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Abstract001

Limited availability of multilingual text corpora002
for training language models often leads to poor003
performance on downstream tasks due to un-004
dertrained representation spaces for languages005
other than English. This ‘under-representation’006
has motivated recent cross-lingual transfer007
methods to leverage the English representa-008
tion space by e.g. mixing English and ‘non-009
English’ tokens at the input level or extend-010
ing model parameters to accommodate new011
languages. However, these approaches often012
come at the cost of increased computational013
complexity. We propose Fusion for Language014
Representations (FLARE) in adapters, a novel015
method that enhances representation quality016
and downstream performance for languages017
other than English while maintaining param-018
eter efficiency. FLARE integrates source and tar-019
get language representations within low-rank020
(LoRA) adapters using lightweight linear trans-021
formations, maintaining parameter efficiency022
while improving transfer performance. A se-023
ries of experiments across representative cross-024
lingual natural language understanding tasks,025
including natural language inference, question-026
answering and sentiment analysis, demonstrate027
FLARE’s effectiveness. FLARE achieves perfor-028
mance improvements of 4.9% for Llama 3.1029
and 2.2% for Gemma 2 compared to standard030
LoRA fine-tuning on question-answering tasks,031
as measured by the exact match metric.1032

1 Introduction033

Representation degradation for ‘non-English’ lan-034

guages poses a challenge in the context of pre-035

trained multilingual language models (mPLMs)2.036

1Our code repository is available at https://anonymous.
4open.science/r/FLARE-241E

2The domination of the English representation space is ob-
served independent of model architectures, including encoder-
only, decoder-only and encoder-decoder transformer (Wu and
Dredze, 2020; Lee et al., 2022a; Yang et al., 2022; Wendler
et al., 2024; Tang et al., 2024).

Large-scale English text corpora are widely avail- 037

able for self-supervised pretraining, resulting in su- 038

perior representation quality and downstream task 039

performance when compared to low(er)-resource 040

languages (Lauscher et al., 2020; Yang et al., 2022). 041

Despite the substantial improvements, the imbal- 042

ance in pretraining resources still substantially 043

reduces downstream performance (Winata et al., 044

2022). 045

Cross-lingual transfer (termed XLT henceforth) 046

aims to narrow this performance gap by trans- 047

ferring task-specific knowledge acquired in high- 048

resource languages to lower-resource languages 049

(Ruder et al., 2019). Given the dominance of En- 050

glish in pretraining corpora, machine translations 051

(MT) are frequently utilized to avoid processing 052

non-English data (Shi et al., 2010; Artetxe et al., 053

2020, 2023; Ansell et al., 2023). However, trans- 054

lation can result in information loss, including the 055

loss of cultural nuances, which can negatively im- 056

pact downstream task performance (Conia et al., 057

2024). Various XLT techniques address this issue 058

by leveraging both source and target language rep- 059

resentation spaces, such as language mixup (Yang 060

et al., 2022) and concatenating multilingual input 061

sequences for in-context XLT (Kim et al., 2024; 062

Tanwar et al., 2023; Cueva et al., 2024). These ap- 063

proaches, while improving XLT, typically focus on 064

representations in a specific mPLM layer or require 065

extensive training and computational resources by 066

extending the input length. 067

Parameter-efficient fine-tuning (PEFT) methods 068

are designed to acquire new knowledge and spe- 069

cialize general-purpose models for specific tasks 070

or domains while minimizing the number of ex- 071

tra parameters required and keeping the large un- 072

derlying mPLM frozen (Hu et al., 2022). In par- 073

ticular, bottleneck-style adapters, such as low- 074

rank adapters (LoRA), extract relevant features 075

from new data by compressing model represen- 076

tations with the assumption that task information 077
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Figure 1: Fusion of source and target representations
in LoRA adapters inserted within the query and value
matrices. The representations are fused in the adapter
bottlenecks and the outputs are added + to the query
and value outputs before softmax ⊗ activation.

can be captured in a lower-dimensional space078

(Houlsby et al., 2019; Hu et al., 2022). This di-079

rectly aligns with the XLT objectives, providing080

resource-efficient language and task adaptation ca-081

pabilities. In XLT, adapters are widely used for082

acquiring task and language knowledge (Pfeiffer083

et al., 2020). Yet, the extent of knowledge transfer084

across languages within adapters remains underex-085

plored.086

In this work, we introduce Fusion for Language087

Representations (FLARE), a novel approach that088

merges latent representations from different lan-089

guages within lower-dimensional adapter bottle-090

necks to enable parameter-efficient XLT. By merg-091

ing representations from high-resource languages092

like English into target language representations093

through lightweight fusion functions, such as ad-094

dition or multiplication, FLARE facilitates effective095

cross-lingual information transfer with minimal096

computational overhead. As illustrated in Figure 1,097

FLARE performs token-wise fusion of source and098

target language representations within each trans-099

former block, without adding additional parameters100

to LoRA and maintaining computational efficiency.101

Our experiments demonstrate FLARE’s effective-102

ness across tasks like natural language inference,103

sentiment classification, and question answering,104

using encoder-only, encoder-decoder, and decoder-105

only multilingual pre-trained language models106

(mPLMs). It is particularly beneficial for down-107

stream tasks that involve text generation, such as108

question answering. For instance, FLARE improves109

the exact match performance for Llama 3.1 and110

Gemma 2 on the TyDiQA dataset by 4.9% and111

2.2%, respectively. Further experiments illustrate112

that computational efficiency can be further en-113

hanced by using latent translations as source lan-114

guage inputs in FLARE, and demonstrate the ver- 115

satility of the method, which is orthogonal to the 116

choice of mPLMs and MT systems. 117

Contributions. 1) We introduce FLARE, a novel 118

method that fuses language representations within 119

adapter bottlenecks for parameter-efficient cross- 120

lingual transfer. 2) Our approach improves per- 121

formance across diverse multilingual downstream 122

tasks, particularly benefiting text generation tasks 123

like question answering. 3) We demonstrate the 124

adaptability of our approach by incorporating ma- 125

chine translation encoder representations directly 126

into the mPLM. 127

2 Related Work 128

Cross-lingual Representation Transfer. Improv- 129

ing performance for underrepresented languages 130

mPLMs often involves aligning and combining la- 131

tent representations from different languages (Oh 132

et al., 2022). Several methods have been proposed 133

to achieve this, including concatenating multilin- 134

gual input sequences to leverage a shared repre- 135

sentation space (Kim et al., 2024; Tanwar et al., 136

2023; Cueva et al., 2024). Another line of work 137

focuses on projection-based methods, where tar- 138

get language representations are projected onto 139

high-resource languages, such as English, to en- 140

hance feature extraction (Xu et al., 2023). Yang 141

et al. (2022) introduced X-Mixup, which combines 142

source and target representations in one specific 143

mPLM layer using cross-attention during down- 144

stream task adaptation. Building on this idea, Cao 145

et al. (2023) proposed using cross-attention with 146

additional semantic and token-level alignment loss 147

terms. In contrast, our FLARE method provides 148

a more parameter-efficient approach by directly 149

merging latent source and target language repre- 150

sentations within adapter bottlenecks, thereby con- 151

tributing to the stream of parameter-efficient XLT. 152

Representation fusion has also been applied to 153

integrate information across different modalities, 154

such as vision and language (Fang et al., 2021; 155

Ramnath et al., 2021). For instance, Qu et al. 156

(2025) used feature routing in cross-modal vision- 157

language tasks, guiding language model represen- 158

tations through LoRA bottlenecks using the last 159

hidden state of a vision model. Our work differs 160

in its scope and fusion methodology: FLARE ex- 161

tracts significantly richer representations from the 162

source and target languages by capturing layer- 163

wise representations for each transformer block 164
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in the mPLMs. Moreover, by ensuring dimensional165

