
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TENSORSLM: SUB-BILLION PARAMETER LANGUAGE
MODEL COMPRESSION FOR LOW-END DEVICES BASED
ON TENSOR-TRAIN DECOMPOSITION

Anonymous authors
Paper under double-blind review

ABSTRACT

The Small Language Models (SLMs, or on-device LMs) (Lu et al., 2024) is a
concept corresponding to the Large Language Model (LLM), which has signifi-
cantly fewer parameters and is typically deployed on low-end devices, like mobile
phones (Liu et al., 2024) and single-board computers (e.g. Raspberry Pi). Unlike
LLMs, which utilize the increasing model size for better generalization, SLMs are
expected to adjust the exact deployment environment changes. Furthermore, most
edge applications have battery life concerns, which have never been considered in
the GPU servers for data centres. Targeting these two issues, this paper focuses
on the token embedding compression for adaptivity and low energy requirements
in edge applications. We propose a training-free model compression approach
based on the Tensor-Train Decomposition (TTD), whereby each pre-trained token
embedding vector is converted into a lower-dimensional Matrix Product State
(MPS). We then comprehensively investigate the low-rank structures extracted by
this approach, regarding the compression ratio, language task performance, latency
and energy consumption on a typical low-end device (i.e. Raspberry Pi). Taking
the sub-billion parameter versions of GPT-2/Cerebres-GPT and OPT as examples,
the model compressed with our approach can achieve a comparable language task
performance to the original model with around 2.0× embedding layer compression,
while the energy consumption of single query drops by half.

1 INTRODUCTION

Modelling complex language patterns and solving complex language tasks are two of the primary
reasons that LLMs have attracted considerable attention these years. While the large-scale language
model track thrives on having larger sizes and solving more difficult tasks, another track is considering
putting such capable models on lower-end devices. These models are called small language models
(SLMs) (Lu et al., 2024) or on-device language models (Liu et al., 2024; Mehta et al., 2024; hfs).

Llama3.2 Qwen2.5 OPT DistilGPT-2/GPT-2 CerebrasGPT

20%

Norms
FF
Attn
Emb
Zero-shot
Resoning
ScorePa

ra
m

s
R

at
io

0%

50%

100%

40

50

60

1B 0.5B 1.5B 125M 350M 1.3B 82M 124M 355M 774M 1.5B 111M 256M 590M 1.3B

Figure 1: The parameter ratio of Norms (including layer norms), feed-forward layers (FF), attention
layers (Attn), and embedding layers (Emb), and the average zero-shot reasoning score (on the tests of
HellaSwag (Zellers et al., 2019), ARC-easy/-challenge (Clark et al., 2018), BoolQ (Clark et al., 2019)
and PIQA (Bisk et al., 2020)) of several open-source model series. Inside a model series, smaller
models have a higher token embedding layer ratio and lower feed-forward layer ratio. The attention
layer ratio roughly maintains the still with model size changing (within the same model series).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

SLMs may have less than one billion parameters (Mehta et al., 2024; Liu et al., 2024; Laskaridis et al.,
2024). Though such a size is already a few tenths or even hundreds of what common LLMs usually
are, for some low-end devices, it can still be a burden. As listed in (Liu et al., 2024, Fig. 2), some
prevalent mobile devices (e.g. iPhone 14 and iPhone 15) only have 6GB DRAM. For some small
language models like Gemma2-2B, it causes a system crash if running its uncompressed version on
Raspberry Pi-5 with 8GB DRAM.

Compared with LLMs, SLMs on low-end devices have different layer compositions of the model
and different on-board operations due to the absence of server-level GPUs. As shown in Fig. 1,
around half of investigated open-source models have more than 20% parameters attributed to the
token embedding layers, which is consistent with the statements in (Liu et al., 2024, 2.2.3). Also,
since no server-level GPU is on board to support massive parallel operations for matrix multiplication,
block-wise approaches that rely on parallelism (Dao et al., 2022; Qiu et al., 2024) are not suitable.

