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ABSTRACT

In this paper we study online Reinforcement Learning (RL) in partially observ-
able dynamical systems. We focus on the Predictive State Representations (PSRs)
model, which is an expressive model that captures other well-known models such
as Partially Observable Markov Decision Processes (POMDP). PSR represents
the states using a set of predictions of future observations and is defined entirely
using observable quantities. We develop a novel model-based algorithm for PSRs
that can learn a near optimal policy in sample complexity scaling polynomially
with respect to all the relevant parameters of the systems. Our algorithm nat-
urally works with function approximation to extend to systems with potentially
large state and observation spaces. We show that given a realizable model class,
the sample complexity of learning the near optimal policy only scales polyno-
mially with respect to the statistical complexity of the model class, without any
explicit polynomial dependence on the size of the state and observation spaces.
Notably, our work is the first work that shows polynomial sample complexities to
compete with the globally optimal policy in PSRs. Finally, we demonstrate how
our general theorem can be directly used to derive sample complexity bounds for
special models including m-step weakly-revealing and m-step decodable tabu-
lar POMDPs, POMDPs with low-rank latent transition, and POMDPs with linear
emission and latent transition.

1 INTRODUCTION

Efficient exploration strategies in reinforcement learning have been well investigated on many mod-
els from tabular models [25, 2] to models with general function approximation [10, 27, 30, 16, 42].
These works have focused on fully observable Markov decision processes (MDPs); however, their
algorithms do not result in statistically efficient algorithms in partially observable Markov decision
processes (POMDPs). Since the markovian properties of dynamics are often questionable in prac-
tice, POMDPs are known to be useful models that capture environments in real life. While strategic
exploration in POMDPs was less investigated due to its difficulty, it has been actively studied in re-
cent few years [20, 3, 29]. In our work, we consider Predictive state representation (PSR) [36, 41, 24]
that is a more general model of controlled dynamical systems than POMDPs.

PSRs are specified by the probability of a sequence of future observations/actions (referred to as a
test) conditioned on the past history. Unlike the POMDP model, PSR directly predicts the future
given the past without modeling the latent state/dynamics. PSRs can model every POMDP, but
potentially result in much more compact representations; there are dynamical systems that have
finite PSR ranks, but that cannot be modeled by any POMDPs with finite latent states [36, 24].

PSRs are not only general but also amenable to learning and scalable. First, PSRs can be effi-
ciently learned from exploratory data using a spectral learning algorithm [6] motivated by method-
of-moments [23]. This learning algorithm allows us to perform fast closed-form sequential filtering,
unlike EM-type algorithms that would be the most natural algorithm derived from POMDP per-
spectives. Secondly, while original PSRs are defined in the tabular setting, PSRs also support rich
functional forms through kernel mean embedding [4]. Variants of PSRs equipped with neural net-
works have been proposed as well [43, 9, 46, 49].

In spite of the abovementioned advances in research on PSRs made in the recent two decades,
strategic exploration without exploratory data has been barely investigated. To make PSRs more
practical, it is of significant importance to understand how to perform efficient strategic exploration.
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m-step
weakly-revealing POMDPs

m-step
decodable POMDPs PSRs

Efroni et al. [13] +
Liu et al. [37] +

Jiang et al. [26] ◦
Uehara et al. [45] ◦ + ◦

Our Work + + +

Table 1: Comparison of our work with existing works. + means that algorithms can learn the near
globally optimal policy with polynomial sample complexities. Our work is the only work that has
a desirable guarantee on three models. In m-step weakly-revealing POMDPs, ◦ in Uehara et al.
[45] means the sample complexity is quasi-polynomial but not polynomial. In m-step decodable
POMDPs, all of the works have certain caveats. More specifically, in Efroni et al. [13], Uehara et al.
[45], it is unclear whether they can avoid poly(|O|m). On the other hand, our result can surprisingly
avoid poly(|O|m) while we need a regularity assumption. For more details, refer to Section 5. In
PSRs, ◦ in Jiang et al. [26] means the guarantee is limited to reactive PSRs where the optimal value
function depends on current observations. Similarly, ◦ in Uehara et al. [45] means the algorithm can
compete with short-memory policies but not near globally optimal policies.

To the best of the author’s knowledge, Jiang et al. [26], Uehara et al. [45] tackle this challenge;
however, they fail to show results with polynomial sample complexity to compete with the globally
optimal policy. We aim to obtain algorithms that can compete with the globally optimal policy
with polynomial sample complexity. Another desideratum for algorithms is to permit for general
function approximation. This desideratum is important to enjoy the scalable property of PSRs. In
summary, the key question we wish to address in this work is:

Can we design provably efficient RL algorithms for learning PSR with function approximation?

Contributions. Our main contributions are summarized below. This is summarized in Table 1.

1. We develop the first PAC learning algorithm for PSRs that can compete with the globally optimal
policy and identify the PSR rank dPSR as the key structural quantity of PSR systems. Starting
with a realizable model class, our algorithm learns a near-optimal policy with sample complexity
scaling polynomially in dPSR and the statistical complexity (log bracket number of the model
class), without any explicit polynomial dependence on the size of state and observation space.
Thus, our approach can be applied to large-scale partially observable systems.

2. We demonstrate how our general result can be seamlessly applied to existing POMDP models
with function approximation. These models include tabular m-step weakly-revealing POMDPs
[37] and tabular m-step decodable POMDPs [13]. Especially, our work is the first work that
ensures PAC guarantees with polynomial sample complexities for m-step weakly-revealing
POMDPs and m-step decodable POMDPs simultaneously. We further show sample complex-
ity results when these two types of POMDPs have additional two types of structures to permit for
large state/observation space: with low-rank latent transition and with linear latent transition and
observation distributions, which all have dPSR much smaller than |S|.

Notations. In this work we use [n] to denote the set {1, 2, · · · , n} and [n]+ to denote the set
{0, 1, 2, · · · , n} for any positive integer n. For any set C, we use |C| to denote its cardinality and
[xc]c∈C to denote the vector whose entry is xc for all c ∈ C. We also use ∆C to represent the set of
all probability distributions over C. For any vector x, we use ‖x‖1, ‖x‖2 and ‖x‖∞ to denote its `1,
`2 and `∞ norm. For any matrix M , we use (M)i,j to denote the (i, j)-th entry of M and M† to
denote the pseudo inverse of M . We also use ‖M‖∞,∞ to denote maxi,j |(M)i,j | and ‖M‖17→1 to
denote its `1 norm sup‖x‖1=1 ‖Mx‖1. In addition, we use σmin(M) to denote the minimum nonzero
singular value of M and σn(M) to denote the n-th largest singular value of M .

Related works. Our work is mostly related to the literature on provable online RL algorithms for
PSRs without offline exploratory data. Although there is a growing body of literature that discusses
efficient online learning for POMDPs under various structures [3, 20, 34, 35, 40, 7], there are few
works [26, 45] that study strategic exploration in PSRs and none of them obtain polynomial sample
complexity results for learning globally optimal policies. See Appendix B for details.
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Figure 1: Illustration of the key concepts in PSRs using the system dynamics matrix Dh indexed by
all tests and all histories. Denote dPSR,h as the rank of Dh. A core test set Uh+1 is a subset of tests
such that the submatrix Dh whose rows are indexed by tests in Uh+1 has rank dPSR,h. Thus any
row in Dh can be written as a linear combination of the rows in Dh. A core test set Uh+1 whose
size is exactly equal to dPSR,h is called a minimum core test set. The minimum core history set is
a size–dPSR,h subset of histories such that the submatrix Kh of Dh whose columns are indexed by
the history in the minimum core history set has rank dPSR,h. Any column in Dh can be written as a
linear combination of columns indexed by histories in the minimum core history set.

2 PRELIMINARIES

In this section, we introduce the definition and key properties of PSRs. After that, we state our
learning objective for PSRs with function approximation.

2.1 PREDICTIVE STATE REPRESENTATIONS

We consider an episodic sequential decision making process P = {O,A,P, {rh}Hh=1, H}, whereO
is the observation space,A is the action space, P is the system dynamics, rh is the reward function at
h-th step andH is the length of each episode. We suppose the reward rh at h-th step is a deterministic
function of (oh, ah) conditioned on the history τh where τh = (o1, a1, · · · , oh, ah).

We assume the initial observation o1 of each episode follows a fixed distribution µ1 ∈ ∆O. At
step h ∈ [H], the agent observes the observation oh and takes action ah based on the whole his-
tory (τh−1, oh). After that, the agent receives its reward rh(oh, ah) and the environment generates
oh+1 ∼ P(·|τh). After the agent takes aH , we suppose the environment will only generate dummy
observations odummy no matter what actions the agent takes afterward.

Policy and value. A policy π = {πh : (O×A)h−1×O → ∆A}Hh=1 specifies the action selection
probability at each step conditioned on the history (τh−1, oh). Given any policy π, its value V π is
the expected cumulative reward as defined below: V π := Eπ[

∑H
h=1 rh], where the expectation is

w.r.t. to the distribution of the trajectory induced by executing π in the environment. We use Pπ(τ)
to represent the probability of trajectory τ when executing policy π in the environment.

2.1.1 KEY CONCEPTS IN PSRS

Tests and Linear PSRs. A test is a sequence of future observations and actions. For
some test th = (oh:h+W−1, ah:h+W−2) with length W ∈ N+, we define the probabil-
ity of test th being successful conditioned on reachable history τh−1 as P(th|τh−1) :=
P(oh:h+W−1|τh−1; do(ah:h+W−2)), i,e., the probability of observing oh:h+W−1 by actively exe-
cuting actions ah:h+W−2 conditioned on history τh−1.1 When the history τh−1 is unreachable, i.e.,

1The do operator means that P(oh:h+W−1|τh−1; do(ah:h+W−2)) =
∏h+W−1

t=h P(ot|τh−1, oh:t−1, ah:t−1).
Here, we remark conditional probability of oh:h+W−1 given τh−1 is not specified not only by dynamics, but
also by the policy. Given a policy π, conditional probability of oh:h+W−1 given τh−1 under a policy πt is
P(oh:h+W−1|τh−1; ah:h+W−2 ∼ π) ∝

∏h+W−1
t=h P(ot|τt−1)πt(at|τt−2, ot). The do(ah:h+W−2) operator

can be understood as a policy that deterministically picks actions at for h ≤ t ≤ h +W − 2, i.e., πt(At =
·|τt−1, ot) = δat .
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Pπ(τh−1) = 0 for all policy π, we define the conditional probability P(th|τh−1) to be 0. Now,
we define the one-step system dynamics matrix Dh whose rows are indexed by tests and columns
are indexed by histories, and the entry corresponding to the test-history pair (th+1, τh) is equal to
P(th+1|τh) (see Fig 1 for an illustration). Denote dPSR,h = rank(Dh). Then Linear PSRs are
defined to be systems with low-rank one-step system dynamic matrices:
Definition 1. A partially observable system is called a Linear PSR with rank dPSR if
maxh rank(Dh) = dPSR.

Core tests. For time step h, consider a set of tests Uh+1 ⊂ ∪C∈N+OC ×AC−1. If the submatrix
Dh (see the matrix inside the green box in Fig. 1) of Dh whose rows are indexed by the tests in
Uh+1 and columns are indexed by all histories, has rank equal to dPSR,h, then we call such set Uh+1

as a core test set. The key property of such a core test set is that from linear algebra, for any row in
Dh, we can express it as a linear combination of the rows of Dh. This is formalized as follows.
Lemma 1 (Core test sets in linear PSRs). For any h ∈ [H − 1]+, a set Uh+1 ⊂ ∪C∈N+OC ×AC−1

is a core test set at (h + 1)-th step if and only if we have for any W ∈ N+, any possible future
(i.e., test) th+1 = (oh+1:h+W , ah+1:h+W−1) ∈ OW × AW−1 and any history τh, there exists
mth+1,h+1 ∈ R|Uh+1| such that

P(th+1|τh) = 〈mth+1,h+1, [P(u|τh)]u∈Uh+1
〉. (1)

The vector [P(u|τh)]u∈Uh+1
is referred to as the predictive state at (h+ 1)-th step.

Throughout this work, we use qτh to denote [P(u|τh)]u∈Uh+1
and q0 to represent the initial predictive

states [P(u)]u∈U1 . In particular, we are interested in the set of all action sequences in Uh and denote
it by UA,h. A core test set with the smallest number of tests is called a minimum core test set, which
we denote by Qh. Note that by the definition of the rank, we know that |Qh+1| = dPSR,h. To
simplify writing, we further define |U| := maxh∈[H] |Uh|, |UA| := maxh∈[H] |UA,h|. In this paper
we assume a core test Uh (we will see that this is a natural assumption for models such as POMDPs)
is given while Qh is unknown. This setting is standard in literature on PSRs [6].

Minimum core histories. Similar to the minimum core test set, we can define the minimum core
history set as well. Consider the matrix Dh in Figure 1. Recall that the columns of Dh are indexed
by all possible h-length histories and each column is qτh . Since Dh has rank dPSR,h, there must
exist dPSR,h histories τ1

h , · · · , τ
dPSR,h

h , such that any column in Dh is a linear combination of the
columns inDh that correspond to histories τ1

h , · · · , τ
dPSR,h

h . In other words, for any h-length history
τh, there exists a vector vτh ∈ RdPSR,h which satisfies

qτh = Khvτh , (2)

where Kh ∈ R|Uh+1|×dPSR,h is a full-rank matrix whose i-th column is qτ ih . We call

{τ1
h , · · · , τ

dPSR,h

h } as the minimum core histories at step h and Kh as the core matrix – see Fig-
ure 1 for an illustration of Kh. Particularly, when h = 0, we have K0 = q0. Note (2) shows that all
h-length histories can be captured by the core histories in the sense that the predictive states given
any history can be expressed as a linear combination of the predictive states corresponding to the
minimum core histories. The minimum core histories and the core matrix may not be unique given
the core test set. Here we particularly define Kh to be the core matrix with the smallest ‖K†h‖17→1

to facilitate our subsequent analysis.

PSRs vs POMDPs. PSRs have much stronger expressivity than POMDPs. All POMDPs can be
expressed as PSRs with the minimum core test set size as most |S| while PSRs are not necessarily
compact POMDPs [36]. In Appendix D we construct a sequential decision making process where
if we want to formulate it into a POMDP, the number of states we need will be exponentially larger
than the core test set size in the PSR formulation. The key intuition behind the construction is simple:
the non-negative rank of a matrix could be exponentially larger than its rank. In the literature [41],
there are also some other concrete instances like probability clock which POMDPs cannot model
with finite latent states while PSRs can model with finite rank.