alignment, we perform token-wise representation166

fusion within adapter bottlenecks, thereby transfer-167

ring finer-grained information across languages.168

PEFT in Multilingual Language Models and169

Cross-Lingual Transfer. PEFT aims to incor-170

porate task or language-specific knowledge into171

mPLMs without updating all model weights (Pfeif-172

fer et al., 2020). Most prominent techniques in-173

clude sparse fine-tuning, which selectively updates174

model parameters (Ansell et al., 2022), and insert-175

ing adapter modules that reduce trainable parame-176

ters to a small fraction of total weights of the under-177

lying mPLM (Houlsby et al., 2019). Furthermore,178

PEFT modules are composable, allowing for the179

combination of information from multiple modules180

(Wang et al., 2022; Lee et al., 2022b). Bottleneck181

adapters, such as LoRA (Hu et al., 2022) and its182

variants (Liu et al., 2024), are widely used for fine-183

tuning language models. These adapters project184

model representations into a lower-dimensional185

space, creating a bottleneck that regulates infor-186

mation flow (Houlsby et al., 2019). In XLT, mix-187

tures of task and language adapters are used to188

merge language representation spaces effectively189

(Lee et al., 2022b). For instance, AdaMergeX com-190

bines the weights of adapters trained on task data191

in English with adapters trained on self-supervised192

data in the target language (Zhao et al., 2024).193

In contrast, our approach modifies the adapter ar-194

chitecture to process and combine inputs from195

multiple languages, enabling cross-lingual trans-196

fer of task-specific knowledge without requiring197

self-supervised data or additional model parame-198

ters.199

3 Methodology200

3.1 Language Representation Fusion201

Our methodology is based on the hypothesis that202

incorporating English with target language repre-203

sentations enhances cross-lingual knowledge trans-204

fer and distills task-relevant information into the205

target language. We assume (MT-created) parallel206

corpora P = {
(
xS , xT

)
} during task fine-tuning,207

where x are instances in the respective source and208

target language. Our methodology particularly fo-209

cuses on employing machine-translated ‘silver’ par-210

allel data, akin to translate-train and translate-test211

settings, as we believe this approach is the most212

realistic in practice.213

Yang et al. (2022) introduced cross-lingual mani- 214

fold mixup (X-Mixup), aligning multilingual repre- 215

sentations within a specific transformer layer using 216

consistency loss terms and a cross-attention mod- 217

ule. However, this method introduces additional 218

model parameters and shows performance variabil- 219

ity depending on the choice of the mixup layer. 220

Another effective method for aligning multilingual 221

representations is to concatenate source and target 222

language input sequences xS,T = [xS ;xT ] where 223

x ∈ R2m, with m representing the sequence length 224

of both source and target languages. This so-called 225

input-level fusion enables cross-lingual knowledge 226

transfer across all layers of the mPLM, facilitating 227

in-context learning, which typically does not re- 228

quire additional training (Cueva et al., 2024). How- 229

ever, this approach is computationally expensive 230

due to increased input sequence lengths and en- 231

counters scalability issues related to the context 232

length limitations in mPLMs. 233

To address these limitations, we propose FLARE, 234

a method for representation-level language fu- 235

sion within bottleneck adapters, as illustrated in 236

Figure 1. Instead of extending the input, FLARE 237

processes source and target language representa- 238

tions independently and fuses them only within the 239

adapters, thus preserving computational efficiency. 240

Source language representations vSi , extracted from 241

the frozen mPLM without adapters, and target lan- 242

guage representation vTi at transformer block i are 243

down-projected using W down and combined with 244

fusion function ϕ (see Section 3.2) to create a fused 245

representation h = ϕ
(
vSi+1W

down, vTi W
down

)
, 246

where h ∈ Rm×r with sequence length m and 247

bottleneck dimensions r. We utilize the source 248

representation vSi+1, which has been processed by 249

the subsequent transformer block, to leverage task- 250

specific information extracted from the source lan- 251

guage. Following a standard LoRA procedure, this 252

fused low-rank representation is then up-projected 253

and added to the frozen attention outputs v0 to 254

form the target language output representation 255

vTi+1 = hW up + v0 of the attention block. 256

This enhances model performance during task 257

adaptation in the target language by directing 258

the model’s attention to task-relevant information. 259

Thereby, the adapter bottleneck is used for cross- 260

lingual knowledge transfer, as well as task and 261

language adaptation. A key advantage of FLARE is 262

the reduction in computational complexity, thereby 263

enhancing parameter efficiency for both task and 264

language adaptation. By processing multilingual in- 265
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Transformer
Block

Source
Language

Target
Language

Figure 2: During the forward pass with FLARE, source
language representations xS are processed by trans-
former block i and before fusion with target language
representations xT . Source representations are obtained
by inferencing the mPLM without the fusion adapters.

