deviate from the target bladder contours (solid
cyan color) as compared to Output 4. This is due to MO training of the DIR neural network,
which ensures that the obtained DIR solutions are all (close to) Pareto optimal i.e., no
solution is better than another in any objective without a simultaneous detriment on other
objectives. In such a scenario, the most appropriate DIR output can only be selected after
visual inspection of the DIR outputs in the preferred region of interest and considering other
clinical criteria. For example, the visual inspection of the DVF from Output 4 may reveal
that the folding occurs in regions not relevant for brachytherapy treatment. Further, the
alignment of the bladder may be more important than the alignment of some landmarks in
other regions. Therefore, a clinical expert may prefer Output 4 over Output 3 despite a larger
mismatch between landmarks and more folding in the DVF in this test scan pair. Whereas,
in another test scan pair, the characteristics of the DVF may be different and the clinical
preference may be reversed. Moreover, it is already known from previous research that
the weights, which translate to a given trade-off between objectives on the approximation
front and the quantitative value of the performance metrics are different in different scan
pairs (Pirpinia et al., 2017). This means that the preferred region of interest corresponds to
different solutions in the approximation sets from different scan pairs.

Because multiple solutions are provided with MO DIR that are spread in objective space,
the clinical expert can navigate through these solutions and select an appropriate trade-off
based on the underlying clinical scenario. In contrast, with traditional single DIR, only one
of these solutions is provided to the clinical expert. Therefore, the opportunity to evaluate
other possibilities and make an informed decision specifically tuned to each patient is lost.

3.1.1. COMPARISON OF COMPUTATIONAL OVERHEAD

In the case of single DIR, a DIR network is trained multiple times with different weight
combinations for each loss function following a certain strategy. The weights yielding the
best aggregated performance on a validation set are used for final training. In MO DIR,
multiple neural networks (in our case a single DIR network with multiple decoders) are
trained. Therefore, the training overhead of MO DIR in terms of runtime is similar to that
of single DIR. However, in MO DIR, the training is done in parallel, requiring more memory.
In our implementation, training for p = 27 required ~39 GB and ~32 GB without and with
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a shared encoder, respectively, as compared to ~3.5 GB required for training a single DIR
network.

scan pair 1 scan pair 2 scan pair 3 scan pair 4

e Linear Scalarization ¥ HV-based MO DIR

Figure 3: Approximation sets obtained for the first four test scan pairs by linear scalarization
(red circles) and the proposed HV-based MO DIR (blue triangles). The approximation sets
from five different models trained with different training data splits are shown with slight
variations in the color saturation to give an indication of model variance.

3.2. Comparison of Proposed MO DIR with Linear Scalarization

In the proposed MO DIR, we used HV maximization to dynamically find the weights for each
loss term such that the differently weighted loss training of different neural network heads
yields their outputs diversely spread across the approximation front. It may be speculated
that a similar diversity of outputs can be trivially obtained by training the different neural
networks with uniformly distributed weights for different losses. Such an approach is called
‘linear scalarization’. Deist et al. (2023), in their paper, compared linear scalarization with HV
maximization for different shapes of Pareto fronts. The authors observed that the translation
of the weights to a location on the front is dependent on the shape of the Pareto front, and
is as such non-trivial. To investigate this in the case of MO DIR, we compared the proposed
HV maximization based MO DIR approach with linear scalarization based MO DIR. To
simulate the MO DIR set up with linear scalarization, we trained the different heads of our
MO DIR neural network with weights corresponding to diversely distributed points in a grid.
We used 27 grid points by enumerating over all the possible combinations for wy € {0,0.5, 1},
wy € {0,0.1,0.5,1}, and wsg € {0,0.5,1} and omitting redundant (e.g., {0,0.5,0.5} and
{0.5,0.5,0.5}). It should be noted that this process of selecting linear scalarization weights
is already slightly better than naive linear scalarization.

The approximation sets obtained from linear scalarization vs HV maximization based
MO DIR are shown in Figure 3. It is apparent upon visual inspection of the figure that even
though the weights used for linear scalarization were diversely distributed, still the obtained
solutions are clustered along two edges of the expected triangle-like approximation front.
There is a void of solutions in the center region of the expected triangle-like approximation
front. This observation corroborates the results in (Deist et al., 2023) - the diverse spread
of solutions across the approximation front cannot be obtained trivially through linear
scalarization - in the case of DIR as well. In contrast, visual inspection of the solutions
in the approximation set obtained using HV maximization based MO DIR, shows a rough
triangle-like shape with diversely distributed points in the center as well. This is because
HV maximization ensures not only proximity to the Pareto front but also diversity across
the approximation front.
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4. Conclusions and Discussion