In the following, we explain that POMDPs are PSRs. Consider an episodic POMDP (S,O,A,
{Th}Hh=1, {Oh}Hh=1, {rh}Hh=1, H, µ1) where S is the state space, O is the observation space, A is
the action space, Oh is the emission matrix at h-th step, rh is the reward function at h-th step and µ1
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is the initial state distribution, Th is the transition matrix at step h where (Th,a)s′,s = Ph(s′|s, a).
Then the following lemma shows that any POMDP is a PSR and its minimum core test set size is no
larger than |S|, whose proof is deferred to Appendix E:
Lemma 2. All POMDPs satisfy the definition of PSRs (Definition 1) such that dPSR ≤ |S|.

After showing any POMDP is a linear PSR with rank at most |S|, now we demonstrate that under
what conditions we could find a core test set. We focus on 1-step weakly-revealing POMDPs [29, 37]
here, i.e., the rank of Oh is |S| for all h, then we can show that O is a core test set.
Lemma 3. When rank(Oh) = |S| for all h ∈ [H], the POMDP is a PSR with the core test set
Uh = O for all h ∈ [H].

We defer the proof and other examples including m-step weakly-revealing POMDPs [37], latent
MDPs [34], m-step decodable POMDPs [13] and low-rank POMDPs to Appendix E and Section 5.

2.1.2 SYSTEM DYNAMICS OF PSRS

Predictive states can evolve just like the beliefs in POMDPs, which indicates that we can char-
acterize the system dynamics of the PSRs via predictive states efficiently. In particular, for any
o ∈ O, a ∈ A, h ∈ [H], let Mo,a,h ∈ R|Uh+1|×|Uh| denote the matrix whose rows are m>(o,a,u),h

(defined in Lemma 1) for u ∈ Uh+1 (note that o, a, u can be understood as a test that starts with o, a,
followed by u). Then the probability of an arbitrary trajectory can be expressed as the product of
Mo,a,h,moH ,H , q0, as shown in the following lemma:
Lemma 4. For any trajectory τH and policy π, we have

Pπ(τH) = m>oH ,H ·
H−1∏
h=1

Moh,ah,h · q0 · π(τH), (3)

where π(τH) :=
∏H
h=1 π(ah|τh−1, oh) is the probability of the actions chosen in the trajectory.

More generally, for any h ∈ [H] and trajectory τh, letting bτh := {
∏h
l=1Mol,al,l}q0, we have

[P(u|τh)Pπ(τh)]u∈Uh+1
= bτh × π(τh), (4)

The proof is deferred to Appendix F. Lemma 4 shows that the parameters

{Mo,a,h,mo,H , q0}o∈O,a∈A,h∈[H−1]

are sufficient to characterize a PSR. Here we call Mo,a,h the predictive operator matrix. Recall
that in POMDPs, the same decomposition holds since we can represent {Mo,a,h,mo,H , q0} using
{Th,Oh} as we see in the proof of Lemma 3. However, as emphasized in Singh et al. [41], the main
reason PSRs are more expressive is that {Mo,a,h,mo,H , q0} are not constrained to be non-negative.

2.1.3 LEARNING OBJECTIVE

In this paper, we study online learning in PSRs and want to find the optimal policy. Suppose the
output policy is π̂, then our goal is to find an ε-optimal policy with polynomial number of samples
such that: V ∗ − V π̂ ≤ ε, where V ∗ := V π

∗
= supπ V

π and π∗ is the optimal policy.

2.2 FUNCTION APPROXIMATION

To deal with the potentially large observation and action space, we consider learning with function
approximation in this paper. We assume a function class F to approximate the true model and let
Pπf (τH) denote the probability of any trajectory τH under any policy π and model f . Here we
assume that the models in F are all valid PSRs with core test set {Uh}h∈[H], which implies that for
each f ∈ F , we can calculate its corresponding predictive operator matrices, initial predictive states
and core matrices, denoted by Mo,a,h;f , q0;f ,Kh;f respectively. We define V πf to be the value of
policy π under model f . We also use f∗ to represent the true model for consistency.

Generally, we put models on {Mo,a,h;f , q0:f} since this is the most natural parametrization in PSRs.
When we have more prior knowledge about models like models are POMDPs, we can also put
models on {Th,Oh, µ1}.
To measure the size of F , we use |F| to denote its cardinality when F is finite. For infinite function
classes, we introduce the ε-bracket number to measure its size, which is defined as follows:
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Definition 2 (ε-bracket and ε-bracket number). A size-N ε-bracket is a bracket {gi1, gi2}Ni=1 where
gi1(gi2) is a function mapping any policy π and trajectory τ to R such that for all i ∈ [N ],
‖gi1(π, ·) − gi2(π, ·)‖1 ≤ ε for any policy π, and for any f ∈ F , there must exist an i ∈ [N ]
such that gi1(π, τH) ≤ Pπf (τH) ≤ gi2(π, τH) for all τH , π. The ε-bracket number of F , denoted by
NF (ε), is the minimum size of such an ε-bracket.

Although Pπf is an (|O||A|)H -dimensional vector, its log ε-bracket number will not scale exponen-
tially with H because Pπf is Lipschitz continuous with respect to {Mo,a,h;f , q0;f}, whose dimension
only scales polynomially with H . In Appendix G we show that the bracket number of F can be
upper bounded by the covering number of {Mo,a,h;f , q0;f} in linear PSRs, and we provide exact
upper bounds for tabular PSRs and various POMDPs.

3 ALGORITHM: CRANE
The statistical hardness of learning POMDPs due to the partial observability is well-known in the
literature [32], which also exists in PSR learning since PSRs are a more general model. In addition,
existing algorithms [29, 13, 37] for learning sub-classes of POMDPs require the existence of latent
states since they directly put models on T and O. Thus, their methods are not applicable to PSRs.
That said, the existence of predictive states indeed implies the low-rank linear structure of PSRs.
The trajectory probability decomposition (3) further suggests that we are able to capture a PSR
completely as long as we can learn the predictive operator matrices {Mo,a,h}o∈O,a∈A,h∈[H−1] and
the initial predictive state q0 efficiently. Therefore, inspired from the success of maximum log-
likelihood estimation (MLE) in learning weakly-revealing POMDPs [37], we propose a new MLE-
based PSR learning algorithm to learn these parameters as follows.

CRANE. Intuitively, our algorithm is an iterative MLE algorithm with optimism, where in each
iteration we use MLE to estimate the model parameters based on the previously collected trajec-
tories and choose an optimistic policy to execute. We call it OptimistiC PSR leArniNg with MLE
(CRANE). CRANE mainly consists of three steps, whose details are shown in Algorithm 1:

• Optimism: Since we consider the online learning problem, the unknown model dynamics force
us to deal with the exploration-exploitation tradeoff. Here we utilize the Optimism in the Face
of Uncertainty principle and choose an optimistic estimation fk of the model parameters from
the constructed confidence set Bk. Our policy πk is the optimal policy under fk, ensuring that
V π

k

fk ≥ V
∗ with high probability.

• Trajectory collection: For each step h ∈ [H − 1]+ and each action sequence ua,h+1 in UA,h+1,
we collect a trajectory τk,ua,h+1,h

H by executing the policy πk,ua,h+1,h = πk1:h−1◦Unif(A)◦ua,h+1

(and uniform policy afterwards if the episode has not ended). This helps us obtain the required
information for estimating each predictive operator matrix Mo,a,h and initial predictive state q0.

• Parameter estimation with MLE: Finally we need to update the confidence set with newly col-
lected trajectories. We achieve this by implementing MLE on all the collected trajectories with
slackness β, as shown below:

Bk+1 ←
{
f ∈ F :

∑
(π,τH)∈D

logPπf (τH) ≥ max
f ′∈F

∑
(π,τH)∈D

logPπf ′(τH)− β
}
. (5)

For example, the likelihood Pπf (τH) is specified by (3) if we model {Mo,a,h, q0} as f . In
POMDPs, if we model {Th,Oh, µ1} as f , the likelihood is specified by marginalizing over la-
tent states. The slackness β is chosen appropriately such that the true parameters f∗ ∈ Bk+1 with
high probability, which in turn guarantees optimism in the first step.

Comparison with Liu et al. [37]. The main difference is that our algorithm can allow more gen-
eral models. For example, in PSRs, we can generally take {Mo,a,h, q0} that depends on only observ-
able quantities as a model f . On the other hand, Liu et al. [37] attempts to put models on {Th,Oh}
that involve latent states. The practical benefit of modeling {Mo,a,h, q0} is we don’t need to specify
the latent space while Liu et al. [37] needs to do. Since we often do not have good prior knowledge
about latent states, our algorithm would be more practical in this scenario. Due to the generality
of our algorithm, we can capture more models such as m-step decodable POMDPs and low-rank
POMDPs as we will see in the following sections.
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Algorithm 1 CRANE
Input: confidence parameter β.
Initialize B1 ← F , D = ∅.
for k = 1, · · · , T do

Optimistic Planning: (fk, πk)← arg maxf∈Bk,π V
π
f .

Collect samples:
for h ∈ [H − 1]+, ua,h+1 ∈ UA,h+1 do

Execute πk,ua,h+1,h = πk1:h−1 ◦Unif(A) ◦ ua,h+1 and collect a trajectory τk,ua,h+1,h
H .

Update the dataset D ← D ∪ (πk,ua,h+1,h, τ
k,ua,h+1,h
H ).

end for
Update confidence set: Compute Bk+1 via (5).

end for

4 MAIN RESULT

Next, we present the regret analysis for CRANE. We will utilize the fact that the core matrix Kh is
full-rank. However, matrix rank is vulnerable to estimation errors since small perturbations might
change the rank drastically. Here we assume the `1 norm of K†h is upper bounded, which is a more
robust assumption than Kh being full rank. Note a similar assumption is often imposed in the PSR
literature [27, Appendix B.4].
Assumption 1 (α-regularity of PSRs.). Assume that there exists α > 0 such that for any h ∈
[H − 1]+, we have ‖K†h‖1 7→1 ≤ 1/α.

Remark 1. ‖K†h‖1 7→1 can be upper bounded by
√
dPSR,h/σmin(Kh). In the literature of POMDPs,

many works [29, 13, 37] assume a similar condition called α-weakly revealing condition. That is,
the minimal singular value of the observation matrix or the multi-step observation matrix is lower
bounded by α. Assumption 1 can be regarded as a generalization of such weakly revealing condition
in PSRs by viewing core histories as the “states” and tests u ∈ Uh as the “observations” in PSRs.

In addition, to simplify analysis, we assume all one-step observations o ∈ O belong to UH . This
does not harm the generality of our model since augmenting the core test set is always feasible and
adding all one-step observations will at most increase |UA| by one.
Assumption 2. For all o ∈ O, we assume that o ∈ UH .

This assumption immediately implies that mo,H = eo,H , i.e., it is a one-hot vector which indexes
the observation o in UH . To see that, note that o ∈ UH implies that the predictive state qτH−1

contains the probability P(o|τH−1). Thus, when mo,H = eo,H , we have m>o,HqτH−1
= P(o|τH−1).

Therefore when Assumption 2 holds, we can assume that for all models induced by F , we have
mo,H;f = eo,H for all o without loss of generality.

Furthermore, we impose constraints on the function class F as follows:
Assumption 3. Assume the function class F satisfies the following conditions: (1) Realizability:
We have f∗ ∈ F , (2) Regularity: For all f ∈ F and h ∈ [H − 1]+, we have ‖K†h;f‖17→1 ≤ 1/α,
(3) Validity: For all f ∈ F , the model dynamics induced by f is a valid PSR with core test set
{Uh}h∈[H], i.e., the trajectory probability Pπf should be a valid distribution for any policy π and
satisfies the definition of PSRs.

The last two constraints (2), (3) in Assumption 3 can be easily satisfied by eliminating those func-
tions which do not satisfy the regularity or validity.

Notice that the system dynamics in (3) only utilizes the inner product of m(o,a,u),h;f and qτh−1;f ,
and qτh−1;f lives in the column space of Kh−1;f (i.e., (2)), which implies there is redundancy in the
choice of m(o,a,u),h;f given the model Pπf . Next we show that among these possible m(o,a,u),h;f ,
we can always find one that lies in the column space of Kh−1;f . More specifically, if we replace any
m(o,a,u),h;f with its projection on the space spanned by {qτh−1;f}τh−1

(which is exactly the column
space ofKh−1;f ), the resulting model dynamics will remain the same. Formally, we can show given
any Pπf , there exists a set of {m(o,a,u),h;f}o∈O,a∈A,u∈Uh+1,h∈[H−1] such that m(o,a,u),h;f belongs
to the column space of Kh−1;f (the proof is deferred to Appendix H). Therefore, in the following,
we let Mo,a,h;f consist of such m(o,a,u),h;f without loss of generality.
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Model Core test set Uh dPSR logNF (ε)
tabular POMDPs

(O ×A)m−1 ×O
≤ |S| poly(|O|, |A|, |S|, H, log(1/ε))

low-rank POMDPs ≤ dtrans Refer to Appendix A.2
linear POMDPs ≤ dlin poly(dlin, H, log(|O||A|/ε))

Table 2: Core test sets, minimum core test size and bracket number for POMDP models. Here all
the POMDPs we consider are m-step weakly-revealing or m-step decodable. The exact function
classes F we use are elaborated in the following discussion.
With the above assumptions, we have the following theorem, which characterizes the sample com-
plexity of CRANE to learn a near-optimal policy, whose proof is deferred to Appendix I:
Theorem 1 (Sample complexity). Under Assumption 1,2,3, for any δ ∈ (0, 1], ε > 0, if we choose

T = 1/ε2 × poly(dPSR, |UA|, 1/α, logNF (εb), H, |A|, log |O|, log(1/δ)),

and set β = c log(NF (εb)TH|UA|/δ), then with probability at least 1− δ we have

V π̂ ≥ V ∗ − ε,
where π̂ is the uniform mixture of the output policies, i.e., π̂ = Unif({πk}Tk=1).

Theorem 1 indicates that the complexity of CRANE only depends polynomially on the PSR rank
dPSR, the size of UA,h, the `1-norm of the pseudoinverse of the core matrix 1

α , the log bracket
number of function classes logNF (εb), H and |A|. CRANE avoids direct dependency on poly(|O|)
and our sample complexity remains the same even if the observation parts in core test set Uh is large.
Via the relationship between POMDPs and PSRs, Theorem 1 can be applied to m-step weakly-
revealing tabular POMDPs (including undercomplete POMDPs [29] and overcomplete POMDPs
[37]), m-step weakly-revealing low-rank POMDPs [47], m-step weakly-revealing linear POMDPs
and m-step decodable POMDPs [13], which we will elaborate on in Section 5 and Appendix A. Our
sample complexity in Theorem 1 depends on the upper bound of ‖K†h‖17→1, i.e., 1/α, which is not
avoidable in worst-case. We state the lower bound formally in Appendix K.
Proof techniques of Theorem 1. The existing analysis for POMDPs does not apply to PSRs since
we do not assume latent states in PSRs, let alone the emission matrix and transition matrix. In
our proof, we utilize the linear nature of PSRs and leverage the core matrix Kh to bound the error
propagation induced by the product of predictive operator matrices, i.e.,

∏H−1
h=1 Moh,ah,h in (3).