puts separately and only fusing highly compressed266

representations within adapter bottlenecks, our267

method avoids the computational overhead asso-268

ciated with quadratic scaling in attention compu-269

tations for model dimensions d, thus enhancing270

resource efficiency. Furthermore, the memory re-271

quirements are limited to the last hidden states ob-272

tained from the output of each transformer block.273

Moreover, our fusion approach is agnostic re-274

garding the source language representation. We275

exploit this flexibility in the FLARE MT variant,276

which explores the impact of reducing computa-277

tional resources for processing the source language278

on cross-lingual transfer performance. Specifically,279

FLARE MT utilizes representations from a MT en-280

coder M as ‘latent translations’ that serve as source281

language representations. This avoids discretiz-282

ing the translation as text through the MT decoder.283

FLARE MT further enhances resource efficiency284

compared to regular FLARE by bypassing the for-285

ward pass of the source language in the mPLM. We286

extract a single representation (latent translation)287

from the MT encoder by processing the target lan-288

guage input vT = M
(
xT

)
, where vT ∈ Rm×dM .289

To ensure compatibility between the dimensional-290

ity of the MT encoder outputs and the mPLM, we291

utilize a linear projection layer W proj . This pro-292

jection is jointly trained during the adaptation to 293

the downstream task, ensuring resource efficiency. 294

The up-projected representation vTW proj is fused 295

with the target language representation within the 296

adapter bottlenecks of each mPLM layer, as dis- 297

played in Figure 7. 298

3.2 Fusion Functions 299

To fuse cross-lingual representations in bottle- 300

neck adapters, we evaluate both linear and non- 301

linear transformations that do not require additional 302

model parameters, alongside cross-attention. We 303

extract token-wise representations from source and 304

target language sequences, capturing rich contex- 305

tual information at the token level. 306

The down-projected representations in the 307

adapter bottlenecks for source and target languages 308

are denoted as S = vSW down and T = vTW down, 309

where S and T are representations of dimensions 310

Rm×r. These representations are subsequently 311

combined at the token level through the following 312

fusion functions: 313

1. element-wise addition (add): S + T 314

2. element-wise multiplication (mul): S ◦ T 315

3. cross-attention:3 softmax
(

WQ
a S(WK

a T)′√
r

)
WV

a T 316

WQ
a , WK

a and W V
a are the weight matrices of the 317

query, key and value projections in the adapter a, 318

respectively, and ′ denotes the matrix transpose. 319

We focus on lightweight linear transformations to 320

maintain parameter and computational efficiency. 321

Additionally, linear fusion functions are ex- 322

tended with non-linear transformations through rec- 323

tified linear units ReLU (S) and ReLU (T ) (Qu 324

et al., 2025). This allows for selective information 325

flow in token representations, which can be partic- 326

ularly beneficial for multilingual input sequences 327

that may be misaligned at the token level. By intro- 328

ducing non-linear transformation functions, we can 329

restrict the propagation of misaligned information, 330

potentially leading to improved downstream task 331

performance. 332

3.3 Training 333

To adapt the mPLM to downstream tasks in the tar- 334

get language, we insert LoRA fusion adapters into 335

the query and value weight matrices of the mPLM 336

3Although cross-attention modules add parameters to the
adapters, the low bottleneck dimensions r, typically smaller
than 64, minimize the parameter count in comparison to the
model’s internal dimensions d. Specifically, we utilize a single
cross-attention head to maintain efficiency.
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that has been previously fine-tuned on English task337

data, referred to as the base model. These adapters338

implement fusion function ϕ that combines source339

and target language input representations into a sin-340

gle fused representation. Consistent with standard341

PEFT training, only the task head and LoRA pa-342

rameters are trainable, while all other parameters343

remain frozen.344

During the forward pass, illustrated in Figure 2,345

we extract representations from both the source346

and target languages at each transformer block.347

Source language representations are obtained from348

the base model without fusion adapters. These349

layer-wise representations are stacked in matrix350

V S ∈ Rl×m×d, where l represents the number of351

layers in the mPLM. Target language representa-352

tions are obtained during the forward pass through353

the base model with fusion adapters. In our FLARE354

approach, the source and target language repre-355

sentations are compressed to lower dimensions356

r ≪ h using the adapter’s down-projection W down.357

The compressed representations are then combined358

through the fusion function, and decompressed in359

the up-projection. By sharing the down-projection360

layers for both source and target language rep-361

resentations before fusion, we hypothesize that362

the model’s reliance on the English representation363

space is reduced.364

4 Experimental Setup365

4.1 Underlying Models and Baselines366

mPLMs. Our experiments are based on vari-367

ous mPLMs including the encoder-only XLM-R368

Large (550M) (Conneau et al., 2020), the encoder-369

decoder mT5-XL (3.7B) (Xue et al., 2021), the370

decoder-only Llama 3.1 (8B) (Grattafiori et al.,371

2024), and the decoder-only Gemma 2 (9B)372

(Gemma Team et al., 2024).373

Fine-Tuning Setup. We follow a modular XLT374

approach where the mPLM is fine-tuned on En-375

glish task data and subsequently adapted using task376

data in the target language (Zhao et al., 2021). For377

decoder-only models like Llama and Gemma, we378

use a causal language modeling objective for fine-379

tuning, and the models generate predictions as text380

accordingly. We employ the QLoRA fine-tuning381

approach with 4-bit quantization and insert LoRA382

adapters in all linear layers for Llama and Gemma383

models (Dettmers et al., 2023). Importantly, we384

apply representation fusion in FLARE only in the385

attention modules, ensuring a consistent experimen-386

tal setup across different transformer architectures. 387

The LoRA configurations use r = 64 and α = 128, 388

and the hyperparameter configurations for each 389

model are detailed in Table 8 in the appendix. 390

Baselines. We evaluate FLARE against several base- 391

lines, including zero-shot cross-lingual transfer, 392

translate-test, as well as translate-train methods 393

such as regular LoRA fine-tuning, X-Mixup, and 394

input-level fusion. All translate-train models are 395

trained with the same LoRA configurations. Un- 396

less otherwise specified, FLARE models are trained 397

using the add+relu fusion function, with a detailed 398

comparison of fusion functions presented in Table 399

2. Model checkpoints are selected based on valida- 400

tion data that was machine-translated from English 401

to the respective target languages. 402

X-Mixup aligns source and target language rep- 403

resentations through cross-attention in one specific 404

transformer layer and further aligns model outputs 405

using consistency loss terms (Yang et al., 2022). In 406

contrast, input-level fusion combines source and 407

target language texts directly in the input prompt 408

of the mPLM, doubling the sequence length (Kim 409

et al., 2024; Cueva et al., 2024). More details on 410

the baselines below: 411

Zero-Shot XLT. The base model fine-tuned on En- 412

glish task data is directly evaluated on test data in 413

the target languages without further training. 414

Translate-Test. Test sets in each target language 415

are translated into English using NLLB (NLLB 416

Team et al., 2022). Subsequently, the base model 417

is evaluated on these machine-translated test sets.4 418

Translate-Train. The base model is fine-tuned on 419

machine-translated task data in the respective target 420

languages. The training data comprises instances 421

translated from English to the target language using 422

NLLB. For fusion methods and X-Mixup, we ob- 423

tain the required ‘silver’ parallel data also through 424

MT (using NLLB). The training set consists of par- 425

allel sets of English and MT-ed instances, whereas 426

the validation and test sets consist of parallel tar- 427

get language instances and corresponding machine 428

translations into English. We posit that the assumed 429

absence of gold translations both during training 430

and during inference is the most realistic evaluation 431

of FLARE models. 432

4Although monolingual English-only PLMs can process
machine-translated text, they fail to outperform multilingual
models, particularly when evaluating low-resource languages
or culturally sensitive content (Ebing and Glavaš, 2024).
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4.2 Evaluation Tasks and Datasets433

XNLI consists of machine-translated sentence434

pairs that are translated from English to 15 lan-435

guages (Conneau et al., 2018). The task involves436

determining whether a sentence entails, contradicts,437

or is neutral to a given premise.438

NusaX is a human-annotated sentiment classifica-439

tion dataset that spans 11 Indonesian languages,440

including low-resource languages (Winata et al.,441

2023). With 500 labeled instances for each lan-442

guage, the dataset evaluates few-shot adaptation.443

TyDiQA-GoldP is a human-annotated extractive444

QA dataset covering 8 languages (Clark et al.,445

2020). The task is to extract the answer spans446

from context passages.447

Additional information on evaluation languages448

and datasets used for source language fine-tuning449

are available in Table 9 in the appendix.450

4.3 Machine Translations451

We utilize the NLLB 3.3B variant (NLLB Team452

et al., 2022) as the main MT model, employing453

greedy decoding to obtain translations (Artetxe454

et al., 2023). Additionally, FLARE MT utilizes the455

encoder of the NLLB 600M variant to generate456

latent translations. To maintain consistency in our457

experimental setup, we also translate languages that458

are not directly supported by NLLB. Specifically,459

Madurese (mad) and Ngaju (nij) are translated us-460

ing the Indonesian language identifier, as these461

languages are not supported by NLLB5 (Winata462

et al., 2023). For translating extractive QA datasets,463

we employ EasyProject (Chen et al., 2023), which464

involves enclosing answer spans within marker to-465

kens prior to translation with NLLB. This method466

allows us to determine the position of the translated467

answer spans by locating these marker tokens in468

the translated text. Instances that fail to retain the469

marker tokens in the translated output are excluded470

from evaluation.471

5 Results and Discussion472

Main Results The results displayed in Table 1473

confirm our hypothesis that task-specific knowl-474

edge can be efficiently transferred from English to475

other languages within adapter bottlenecks. Our476

proposed approach, FLARE, consistently surpasses477

all baselines across various tasks, demonstrating478

5We note that Toba Batak (bbc) is unsupported by NLLB
and excluded from the evaluation due to translation artifacts
resulting in random classification performance.