We propose the first deep learning approach for MO DIR, which provides multiple DIR
solutions diversely spread across the trade-off front between conflicting objectives. With such
an approach, clinicians can evaluate multiple DIR solutions that are of potential interest
and select the preferred one according to patient-specific and/or treatment-specific clinical
criteria. While the prospect of clinicians having to review multiple DIR solutions may
seem burdening, in a previous study using a dedicated user interface to navigate MO DIR
solutions obtained through optimization (as opposed to deep learning as in this paper),
clinicians were positive, considering the use of MO DIR to be insightful (Pirpinia et al.,
2018). We also demonstrated that a diverse spread of solutions across the approximation
front such as obtained by the proposed MO DIR approach can not be trivially obtained by
linear scalarization with diversely distributed weights. Although the potential utility of deep
learning based MO DIR is evident from experimental results, the presented work is still only
a proof-of-concept. Some of the limitations, open questions, and possible future research
directions are as follows:

e HV maximization provides a straightforward way to distribute the solutions diversely on
the approximation front without requiring any manual tuning. In future work, it would
be interesting to investigate the use of the weighted HV (Zitzler et al., 2007) metric
in MO DIR to steer the solutions to a desired region (if such a region can be defined
clearly a priori). It is also important to investigate which part of the approximation
front is more desired by involving clinicians as a posteriori decision-makers.

e In Figures 2 and 3, the solutions seem more clustered in the region where L,,qgeSimilarity
and LsegSimilarity are large and Lpy pSmoothness is small.  This could be because
solutions in this region of the front are easy to obtain due to no or little deformation,
or because of the corresponding shape of and local density along the Pareto front. It
is known that setting the reference point differently can impact this (Ishibuchi et al.,
2018) (also see Appendix C). It is interesting to investigate this further in the future.

e In our proof-of-principle, we made certain choices e.g., number of objectives, number of
solutions in the approximation set, type of additional guidance, type of neural network
for DIR, in an effort to create a baseline deep learning based MO DIR approach. That
said, the current approach leaves multiple improvement possibilities open in order to
realize the complete potential of the MO perspective for DIR. For example, it can
be improved by using a more sophisticated neural network for DIR, multi-resolution
registration, constraints on tissue types, and diffeomorphism. All of these aspects are
independent from the general idea and framework proposed in this paper.

e The presented MO DIR work provides more insights than traditional single DIR
approaches by showcasing the trade-offs between different objectives and how these
trade-offs differ between scan pairs. However, the objectives are still average values per
pair of scans. Practically, the DIR performance will likely not be uniform across the
entire scan. Additionally, it is possible that clinically a solution in the vicinity of a
provided discrete solution on the approximation front is more desired. It is therefore
essential to research in the direction of intuitively visualizing the DVFs and navigating
across (and in the local neighborhood of) different solutions.
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Appendix A. Effect of Parameter Sharing in the Encoder
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Figure 4: Effect of parameter sharing in the Encoder. filled circles: MO DIR without
parameter sharing in the encoder, triangles: MO DIR with parameter sharing in the encoder.
p =5, n = 2. Approximation sets obtained from 5 models trained on different data splits are
shown. Each color represents a DIR solution corresponding to a specific trade-off between

LImageSimilarity and LDVFSmoothness-

In Figure 4, 5 approximation sets obtained from 5 models after 5-fold cross-validation, by

training the MO DIR approach with p =5 for LpageSimitarity, a0d L pv Fsmoothness 1osses
without (filled circles) and with parameter sharing (triangles) in the encoder are shown for all
the test scan pairs. The figure shows that parameter sharing does not impact the distribution

of solutions on the front.
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Appendix B. Description of Landmarks

i1 §
coronal view sagittal view

L1 Internal urethral ostium

L2  External urethral ostium

L3  Uterus top

L4  Cervical ostium

L5 Isthmus

L6 Intra-uterine canal top

L7 Right ureteral ostium

L8  Left ureteral ostium

L9 Internal anal sfincter

L10 Os coccygis

L11 Most ventral intersections of S2-S3

L12 Most ventral intersections of S3-S4

L13 Anterior superior border sympysis (ASBS)
L14 Posterior inferior border sympysis (PIBS)
L15 Right femur head

L16 Left femur head

L17 Left acetabulum

L18 Right acetabulum

L19 Left ligament rotundum

L20 Right entrance of uterine artery to cervix
L21 Left entrance of uterine artery to cervix
L22 Right ligament rotundum

L23 Most ventral intersections of S1-S2

Figure 5: Description of landmarks. The landmarks are projected on a coronal (left) and
sagittal (right) slice. 123 is not visible in this scan.
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reference point: (10, 10, 10) reference point: (1, 1, 1)

04 f3

e run0 run 1 e run2 e run3 e rund e run5 run 6 e run7 run 8 e run9

Figure 6: Effect of the location of reference point on the GenMED (Bosman, 2011) benchmark
problem. The Pareto front was approximated using 25 points. The solutions from 10 runs
are shown for two different locations of the reference point.