This key step enables us to bound the difference of model dynamics Pπf and Pπ (i.e., Pπf? ) by the
estimation error of Moh,ah,h and q0, and thus obtain a polynomial bound on the total suboptimality.
Comparison with existing works on PSRs. As far as we know, there are only two works that
tackle provably efficient RL for PSRs. Jiang et al. [26] shows a polynomial sample complexity result
in reactive POMDPs where optimal value functions only depend on current observations. Later,
Uehara et al. [45] shows a favorable sample complexity result without this assumption. However,
their result is an agnostic-type result that depends on (|O||A|)M when competing with M -memory
policies. Thus, to compete with the globally optimal policy, their results do not imply a polynomial
sample complexity bound.

5 EXAMPLES

In this section, we illustrate the sample complexity of CRANE to learn m-step weakly-
revealing/decodable tabular POMDPs and low-rank POMDPs. We defer more details (including the
concrete function classes we utilize to satisfy Assumption 3 and comparison with existing works)
and other examples including tabular PSRs andm-step weakly-revealing/decodable linear POMDPs
to Appendix A. Note that we can identify the minimum core test size and the bracketing number of
related models, which is summarized in Table 2 and the proof is deferred to Appendix E and G.

5.1 m-STEP WEAKLY-REVEALING TABULAR POMDPS

We first focus on m-step weakly-revealing tabular POMDPs [37] defined as follows.
Definition 3 (m-step weakly-revealing Tabular POMDPs). Define the m-step emission matrix
Oh,m ∈ R|A|m−1|O|m×|S| for any h ∈ [H −m+ 1] as follows:

(Oh,m)(a,o),s := P(oh:h+m−1 = o|sh = s, ah:h+m−2 = a),∀(a,o) ∈ Am−1 ×Om, s ∈ S.
When rank(Oh,m) = |S|, POMDPs are referred as m-step weakly-revealing POMDPs.

This assumption implies that the observations leak at least some information about the states so that
we can learn the POMDPs efficiently. Substituting the results in Table 2 into Theorem 1, we can
obtain the sample complexity for learning m-step weakly-revealing tabular POMDPs as follows.
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Corollary 1 (Sample complexity for m-step weakly-revealing tabular POMDPs). Suppose the
POMDP is m-step weakly-revealing and we execute CRANE with β = c log(NF (εb)TH|UA|/δ)
up to the step H −m where Uh andNF (εb) are specified in Table 2. Then under Assumption 1, for
any δ ∈ (0, 1], ε > 0, if we choose

T = 1/ε2 × poly(dPSR, |A|m, 1/α, |O|, |S|, H, log(1/δ)),

then with probability at least 1− δ we have V π̂ ≥ V ∗ − ε.

5.2 m-STEP WEAKLY-REVEALING LOW-RANK POMDPS

Next, we consider m-step weakly-revealing low-rank POMDPs. We first define low-rank POMDPs
to be a special subclass of POMDPs.
Definition 4 (Low-rank POMDPs). Suppose the transition kernel Th has the following low-rank
form for all h ∈ [H]: Th(s′|s, a) = (ψh(s′))>φh(s, a), where ψh : S 7→ Rdtrans and φh : S×A 7→
Rdtrans are unknown feature vectors. Then, we call these POMDPs as low-rank POMDPs.

The low-rank structure leads to a smaller minimum core test set size than general POMDPs since
we can show dPSR ≤ dtrans as in Appendix E. Weakly-revealing low-rank POMDPs are defined
as weakly-revealing POMDPs that have this low-rank structure. For the function class F , we let it
model the feature vectors, emission matrix and initial state distribution, i.e., {Φf ,Ψf ,Of , µf}f∈F
supposing F is finite (the infinite case is deferred to Appendix A). Then substitute the results in
Table 2 into Theorem 1 and the sample complexity for learning low-rank POMDPs is as follows:
Corollary 2 (Sample complexity for m-step weakly-revealing low-rank POMDPs). Suppose low-
rank POMDPs arem-step weakly-revealing, and we execute CRANE with β = c log(|F|TH|UA|/δ)
up to the step H − m where Uh is specified in Table 2. Then under Assumption 1 and 4, for any
δ ∈ (0, 1], ε > 0, if we choose

T = 1/ε2 × poly(dtrans, |A|m, 1/α, log |F|, H, log |O|, log(1/δ)),

then with probability at least 1− δ we have V π̂ ≥ V ∗ − ε.

Notice that the sample complexity only depends on dtrans rather than |S| for low-rank POMDPs.

5.3 m-STEP DECODABLE TABULAR/LOW-RANK POMDPS

Next, we instantiate our result on m-step decodable POMDPs [13] defined as follows.
Definition 5 (m-step decodable POMDPs). There exist unknown decoders {φdec,h}m≤h≤H such
that for every reachable trajctory τH , we have sh = φdec,h(zh) for all m ≤ h ≤ H where zh =
((o, a)h−m+1:h−1, oh).

This definition says that we can decode the current state with m-step history. Surprisingly, Ta-
ble 2 shows that m-step decodable POMDPs can be formulated as PSRs just like weakly-revealing
POMDPs, which leads to the following corollary:
Corollary 3 (Sample complexity for m-step decodable POMDPs).

• In m-step decodable tabular POMDPs, the same statement in Corollary 1 holds.

• In m-step decodable low-rank POMDPs, the same statement in Corollary 4 holds.
Remark 2 (Tabular PSRs and linear POMDPs). We can instantiate our result on tabular PSRs.
The sample complexity is polynomial in all parameters: dPSR, |O|, |A|, |U|, H, 1/ε, 1/α, log(1/δ).
Here, we leverage the observation of covering numbers after Definition 2. We also consider linear
POMDPs where latent transitions and emissions follow linear structures. While similar models are
considered [7, 47], our result is still new in that our model is more general. The details are deferred
to Section A.

6 CONCLUSION

We consider PAC learning in PSRs that represent states as a vector of prediction about future events
conditioned on histories. We propose CRANE and show polynomial sample complexities when we
compete with the globally optimal policy. Our work is the first work attaining this goal. Since
PSRs are more general than POMDPs, we instantiate our result to several concrete POMDPs such
as m-step weakly-revealing POMDPs, m-step decodable POMDPs, POMDPs with latent low-lank
transition. Notably, our work is the first work that simultaneously achieves polynomial sample
complexities in m-step weakly-revealing POMDPs and m-step decodable POMDPs.
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A EXAMPLES: MORE DETAILS AND MODELS

In this section, we supplement the details in Section 5 and illustrate the sample complexity of CRANE
to learn tabular PSRs and several other POMDPs in comparison with existing algorithms. We con-
sider two types of POMDPs: m-step weakly-revealing POMDPs and m-step decodable POMDPs.
Assumptions like weakly-revealing property and decodability allow us to identify core test sets.

A.1 m-STEP WEAKLY-REVEALING TABULAR POMDPS

We first give more details about the discussions of m-step weakly-revealing tabular POMDPs.

Core test sets and function classes. In this case we can choose Uh to be the set of all
m-step futures (O × A)m−1 × O. For the function class F , we first let it model the pa-
rameters {Th;f ,Oh;f , µ1;f}h∈[H] directly, lift weakly-revealing POMDPs to PSR formulation,
and then pre-process it to satisfy Assumption 3. The corresponding ε-bracket number NF (ε)
is shown in Table 2. Besides, since now the core test set is (O × A)m−1 × O, we let
m(oH−m+1:H ,aH−m+1:H−1),H−m+1;f = e(oH−m+1:H ,aH−m+1:H−1),H−m+1, i.e., it is a one-hot vec-
tor which indexes the future (oH−m+1:H , aH−m+1:H−1) in UH−m+1. Then from Lemma 4 we
know for any trajecotry τH ,

Pπf (τH) = e(oH−m+1:H ,aH−m+1:H−1),H−m+1 ·
H−m∏
l=1

Mol,al,lq0 × π(τH).

Note that here UH does not contain the observation space. Nevertheless, we can replace (17) with

V π
k

fk − V
πk ≤ H

∑
τH−m

∥∥∥∥H−m∏
h=1

Mk
oh,ah,h

· qk0 −
H−m∏
h=1

Moh,ah,h · q0

∥∥∥∥
1

× πk(τH−m),

and follow the same proof to show that Theorem 1 still holds even though Assumption 2 is not
satisfied.

Remarks about Corollary 1. By executing CRANE to the step H −m we mean that when col-
lecting trajectories, we only execute πk,ua,h+1,h and collect τk,ua,h+1,h

H for h ∈ [H−m]+, ua,h+1 ∈
UA,h+1. Since we have dPSR ≤ |S|, we can obtain that the sample compleixty will not be larger
than poly(|S|, H, |A|m, 1/α, 1/ε, |O|, log(1/δ)) from Corollary 1. This indicates that CRANE is
able to achieve polynomial sample complexity for m-step weakly-revealing tabular POMDPs.

Comparison with [37]. In m-step weakly revealing tabular POMDPs, CRANE is similar to the
algorithm OMLE proposed in [37] and their analysis leads to a sample complexity similar to Corol-
lary 1. However, their algorithm has a pre-processing step on the emission matrix Oh,m while we
have a step to formulate POMDPs into PSRs for pre-processing, thus the algorithm is still different.
Further, they assume an upper bound on ‖O†h,m‖1 7→1 while we assume ‖K†h‖17→1 ≤ 1/α in Assump-
tion 1. For tabular POMDPs, our assumption is slightly stronger since we have Kh−1 = Oh,mSh
where (S)s,τ lh−1

= P(s|τ lh−1) and thus σmin(Kh−1) ≤ dPSRσmin(Oh,m). That said, the analysis
and algorithm in [37] is specially tailored to m-step weakly reavling POMDPs and relies on the
existence of latent states. In contrast, our algorithm and analysis can be applied to any PSR models
including m-step decodable POMDPs.

Comparison with [34]. [34] deals with latent MDPs but they require either proper initialization or
other assumptions including Sufficient Tests, Sufficient Histories, strong separation of the MDPs and
reachability of the states. In contrast, we show in Appendix E that LMDP with Sufficient Tests can
be formulated into a (l+ 1)-step weakly-revealing POMDP, therefore CRANE is capable of tackling
LMDP with sample complexity 1/ε2 × poly(M, |S|, |A|l, 1/α,H, log(1/δ)) under only Sufficient
Tests and Assumption 1. In addition, the sample complexity in [34, Theorem 3.5] will scale with
the initialization error while CRANE circumvents such dependence completely.
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A.2 m-STEP WEAKLY-REVEALING LOW-RANK POMDPS

Next, we supplement the details about m-step weakly-revealing low-rank POMDPs.

Core test sets and function classes. For weakly-revealing low-rank POMDPs, we can still choose
Uh to be the set of allm-step futures (O×A)m−1×O due to the weakly-revealing property. For the
function class F , we let it model the feature vectors, emission matrix and initial state distribution,
i.e., {Φf ,Ψf ,Of , µf}f∈F where Φf : S × A × [H] 7→ Rdtrans , Ψf : S × [H] 7→ Rdtrans , Of :
S ×O × [H] 7→ [0, 1], µf : S 7→ [0, 1] such that

φh;f (s, a) = Φf (s, a, h), ψh;f (s) = Ψf (s, h),Oh;f (o|s) = Of (s, o, h), µ1;f (s) = µf (s).

Here F can be infinite. Denote the `∞-norm covering number of Φf ,Ψf ,Of , µf by
YΦ(ε),YΨ(ε),YO(ε),Yµ(ε). Then we have

logNF (ε) ≤ logYΦ(εLR/dtrans) + logYΨ(εLR/dtrans) + logYO(εLR) + logYµ(εLR),

where εLR := O(ε/(|O|H+2|A|H)). The proof is deferred to Appendix G. To make Assumption 3
hold, we only need to assume the feature vector classes satisfies realizablity:
Assumption 4. Suppose that there exsits f∗ ∈ F such that for all s ∈ S, a ∈ A, h ∈ [H] we have
φh(s, a) = Φf∗(s, a, h), ψh(s) = Ψf∗(s, h).

Then we can lift low-rank POMDPs to PSR formulation, and then pre-process it to satisfy Assump-
tion 3.

Remarks about Corollary 2. Corollary 2 only considers finite function class F . With the above
discussion, we can extend it to infinite function classes as follows:
Corollary 4 (Sample complexity for m-step weakly-revealing low-rank POMDPs). Sup-
pose low-rank POMDPs are m-step weakly-revealing, and we execute CRANE with β =
c log(NF (εb)TH|UA|/δ) up to the step H − m where Uh and NF (εb) are specified in Table 2.
Then under Assumption 1 and 4, for any δ ∈ (0, 1], ε > 0, if we choose

T = 1/ε2 × poly(dtrans, |A|m, 1/α, logYΦ(εLR/dtrans), logYΨ(εLR/dtrans),

logYO(εLR), logYµ(εLR), H, log |O|, log(1/δ)),

then with probability at least 1− δ we have V π̂ ≥ V ∗ − ε.

Comparison with [47]. In Corollary 4, we do not specify the function class and keep the bracket
number to facilitate the comparison with [47]. [47] also tackles the online learning problem of m-
step weakly-revealing low-rank POMDPs and our sample complexity only has an additional log |O|
factor compared to theirs. However, the model they have considered is less general than ours in
the sense that they require the feature vectors φh(s, a) to be a dtrans-dimensional probability distri-
bution to guarantee the existence of some bottleneck variables. Besides, their analysis depends on
some possibly complicated assumptions to recover the bottleneck variable like “past sufficiency". In
contrast, CRANE only requires ‖K†h‖17→1 to be upper bounded and does not assume the existence of
bottleneck variables.

Comparsion with [45]. They show favorable sample complexity results in weakly-revealing low-
rank POMDPs. However, their sample complexity results are quasi-polynomial. On the other hand,
our results are polynomial while we have an additional log |O| factor.

A.3 TABULAR PSRS

Notice that in Theorem 1 the log bracket number logNF (εb) is abstract. Here we consider tabular
PSRs as a speical case to provide an intuition how large the bracket number will be in general. In
tabular PSRs we directly use {Mo,a,h, q0}o∈O,a∈A,h∈[H−1] as the parameters of F and assume for
all f ∈ F we have

max
o∈O,a∈A,h∈[H−1],u∈Uh+1

‖m(o,a,u),h;f‖∞ ≤ 1, ‖q0;f‖∞ ≤ 1
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Then following the arguments in Appendix G, we have

logNF (ε) ≤ O(|U|2|O||A|H2 log(H|O||A||UA||U|/(αε))). (6)

By substituting the above results into Theorem 1, we have the following corollary which character-
izes the sample complexity to learn tabular PSRs:

Corollary 5 (Sample complexity for tabular PSRs). Execute CRANE with β =
c log(NF (εb)TH|UA|/δ) where NF (εb) are specified in (6). Then under Assumption 1,2
and 3, for any δ ∈ (0, 1], ε > 0, if we choose

T = 1/ε2 × poly(dPSR, |UA|, 1/α, |U|, |O|, |A|, H, log(1/δ)),

then with probability at least 1− δ we have

V π̂ ≥ V ∗ − ε.