robust performance and validating the effective- 479

ness of our method. It improves the average per- 480

formance, averaged across metrics for all tasks, 481

by 2.14% and 1.27% for Llama and Gemma, re- 482

spectively, when compared to standard LoRA fine- 483

tuning. The most substantial performance gains 484

are observed on the TyDiQA dataset, particularly 485

for text generation tasks with decoder-only mod- 486

els. FLARE significantly improves performance on 487

this dataset, with the largest gains achieved on In- 488

donesian, Russian, and Swahili. This suggests that 489

latent representation fusion with FLARE works best 490

for text generation when the target languages have 491

a similar word order to the source language, in this 492

case, subject-verb-object. However, we also ob- 493

serve substantial performance gains for the Llama 494

model on Telugu, which has a different word or- 495

der than English, indicating that FLARE can still 496

achieve significant improvements even when the 497

word order differs. The results on the XNLI and 498

NusaX classification tasks do not exhibit a clear 499

correlation between performance benefits for lan- 500

guages with subject-verb-object word order. Fur- 501

thermore, the results on NusaX demonstrate that 502

FLARE can consistently provide performance im- 503

provements for lower-resourced languages, even 504

when only a few training data is available. This 505

highlights the potential of FLARE to support lan- 506

guage adaptation in low-resource settings, where 507

data is scarce. Compared to all benchmarked mod- 508

els, FLARE provides consistent performance bene- 509

fits, demonstrating its effectiveness in transferring 510

knowledge from English to other languages, and 511

its potential to improve the performance of down- 512

stream tasks in low-resource languages. Beyond 513

performance benefits, FLARE reduces the average 514

training time on TyDiQA by more than 40% when 515

compared to input-level fusion. 516

Impact of Translation Quality. 517

Figure 3 presents averaged performance results 518

for XLM-R Large with FLARE on TyDiQA and 519

NusaX, comparing the use of different-sized ma- 520

chine translation (MT) models, specifically NLLB 521

3.3B and NLLB 600M. The results demonstrate 522

that FLARE is robust to lower-quality machine trans- 523

lations. Although utilizing the larger NLLB 3.3B 524

model yields performance improvements of 1.27% 525

and 1.77% on NusaX and TyDiQA, respectively, 526

the FLARE models trained on lower-quality ma- 527

chine translations still achieve competitive perfor- 528

mance with standard LoRA fine-tuning based on 529

higher-quality machine translations. This demon- 530
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Model XNLI TyDiQA NusaX Avg.

Zero-Shot Cross-Lingual Transfer (models are trained on English data)

XLM-R Large 76.95± 0.3 36.31± 2.3 75.26± 1.0 62.84
mT5-XL 77.92± 1.2 45.90± 0.2 74.72± 1.6 66.18
Llama 3.1 8B 77.40± 0.2 2.36± 0.2 71.74± 2.8 50.50
Gemma 2 9B 80.47± 0.1 2.46± 0.2 71.61± 3.4 51.51

Translate-Test (test data is translated to English)

XLM-R Large 77.13± 0.2 41.06± 1.6 74.85± 1.0 64.35
mT5-XL 79.03± 0.2 47.92± 0.2 75.77± 0.3 67.57
Llama 3.1 8B 79.43± 0.5 2.53± 0.4 72.67± 2.4 51.54
Gemma 2 9B 79.99± 0.9 2.28± 0.2 71.61± 3.4 51.29

Translate-Train (models are trained on training data translated to the target language)

XLM-R Large w/ LoRA 80.49± 1.3 40.14± 0.4 77.00± 0.8 65.88
w/ X-Mixup 79.47± 0.2 38.24± 3.2 76.37± 2.8 64.69
w/ input-level fusion 77.24± 0.8 40.45± 0.5 78.53± 0.3 65.41
w/ FLARE MT 81.60± 0.3 38.88± 1.3 77.18± 0.2 65.89
w/ FLARE 80.99± 0.9 40.93± 0.2 79.18± 1.4 67.03

mT5-XL w/ LoRA 79.79± 2.1 46.76± 0.7 80.41± 0.2 68.99
w/ X-Mixup 79.63± 1.0 48.23± 0.5 78.61± 0.2 68.82
w/ input-level fusion 78.81± 0.2 47.58± 0.2 80.12± 0.2 68.84
w/ FLARE MT 80.80± 1.4 48.48± 0.2 81.37± 0.8 70.22
w/ FLARE 81.00± 1.2 49.34± 0.3 80.54± 0.2 70.29

Llama 3.1 8B w/ LoRA 80.74± 0.4 42.84± 0.7 74.76± 1.4 66.11
w/ X-Mixup 80.22± 0.2 17.47± 1.6 75.91± 0.7 57.87
w/ input-level fusion 80.70± 0.5 46.09± 0.9 74.60± 1.6 67.13
w/ FLARE MT 80.83± 0.2 38.95± 0.2 74.52± 1.6 64.77
w/ FLARE 80.92± 0.2 47.74± 1.2 76.08± 1.1 68.25

Gemma 2 9B w/ LoRA 84.89± 0.4 49.93± 0.7 79.37± 1.2 71.40
w/ X-Mixup 84.62± 0.5 35.45± 2.0 79.94± 1.2 66.67
w/ input-level fusion 80.53± 0.2 51.29± 0.3 77.98± 1.1 69.93
w/ FLARE MT 84.84± 0.3 49.63± 0.9 78.09± 0.9 70.85
w/ FLARE 85.01± 0.4 52.14± 0.7 80.86± 0.5 72.67

Table 1: Average performance (with standard deviation) on natural language understanding datasets. Metrics used
are: Accuracy for XNLI, Exact Match for TyDiQA, and Macro F1 for NusaX. The best-performing results for each
XLT model are highlighted in bold.
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Figure 3: Average performance differences on NusaX
and TyDiQA for XLM-R Large using FLARE with MT
models of different size.

strates how FLARE can further enhance resource531

efficiency by effectively leveraging smaller MT532

models, thereby reducing computational require-533

ments without compromising performance relative534

to its benchmarks.535

On Latent MT Fusion.536

For encoder-only models like XLM-R Large and537

encoder-decoder models like mT5, latent MT fu-538

sion provides notable performance benefits com-539

pared to standard LoRA fine-tuning, X-Mixup, and540

input-level fusion, as shown in Table 2. However,541

for decoder-only models like Llama and Gemma,542

Fusion Function TyDiQA NusaX

Translate-Train (models are trained on data translated to the
target language)

add 40.76 79.56
mul 40.44 78.81
add+relu 40.93 79.18
cross-attention 39.63 78.11

Table 2: Average performance of different fusion func-
tions using XLM-R Large with FLARE, evaluated on
TyDiQA with Exact Match and on NusaX with Macro
F1.