To this end, this paper proposes TensorSLM, a tensor-based approach to compress SLMs for low-end
devices (i.e. Raspberry Pi without GPU). Together with matrix-based low-rank approaches (Chen
et al., 2018a; Hrinchuk et al., 2020; Lioutas et al., 2020; Acharya et al., 2019; Chen et al., 2021; Hsu
et al., 2022; Dao et al., 2022; Qiu et al., 2024), this kind of approach forms a broader field named
low-rank factorization. The comparison of these works regarding methodologies (e.g. matrix/tensor,
with/without training) and applications (e.g. high-end/low-end devices, large/small models) are
clarified in Sec. 3. Compared with two-dimensional matrices or their finer-grained block-wise
forms (Chen et al., 2018a; Dao et al., 2022), higher-order tensors provide more diverse representation
alternatives with their inter-order information, which is more suitable for small-size models to solve
complex tasks. This superiority is more pronounced if there is no fine-tuning data to adjust the model
parameters for the exact application environments.

The contributions of this paper are summarised as follows:

1. We provide a systematic analysis of LLMs on high-end GPU servers and SLMs on low-end edge
devices to address the two unique requirements of SLM compression: adaptability and low energy.

2. As far as we know, we are the first to compress SLMs for low-end device use cases, with low-rank
factorization. We adjust Tensor-Train Decomposition for non-parallel operations in the forwarding
passes, where block-wise approaches (Dao et al., 2022; Qiu et al., 2024) are incompetent.

3. We give the measured latency and estimated energy consumption of SLMs on the typical low-end
device, Raspberry Pi 51, and it comes out that our approach reduces half of the inference energy
with negligible latency increase.

4. We evaluated both simple and complex language tasks. We found that our tensor-based approach is
better at unprompted and unconstrained question answering than the matrix-based SVD approach,
and herein shed light on selecting appropriate algebraic structures according to the tasks.

2 UNIQUE REQUIREMENTS OF SLM APPLICATIONS

2.1 ADAPTABILITY

Unlike the current LLM applications, which are mostly running on high-end GPU servers (e.g. in
the data centres with numerous NVIDIA A100), SLMs are mainly for edge (or mobile) applications
that require adapting to the environment with limited resources on lower-end devices. A common
approach to adapting to the dynamic environment is updating the vocabulary according to the changes
in input text distribution Chen et al. (2018a). The reasons for this distribution change vary from case
to case. For example, new user registration, or the frequently used tokens update with the users’
changing daily lives.

To cope with the ever-changing input tokens and vocabulary, a straightforward strategy is to build a
could-edge system, as shown in 2, which is similar to the workflows in the field of edge computing,
e.g. (Laskaridis et al., 2024, Fig.1). There are two kinds of devices in this workflow: 1) the central
server, which is possibly a server in public or private cloud services, or a higher-end personal
computer, and 2) the low-end edge device. In this paper, we only talk about a typical edge device -

1https://www.raspberrypi.com/products/raspberry-pi-5/

2

https://www.raspberrypi.com/products/raspberry-pi-5/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

① tensorization

... ...

original
embedding
layer

compressed
embedding
layer ...

Central Server Edge

2.download

Application
4.compress

3.register

new token
embedding

compressed
token
embedding

1.compress

5.update

inference

② decomposition

token embedding vector tensor
MPS cores
tensor rank

decoder

(Sec. 3.1) (Sec. 3.1)

(Sec. 3.2)

Figure 2: The workflow of SLM compression in edge computing scenario with TensorSLM.

Raspberry Pi. Over a fairly long period (e.g. months or years), the central server only communicates
with the edge device once to provide a brand-new pre-trained language model. Afterwards, the edge
device should update the vocabulary on board according to the changes in the environment.

A detailed explanation of Fig. 2 is as follows:

Step 1. The central server compresses the whole token embedding matrices on the token embedding
level, according to Alg. 1.

Step 2. The compressed vocabulary and other parts of the language model (e.g. the decoder) are
downloaded and then deployed on a low-end device.

Step 3. During the application runs, the vocabulary updates for two cases:

(a) a new token is required according to the actual application requirements, it will be
registered by the service on the edge device. Jump to Step 4.