From Corollary 5 we can see that CRANE is capable of learning tabular PSRs efficiently, with sample
complexity polynomial in all relevant parameters. Here, though we have a poly(|U|) dependency in
learning PSRs (since our model parameters Ma,o have degree of freedom scaling in poly(|U|)), we
will show that we would not incur poly(|U|) in the log ε-bracket number when PSRs are POMDPs.
This is because we can directly model the latent transition and omission distribution when we know
it is a POMDP.

A.4 m-STEP WEAKLY-REVEALING LINEAR POMDPS

In low-rank POMDPs the bracket number is still somehow abstract because we do not specify the
function class {Φf ,Ψf ,Of , µf}. Next we consider linear POMDPs and illustrate a more concrete
result. Here we assume that linear POMDPs possess a linear structure in both the transition kernel
and emission matrix. More formally, we can generalize the linear MDPs in [48] and define linear
POMDPs as follows:

Definition 6 (Linear POMDPs). A POMDP is linear with respect to the given feature vectors
{φh(s, a) ∈ Rd1 , ψh(s) ∈ Rd2 , φh(s) ∈ Rd3 , ψh(o) ∈ Rd4 , φ̂(s) ∈ Rd5}s∈S,a∈A,o∈O,h∈[H] where
‖φh(s, a)‖∞ ≤ 1, ‖ψh(s)‖∞ ≤ 1, ‖φh(s, a)‖∞ ≤ 1, ‖φh(o)‖∞ ≤ 1, ‖φ̂(s)‖∞ ≤ 1 for all s ∈
S, a ∈ A, o ∈ O, h ∈ [H] if there exists a set of matrices {B∗h,1 ∈ Rd2×d1 , B∗h,2 ∈ Rd4×d3}h∈[H]

where ‖B∗h,1‖∞,∞ ≤ 1, ‖B∗h,2‖∞,∞ ≤ 1 for all h ∈ [H] and θ∗ ∈ Rd5 where ‖θ∗‖∞ ≤ 1 such that
for any s, s′ ∈ S, a ∈ A, o ∈ A, h ∈ [H] we have

Th(s′|s, a) = (ψh(s′))>B∗h,1φh(s, a),O(o|s) = (ψh(o))>B∗h,2φh(s), µ1(s) = (θ∗)>φ̂(s).

Denote dlin = max{d1, d2, d3, d4, d5}. Notice that since Th(s′|s, a) = (ψh(s′))>B∗h,1φh(s, a), lin-
ear POMDPs are also low-rank POMDPs with dimension min{d1, d2} and thus for linear POMDPs
we have

dPSR ≤ dlin.

We further define the function class to be {f = (Bh,1 ∈ Rd2×d1 , Bh,2 ∈ Rd4×d3 , θ ∈ Rd5) :
‖Bh,1‖∞,∞ ≤ 1, ‖Bh,2‖∞,∞ ≤ 1, ‖θ‖∞ ≤ 1,∀h ∈ [H]} such that for any o ∈ O, a ∈ A, h ∈
[H −m]

Th;f (s′|s, a) = (ψh(s′))>Bh,1φh(s, a),Oh;f (o|s) = (ψh(o))>Bh,2φh(s), µ1;f (s) = θ>φ̂(s).

This enables us to boundNF (ε) as in Table 2. Note that this function class satisfies realizability and
we can pre-process it to make Assumption 3 hold.

Finally, we assume m-step weakly-revealing property. In this case, we can still choose the same Uh
as in tabular POMDPs. Using the above models and formulating POMDPS into PSRS for the pre-
processing step to satisfy Assumption 3, we can run CRANE. The sample complexity for learning
linear POMDPs will scale with dlin rather than poly(|O|, |S|) as follows.
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Corollary 6 (Sample complexity of m-step weakly-revealing linear POMDPs). Suppose the linear
POMDP is m-step weakly-revealing and we execute CRANE with β = c log(NF (εb)TH|UA|/δ) up
to the step H−m where Uh andNF (εb) are specified in Table 2. Then under Assumption 1, for any
δ ∈ (0, 1], ε > 0, if we choose

T = 1/ε2 × poly(dlin, |A|m, 1/α,H, log |O|, log(1/δ)),

then with probability at least 1− δ we have

V π̂ ≥ V ∗ − ε.

Comparison with [7]. From Corollary 6, we can see that the linear structure helps us circumvent
the polynomial scaling with |O| and |S|. [7] also discusses linear POMDPs and achieves a similar
polynomial sample complexity. However, they only consider undercomplete setting (i.e., |O| ≥ |S|)
and assume {(ψh(s))i}s∈S is a distribution on S for any i ∈ [d2]. In addition, they not only assume
the transition and emission are linear, but also impose a linear structure on the state distribution
conditioned on future observations such as Cai et al. [7, Assumption 2.2]. Therefore our model is
more general and requires fewer assumptions.

A.5 m-STEP DECODABLE TABULAR/LOW-RANK/LINEAR POMDPS

Next, we supplement the discussion about m-step decodable POMDPs in Section 5.

Core test sets and function classes. Like m-step weakly-revealing POMDPs, m-step decodable
POMDPs can be formulated as PSRs where core tests are m-step futures and the PSR rank is |S|
in the tabular case and dtrans in low-rank POMDPs. Intuitively, this is proved by the observation
that m-step futures can decode the latent state m-step ahead, i.e., sm+h by treating “histories" in the
definition as “futures". In Appendix E we have a more detailed discussion. We also utilize the same
function classes as m-step weakly-revealing POMDPs for m-step decodable POMDPs.

Remarks about Corollary 3. Note that the discussion about m-step weakly-revealing linear
POMDPs also holds for m-step decodable POMDPs, therefore we can extend Corollary 3 to the
following corollary:

Corollary 7 (Sample comlexity for m-step decodable POMDPs).

• In m-step decodable tabular POMDPs, the same statement in Corollary 1 holds.

• In m-step decodable low-rank POMDPs, the same statement in Corollary 4 holds.

• In m-step decodable linear POMDPs, the same statement in Corollary 6 holds.

Comparison with [13]. [13] works onm-step decodable tabular POMDPs and show sample com-
plexity polynomial in |S|, H, |A|m, 1/ε, log(1/δ) and log covering number of a value function class.
They also provide a result on m-step decodable low-rank POMDPs where the sample complexity
scales with dtrans rather than |S|. However, there are some differences between their results and
Corollary 7. First, the log covering number of the value function class in their results will typically
scale with poly(|O|m). Our results, on the other hand, only scale with poly(|O|) since the log
bracket number of our function classes only scales with poly(|O|). Secondly, the analysis in [13]
does not require the regularity-type assumption (Assumption 1). This is because their algorithm is
tailored to m-step decodable POMDPs. The lower bound in Theorem 3 has shown that the scaling
with the regularity parameter 1/α is inevitable in PSRs, highlighting the necessity of such regularity
in general.

B RELATED WORKS

We discuss related works to our paper in this section.
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PSRs and its learning algorithm PSRs represent states as a vector of predictions about future
events [36, 41, 38, 21, 44, 19]. Importantly, compared to well-known models of dynamical systems
like HMMs that postulate latent state variables that are never observed, we do not need to refer to la-
tent state variables and every definition relies on observable quantities. While PSRs were originally
introduced in the tabular setting, PSRs can be extended to the non-tabular setting using conditional
mean embeddings [4]. Using data obtained by exploratory open-loop policies such as uniform poli-
cies, Boots et al. [6; 4], Zhang et al. [49] proposed a learning algorithm for dynamics by leveraging
spectral learning [33, 23, 28]. Later, Hefny et al. [22] pointed out an insightful connection between
spectral learning and supervised learning (more specifically, instrumental variable regression when
histories are instrumental). Based on this viewpoint, Hefny et al. [22] proposed a two-stage regres-
sion learning algorithm. Compared to these settings, our setting is significantly challenging. This is
because their goal is learning system dynamics with exploratory offline data while we want to learn
the optimal policy when we don’t have access to such exploratory data.

Provably efficient RL for POMDPs and PSRs. Seminal works [31, 14] obtained AH -type
sample complexity bounds for POMDPs. We can avoid exponential dependence with more structural
assumptions. Recently, there is a growing body of literature that discusses provably efficient RL in
the online setting under various structures.

In the tabular setting, one of the most standard structural assumptions is an observability (i.e.,
weakly-revealing) assumption, which implies that observations retain information about latent
states. Under observability and various additional assumptions, in Azizzadenesheli et al. [3], Guo
et al. [20], Kwon et al. [34], favorable polynomial sample complexities are obtained by leveraging
the spectral learning technique [23]. Later, Jin et al. [29], Liu et al. [37] improve these results and
obtain polynomial sample complexity results under only observability assumptions. Golowich et al.
[17; 18] develop algorithms with quasi-polynomial sample and computational complexity under
observability properties.

In the non-tabular POMDP setting, several positive results are obtained. One of the most investigated
models is linear quadratic gaussian (LQG), which is a partial observable version of LQRs. Lale et al.
[35], Simchowitz et al. [40] proposed sub-linear regret algorithms. Polynomial sample complexities
are obtained on other various POMDP models such as M-step decodable POMDPs [13] where we
can decode the latent state by m-step back histories (when m = 1, it is Block MDP), weakly-
revealing linear-mixture type POMDPs [7] where emission and transition are modeled by linear
mixture models, weakly-revealing low-rank POMDPs [45] where latent transition have low-rank
structures. Our proposed algorithm can capture all of the abovementioned models except for LQG.

There are few works that discuss strategic exploration in PSRs. None of them obtain polynomial
sample complexity results for learning approximate globally optimal policies [26, 45]. For details,
refer to Section 4.

C NOTATIONS

We sum up the notations in PSRs in Table 3.

D EXPRESSIVITY OF PSRS

In this section, we will construct a sequential decision making process to illustrate the superior
expressivity of PSRs with respect to POMDPs. In short, we will show that if we formulate the
process into a POMDP, the number of latent states we need can be exponentially larger the core
test set size in PSRs. The construction leverages existing results in perfect matching polytope and
largely follows the arguments in [1].

First, let n be even and Kn be the complete graph on n vertices. Consider a vector x ∈ R(n2) that
associates a weight to each edge and we denote its entry by xu,v where u 6= v ∈ [n] are the vertices.
Let 1M ∈ R(n2) denote the edge-indicator vector for a subset of edgesM. Then [12] shows that the
convex hull of all edge-indicator vectors corresponding to a perfect match, which we also call the
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Table 3: Notations of PSRs. We also refer readers to Figure 1 for an illustration of the notations
such as Uh, Dh, Dh, and Kh.

Notation Definition

V π Eπ
[∑H

h=1 rh

]
P(th|τh−1) P(oh:h+W−1|τh−1; do(ah:h+W−2))
Uh core test set at step h
UA,h the set of all action sequences in Uh
qτh predictive states [P(u|τh)]u∈Uh+1

mth,h P(th|τh−1) = 〈mth,h, qτh−1
〉

dPSR,h minimum core test set size at step h
bτh unnormalized predictive state {

∏h
l=1Mol,al,l}q0

Dh system dynamics
Dh predictive state dynamics whose columns are qτh
Kh core matrix at step h

Mo,a,h predictive operator matrix

perfect matching polytope, can be expressed with a number of constraints as follows:

Pn := conv

{
1M ∈ R(n2)|M is a perfect matching in Kn

}
=

{
x ∈ R(n2) : x ≥ 0;∀v :

∑
u

xu,v = 1;∀U ⊂ [n] and |U | is odd :
∑
v/∈U

∑
u∈U

xu,v ≥ 1

}
.

There are V := n!/(2n/2(n/2)!) vertices in Pn and the number of constraints is C := 2Ω(n).
We denote the vertices by {v1, · · · , vV } and the constraints by c1, · · · , cC . We further add an-
other dimension to vi(i ∈ [V ]) to account for the offsets in the constraints and obtain vectors
v′i ∈ R(n2)+1(i ∈ [V ]). Then we have 〈ci, v′j〉 ≥ 0 for all i ∈ [C], j ∈ [V ]. Now we can de-
fine the slack matrix for the polytope Pn to be Z ∈ RC×V+ where Zi,j = 〈ci, v′j〉.

Notice that the rank of Z isO(n2). However, since Pn has extension complexity 2Ω(n) [39] and the
extension complexity of a polytipe is the non-negative rank of its slack matrix [15], we know the
non-negative rank of Z is at least 2Ω(n).

Now we can construct our sequential decision making process. Suppose for the step 1 ≤ h ≤ H−1,
the process behaves according to a POMDP with state space S ′, action space A, observation space
O, initial state distribution µ1, emission matrix Oh and transition kernel Th. At step h = H
though, the one-step system dynamics DH−1 is given by associating each pair (oH−1, aH−1) with
a constraint ci and each future test t ∈ O (which is one-step observation now) with a vertex v′j such
that for any history τH−1 that ends with (oH−1, aH−1) we have

P(t|τH−1) =
〈ci, v′j〉∑V
k=1〈ci, v′j〉

.

Now we fix a history τH−2 with lengthH−2 and consider the matrix D̂H−1 ∈ R|O|×(|O||A|) where
the rows are indexed by the test t ∈ O, the columns are indexed by the history (τH−2, o, a) for all
o ∈ O, a ∈ A and (D̂H−1)t,(τH−2,o,a) = P(t|τH−2, o, a). Since the non-negative rank is preserved
under positive diagonal rescaling [8], we know the non-negative rank of D̂>H−1 is at least 2Ω(n).
Then for the above sequential process, if we formulate it into a POMDP with state space S, then we
have

P(t|τH−2, o, a) =
∑
sH∈S

P(t|sH)P(sH |τH−2, o, a).

Notice that for a row-stochatic matrix D̂>H−1, the non-negative rank is equal to the smallest number
of factors we can use to write D̂>H−1 = RS where both R,S are row-stochastic [8]. This implies
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Figure 2: For any POMDP, the system dynamics matrix Dh can always be factorized using the
latent states. This factorization implies that the rank of Dh is no larger than the number of latent
states, which implies that POMDP is a linear PSR with rank at most equal to the number of latent
states. Note that here Dh,1 and Dh,2 both contains non-negative entires. In contrast, from Figure 1,
the low-rank factorization of Dh in PSR can have negative entries (i.e., m and v can have negative
entries).

that we must have |S| not smaller than the non-negative rank of D̂>H−1, therefore we have

|S| ≥ 2Ω(n).