we do not observe significant performance benefits 543

from latent MT fusion. This suggests that reduc- 544

ing the computational resources for processing the 545

source language representations in regular FLARE 546

can negatively impact cross-lingual transfer perfor- 547

mance, particularly for larger models. Nonetheless, 548

it provides a resource-efficient alternative to regular 549

FLARE for smaller mPLMs by avoiding the need for 550

decoding in the MT and eliminating the forward 551

pass for the source language representations. 552

Impact of Fusion Function. 553

Our study on the impact of fusion functions, pre- 554

sented in Table 2, shows that adding non-linearity 555
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Model r TyDiQA NusaX

Translate-Train (models are trained on training data translated
to the target language)

XLM-R Large w/ FLARE MT 8 40.86 77.84
w/ FLARE 42.37 79.52

XLM-R Large w/ FLARE MT 64 38.88 77.18
w/ FLARE 40.93 79.18

XLM-R Large w/ FLARE MT 128 40.21 77.18
w/ FLARE 40.88 78.32

Table 3: Average performance for varying adapter bot-
tleneck size r in LoRA; based on XLM-R Large, using
FLARE. Evaluation metrics include Exact Match for Ty-
DiQA and Macro F1 for NusaX.

to the fusion functions does not necessarily provide556

decisive performance benefits over simpler linear557

transformations. Notably, the functions add and558

add+relu demonstrate the best performance. De-559

spite the additional parameters available in cross-560

attention, this technique does not yield superior561

downstream performance, consistent with the low562

performance of X-Mixup in Table 1. These find-563

ings suggest that the optimal fusion function is564

task-dependent and can be regarded as a hyperpa-565

rameter that can be fine-tuned based on validation566

data.567

Impact of Adapter Capacity.568

Our ablation study, presented in Table 3, inves-569

tigates the impact of adapter capacity on FLARE’s570

performance. The results reveal that small bottle-571

neck sizes (r = 8) yield optimal performance for572

XLM-R Large on the TyDiQA and NusaX datasets.573

This finding is consistent with the observations in574

the original LoRA paper (Hu et al., 2022), indicat-575

ing that the introduction of our fusion adapter does576

not affect the intrinsic rank of the tasks.577

Layer-wise Language Activation.578

Figure 5 shows that the magnitudes of source and579

target language activations across the entire XLM-580

R Large are comparable. This indicates that FLARE581

does not overly rely on either source or target rep-582

resentations during fusion, but instead integrates583

both sources of information in a balanced manner.584

Further, Figure 4 displays the average activations585

for English and Acehnese in the first adapter bot-586

tleneck: this confirms that both source and target587

languages maintain similar activation magnitudes.588

Hence, subsequent Acehnese representations are in-589

fused with the English representations from this ini-590

tial transfer, integrating balanced source and target591

language information. Detailed activations for indi-592

vidual instances are illustrated in Figure 6, which593
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Figure 4: Average activation values for English and
Acehnese in the first bottleneck query layer in XLM-R
Large for the NusaX test set; add+relu fusion.
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Figure 5: Average activations in the adapters across all
XLM-R Large layers for the NusaX test set.

show positional activation differences and demon- 594

strate the alignment of source and target languages 595

for information transfer. 596

6 Conclusion 597

In this paper, we introduced Fusion for Language 598

Representations (FLARE), a parameter-efficient 599

method for cross-lingual transfer (XLT) that en- 600

hances representation quality and downstream per- 601

formance for languages other than English. Our 602

experimental results demonstrate that FLARE consis- 603

tently outperforms strong XLT baselines, including 604

target language fine-tuning with LoRA adapters, X- 605

Mixup, and input-level fusion, on various natural 606

language understanding tasks. FLARE demonstrates 607

robust performance, even for lower-quality ma- 608

chine translations. A key takeaway is that FLARE re- 609

mains more parameter-efficient compared to bench- 610

marked baseline approaches, while yielding supe- 611

rior performance. Furthermore, FLARE provides 612

most substantial performance benefits for multilin- 613

gual questions answering with decoder-only lan- 614

guage models. 615

7 Limitations 616

Our work demonstrates that highly compressed En- 617

glish language representations can be effectively 618

transferred to other languages within adapter bot- 619

tlenecks. However, our experiments focus on bilin- 620
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gual transfer settings. Extending fusion adapters621

to integrate multiple target languages is non-trivial,622

as it requires adapters to extract language-agnostic623

information across multiple languages.624

The proposed FLARE method by design relies625

data availability for both source and target lan-626

guages. Consequently, the application of FLARE627

is dependent upon the availability of machine trans-628

lation models. Furthermore, our evaluation exclu-629

sively employs English as the high-resource source630

language for representation fusion. While English631

is predominantly used in mPLM pretraining cor-632

pora, exploring other high-resource languages that633

share linguistic similarities, with the target lan-634

guages could potentially yield similar or improved635

cross-lingual transfer performance.636

Finally, our choice of base multilingual LMs637

has been motivated by the current state-of-the-art638

(SotA) in the field of multilingual NLP and XLT639

to low-resource languages for NLU tasks. The640

main models are SotA encoder-only (XLM-R) and641

encoder-decoder mPLMs (mT5), and decoder-only642

LLMs (Llama 3, Gemma 2). However, we note643

that the LLM technology and its adaptation to XLT644

for NLU in lower-resource languages has not been645

proven to be fully mature yet (Lin et al., 2024;646

Razumovskaia et al., 2024).647
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A Detailed Evaluation Results1216

Figure 6 displays average activations within the1217

first adapter bottlenecks in the XLM-R Large1218

model using FLARE and the add+relu fusion func-1219

tion. This visualization highlights the positional1220

alignment process between English and Acehnese1221

token representations, with varying activation val-1222

ues across different sequence positions reflecting1223

the dynamics of language representation fusion.1224

Table 4 presents the performance of FLARE and1225

input-level fusion when using gold translations for1226

fusion, as opposed to machine translations gener-1227

ated by NLLB. The results demonstrate that input-1228

level fusion performance is sensitive to the quality1229

of English input provided. Notably, when gold1230

translations are available, input-level fusion repli-1231

cates English performance, indicating that it heav-1232

ily relies on the quality of English inputs. In con-1233

trast, FLARE balances the fusion of source and tar-1234

get language information, as evident from the find-1235

ings in Figure 5. While input-level fusion outper-1236

forms FLARE when gold translations are available,1237

FLARE achieves significantly higher performance in1238

the more realistic setting using machine-translated1239

data.1240

Table 5 shows the results for the XNLI dataset1241

for each language in zero-shot XLT, translate-1242

test, translate-train settings, including translate-1243

train with gold translations in the source language.1244

The results confirm that FLARE consistently im-1245

proves XTL performance in the translate-train set-1246

ting across different languages without particular1247

bias towards typological relatedness to English or1248

frequency in pretraining corpora.1249

Table 6 details the results for the TyDiQA dataset1250

for each language in the zero-shot XLT, translate-1251

test, and translate-train settings. The outcomes1252

demonstrate that FLARE performance extends to1253

tasks including positional information, such as ex-1254

tractive question-answering.1255

Table 7 outlines the performance for the NusaX1256

dataset for each language in zero-shot XLT,1257

translate-test, translate-train, and translate-train1258

settings with gold translations in the source lan-1259

guage. Even with few training samples, our FLARE1260

method demonstrates consistent performance im-1261
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Figure 6: Activation values for individual instances
included in the NusaX test set. English and Acehnese
activation values are extracted from the first bottleneck
query layer in XLMR-Large, which is trained with the
add+relu fusion function.