Appendix C. Effect of Selecting Reference Point

The calculation of the HV (and consequently its gradients) is sensitive to the choice of the
reference point (Ishibuchi et al., 2018), which, in turn, affects the spread of the solutions
on the front. This is particularly the case for three or more objectives. In Figure 6, this
phenomenon is illustrated with experiments on the convex GenMED problem with three
objectives (Bosman, 2011). Briefly, in the GenMED problem, the n objectives (in our case,
n = 3 i.e., 1, £2, {3 are the sum of square distances from n unit vectors. When the reference
point is far away, the final solutions tend to cluster on the edges of the Pareto front. The
spread of the points becomes more uniform across the Pareto front when the reference point
is moved closer. Based on these empirical observations, we tuned the reference point for MO
DIR training. We considered the following choices: (10, 10, 10), (1, 1, 1), (1, 1, 0.2), (0.5, 1,
1) based on observing the worst loss values after training. For experiments in the paper, we
selected (1, 1, 1) as the reference point because it provided well distributed points across the
front based on visual inspection on validation set.

Appendix D. Quantitative Comparison of DIR Performance

Although TRE is a sparse metric and affected by inter- and intra-observer variation in the
placement of landmarks, it is often used to quantitatively assess the performance of a DIR
method. In this section, we compare the linear scalarization and proposed MO DIR approach
described in section 3.2 in terms of mean TRE of 23 landmarks. First, we automatically
select a single DIR solution from each approximation set. For this, we assume that a clinical
expert would a posteriori select the DIR solution corresponding to minimum mean TRE of 23
landmarks. The underlying idea is that even if the TRE is not explicitly computed, the expert
intuitively looks for solutions where landmarks that they are familiar with are well-aligned.
In Table 1, we report the mean and standard deviation of this TRE value from 5 models,
each trained on a different training data split to provide an estimate of model variance. We
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also report the associated folding in the DVF of the selected DIR solution. Although it is
difficult to derive any clinical conclusions without inspecting the underlying DVFs; it can be
observed that both linear scalarization and HV based MO DIR find quantitatively similar
trade-offs between the best TRE values and associated DVF folding. This is not entirely
surprising, given that the underlying DL architecture for DIR is the same for both methods.

One might notice a trend of higher TRE values and lower image folding in the selected
solutions from HV maximization based MO DIR. However, it is important to realize that
the training approach may play a role in this and that training for MO DIR and linear
scalarization proceeds differently. Training neural networks with HV maximization is more
complex as compared to using fixed weights as in the case with linear scalarization. This is
because of the dynamically changing gradients for each network head as a consequence of the
HV maximization goal. Therefore, if the exact weights corresponding to the desired trade-off
between each objective are known a priori, linear scalarization may yield non-dominated
solutions faster. For a fair comparison, we trained the networks in both the linear scalarization
and the MO DIR approach with the same number of iterations. It may be possible that this
was not the saturation point for both procedures. Ideally, upon saturation, we would expect
both linear scalarization and HV maximization to obtain solutions with the same proximity
to the Pareto front. However, obtaining the same diversity of solutions (for a given p) along
the front is not guaranteed for linear scalarization. As demonstrated in section 3.2, this
is because the translation from scalarization weights to a well distributed set of solutions
along the approximation front is not trivial. Therefore, achieving a diverse spread of solution
through linear scalarization would require trying many more combinations. On the other
hand, with the HV maximization based MO DIR approach, it can be achieved in a single go.
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Table 1: Mean TRE and associated % folding in DVF of the ‘best’ solution in the approxima-
tion set obtained by linear scalarization and MO DIR, respectively for each test scan pair. In
each approximation set, the solution corresponding to minimum mean TRE of 23 landmarks
is assumed ‘best’ for the sake of quantitative comparison. Mean =+ standard deviation from
5 models trained on different training data splits is reported without model selection.

Test scan TRE before ‘ Linear Scalarization MO DIR

| TRE % folding |  TRE % folding
1 3.97 3.63 £0.04 0.29 +0.19 | 3.74 + 0.03, 0.05 £+ 0.03
2 4.71 4.53 £0.11 3.45 + 0.38 | 4.66 & 0.07, 2.00 £ 1.23
3 8.21 8.04 £0.10 1.33 +1.18 | 8.12 + 0.06, 1.07 4+ 1.64
4 9.07 8.18 £ 0.07 0.12 & 0.15 | 858 & 0.17, 0.47 £ 0.39
5 4.46 4.01 £0.06 0.80+ 0.96 | 4.08 + 0.07, 1.36 4+ 1.01
6 5.55 4.52 £0.09 1.31 &£ 0.17 | 4.69 & 0.09, 0.76 & 0.32
7 5.99 5.90 +£ 0.03 0.26 &+ 0.18 | 5.93 + 0.02, 0.29 £+ 0.13
8 4.39 3.96 £ 0.05 2.72 4+ 0.88 | 4.06 &+ 0.05, 1.72 4+ 1.31
9 5.73 5.06 £ 0.06 0.87 & 0.24 | 5.24 & 0.13, 0.82 £ 0.97
10 3.80 3.72 £0.03 0.20 +0.28 | 3.70 & 0.03, 0.11 £+ 0.13
Mean + SD
across 5,59 £ 1.71 | 515 £ 1.63 1.14 &£ 1.21 | 5.28 & 1.69, 0.87 £ 1.04
patients
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