On the other hand, if we formulate the above process into a PSR, at step h = H , since the rank of
DH−1 is equal to the rank of Z, we know the rank of DH−1 is not larger thanO(n2), which implies
that there exists a core test set UH whose size is not larger than O(n2). When 1 ≤ h ≤ H − 1,
notice that for any test t = {oh:H , ah:H−1} and history τh−1 we have

P(t|τh−1) =
∑
sh∈S′

P(sh|τh−1)(P(th:H−1|sh)P(oH |oH−1, aH−1)),

where th:H−1 = {oh:H−1, ah:H−2}. Notice that P(th:H−1|sh)P(oH |oH−1, aH−1) only depends on
t and P(sh|τh−1) only depends on τh−1. This implies that there exists a core test set Uh whose size
is not larger than |S ′| for all 1 ≤ h ≤ H − 1. Therefore, the core test set size of the PSR can be
smaller than max{O(n2), |S ′|}. This shows that PSRs can express this sequential decision making
process exponentially more efificient than POMDPs.

E EXAMPLES OF PSRS

In this section we present the proofs of Lemma 2 and Lemma 3, and then formulate m-step weakly-
revealing POMDPs,m-step decodable POMDPs and low rank POMDPs into PSRs and analyze their
core test set and minimum core test set size.

E.1 PROOFS OF LEMMA 2 AND LEMMA 3

We first prove Lemma 2. Consider the one-step system dynamics Dh shown in Figure 2 whose rows
are indexed by all possible future tests th+1 and columns are indexed by all histories τh at h-th step.
Each entry of Dh is the successful probability of the test, i.e., (Dh)th+1,τh = P(th+1|τh). Since we
know P(th+1|τh) =

∑
sh+1∈S P(th+1|sh+1)P(sh+1|τh) (where we also define P(sh+1|τh) = 0 for

unreachable τh), we can decompose Dh into the product of Dh,1 and Dh,2 as in Figure 2, where
(Dh,1)th+1,sh+1

= P(th+1|sh+1) and (Dh,2)sh+1,τh = P(sh+1|τh). This implies that the rank of
Dh is not larger than |S|, which proves that it is a linear PSR with rank no larger than |S|.
Now we prove Lemma 3. Consider any h ∈ [H], let qτh−1

= [P(o|τh−1)]o∈O. Then the belief state
of the POMDP sτh−1

= [P(sh|τh−1)]sh∈S can be expressed as:

sτh−1
= O†hqτh−1

.
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Here, we use O†hOh is an |S| × |S| identity matrix, which is verified by the assumption. Then for
any test t = (oh:h+W , ah:h+W−1), we know P(t|τh−1) = m′t,hsτh−1

where

m′t,h = Oh+W (oh+W |·)>
h+W−1∏
l=h

Tl,aldiag(Ol(ol|·)).

where Oh(o|·) ∈ R|S| is a vector whose s-th entry is Oh(o|s) and Tl,al is a |S| × |S| matrix with
entry (Tl,al)s′,s = Tl(s′|s, al).

Therefore we have P(t|τh−1) = 〈mt,h, qτh−1
〉 wheremt,h = (m′t,hO

†
h)>. Thus we have shown that

the probability of any test t is a linear combination of the probabilities of the tests o ∈ O (the linear
combination weights mt,h only depends on test but is independent of history). This indicates thatO
is a core test set for 1-step weakly-revealing POMDPs.

E.2 m-STEP WEAKLY-REVEALING POMDPS

Recall the definition of the m-step emission matrix Oh,m ∈ R|A|m−1|O|m×|S| for any h ∈ [H −
m+ 1] is as follows:

(Oh,m)(a,o),s := P(oh:h+m−1 = o|sh = s, ah:h+m−2 = a),∀(a,o) ∈ Am−1 ×Om, s ∈ S.

Then m-step weakly revealing condition [37] means that the rank of Oh,m is |S| for all h ∈ [H −
m+ 1]. From Lemma 2, we know that dPSR ≤ |S|. In addition, the following lemma suggests that
a general core test set for m-step weakly-revealing POMDPs is the set of all m-step futures:
Lemma 5. When Oh,m is full rank for all h ∈ [H −m + 1], the POMDP is a PSR with the core
test set Uh = O × (A×O)m−1 for all h ∈ [H −m+ 1].

Proof. The proof is similar to 1-step weakly-revealing POMDPs. Consider any h ∈ [H −m + 1],
let qτh−1

= [P(u|τh−1)]u∈O×(A×O)m−1 . Then the belief state sτh−1
= [P(sh|τh−1)]sh∈S can be

expressed as:

sτh−1
= O†h,mqτh−1

.

Then we know for any test t = (oh:h+W , ah:h+W−1), we know P(t|τh−1) = m′t,hsτh−1
where

m′t,h = Oh+W (oh+W |·)>
h+W−1∏
l=h

Tl,aldiag(Ol(ol|·)).

Recall that here Oh(o|·) ∈ R|S| is a vector whose s-th entry is Oh(o|s) and Tl,al is a |S| × |S|
matrix with entry (Tl,al)s′,s = Tl(s′|s, al).

Therefore we have P(t|τh−1) = 〈mt,h, qτh−1
〉 where mt,h = (m′t,hO

†
h,m)>. This indicates that

Uh = O × (A×O)m−1 is a core test set for all h ∈ [H −m+ 1].

Notice that here we only show the core test set of m-step weakly-revealing POMDPs up to step
H −m+ 1. However, this is sufficient to charaterize the whole POMDP. From Lemma 4 we know
that for any trajectory τH , Pπ(τH) is one of the entries in

∏H−m
l=1 Mol,al,lq0 × π(τH). Therefore,

with parameters {Mo,a,h, q0}o∈O,a∈A,h∈[H−m] (which only depends on Uh where h ∈ [H−m+1])
we can recover the POMDPs easily.

E.3 LATENT MDPS

Next we consider the Latent MDP (LMDP) model in [34]. Supoose there are M MDPs and each
MDP m is characterized by (S,A,Tm,h, Rm,h, H, µm) where S is the common state space, A is
the common action space, Tm,h is the transition probability at step h of MDP m, Rm,h : S × A ×
{0, 1} 7→ [0, 1] is a probability measure for rewards at step h of MDPm that maps a state-action pair
and a binary reward to a probability, H is the horizon and µm is the initial state distribution of MDP
m. At the start of every episode, one MDP m ∈ [M ] is randomly chosen with some probability wm.
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[34, Theorem 3.1] shows that with no further assumptions, learning an instance of the above
LMDP requires at least Ω((|S||A|)M ) episodes at worst. A number of assumptions are consid-
ered to circumvent this lower bound and one of them is called Sufficient Tests. More specifi-
cally, for each step h ∈ [H − l + 1], consider all possible length-l action-reward-state sequences
ah, rh, sh+1, · · · , ah+l−1, rh+l−1, sh+l and denote the set of all such sequences by Th. Then sup-
pose that the successful probability of Th under different MDPs given any sh ∈ S has rank M :

Assumption 5 (Sufficient Tests, [34, Condition 1]). For any h ∈ [H − l + 1], sh ∈ S and any
t = (ath, r

t
h, s

t
h+1, · · · sth+l) ∈ Th, we define

Pm(t|sh) := Pm(rth, s
t
h+1, · · · sth+l|sh,do(ath, · · · , ath+l−1)),

where Pm denotes the probability under MDP m. Let Lsh = [[P1(t|sh)]t∈Th , · · · , [PM (t|sh)]t∈Th ],
then σM (Lsh) ≥ α for all sh ∈ S with some α > 0.

The following lemma indicates that LMDPs with Assumption 5 can be formulated into an (l + 1)-
step weakly-revealing POMDP and thus a PSR with the core test set being all (l + 1)-step futures:

Lemma 6. Under Assumption 5, the LMDP can be formulated into an (l+1)-step weakly-revealing
POMDP.

Proof. First notice that the LMDP can be formulated into a POMDP with state space S = S ×
{0, 1} × [M ] and observation space O = S × {0, 1}. At each step h, the latent state sh ∈ S is
(sh, rh−1, I) where sh is the current observed state, rh−1 is the reward of last step and I is the
index of the underlying MDP. On the other hand, the observation oh is (sh, rh−1). Then for any
h ∈ [H − l+ 1], any latent state sh = (sh, rh−1, I) and (l+ 1)-step test t = (oth, a

t
h, · · · , oth+l), we

have

P(t|sh) = 1(oth = (sh, rh−1)) · PI(t|sh),

where t = (ath, o
t
h+1, · · · , oth+l). Therefore, the (l + 1)-step emission matrix can be written as

follows:

Oh,l+1 =



Ls1h 0 0 0 · · · 0
0 Ls1h 0 0 · · · 0
0 0 Ls2h 0 · · · 0
0 0 0 Ls2h · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · L

s
|S|
h


.

Since the rank of Lsh is M for any sh ∈ S , we know the rank of Oh,l+1 is 2M |S| for all h ∈
[H − l+ 1]. This implies that the POMDP satisfies the (l+ 1)-step weakly-revealing condition.

E.4 m-STEP DECODABLE POMDPS

Recall the definition of m-step decodable POMDPs [13] is that there exist unknown decoders
{φdec,h}m≤h≤H such that for every reachable trajctory τH , we have sh = φdec,h(zh) for all
m ≤ h ≤ H where zh = ((o, a)h−m+1:h−1, oh). From Lemma 2, we know that dPSR ≤ |S|.
Further, the following lemma suggests that a general core test set for m-step decodable POMDPs is
the set of all m-step futures:

Lemma 7. A m-step decodable POMDP is a PSR with the core test set Uh = O× (A×O)m−1 for
all h ∈ [H −m+ 1].

Proof. Consider any h ∈ [H −m + 1], let qτh−1
= [P(u|τh−1)]u∈O×(A×O)m−1 . Then for any test

t = (oh:h+W , ah:h+W−1), whenW ≤ m−1, we have for any length-(m−1−W ) action sequence
a,

P(t|τh−1) =
∑

u∈Ut,a

P(u|τh−1),
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where Ut,a denotes the set of all length-m tests whose action sequence is (ah:h+W−1,a) and the
first W + 1 observations are oh:h+W . This implies P(t|τh−1) = m>t,hqτh−1

where mt,h sets the
entries corresponding to the tests in Ut,a as 1 and the others as 0.

When W > m − 1, we denote th:h+m−1 to be (oh:h+m−1, ah:h+m−1) and th+m to be
(oh+m:h+W , ah+m:h+W−1). Then we have

P(t|τh−1) = P(th:h+m−1|τh−1)P(oh+m:h+W |(τh−1, th:h+m−1); do(ah+m:h+W−1))

= P(th:h+m−1|τh−1)P(oh+m:h+W |φdec,h+m−1(zh+m−1), ah+m−1; do(ah+m:h+W−1)).

Notice that P(oh+m:h+W |φdec,h+m−1(zh+m−1), ah+m−1; do(ah+m:h+W−1)) only depends on
t, therefore we have P(t|τh−1) = m>t,hqτh−1

where mt,h sets the entry corresponding to
(oh:h+m−1, ah:h+m−2) as P(oh+m:h+W |φdec,h+m−1(zh+m−1), ah+m−1; do(ah+m:h+W−1)) and
the others as 0. This concludes our proof.

Similar to the discussion for m-step weakly-revealing POMDPs, it is suffcient to show the core test
set of m-step decodable POMDPs up to step H −m+ 1.

E.5 LOW-RANK POMDPS

Next we consider low-rank POMDPs. Recall that for low-rank POMDPs, the transition kernel Th
has the following low-rank form for all h ∈ [H]:

Th(s′|s, a) = (ψh(s′))>φh(s, a),

where ψh : S 7→ Rdtrans and φh : S × A 7→ Rdtrans . The next lemma indicates that for low-rank
POMDPs, the minimum core test set size will be not larger than dtrans, which can be potentially
much smaller than |S|:
Lemma 8. For any low-rank POMDP, its minimum core test set size will be not larger than dtrans.

Proof. First notice that we have for any test t and history τh:

P(t|τh) = 〈[P(t|sh+1)]sh+1∈S , sτh〉.
Besides, notice that from the low rank structure (4), we have for any sh+1 ∈ S,

P(sh+1|τh) = ψh(sh+1)>
∑
sh∈S

φh(sh, ah)P(sh|τh).

This implies that

P(t|τh) =

( ∑
sh+1∈S

P(t|sh+1)ψh(sh+1)

)>
·
( ∑
sh∈S

φh(sh, ah)P(sh|τh)

)
.

This implies that the rank of the one-step system dynamics Dh is not larger than dtrans for all
h ∈ [H]. Therefore we have dPSR ≤ dtrans.

F PROOF OF LEMMA 4

We first prove (4). Notice that we have

Pπ(τh)qτh = [P(u|τh)Pπ(τh)]u∈Uh+1
= (P(u|τh))u∈Uh+1

P(oh|τh−1)π(ah|τh−1, oh)Pπ(τh−1)

= (P(oh, o(u)|τh−1; do(ah, a(u))))u∈Uh+1
· π(ah|τh−1, oh)Pπ(τh−1)

= Moh,ah,h(qτh−1
Pπ(τh−1))π(ah|τh−1, oh)

= · · · =
h∏
l=1

Mol,al,lq0 × π(τh) = bτh × π(τh),

where the third step comes from the definition (1). In particular, for any trajectory τH , we have

Pπ(τH) = π(aH |τH−1, oH)(m>oH ,HqτH−1
)Pπ(τH−1) = m>oH ,H ·

H−1∏
h=1

Moh,ah,h · q0 · π(τH).
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G ε-BRACKET NUMBER OF F

In this section we introduce some basic properties of the ε-bracket numberNF (ε). We first consider
PSRs and then take POMDPs as special examples.

G.1 PSRS

For PSRs, let us define the covering number for the parameters {Mo,a,h;f , q0;f} as follows:
Definition 7 (ε-covering number). The ε-covering number of F , denoted by ZF (ε), is the minimum
integer n such that there exists a function class F ′ with |F ′| = n and for any f ∈ F there exists
f ′ ∈ F ′ such that maxo∈O,a∈A,h∈[H−1],u∈Uh+1

‖m(o,a,u),h;f −m(o,a,u),h;f ′‖∞ ≤ ε and ‖q0;f −
q0;f ′‖∞ ≤ ε.

Here F ′ does not need to be valid PSR model classes and m(o,a,u),h;f ′ does not need to belong
to the column space of Kh;f ′ . That said, we still use Pπf ′(τH) to denote the product m>oH ,H ·∏H−1
h=1 Moh,ah,h;f ′ · q0;f ′ · π(τH) where moH ,H = eoH ,H , although this might no longer be a valid

distribution. Then the following lemma shows that the bracket number can be upper bounded by the
covering number, whose proof is deferred to Appendix G.3.
Lemma 9. Given F and any ε > 0, suppose Assumption 1,2 and 3 hold, then we have

NF (ε) ≤ ZF (αε/(8|O|H+1|A|HH|UA|2|U|)).

Since the log covering number logZF (ε) typically scales with log(1/ε), Lemma 9 shows that
logNF (ε) also scales with polynomial H in general.