provements across the low-resource languages in- 1262

cluded in the NusaX dataset. 1263

B Training Details 1264

Our evaluation results are averaged across five ran- 1265

dom seeds. Initially, we fine-tune the language 1266

models on English task data using LoRA adapters 1267

set with r = 64 and α = 128, which are subse- 1268

quently integrated into the model’s weights prior 1269

to task fine-tuning in the target languages. Hy- 1270

perparameter configurations for each mPLM are 1271

provided in Table 8. 1272

The total computation time for the experimental 1273

results exceeds 5,000 GPU hours. All models are 1274

trained using half-precision. 1275

C Implementation Details of FLARE MT 1276

We introduce FLARE MT as variant of FLARE aimed 1277

at further enhancing resource efficiency. FLARE MT 1278

improves efficiency in two key ways. Firstly, it 1279

leverages latent translations generated by the ma- 1280

chine translation (MT) encoder, thereby reducing 1281

the computational resources required to produce 1282

full text translations. Secondly, it eliminates the 1283
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Transformer
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Transformer
Block

Target
Language
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Figure 7: Illustration of the FLARE MT variant where
projected encoder representations from an MT model
are directly fused with target language representations
within the fusion adapters in the mPLM. Encoder rep-
resentations from the MT model serve as latent transla-
tions, avoiding discretization in the decoder.

need for a forward pass through the source lan-1284

guage representations in the mPLM, resulting in1285

significant computational savings. As a results, a1286

single source language representation, namely the1287

latent translation, is fused with the target language1288

representation in the fusion adapters for each trans-1289

former layer. To enable this fusion, a projection1290

module is introduced to align the dimensions of the1291

MT encoder with those of the mPLM. Although1292

this module adds additional parameters, it is es-1293

sential for ensuring compatibility between the two1294

models. Notably, related work suggests that extend-1295

ing the single projection layer to a MLP and train-1296

ing it on additional self-supervised data can yield1297

substantial performance benefits (Liu et al., 2023;1298

Schmidt et al., 2024). This provides a promising1299

direction for future research and potential improve-1300

ments to the FLARE MT approach.1301

D Practical Implications1302

The practical implementation of bilingual cross-1303

lingual transfer methods, such as FLARE, requires1304

an additional step of language identification to1305

determine bilingual adapter for model inference.1306

While this introduces a preprocessing stage, lan-1307

guage identification systems are widely accessible1308

and highly accurate. For example, NLLB achieves1309

a 95% F1 score across 193 FLORES languages,1310

Model XNLI NusaX

Translate-Train (fusion models are trained on data translated
into the target language and evaluated using gold translations
from the target language to the source language)

XLM-R Large
w/ input-level fusion 87.19 90.93
w/ FLARE 88.15 84.66

mT5-XL
w/ input-level fusion 89.67 90.57
w/ FLARE 86.57 80.72

Table 4: Average performance for the translate-train
setting with gold English translations during inference
across languages included in the XNLI, and NusaX
datasets, representing optimal translation quality. Evalu-
ation metrics include accuracy for XNLI and Macro F1
for NusaX.

including many low-resource languages (Burchell 1311

et al., 2023), ensuring that this step can be seam- 1312

lessly integrated into real-world applications. 1313

E Another Ablation: Representation 1314

Fusion during Training Only 1315

To investigate the importance of utilizing source 1316

language representations during inference, we mod- 1317

ified FLARE to restrict representation fusion to 1318

the training phase only. Specifically, we limited 1319

the fusion with source language representations 1320

to 50% of the training instances and excluded 1321

source language data during inference. This eval- 1322

uates cross-lingual transfer capabilities based on 1323

instance-independent patterns learned from source 1324

language representations during training. Our find- 1325

ings reveal that fusion adapters struggle to learn 1326

patterns that are independent of specific instances 1327

from source language representations during train- 1328

ing. As a result, when implemented in the XLM- 1329

R Large model on the NusaX test set, the perfor- 1330

mance of the train-only FLARE variant decreased by 1331

30%. Crucially, this significant drop underscores 1332

the importance of incorporating source language 1333

representations during inference to achieve effec- 1334

tive cross-lingual adaptation. 1335
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Model en ar bg de el es fr hi ru sw th tr ur vi zh Avg.

Zero-Shot Cross-lingual Transfer

XLM-R Large 87.81 76.70 81.37 80.27 80.24 82.58 81.56 73.52 78.31 65.48 76.01 76.04 69.43 77.69 78.07 76.95
mT5-XL 89.04 77.13 82.27 81.34 81.00 83.43 82.74 74.58 80.22 70.19 75.93 77.22 70.35 76.33 78.15 77.92
Llama 3.1 8B 91.47 79.56 80.56 83.38 80.73 85.06 84.07 72.07 81.66 60.64 75.38 76.51 62.64 81.39 80.01 77.40
Gemma 2 9B 93.05 80.38 83.81 84.42 83.91 85.05 85.52 77.59 82.23 73.96 76.92 79.27 71.31 81.54 80.73 80.47

Translate-Test (translate test data to English using NLLB 3.3B)

XLM-R Large 87.81 76.52 81.46 81.31 81.03 82.37 81.57 74.47 77.80 71.96 72.65 78.24 67.87 78.13 74.43 77.13
mT5-XL 89.04 79.04 83.15 83.07 82.56 83.73 83.30 76.69 80.47 73.02 74.69 79.54 69.80 80.26 77.15 79.03
Llama 3.1 8B 91.47 78.89 83.61 84.00 82.86 85.92 83.97 76.25 80.00 73.30 73.34 79.84 69.03 79.49 76.55 79.08
Gemma 2 9B 93.05 79.76 84.55 84.99 83.98 87.04 84.82 77.01 81.24 73.75 74.04 81.31 69.24 80.57 77.58 79.99

Translate-Train (models are trained on training data translated to the target language)