(b) an old token is required to be removed (e.g. it has not been used for a long time), the
edge device simply deletes the corresponding token embedding vector. Meanwhile, the
application deregisters this token.

Step 4. The low-end device compresses the added token embedding vector as described in Alg. 1.

Step 5. The current vocabulary of the language model. The compression process of a single token
embedding follows a pipeline of 1 tensorization and 2 decomposition.

2.2 LOW ENERGY CONSUMPTION

From the workload of the high-end GPU servers (e.g. those equipped with NVIDIA A100) and
low-end edge devices (e.g. Raspberry Pi 5) described in Sec. 2.1, we know that the edge device only
takes charge of light-weight essential tasks, since it has strict limitations in computation, memory
and communication. Furthermore, since battery life directly impacts the user experience, energy
consumption is also a significant concern.

The actual energy consumption of a device depends on various factors, like the semiconductor
temperature, system workload, operating environment, etc. Thus, it is hard to precisely calculate the

Table 1: Approximate energy consumption of different operations (1nJ=1000pJ). For servers, com-
munication with the wired network (e.g. ethernet or optical fibre) is preferred; for edge devices, it is
preferred to use wireless networks (e.g. Wi-Fi or cellular network).

Device Type
Computation

(pJ/ float32) Memory
(pJ/ float32)

Communication
(nJ/ float32)

Add Mult wired wireless

Raspberry Pi 5
(Cortex-A76 CPU) 1.0-2.5 1.2-3 70-260 50-350 400-6000

GPU server
(A100 GPU) 5-12 6-15 100-450

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 2: Comparison with TensorSLMs and relevant research.

Study on
LM compression
or relevant
low-rank factorization

Device

Tr
ai

ni
ng

? Algebra
Structure Layer Focused Size

hi
gh

-e
nd

lo
w

-e
nd

m
at

rix

te
ns

or

Em
b

Li
ne

ar

la
rg

e

sm
al

l

Chen et al. (2018a)
√ √ √ √ √

Hrinchuk et al. (2020)
√ √ √ √

Wang et al. (2023)
√ √ √ √ √

Bałazy et al. (2021)
√ √ √ √ √

Liu et al. (2015) -
√ √

-
Chen et al. (2018b)

√ √ √ √ √

Yuan et al. (2023)
√ √ √ √

Hsu et al. (2022)
√ √ √ √ √

Chekalina et al. (2023a)
√ √ √ √ √

Lin et al. (2024)
√ √ √ √

Dao et al. (2022)
√ √ √ √

Qiu et al. (2024)
√ √ √ √ √

Liu et al. (2024)
√ √

-
√

TensorSLM (ours)
√ √ √ √

exact energy consumption of an algorithm on a certain hardware. However, we can still estimate the
range of energy consumption in the system as Tab. 1, where we can have the following remarks:

Remark 1. Memory operations are more “expensive” than computation in terms of energy.

Remark 2. Non-essential communication should be avoided for energy concerns.

Our workflow Fig. 2 has already satisfied Rem. 2. For Rem. 1, if real-time is not the most important
concern in the edge application, it is reasonable to “exchange” memory with computation for longer
battery life. We will later discuss and evaluate this point in Sec. 5.1 and Sec. 6.

3 WHY NOT EXISTING SOLUTIONS?

The field of language model compression with low-rank factorization has been booming in recent
years. The recent relevant works are summarized inTab. 2. We can observe that for the current existing
works, some are specialized for embedding layers (Chen et al., 2018a; Hrinchuk et al., 2020; Wang
et al., 2023; Bałazy et al., 2021; Acharya et al., 2019; Liu et al., 2015) while others are not (Chekalina
et al., 2023b; Chen et al., 2021; Hsu et al., 2022; Dao et al., 2022; Qiu et al., 2024). However, all of
these require an extra training process, such as fine-tuning, meta-learning (Chen et al., 2018a; 2021;
Hsu et al., 2022; Bałazy et al., 2021; Liu et al., 2015; Dao et al., 2022; Wang et al., 2023; Qiu et al.,
2024) and training from scratch (Hrinchuk et al., 2020; Chekalina et al., 2023b).