Tabular PSRs. Let us consider the tabular cases for example where we directly use
{Mo,a,h, q0}o∈O,a∈A,h∈[H−1] as the parameters of F and assume for all f ∈ F we have

max
o∈O,a∈A,h∈[H−1],u∈Uh+1

‖m(o,a,u),h;f‖∞ ≤ 1, ‖q0;f‖∞ ≤ 1

without loss of generality. Then we know

logZF (αε/(8|O|H+1|A|HH|U2
A||U|)) ≤ O(|U|2|O||A|H2 log(H|O||A||UA||U|/(αε)),

which implies that
logNF (ε) ≤ O(|U|2|O||A|H2 log(H|O||A||UA||U|/(αε))).

G.2 POMDPS

For POMDPs, we can obtain a more efficient function class by modeling the emission matrix Oh,
transition kernel Th and initial state distribution µ1 instead of {Mo,a,h;f , q0;f}. Let us define the
covering number for the parameters {Th;f ,Oh;f , µ1;f}h∈[H] as follows:
Definition 8. The ε-covering number of {Th;f ,Oh;f , µ1;f}h∈[H],f∈F , denoted by VF (ε), is the
minimum integer n such that there exists a function class F ′ with |F ′| = n and for any f ∈ F
there exists f ′ ∈ F ′ such that maxh∈[H−1],a∈A ‖Th,a;f − Th,a;f ′‖∞,∞ ≤ ε,maxh∈[H] ‖Oh;f −
Oh;f ′‖∞,∞ ≤ ε and ‖µ1;f − µ1;f ′‖∞ ≤ ε.

Then we have the following lemma:
Lemma 10. For any f ∈ F and 0 < ε1 ≤ 1, suppose f ′ satisfies maxh∈[H−1],a∈A ‖Th,a;f −
Th,a;f ′‖∞,∞ ≤ εop,maxh∈[H] ‖Oh;f −Oh;f ′‖∞,∞ ≤ εop and ‖µ1;f − µ1;f ′‖∞ ≤ εop, where

εop = ε1/(14|O|2).

Then for any policy π, we have ∑
τH

|Pπf ′(τH)− Pπf (τH)| ≤ ε1.

The proof is omitted here since it follows similar arguments in the proof of Lemma 11. Therefore,
following the arguments in the proof of Lemma 9, we know

NF (ε) ≤ VF (ε/(28|O|H+2|A|H)).
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Tabular POMDPs. For tabular POMDPs where {Th;f ,Oh;f , µ1;f}h∈[H] is modeled directly, it
can be observed that logVF (ε) = O(H|O||S|2|A| log(1/ε)). Therefore we have

logNF (ε) ≤ poly(|O|, |A|, |S|, H, log(1/ε)).

Low-rank POMDPs. For low-rank POMDPs, when utilizing the function class introduced in Sec-
tion 5, we can obtain that logVF (ε) ≤ logYΦ(ε/(3dtrans)) + logYΨ(ε/(3dtrans)) + logYO(ε/3) +
logYµ(ε), which implies that

logNF (ε) ≤ logYΦ(εLR/dtrans) + logYΨ(εLR/dtrans) + logYO(εLR) + logYµ(εLR),

where εLR := O
(
ε/(|O|H+2|A|H)

)
.

Linear POMDPs. For linear POMDPs, when utilizing the function class introduced in Section 5,
it can be calculated that logVF (ε) = O(H

∏5
i=1 di log(

∏5
i=1 di/ε)), which implies that

logNF (ε) ≤ O
(
H2

5∏
i=1

di log(|O||A|/ε)
)
.

G.3 PROOF OF LEMMA 9

First let us prove that Pπf (·) is Lipschitz continuous with respect to {Mo,a,h;f , q0;f} for any policy
π, as shown in the following lemma:
Lemma 11. For any f ∈ F and 0 < ε1 ≤ |UA|, suppose f ′ satisfies

max
o∈O,a∈A,h∈[H−1],u∈Uh+1

‖m(o,a,u),h;f −m(o,a,u),h;f ′‖∞ ≤ εop, ‖q0;f − q0;f ′‖∞ ≤ εop,

where

εop = αε1/(4H|UA|2|U||O|).

Then for any policy π, we have ∑
τH

|Pπf ′(τH)− Pπf (τH)| ≤ ε1.

Now consider the minimum εop-covering net of F , denoted by F ′. Then by the definition of mini-
mum covering net, we know for any f ∈ F ′, there exists f ′ ∈ F such that

max
o∈O,a∈A,h∈[H−1],u∈Uh+1

‖m(o,a,u),h;f −m(o,a,u),h;f ′‖∞ ≤ εop, ‖q0;f − q0;f ′‖∞ ≤ εop.

Using Lemma 11, we know for any policy π and trajectory τH ,

Pπf ′(τH)− ε1 ≤ Pπf (τH) ≤ Pπf ′(τH) + ε1.

Therefore, let us define gf
′

1 (π, ·) = Pπf ′(·)− ε1 and gf
′

2 (π, ·) = Pπf ′(·) + ε1, then the set {[gf
′

1 , g
f ′

2 ] :

f ′ ∈ F ′} is a 2ε1(|O||A|)H -bracket of F where we use the fact that there are at most (|O||A|)H
many trajectories. Let 2ε1(|O||A|)H = ε and then we have

NF (ε) ≤ ZF (αε/(8|O|H+1|A|HH|UA|2|U|)).

G.4 PROOF OF LEMMA 11

We use Lemma 16 to prove this lemma via induction. First notice that we have for any o ∈ O, a ∈
A, h ∈ [H − 1], u ∈ Uh+1,

‖m(o,a,u),h;f ′ −m(o,a,u),h;f‖∞ ≤ εop, (7)

‖q0;f ′ − q0;f‖∞ ≤ εop. (8)
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In the following discussion, we use q0,m(o,a,u),h,Mo,a,h, bτh to denote q0;f ,m(o,a,u),h;f ,
Mo,a,h;f , bτh;f and q′0,m

′
(o,a,u),h,M

′
o,a,h, b

′
τh

to denote q0;f ′ ,m(o,a,u),h;f ′ ,Mo,a,h;f ′ , bτh;f ′ to sim-
plify writing. Next we use induction to prove the lemma.

For the base case, we have bτ0 = q0, b
′
τ0 = q′0. Therefore from (8) we have

‖bτ0 − b′τ0‖1 ≤ |U|εop ≤ ε1.

Now suppose for any h′ ≤ h where h ∈ [H − 2]+ and policy π, we have
∑
τh′
‖bτh′ − b

′
τh′
‖1 ×

π(τh′) ≤ ε1. Notice that here f ′ might not satisfy Assumption 3, but from the proof of Lemma 14
we can see that Lemma 14 still holds since f ∈ F . Therefore we have for any policy π,∑

τh+1

‖bτh+1
− b′τh+1

‖1 × π(τh+1)

≤ |UA|
α

( h+1∑
l=1

∑
τl

‖[Mol,al,l −M ′ol,al,l]b
′
τl−1
‖1 × π(τl) + ‖q0 − q′0‖1

)
. (9)

From (7), we know for any l ∈ [h+ 1],∑
τl

‖[Mol,al,l −M ′ol,al,l]b
′
τl−1
‖1 × π(τl)

≤ εop|U|
∑
τl

‖b′τl−1
‖1 × π(τl)

= εop|U||O|
∑
τl−1

‖b′τl−1
‖1 × π(τl−1)

≤ εop|U||O|
∑
τl−1

(‖bτl−1
‖1 × π(τl−1) + ‖bτl−1

− b′τl−1
‖1 × π(τl−1))

≤ εop|U||O|
∑
τl−1

(|UA|+ ‖bτl−1
− b′τl−1

‖1 × π(τl−1))

≤ εop|U||O|(ε1 + |UA|). (10)

Here the first step comes from Cauchy-Schwartz inequality and (7). The fourth step comes
from the fact that (bτl−1

π(τl−1))u = Pf (u|τl−1)Pπf (τl−1) and thus
∑
τl−1
‖bτl−1

‖1 × π(τl−1) =∑
τl−1
‖qτl−1;f‖1 · Pπf (τl−1) ≤ |UA|

∑
τl−1

Pπf (τl−1) = |UA|. The last step comes from the induc-
tion hypothesis.

Substituting (8) and (10) into (9), we have∑
τh+1

‖bτh+1
− b′τh+1

‖1 × π(τh+1) ≤ ε1.

Therefore, we have for all h ∈ [H − 1] and policy π,∑
τh

‖bτh − b′τh‖1 × π(τh) ≤ ε1. (11)

Notice that from Lemma 4 and Assumption 2 (where we let mk
oH ,H

= moH ,H = eoH ,H ), we have
for any policy π,∑

τH

|Pπf ′(τH)− Pπf (τH)| ≤
∑
τH−1

‖bτH−1
− b′τH−1

‖1 × π(τH−1). (12)

Combining (11) and (12), we have for all policy π∑
τH

|Pπf ′(τH)− Pπf (τH)| ≤ ε1.

This concludes our proof.
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H REDUNDANCY OF m(o,a,u),h;f

In Section 4 we mention that there is redundancy in the choice of m(o,a,u),h;f given the model Pπf
and we can replace any m(o,a,u),h;f with its projection on the space spanned by {qτh−1;f}τh−1

. The
following lemma characterizes this formally:
Lemma 12. Suppose Assumption 2 holds. Given any parameter {Mo,a,h;f , q0;f}, suppose for an-
other set of parameters {Mo,a,h;f ′ , q0;f} we have for all o ∈ O, a ∈ A, h ∈ [H − 1], u ∈ Uh+1

m(o,a,u),h;f ′ = ProjCol(Kh−1;f )(m(o,a,u),h;f ).

Then for any trajectory τH and policy π, we have Pπf (τH) = Pπf ′(τH). This means that
{m(o,a,u),h;f ′} is also a valid set of predictive parameters for the model Pf .

Proof. We first show that bτh;f = bτh;f ′ for any h ∈ [H − 1]+ and trajectory τh. We prove this via
induction. For the base case where h = 0, bτh;f = bτh;f ′ = q0;f . Next for any h ∈ [H − 2]+, we
suppose bτh′ ;f = bτh′ ;f ′ for any h′ ∈ [h]+ and trajectory τh′ . Then for any trajectory τh+1, let πτh
denote the policy that always takes the action sequence in τh. From (4) in Lemma 4, we have

bτh+1;f = Moh+1,ah+1,h+1;fbτh;f = Moh+1,ah+1,h+1;fbτh;fπτh(τh)

= Moh+1,ah+1,h+1;fqτh;fPπτh (τh)

= (m>(oh+1,ah+1,u),h+1;fqτh;f )u∈Uh+2
Pπτh (τh). (13)

Similarly, since bτh;f ′ = bτh,f , we have

bτh+1;f ′ = (m>(oh+1,ah+1,u),h+1;f ′qτh;f )u∈Uh+2
Pπτh (τh). (14)

From (2), we know qτh;f belongs to the column space of Kh;f . This implies that for any u ∈ Uh+2

m>(oh+1,ah+1,u),h+1;fqτh;f = m>(oh+1,ah+1,u),h+1;f ′qτh;f . (15)

Combining (13),(14) and (15), we have

bτh+1;f = bτh+1;f ′ .

Therefore, for any h ∈ [H − 1]+ and trajectory τh, we have

bτh;f = bτh;f ′ .

This suggests that for any policy π and trajctory τH−1, we have

(Pf (u|τH−1)Pπf (τH−1))u∈UH = (Pf ′(u|τH−1)Pπf ′(τH−1))u∈UH .

Therefore with Assumption 2 we have for any policy π and trajectory τH , we have

Pπf (τH) = Pπf ′(τH).

I PROOF OF THEOREM 1

In this section we present a proof sketch for Theorem 1. Note that to prove Theorem 1, we only
need to show that CRANE can achieve sublinear total suboptimality, which is stated in the following
theorem:
Theorem 2. Under Assumption 1,2,3, there exists an absolute constant c such that for any δ ∈ (0, 1],
T ∈ N, if we choose β = c log(NF (εb)TH|UA|/δ) in CRANE where εb = 1/(TH|UA|), then with
probability at least 1− δ, we have:

T∑
k=1

(V ∗ − V π
k

) ≤ O(d2
PSRH

7
2 |UA|4|A|2T

1
2α−3 · log(THNF (εb)|O||A|/δ)).
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The
√
T bound on the regret in Theorem 2 suggests that the uniform mixture of the output policies

π̂ = Unif({πk}Tk=1) is an ε-optimal policy when T = Õ(1/ε2), leading to Theorem 1 directly.
Therefore we only need to prove Theorem 2 now.

Note that we can decompose the total suboptimality into the following terms:

Regret(T ) =

T∑
k=1

(
V ∗ − V π

k)
=

( T∑
t=1

(
V ∗ − V π

k

fk

)
︸ ︷︷ ︸

(1)

)
+

( T∑
t=1

(
V π

k

fk − V
πk
)

︸ ︷︷ ︸
(2)

)
. (16)

Our proof bounds these two terms separately and mainly consists of four steps:

1. Prove V π
k

fk is an optimistic estimation of V ∗ for all k ∈ [T ], which implies that term (1) ≤ 0.

2. Decompose term (2) into the estimation error of the parameter Mo,a,h via the system dynamics
(3).

3. Bound the cumulative estimation error using the property of MLE.

4. Bound term (2) by connecting the results in the second and third step.

I.1 STEP 1: PROVE OPTIMISM

First we can show that the constructed set Bk contains the true model parameter f∗ with high prob-
ability:

Lemma 13. With probability at least 1− δ/2, we have for all k ∈ [T ], f∗ ∈ Bk.

Proof. See Appendix J.1.

Then since V π
k

fk = maxf∈Bk,π V
π
f , we know for all k ∈ [T ],

V π
k

fk ≥ V
π∗

f∗ = V ∗.

Thus, Lemma 13 implies that V π
k

fk is an optimistic estimation of V ∗ for all k, and therefore term (1)
in (16) is non-positive.

I.2 STEP 2: DECOMPOSE THE PERFORMANCE DIFFERENCE

Next we aim to handle term (2) in (16) and show the estimation error
∑T
t=1

(
V π

k

fk − V
πk
)

is small.

First we need to decompose the performance difference V π
k

fk − V
πk into the estimation error of the

parameters Mo,a,h in order to apply the property of MLE later. Notice that we have,

V π
k

fk − V
πk ≤ H

∑
τH

|Pπ
k

fk (τH)− Pπ
k

f∗ (τH)|

= H
∑
τH

∣∣∣∣(mk
oH ,H)> ·

H−1∏
h=1

Mk
oh,ah,h

· qk0 −m>oH ,H ·
H−1∏
h=1

Moh,ah,h · q0

∣∣∣∣× πk(τH)

= H
∑
τH−1

∥∥∥∥H−1∏
h=1

Mk
oh,ah,h

· qk0 −
H−1∏
h=1

Moh,ah,h · q0

∥∥∥∥
1

× πk(τH−1), (17)

where we use mk
oH ,H

,Mk
oh,ah,h

, qk0 to denote moH ,H;fk ,Moh,ah,h;fk , q0;fk and
moH ,H ,Moh,ah,h, q0 to denote moH ,H;f∗ ,Moh,ah,h;f∗ , q0;f∗ . The second step is due to Lemma 4
and the last step is because based on Assumption 2 we have set mk

oH ,H
= moH ,H = eoH ,H .