XLM-R Large w/ LoRA 87.81 79.33 84.13 82.64 83.21 84.50 83.06 77.78 81.42 74.44 79.73 80.72 74.71 81.68 79.44 80.49
w/ X-Mixup 87.81 78.33 82.48 82.16 80.12 82.57 81.23 76.06 80.54 74.11 79.48 79.15 73.67 81.48 81.18 79.47
w/ input-level fusion 87.81 77.29 81.41 81.07 81.36 82.40 81.07 74.89 77.79 72.13 72.76 78.47 68.46 78.11 74.18 77.24
w/ FLARE MT 87.81 80.91 84.76 84.12 83.97 85.03 83.80 79.04 82.07 76.71 80.32 81.70 76.29 81.88 81.76 81.60
w/ FLARE 87.81 81.04 84.12 83.35 83.44 83.95 83.53 79.26 79.58 75.58 80.40 80.15 75.50 81.30 82.71 80.99

mT5-XL w/ LoRA 89.04 79.44 83.37 83.23 81.65 84.17 83.76 76.84 81.31 75.97 76.93 77.68 73.00 79.13 79.80 79.73
w/ X-Mixup 89.04 80.14 82.21 82.37 82.73 82.87 82.54 77.16 79.87 76.10 79.03 78.00 73.42 79.97 78.43 79.63
w/ input-level fusion 89.04 79.03 82.76 82.36 82.14 83.43 82.89 76.37 80.28 72.97 75.11 79.01 69.73 79.61 77.70 78.81
w/ FLARE MT 89.04 80.41 83.73 83.45 82.91 83.81 83.57 78.44 81.35 77.02 78.62 81.13 75.46 80.49 80.75 80.80
w/ FLARE 89.04 81.32 83.72 83.46 82.23 84.87 83.47 79.00 81.28 77.43 79.54 80.50 74.27 81.30 81.66 81.00

Llama 3.1 8B w/ LoRA 91.47 80.27 82.88 84.23 83.16 86.85 85.49 79.82 83.97 67.39 77.58 79.62 76.94 81.91 80.37 80.74
w/ X-Mixup 91.47 79.58 82.94 84.11 81.61 86.23 85.39 79.15 83.16 66.49 76.51 79.06 77.20 81.44 80.18 80.22
w/ input-level fusion 91.47 79.17 85.63 85.39 83.61 87.10 86.00 77.55 81.91 74.72 74.75 82.32 71.78 82.07 77.79 80.70
w/ FLARE MT 91.47 80.27 83.17 84.87 82.95 86.75 85.67 80.35 82.70 67.19 77.41 79.95 77.30 81.92 81.15 80.83
w/ FLARE 91.47 80.00 83.09 84.92 82.90 86.55 86.04 80.80 83.14 67.08 77.21 79.33 77.95 82.33 81.55 80.92

Gemma 2 9B w/ LoRA 93.05 85.19 87.87 88.03 87.78 89.06 87.13 82.49 86.10 79.52 83.20 84.25 78.07 85.09 84.69 84.89
w/ X-Mixup 93.05 84.70 87.76 87.84 87.32 88.61 87.83 82.44 85.27 80.12 82.60 83.51 77.35 84.50 84.86 84.62
w/ input-level fusion 93.05 79.98 84.84 85.19 84.16 86.65 85.12 77.39 81.74 74.48 75.07 81.98 70.70 81.74 78.34 80.53
w/ FLARE MT 93.05 85.07 87.73 87.89 87.70 88.93 87.90 82.69 84.97 80.52 82.82 84.18 77.36 84.88 85.19 84.84
w/ FLARE 93.05 84.67 87.93 88.14 87.77 89.23 88.10 82.86 85.97 79.73 83.15 84.08 78.13 85.23 85.19 85.01

Translate-Train (fusion models are trained on data translated into the target language and evaluated using gold translations from the target language to the source language)

XLM-R Large w/ input-level fusion 87.81 88.41 88.54 88.46 88.36 88.28 88.02 88.38 85.91 86.23 85.91 85.85 86.05 85.85 86.45 87.19
w/ FLARE 87.81 88.10 88.06 88.04 88.12 88.02 88.08 88.40 88.12 88.46 88.16 88.14 88.22 88.04 88.16 88.15

mT5-XL w/ input-level fusion 89.04 90.04 89.80 89.54 89.70 89.78 89.50 89.80 89.52 89.56 89.84 89.66 89.38 89.52 89.70 89.67
FLARE 89.04 88.62 88.74 88.80 85.34 87.83 86.19 84.31 86.12 89.66 88.49 89.56 79.22 85.33 83.73 86.57

Table 5: Average scores per language in the XNLI dataset. Model performance is evaluated using the Accuracy
metric.
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Model en ar ben fi ind ko ru sw tel Avg.

Zero-Shot Cross-lingual Transfer

XLM-R Large 49.05 24.27 32.78 30.15 44.51 29.92 30.15 40.27 58.42 36.31
mT5-XL 55.23 30.94 43.89 35.56 49.59 41.59 41.47 50.63 73.54 45.90
Llama 3.1 8B 55.61 2.41 0.00 5.22 1.64 0.58 5.49 2.52 1.06 2.36
Gemma 2 9B 60.08 1.63 2.46 3.20 0.88 0.24 2.77 1.87 6.61 2.46

Translate-Test (translate test data to English using NLLB 3.3B)

XLM-R Large 49.05 28.15 52.78 30.54 47.79 36.23 34.92 52.76 45.30 41.06
mT5-XL 55.23 34.01 49.00 36.08 51.97 42.61 39.87 54.95 74.89 47.92
Llama 3.1 8B 55.61 1.35 5.00 2.21 0.99 0.58 2.71 4.68 2.75 2.53
Gemma 2 9B 60.08 0.68 3.33 1.74 0.66 0.00 1.68 1.08 9.04 2.28

Translate-Train (models are trained on training data translated to the target language)

XLM-R Large w/ LoRA 49.05 31.10 38.97 30.35 46.61 37.11 24.54 47.13 65.34 40.14
w/ X-Mixup 49.05 26.25 36.67 26.65 43.70 34.19 24.40 45.85 68.21 38.24
w/ input-level fusion 49.05 31.56 40.00 30.04 45.63 33.33 28.12 50.29 64.62 40.45
w/ FLARE MT 49.05 30.21 35.00 33.02 44.82 35.90 25.38 48.46 58.26 38.88
w/ FLARE 49.05 30.83 41.67 33.44 44.61 35.33 26.17 48.47 66.93 40.93

mT5-XL w/ LoRA 55.23 33.48 46.71 38.90 49.84 46.77 33.20 51.46 73.73 46.76
w/ X-Mixup 55.23 32.55 54.49 38.15 52.17 49.05 33.75 52.04 73.68 48.23
w/ input-level fusion 55.23 34.75 49.74 39.29 51.74 45.29 30.69 52.79 76.32 47.58
w/ FLARE MT 55.23 46.08 48.59 39.31 53.94 44.90 30.14 49.16 75.75 48.48
w/ FLARE 55.23 47.86 49.55 40.98 54.23 46.05 30.41 50.85 74.82 49.34

Llama 3.1 8B w/ LoRA 55.61 39.69 26.11 44.27 56.61 53.56 37.23 53.47 31.75 42.84
w/ X-Mixup 55.61 23.44 16.11 37.26 30.69 0.00 10.96 0.00 21.32 17.47
w/ input-level fusion 55.61 37.48 21.03 45.86 56.68 62.61 37.03 61.82 46.20 46.09
w/ FLARE MT 55.61 38.33 26.11 37.90 48.78 53.85 34.04 44.94 27.63 38.95
w/ FLARE 55.61 44.48 26.66 48.09 62.80 56.98 42.44 59.73 40.70 47.74

Gemma 2 9B w/ LoRA 60.08 43.75 46.67 44.69 57.52 59.83 38.82 59.72 48.42 49.93
w/ X-Mixup 60.08 37.71 20.00 46.92 54.07 39.32 14.33 25.71 45.54 35.45
w/ input-level fusion 60.08 45.74 50.14 40.45 59.97 61.87 41.06 61.91 49.14 51.29
w/ FLARE MT 60.08 43.23 45.00 44.05 59.45 57.83 40.05 58.82 48.60 49.63
w/ FLARE 60.08 44.79 46.67 47.35 65.24 60.68 41.82 60.75 49.83 52.14

Table 6: Average scores per language in the TyDiQA dataset. Model performance is evaluated using the Exact
Match metrics.
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Model en ace ban bjn bug ind jav mad min nij sun Avg.