There are two limitations to this extra training: 1) extra training involves additional computation
and training data, which may be unavailable for low-end devices; 2) training the language model
from scratch discards the valuable knowledge stored in the weights of the original models. However,
we only focus on training-free low-end device applications. For a more detailed discussion of these
relevant works, please refer to Appx. B.

4 PRELIMINARIES

This section gives the essential concepts related to tensor, tensor operations and Tensor-Train Decom-
position. A more complete introduction about tensors can be found in Appx. A.

Order-N Tensor. An order-N real-valued tensor, A, is a high-dimensional matrix (or multi-way
array), denoted by A ∈ RI1×···×IN , where N is the order of the tensor (i.e., number of its modes),
and Ik (1 ≤ k ≤ N) is the size (i.e., the dimension) of its k-th mode. In this sense, matrices (denoted

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1: TT SVD(Oseledets, 2011) for a Single Token Embedding Compression

Input :1. d-dimensional token embedding vector x ∈ Rd, approximation accuracy ϵ;
2. Tensor dimension {I1, I2, . . . , IN} and TT ranks {r0, r1, . . . , rN}

Output : TT cores G(1), . . . ,G(N)

Initialize :Tensor X ← reshape(x, [I1, I2, . . . , IN]),
temporary matrix Z← reshape(X , [r0I1,

∏N
j=2 Ij]),

truncation parameter δ = ϵ√
N−1
∥X∥F

1 for k = 1 to N − 1 do
2 U,S,V,E← truncSVD(Z, δ, rk) // s.t. U ∈ Rrk−1Ik×rk, ∥E∥F ≤ δ

3 G(k) ← reshape (U, [rk−1, Ik, rk]) // get kth TT core

4 Z← reshape
(
SVT , [rkIk+1,

∏N
j=k+2 Ij])

)
// SVT ∈ R

∏N
i=k+2 Ii

5 G(N) ← Z

6 return G(1),G(2), . . . ,G(N)

as A ∈ RI1×I2) can be seen as order-2 tensors (N = 2), vectors (denoted as a ∈ RI) can be seen as
order-1 tensors (N = 1), and scalars (denoted as a ∈ R) are order-0 tensors (N = 0).

Tensor-Train Decomposition (TTD). The most common Tensor-Train Decomposition (Oseledets,
2011) formats a tensor into a Matrix Product State (MPS or TT-MPS) form, which applies the Tensor-
Train Singular Value Decomposition (TT-SVD) algorithm (described in Appx. A.3) to an order-N
tensor,X ∈ RI1×I2×···×IN . This results in N smaller 2-nd or 3-rd order tensors, G(k) ∈ Rrk−1×Ik×rk

for k = 1, . . . , N , such that

X ≈ G(1) ×1
2 G(2) ×1

3 G(3) ×1
3 · · · ×1

3 G(N). (1)

Tensor G(1), . . . ,G(N) are referred to as the tensor cores, while the set {r0, r1, . . . , rN} represents
the TT-rank of the TT decomposition (r0 = rN = 1).

5 METHODOLOGY

This section clarifies the technical cornerstones of our approach. A practical pipeline of our approach
is depicted in Fig. 2. The whole vocabulary is processed on higher-end servers, while inference and
vocabulary update happens on lower-end edge devices.

5.1 INDIVIDUAL EMBEDDING VECTOR COMPRESSION

For the compression of the embedding matrix, rather than decomposing the whole embedding weight
matrix, we propose to decompose each embedding vector. The lower half of Fig. 2 is a simplified
illustration of such a process, with a detailed description in Alg. 1.

Tensorization. Each token embedding x ∈ Rd is reshaped (or folded, tensorized, as in
Appx. A.3) into an order-N tensor. Denote reshape(·) as the reshape function, X =

reshape(x, {I1, I2, . . . , IN}) and X ∈ RI1×···×IN such that d =
∏N

k=1 Ik. In the example
in Fig. 2, the token embedding vector x is a 27-dimensional vector, d = 27. In this way, vector x is
reshaped into an order-3 (N = 3) tensor X , with tensor size for each mode I1 = I2 = I3 = 3.