The following lemma bridges the term in (17) and the estimation error of Mo,a,h, whose proof is
deferred to Appendix J.2:
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Lemma 14. For any k ∈ [T ], h ∈ [H] and policy π, we have∑
τh

∥∥∥∥ h∏
l=1

Mk
ol,al,l

· qk0 −
h∏
l=1

Mol,al,l · q0

∥∥∥∥
1

× π(τh)

≤ |UA|
α

( h∑
l=1

∑
τl

‖[Mk
ol,al,l

−Mol,al,l]bτl−1
‖1 × π(τl) + ‖qk0 − q0‖1

)
, (18)

where bτl =
∏l
j=1Moj ,aj ,jq0.

Remark 3. From the proof of Lemma 14, we can see that Lemma 14 only utilizes the proper-
ties of {Mk

ol,al,l
, qk0}l∈[h]. Therefore Lemma 14 still holds even if the system dynamics induced by

{Mol,al,l, q0}l∈[h] is invalid. We will use this fact in the analysis about the ε-bracket number.

Therefore, substituting Lemma 14 into (17), we can bound the performance difference by the cumu-
lative estimation error:

T∑
k=1

(
V π

k

fk − V
πk
)

≤ |UA|H
α

T∑
k=1

(H−1∑
h=1

∑
τh

‖[Mk
oh,ah,h

−Moh,ah,h]bτh−1
‖1 × πk(τh) + ‖qk0 − q0‖1

)
. (19)

I.3 STEP 3: BOUND THE ESTIMATION ERROR

Now we need to bound the estimation error in (19). First we introduce the following guarantee of
MLE from the literature, which connects the log-likelihood ratio log(Pπf∗(τH)/Pπf (τH)) and the
total variation

∑
τH
|Pπf (τH)− Pπf∗(τH)|:

Lemma 15 ([37, Proposition 14]). There exists a universal constant c1 such that for any δ ∈ (0, 1],
for all k ∈ [T ] and f ∈ F , we have with probability at least 1− δ/2 that
k∑
i=1

∑
h∈[H−1]+,ua,h+1∈UA,h+1

(∑
τH

|Pπ
i,ua,h+1,h

f (τH)− Pπ
i,ua,h+1,h

f∗ (τH)|
)2

≤ c0
( k∑
i=1

∑
h∈[H−1]+,ua,h+1∈UA,h+1

log

(Pπ
i,ua,h+1,h

f∗ (τ
i,ua,h+1,h
H )

Pπ
i,ua,h+1,h

f (τ
i,ua,h+1,h
H )

)
+ log(NF (εb)TH|UA|/δ)

)
.

Combining Lemma 15 and the fact that both f∗ and fk belongs to Bk, we have with probability at
least 1− δ that for all k ∈ [T ],

k−1∑
i=1

∑
h∈[H−1]+,ua,h+1∈UA,h+1

(∑
τH

|Pπ
i,ua,h+1,h

fk (τH)− Pπ
i,ua,h+1,h

f∗ (τH)|
)2

≤ O(β). (20)

The following discussion is conditioned on the event in (20) being true. Then by Cauchy-Schwarz
inequality we have for all k ∈ [T ],
k−1∑
i=1

∑
h∈[H−1]+,ua,h+1∈UA,h+1

∑
τH

|Pπ
i,ua,h+1,h

fk (τH)− Pπ
i,ua,h+1,h

f∗ (τH)| ≤ O(
√
kH|UA|β). (21)

Suppose the length of the longest action sequence in UA,h is la. Then since the environment will
only generate dummy observations odummy after aH , we have for any policy π and f ∈ F ,∑

τH+la+1

|Pπf (τH+la+1)− Pπf∗(τH+la+1)|

=
∑

τH+la+1

|Pπf (τH)1(oH+1:H+la+1 = odummy)π(aH+1:H+la+1|τH)
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− Pπf∗(τH)1(oH+1:H+la+1 = odummy)π(aH+1:H+la+1|τH)|

=
∑
τH

|Pπf (τH)− Pπf∗(τH)|.

Therefore, we can marginalize the distribution Pπf (τH) and Pπf∗(τH) in (21) and have for all k ∈
[T ], i ∈ [k − 1], h ∈ [H − 1]+,∑
ua,h+1∈UA,h+1

∑
τH

|Pπ
i,ua,h+1,h

fk (τH)− Pπ
i,ua,h+1,h

f∗ (τH)|

≥
∑

ua,h+1∈UA,h+1

∑
τh,o∈O(ua,h+1)

|Pπ
i,ua,h+1,h

fk (τh, ua,h+1,o)− Pπ
i,ua,h+1,h

f∗ (τh, ua,h+1,o)|

=
∑

ua,h+1∈UA,h+1

∑
τh,o∈O(ua,h+1)

|Pπ
i,h

fk (τh)Pfk(o|τh; do(ua,h+1))

− Pπ
i,h

f∗ (τh)Pf∗(o|τh; do(ua,h+1))| × πi,ua,h+1,h(ua,h+1|τh)

=
∑
τh

∑
ua,h+1∈UA,h+1,o∈O(ua,h+1)

|Pπ
i,h

fk (τh)Pfk(o|τh; do(ua,h+1))− Pπ
i,h

f∗ (τh)Pf∗(o|τh; do(ua,h+1))|

=
∑
τh

∑
u∈Uh+1

|Pπ
i,h

fk (τh)Pfk(u|τh)− Pπ
i,h

f∗ (τh)Pf∗(u|τh)|.

Here in the first step O(ua,h+1) denote the set of observation sequences that occur together with
ua,h+1 in Uh+1 and Pπf (τh, ua,h+1,o) denotes the joint probability of observing the trajectory
(τh,o, ua,h+1). In the third and fourth step we utilize the fact that πk,ua,h+1,h = πk1:h−1 ◦Unif(A)◦
ua,h+1 and we define πi,h := πi1:h−1 ◦ Unif(A). Then based on Eq. (4) and Eq. (21), we have for
all k ∈ [T ], h ∈ [H − 1]+,

k−1∑
i=1

∑
τh

πi,h(τh) · ‖bkτh − bτh‖1 ≤ O(
√
kH|UA|β).

Thus via importance weighting, we have for all k ∈ [T ], h ∈ [H − 1]+,

k−1∑
i=1

∑
τh

πi(τh) · ‖bkτh − bτh‖1 ≤ O(|A|
√
kH|UA|β), (22)

k−1∑
i=1

∑
τh

πi(τh−1) · ‖bkτh − bτh‖1 ≤ O(|A|
√
kH|UA|β). (23)

In particular, when h = 0 we have

‖qk0 − q0‖1 ≤ O(
√
H|UA|β/k) (24)

Now for all k ∈ [T ], h ∈ [H − 1], we can bound the estimation error as follows:

k−1∑
i=1

∑
τh

‖[Mk
oh,ah,h

−Moh,ah,h]bτh−1
‖1 × πi(τh−1)

≤
k−1∑
i=1

∑
τh

‖[Mk
oh,ah,h

bkτh−1
−Moh,ah,hbτh−1

]‖1 × πi(τh−1)

+

k−1∑
i=1

∑
τh

‖Mk
oh,ah,h

[bkτh−1
− bτh−1

]‖1 × πi(τh−1). (25)
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For the first term in (25), we have

k−1∑
i=1

∑
τh

‖[Mk
oh,ah,h

bkτh−1
−Moh,ah,hbτh−1

]‖1 × πi(τh−1)

=

k−1∑
i=1

∑
τh

πi(τh−1) · ‖bkτh − bτh‖1 ≤ O(|A|
√
kH|UA|β), (26)

where the second step is due to (23).

To bound the second term, we need to bound ‖Mk
o,a,h‖1,1 first, which is given in the following

lemma:

Lemma 16. For any 1 ≤ j1 ≤ j2 ≤ H − 1, trajectory τj1−1, policy π, f ∈ F and x ∈ R|Uj1 |, we
have ∑

τj1:j2

∥∥∥∥ j2∏
j=j1

Moj ,aj ,j;fx

∥∥∥∥
1

× π(τj1:j2 |τj1−1) ≤ |UA|
α
‖x‖1.

The proof of the above lemma uses the regularity condition in Assumption 3 and Lemma 12.
Naively, the product

∏j2
j=j1

Moj ,aj ,j;f may indicate that the norm may grow exponentially. How-
ever, the condition thatMo,a,h;f ’s row span belongs to the column span ofKh−1;f (which is dereived
from Lemma 12) and the fact that K†h−1;f exists, we have:

j2∏
j=j1

Moj ,aj ,j;fx =

j2∏
j=j1

Moj ,aj ,j;fKj1−1;fK
†
j1−1;fx

Thus, we can bound ‖
∏j2
j=j1

Moj ,aj ,j;fKj1−1;fel‖1 by using the fact that Kj1−1;fel is a predictive
state qτ lj1−1;f ;f corresponding to one of the minimum core histories τ lj1−1;f , and

∏j2
j=j1

Moj ,aj ,j;f ·
qτ lj1−1;f ;f×π(τj1:j2 |τj1−1) = [P(u|τ lj1−1;f , τj1:j2)Pπτj1−1 (τj1:j2 |τ lj1−1;f )]u∈Uj2+1

where πτj1−1
de-

note the policy π(·|τj1−1). Note that the proof of the above lemma differs from the one in POMDPs
since here we leverage the concept of minimum core histories and the core matrix which are unique
to PSRs. The details are deferred to Appendix J.3.

Therefore, using Lemma 16 with π = πi1:h−1 ◦Unif(A), we have

k−1∑
i=1

∑
τh

‖Mk
oh,ah,h

[bkτh−1
− bτh−1

]‖1 × πi(τh−1)

≤ |A||UA|
α

k−1∑
i=1

∑
τh−1

πi(τh−1) · ‖bkτh−1
− bτh−1

‖1 ≤ O(|A|2
√
kH|UA|3β/α), (27)

where the last step comes from (22).

Combining (26) and (27), we have for all k ∈ [T ], h ∈ [H − 1],

k−1∑
i=1

∑
τh

‖[Mk
oh,ah,h

−Moh,ah,h]bτh−1
‖1 × πi(τh−1) ≤ O(|A|2

√
kH|UA|3β/α). (28)

I.4 STEP 4: CONNECT STEP 2 AND STEP 3

Recall that in Step 2 we want to bound

T∑
k=1

(H−1∑
h=1

∑
τh

‖[Mk
oh,ah,h

−Moh,ah,h]bτh−1
‖1 × πk(τh) + ‖qk0 − q0‖1

)
.
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First, for the second term, we can bound via (24):
T∑
k=1

‖qk0 − q0‖1 ≤ O(
√
HT |UA|β). (29)

Now we only need to bound the first term. Notice that in (28) we have bounded this cumulative
estimation error weighted by πi(τh−1) rather than πk(τh−1). Here we introduce the following
lemma from [37] to bridge these two summations with different weights:
Lemma 17 ([37, Proposition 22]). Suppose {xk,i}(k,i)∈[T ]×[n1], {wk,j}(k,j)∈[T ]×[n2] ∈ Rd satisfy
for all k ∈ [T ]

•
∑k−1
t=1

∑n1

i=1

∑n2

j=1 |w>k,jxt,i| ≤ γk,

•
∑n1

i=1 ‖xk,i‖2 ≤ Rx,

•
∑n2

i=1 ‖wk,i‖2 ≤ Rw.

Then we have for all k ∈ [T ]:
k∑
t=1

n1∑
i=1

n2∑
j=1

|w>t,jxt,i| = O
(
d
(
RwRx + max

t≤k
γt

)
log2(Tn1)

)
.

To apply Lemma 17, for any fixed h ∈ [H − 1], we rewrite (28) in the following way:

k−1∑
t=1

|Uh+1|∑
u=1

∑
o,a

∑
τh−1

∣∣[(Mk
o,a,h −Mo,a,h

)
Kh−1

]
u
K†h−1bτh−1

× πt(τh−1)
∣∣

≤ O(|A|2
√
kH|UA|3β/α), (30)

where Xu is the u-th row of the matrix X . Here we utilize the fact that bτh−1
× πt(τh−1) =

(P[u|τh−1]Pπt [τh−1])u∈Uh belongs to the column space of Kh−1 due to the definition of core his-
tory.

Then for any t ∈ [T ], u ∈ Uh+1, o ∈ O, a ∈ A, we let wt,u,o,a denote
[(
M t
o,a,h −Mo,a,h

)
Kh−1

]
u

and xt,τh−1
denote K†h−1bτh−1

× πt(τh−1), then (30) can be written as for any k ∈ [T ]

k−1∑
t=1

∑
u∈Uh+1,o∈O,a∈A

∑
τh−1

|w>k,u,o,axt,τh−1
| ≤ O(|A|2

√
kH|UA|3β/α). (31)

Now we only need to bound
∑
τh−1
‖xk,τh−1

‖2 and
∑
u∈Uh+1,o∈O,a∈A ‖wk,u,o,a‖2. For∑

τh−1
‖xk,τh−1

‖2, we have∑
τh−1

‖xk,τh−1
‖2 =

∑
τh−1

‖K†h−1bτh−1
× πk(τh−1)‖2 =

∑
τh−1

‖K†h−1[P(u|τh−1)Pπ
k

(τh−1)]u∈Uh‖2

=
∑
τh−1

‖vτh−1
‖2Pπ

k

(τh−1) ≤ max
τh−1

‖vτh−1
‖2,

where the third step comes from the definition of core matrix (2).

Notice that we have Kh−1vτh−1
= [P(u|τh−1)]u∈Uh for any τh−1 and ‖K†h−1‖17→1 ≤ 1/α, which

implies

‖vτh−1
‖2 ≤ ‖vτh−1

‖1 ≤ ‖K†h−1[P(u|τh−1)]u∈Uh‖1 ≤
1

α
‖[P(u|τh−1)]u∈Uh‖1 ≤

|UA|
α

.