Zero-Shot Cross-lingual Transfer

XLM-R Large 92.04 68.34 75.37 80.37 51.90 90.76 84.69 69.01 80.06 69.23 82.89 75.26
mT5-XL 91.77 72.26 76.42 79.79 49.51 90.61 87.49 61.38 77.71 65.31 86.73 74.72
Llama 3.1 8B 89.75 70.50 72.00 80.33 39.92 89.75 77.25 64.75 77.75 65.42 79.75 71.74
Gemma 2 9B 91.15 66.42 71.58 82.08 31.92 91.67 86.25 64.00 80.75 64.33 77.08 71.61

Translate-Test (translate test data to English using NLLB 3.3B)

XLM-R Large 92.04 73.20 73.88 82.09 60.47 88.85 84.27 61.24 81.19 59.35 83.97 74.85
mT5-XL 91.77 76.27 73.43 81.72 69.29 86.86 83.50 60.63 82.47 60.86 82.68 75.77
Llama 3.1 8B 89.75 70.83 73.00 80.75 39.92 89.58 78.00 65.25 81.58 67.33 80.42 72.67
Gemma 2 9B 91.15 66.42 71.58 82.08 31.92 91.67 86.25 64.00 80.75 64.33 77.08 71.61

Translate-Train (models are trained on training data translated to the target language)

XLM-R Large w/ LoRA 92.04 74.19 74.55 81.84 60.99 89.40 85.90 70.75 81.15 67.35 83.87 77.00
w/ X-Mixup 92.04 73.10 73.08 81.18 62.22 88.38 85.90 65.79 82.30 68.97 82.74 76.37
input-level fusion 92.04 77.77 75.89 82.67 69.96 89.44 87.92 66.66 79.55 68.47 87.01 78.53
w/ FLARE MT 92.04 73.33 75.95 81.13 57.20 90.76 86.59 69.77 83.42 68.90 84.73 77.18
w/ FLARE 92.04 76.47 77.27 80.71 70.18 90.54 87.42 71.33 85.15 70.16 82.59 79.18

mT5-XL w/ LoRA 91.77 80.66 81.92 85.83 65.36 89.78 90.40 69.85 82.30 69.27 88.76 80.41
w/ X-Mixup 91.77 80.34 74.60 83.76 68.87 88.52 88.75 68.25 83.66 65.60 83.76 78.61
input-level fusion 91.77 81.00 79.48 85.54 71.44 89.75 87.58 66.33 83.28 68.02 88.78 80.12
w/ FLARE MT 91.77 81.19 84.12 85.19 66.59 90.14 89.67 71.16 84.80 71.87 88.94 81.37
w/ FLARE 91.77 81.03 82.03 85.88 66.95 89.55 89.80 68.63 84.20 69.31 88.05 80.54

Llama 3.1 8B w/ LoRA 89.75 76.26 73.71 78.10 62.82 88.66 84.29 62.91 82.20 58.04 80.64 74.76
w/ X-Mixup 89.75 77.25 76.58 79.00 64.17 89.92 85.08 64.58 82.17 59.83 80.50 75.91
input-level fusion 89.75 74.83 66.17 80.17 66.67 89.17 85.50 59.63 82.63 57.25 84.00 74.60
w/ FLARE MT 89.75 78.21 72.00 74.29 64.21 87.96 83.04 64.38 80.75 62.38 77.96 74.52
w/ FLARE 89.75 78.88 75.25 80.25 64.25 91.17 85.88 65.13 81.38 57.88 80.75 76.08

Gemma 2 9B w/ LoRA 91.15 77.89 79.14 82.30 66.83 91.71 87.56 69.81 85.72 67.61 85.18 79.37
w/ X-Mixup 91.15 80.94 77.92 82.82 68.22 91.46 88.29 69.41 87.64 67.26 85.48 79.94
input-level fusion 91.15 77.67 76.88 83.50 70.58 89.92 87.17 63.92 84.50 60.71 84.92 77.98
w/ FLARE MT 91.15 79.88 80.67 81.88 62.50 91.04 85.67 66.04 84.71 64.42 84.08 78.09
w/ FLARE 91.15 82.75 81.00 83.17 65.08 92.83 86.83 73.08 87.75 70.58 85.50 80.86

Translate-Train (fusion models are trained on data translated into the target language and evaluated using gold translations from the target language to the source language)

XLM-R Large input-level fusion 92.04 91.24 91.08 90.55 90.69 91.99 90.88 91.23 91.07 90.07 90.52 90.93
w/ FLARE 92.04 89.24 88.98 82.55 90.07 90.22 88.15 71.20 87.58 72.93 85.71 84.66

mT5-XL input-level fusion 91.77 91.39 90.39 91.47 91.54 90.88 89.49 88.87 90.86 89.20 91.60 90.57
w/ FLARE 91.77 83.80 80.55 84.06 64.70 88.32 90.50 74.36 83.64 69.29 88.00 80.72

Table 7: Average scores per language in the NusaX dataset. Model performance is evaluated using the Macro F1
metric.
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Model Hparam XNLI TyDiQA NusaX

XLMR-Large epochs 10 10 20
batch size 64 64 64
sequence length 128 512 128
learning rate 2e-5 2e-4 2e-4

mT5-XL epochs 10 10 20
batch size 64 64 64
sequence length 128 512 128
learning rate 2e-5 2e-4 2e-4

Llama 3 8B epochs 3 3 5
batch size 64 64 64
sequence length 128 512 128
learning rate 2e-5 2e-4 2e-4

Gemma 2 9B epochs 3 3 5
batch size 64 64 64
sequence length 128 512 128
learning rate 2e-5 2e-4 2e-4

Table 8: Hyperparameter configurations for each mPLM
across the XNLI, TyDiQA, and NusaX datasets.
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Task Language ISO Code Source

XNLI Arabic ar

Crowd-sourced (Williams et al., 2018)

Bulgarian bg
Chinese zh
French fr
German de
Greek el
Hindi hi
Russian ru
Spanish es
Swahili sw
Thai th
Turkish tr
Urdu ur
Vietnamese vi

TyDiQA Arabic ar

Wikipedia (Clark et al., 2020)

Bengali ben
Finnish fi
Indonesian ind
Korean ko
Russian ru
Swahili sw
Telugu tel

NusaX Acehnese ace

SmSA (Purwarianti and Crisdayanti, 2019)

Balinese ban
Banjarese bjn
Buginese bug
Indonesian ind
Javanese jav
Madurese mad
Minangkabau min
Ngaju nij

Table 9: Overview of languages and corresponding source data used in the experiments, categorized by task.
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