Therefore we have for all k ∈ [T ], ∑
τh−1

‖xk,τh−1
‖2 ≤

|UA|
α

. (32)
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For
∑
u∈Uh+1,o∈O,a∈A ‖wk,u,o,a‖2, we have∑

u∈Uh+1,o∈O,a∈A
‖wk,u,o,a‖2 ≤

∑
u∈Uh+1,o∈O,a∈A

‖wk,u,o,a‖1

=
∑

o∈O,a∈A

dPSR,h−1∑
l=1

‖((Mk
o,a,h −Mo,a,h)Kh−1el‖1

≤ 2|A||UA|
α

dPSR,h−1∑
l=1

‖Kh−1el‖1 ≤
2|A||UA|2dPSR

α
, (33)

where the third step utilizes Lemma 16 with uniform policy and the last step utilizes the fact
dPSR,h−1 ≤ dPSR and ‖Kh−1el‖1 = ‖qτ lh−1

‖1 ≤ |UA|.

Invoking Lemma 17 with (32),(33),(31), we can obtain for all k ∈ [T ], h ∈ [H − 1],
k∑
i=1

∑
τh

‖[Mk
oh,ah,h

−Moh,ah,h]bτh−1
‖1 × πk(τh−1)

≤ O(dPSR,h−1|UA|3|A|2dPSRH
3
2 k

1
2 /α2 · log(THNF (εb)|O||A|/δ)). (34)

Substituing (29),(34) into (19), we have
T∑
k=1

(
V π

k

fk − V
πk
)
≤ O(d2

PSRH
7
2 |UA|4|A|2T

1
2α−3 · log(THNF (εb)|O||A|/δ)).

Combining the above result with Step 1, we have
T∑
k=1

(
V ∗ − V π

k)
≤ O(d2

PSRH
7
2 |UA|4|A|2T

1
2α−3 · log(THNF (εb)|O||A|/δ)).

This concludes our proof.

J PROOFS OF LEMMAS IN APPENDIX I

J.1 PROOF OF LEMMA 13

To prove f∗ ∈ Bk, we need to show that
∑

(π,τH)∈D logPπf∗(τH) is large. To simplify writing,
we denote the (π, τH) pairs in D at the end of T -th iteration by {(πi, τ iH)}nTi=1, which are indexed
by their collection order. Notice that nT ≤ TH|UA|. To deal with potentially infinite function
clas F , we first consider its minimum εb-bracket net G where εb = 1/(TH|UA|) and the set of
all upper bound functions in G, i.e., Gu := {f ′ : ∃f, such that [f, f ′] ∈ G}. Then we are able to
bound the difference bewteen

∑
(π,τH)∈D logPπf∗(τH) and

∑
(π,τH)∈D logPπf (τH) for any f ∈ F

via Cramér-Chernoff’s method as in [37].

Fix any f ′ ∈ Gu, t ∈ [nT ] and let Ft denote the filtration induced by {(πi, τ i)}t−1
i=1 ∪{πt}. We have:

E
[

exp

( t∑
i=1

log

(Pπif ′ (τ iH)

Pπif∗(τ iH)

))]

= E
[

exp

( t−1∑
i=1

log

(Pπif ′ (τ iH)

Pπif∗(τ iH)

))
· E
[

exp

(
log

(Pπtf ′ (τ tH)

Pπtf∗(τ tH)

))∣∣∣∣Ft]]

= E
[

exp

( t−1∑
i=1

log

(Pπif ′ (τ iH)

Pπif∗(τ iH)

))
· E
[Pπtf ′ (τ tH)

Pπtf∗(τ tH)

∣∣∣∣Ft]]

= E
[

exp

( t−1∑
i=1

log

(Pπif ′ (τ iH)

Pπif∗(τ iH)

))
·
∑
τH

Pπ
t

f ′ (τH)

]
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≤ E
[

exp

( t−1∑
i=1

log

(Pπif ′ (τ iH)

Pπif∗(τ iH)

))
·
(

1 +
1

TH|UA|

)]
,

where the last step is due to the fact that G is the minimum εb-bracket net, which implies that there
exists f ∈ F such that ‖Pπf (·)−Pπf ′(·)‖1 ≤ εb for any policy π and thus ‖Pπf ′(·)‖1 ≤ 1+εb. Repeat
the above arguments and we have

E
[

exp

( t∑
i=1

log

(Pπif ′ (τ iH)

Pπif∗(τ iH)

))]
≤ e.

Then by Markov’s inequality we have for any δ ∈ (0, 1],

P
( t∑
i=1

log

(Pπif ′ (τ iH)

Pπif∗(τ iH)

)
> log(1/δ)

)

≤ E
[

exp

( t∑
i=1

log

(Pπif ′ (τ iH)

Pπif∗(τ iH)

))]
· exp[− log(1/δ)] ≤ eδ.

Therefore by union bound, we have for all f ′ ∈ Gu, t ∈ [nT ],

P
( t∑
i=1

log

(Pπif ′ (τ iH)

Pπif∗(τ iH)

)
> c log(NF (εb)TH|UA|/δ)

)
≤ δ/2,

where c is a universal constant.

Finally, due to the definition of ε-bracket net, we know for all f ∈ F , there exists f ′ ∈ Gu such that
Pπf (τH) ≤ Pπf ′(τH) for any trajectory τH and policy π. Therefore we have for all f ∈ F , t ∈ [nT ],

P
( t∑
i=1

log

(Pπif (τ iH)

Pπif∗(τ iH)

)
> c log(NF (εb)TH|UA|/δ)

)
≤ δ/2,

which implies that f∗ ∈ Bk for all k ∈ [T ] with probability at least 1 − δ/2. This concludes our
proof.

J.2 PROOF OF LEMMA 14

First, notice that we can decompose the left hand side of (18) into the following sequence of terms
via triangle inequality:∑

τh

∥∥∥∥ h∏
l=1

Mk
ol,al,l

· qk0 −
h∏
l=1

Mol,al,l · q0

∥∥∥∥
1

× π(τh)

≤
h∑
j=1

∑
τh

∥∥∥∥ h∏
l=j+1

Mk
ol,al,l

(
Mk
oj ,aj ,j −Moj ,aj ,j

)
· bτj−1

∥∥∥∥
1

× π(τh)

+
∑
τh

∥∥∥∥ h∏
l=1

Mk
ol,al,l

(
qk0 − q0

)∥∥∥∥
1

× π(τh). (35)

Then fix j ∈ [h] and consider the term
∑
τh

∥∥∏h
l=j+1M

k
ol,al,l

(
Mk
oj ,aj ,j

−Moj ,aj ,j

)
·bτj−1

∥∥
1
×π(τh)

in (35). We have∑
τh

∥∥∥∥ h∏
l=j+1

Mk
ol,al,l

(
Mk
oj ,aj ,j −Moj ,aj ,j

)
· bτj−1

∥∥∥∥
1

× π(τh)

=
∑
τj

π(τj)
∑
τj+1:h

∥∥∥∥ h∏
l=j+1

Mk
ol,al,l

(
Mk
oj ,aj ,j −Moj ,aj ,j

)
· bτj−1

∥∥∥∥
1

× π(τj+1:h|τj)
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≤ |UA|
α

∑
τj

∥∥∥∥(Mk
oj ,aj ,j −Moj ,aj ,j

)
· bτj−1

∥∥∥∥
1

· π(τj), (36)

where the last step comes from Lemma 16.

Similarly, apply Lemma 16 to the second part of (35) and we have

∑
τh

∥∥∥∥ h∏
l=1

Mk
ol,al,l

(
qk0 − q0

)∥∥∥∥
1

× π(τh) ≤ |UA|
α
‖qk0 − q0‖1. (37)

Substituting (36) and (37) into (35), we can obtain

∑
τh

∥∥∥∥ h∏
l=1

Mk
ol,al,l

· qk0 −
h∏
l=1

Mol,al,l · q0

∥∥∥∥
1

× π(τh)

≤ |UA|
α

( h∑
l=1

∑
τl

‖[Mk
ol,al,l

−Mol,al,l]bτl−1
‖1 × π(τl) + ‖qk0 − q0‖1

)
.

This concludes our proof.

J.3 PROOF OF LEMMA 16

First, based on Lemma 12, we have chosen m(o,a,u),j1;f to belong to the column space of Kj1−1;f ,
which implies that

∑
τj1:j2

∥∥∥∥ j2∏
j=j1

Moj ,aj ,j;fx

∥∥∥∥
1

× π(τj1:j2 |τj1−1)

=
∑
τj1:j2

∥∥∥∥( j2∏
j=j1

Moj ,aj ,j;fKj1−1;f

)(
K†j1−1;fx

)∥∥∥∥
1

× π(τj1:j2 |τj1−1).

Note that since the l-th column of Kj1−1;f is qτ lj1−1;f ;f , the l-th core history at step j1− 1 under the
model induced by f , we have for any l ∈ [dPSR,j1−1;f ],

∑
τj1:j2

∥∥∥∥( j2∏
j=j1

Moj ,aj ,j;fKj1−1;fel

)∥∥∥∥
1

× π(τj1:j2 |τj1−1)

=
∑
oj1:j2

∑
aj1:j2

∥∥∥∥( j2∏
j=j1

Moj ,aj ,j;fKj1−1;fel

)∥∥∥∥
1

π((oj1:j2 , aj1:j2)|τj1−1)

=
∑
oj1:j2

∑
aj1:j2

∑
u∈Uj2+1

Pf (u|(τ lj1−1, oj1:j2 , aj1:j2))Pf (oj1:j2 |τ lj1−1;f ; do(aj1:j2−1))π((oj1:j2 , aj1:j2)|τj1−1)

=
∑
oj1:j2

∑
aj1:j2

 ∑
u∈Uj2+1

Pf (u|(τ lj1−1, oj1:j2 , aj1:j2))

Pf (oj1:j2 |τ lj1−1;f ; do(aj1:j2−1))π((oj1:j2 , aj1:j2)|τj1−1)

≤ |UA|
∑
oj1:j2

∑
aj1:j2

Pf (oj1:j2 |τ lj1−1;f ; do(aj1:j2−1))π((oj1:j2 , aj1:j2)|τj1−1)

≤ |UA|.

Here in the second step π((oj1:j2 , aj1:j2)|τj1−1) denotes
∏j2
j=j1

π(aj |τj1−1, oj1:j , aj1:j−1) and the
third step comes from Lemma 4.
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Therefore we have∑
τj1:j2

∥∥∥∥( j2∏
j=j1

Moj ,aj ,j;fKj1−1;f

)(
K†j1−1;fx

)∥∥∥∥
1

× π(τj1:j2 |τj1−1)

≤ |UA|
∥∥∥∥K†j1−1;fx

∥∥∥∥
1

≤ |UA|
α
‖x‖1,

where the third step comes from Assumption 3. This concludes our proof.

K NECESSITY OF 1/α IN THEOREM 1

In this section we show that the polynomial dependence on 1/α in Theorem 1 is inevitable in general.
More specifically, we have the following theorem:
Theorem 3. For any 0 < α < 1

2
√

2
and H, |A| ∈ N+, there exists a PSR with core test set Uh = O

for h ∈ [H] and |S| = |O| = O(1) which satisfies Assumption 1 so that any algorithm requires at
least Ω(min{ 1

αH , |A|
H−1}) samples to learn a (1/2)-optimal policy with probability 1/6 or higher.

Theorem 3 indicates that scaling with 1/α is unavoidable or else the algorithm will require an
exponential number of samples to learn a near optimal policy. The proof is deferred to Appendix K.1.

K.1 PROOF OF THEOREM 3

We leverage the hard instance constructed in [37] to prove the lower bound, which is based on
combinatorial lock. More specifically, we define a POMDP as follows:

• State space: There are two states, S = {sg, sb}.
• Observation space and emission matrices: There are three observations,O = {og, ob, odummy}.

For h ∈ [H − 1], we define the emission matrix as follows:

Oh =

 √
2α 0
0

√
2α

1−
√

2α 1−
√

2α

 .

For h = H , we have

OH =

(
1 0
0 1
0 0

)
.

This means that with probability α we can observe the current state and with probability 1−α we
only receive a dummy observation at step h ∈ [H − 1]. At step H , though, we are able to observe
the current state.

• Action space and transition kernels: There are |A| actions and the initial state is fixed as sg .
For each step h ∈ [H − 1], there exists a good action ag,h ∈ A which is chosen uniformly at
random from A such that if the agent is currently in sh = sg and takes ag,h, it will stay in sg , i.e.,
sh+1 = sg . Otherwise, the agent will always go to sh+1 = sb.

• Reward: We define rh(o) = 0 for all h ∈ [H − 1] and o ∈ O. At step H , rH(og) = 1 while
rH(ob) = 0. This indicates that the agent will receive reward 1 iff the agent takes ag,h along its
way.

Since this POMDP satisifes weakly-revealing condition, we know O is its core test set. Next
we show that this POMDP satisfies Assumption 1. First it is can be observed that K0 = q0 =
(
√

2α, 0, 1−
√

2α)> and we can verify that

‖K†0‖17→1 ≤ 1/α.

Then for any h ∈ [H − 1] and reachable history τh, if a1:h = ag,1:h, we have

P(sh+1 = sg|τh) = 1,P(sh+1 = sb|τh) = 0,
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which implies that

P(oh+1 = og|τh) =
√

2α,P(oh+1 = ob|τh) = 0,P(oh+1 = odummy|τh) = 1−
√

2α.

Otherwise, if there exists h′ ∈ [h] such that ah′ 6= ag,h′ , then we have

P(sh+1 = sb|τh) = 1,P(sh+1 = sg|τh) = 0,

which implies

P(oh+1 = ob|τh) =
√

2α,P(oh+1 = og|τh) = 0,P(oh+1 = odummy|τh) = 1−
√

2α.

This suggests that Kh = Oh+1 for h ∈ [H − 1]. On the otherhand, since σmin(Kh) =

σmin(Oh+1) ≥
√

2α, we have for h ∈ [H − 1],

‖K†h‖1 7→1 ≤
√

2‖K†h‖27→2 ≤
√

2/(
√

2α) = 1/α.

This shows that the constructed POMDP satisfies Assumption 1.

Now we only need to show that the constructed POMDP attains the lower bound in Theorem 3. This
has been proved in [37] and we include the proof here for completeness.

Suppose we can only interact with the POMDP for T ≤ b 1
2
√

2αH
c episodes. Then we know the

probability that both sg and sb only emit odummy in the first H − 1 steps for all T episodes is lower
bounded by (1−

√
2α)1/(

√
2α) since 2 · b 1

2
√

2αH
c · (H − 1) ≤ 1/(

√
2α).

Now conditioned on the event that both sg and sb only emit odummy in the first H−1 steps for all T
episodes, we can only random guess the optimal action sequence ag,1:H−1. Then if T ≤ |A|H−1/10,
the probability that we fail to guess the optimal action sequence is(

|A|H−1 − 1

T

)/(
|A|H−1

T

)
≥ 0.9,

Therefore, with probability 0.9× (1−
√

2α)1/(
√

2α) ≥ 1/6, the agent can only learn that the action
sequences it chooses in these T episodes is incorrect, which implies that the agent can only random
guess from the remained action sequences. Therefore, if T ≤ |A|H−1/10, the policy that the agent
outputs will be worse than 1/2-optimal, which concludes our proof.
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