Tensor Decomposition. Tensor X is then decomposed and stored in a Matrix Product State (MPS)
form as X ≈ G(1) ×1

3 · · · ×1
3 G(N), with hyperparameters as TT ranks r0, r1, . . . , rN . For the case

in Fig. 2, the MPS cores are G(1), G(2), G(3), with TT ranks r0 = r1 = r2 = r3 = 1. In other
words, instead of storing the entire token embedding vector x ∈ Rd, we store the corresponding MPS
cores, G(k) ∈ Rrk−1×Ik×rk , for k = 1, . . . , N . The parameter count of the MPS cores {G(k)} is∑N

k=1 |G(k)| =
∑N

k=1 rk−1Ikrk, where | · | represents the parameter count.

A more detailed explanation of individual token embedding compression is given in Alg. 1, and
its cornerstone TT SVD is further described in Alg. 2 (in Appx. A.3), where ∥ · ∥F denotes the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 3: Computation and memory complexity during the compression (Sec. 5.1) and infer-
ence(Sec. 5.2) of TensorSLM.Mtrans is the transformer module, V denotes the vocabulary size, d
is the original token embedding dimension, and l is the token number of the input text. For simplicity,
the dimensions for each mode of the tensor and TT rank are represented as I and r, respectively,
which yields the highest compression ratio when r = 1 and I = 2 (as proved in Appx. D).

Memory Original Compressed Compressed Encoded Texts Input to Mtrans

O(V d) O(V NIr2) O(lNIr2) O(ld)

Computation TT-SVD Reconstruction
O(NIr3) O(NIr2)

Frobenius norm. Although the embedding vector is reshaped into a tensor, the decomposition for
each mode of this tensor is still based on the matrix-level SVD (line 2). Then the complexity of
TT SVD can be derived from SVD and its variants, such as truncated SVD (Oseledets, 2011). Given
the vocabulary size V , the original parameters of the embedding layers are compressed from V d to
V
∑N

k=1 rk−1Ikrk, and the compression ratio can be obtained via ηTTD = d∑N
k=1 rk−1Ikrk

− 1. The
computation and memory complexities for all the above processes are summarized in Tab. 3.

Energy Consumption Analysis. Recall in Sec. 2.2 we have Rem. 1 to guide the choice between
memory and computation for the same functionalities from the perspective of energy cost. Based
on Rem. 1 and Tab. 3, we can initially give the estimated energy costs when the SLM processes
an input token (only before the decoder). Assuming in the same operating environment and other
conditions (e.g. temperature), the memory energy cost of each float32 is ν, and the computation
energy cost of each float32 is τ , all the model weights are represented in float32.

When inputting a text of length l, denote original model energy cost regarding memory as Eν , model
energy cost regarding computation is Eτ ,

Eν = ν(dV + ld), Eτ = 0, (2)

and after compressing with TensorSLM, the energy costs are

E
′

ν = ν(V NIr2 + lNIr2 + ld), E
′

τ = τNIr2. (3)

Denote the SVD rank k, the energy cost after compressing with matrix-based SVD is

E
′′

ν = ν [k(V + 2d+ l + 1) + ld] , E
′′

τ = τ(2ldk − ld+ kd). (4)

Therefore, we have the ratio of inference energy ω, between the compressed language models and the

uncompressed models. Denote ωTT =
E
′
ν+E

′
τ

Eν+Eτ
as the ratio with TensorSLM, and ωSVD =

E
′′
ν +E

′′
τ

Eν+Eτ
as

the ratio with SVD. We will give the estimated values of ωTT and ωSVD in Sec. 6.3 according to the
hyperparameters of the investigated open-source SLMs.

5.2 LANGUAGE MODEL INFERENCE PROCESS WITH THE COMPRESSED EMBEDDINGS

The original inference process with embedding vectors is as follows: when the encoded texts (sepa-
rated as tokens) are forwarded to the embedding layer, the embedding layer outputs the embedding
vectors according to the input tokens; the embedding layer here acts like a look-up table. The
embedding vectors are then forwarded to the hidden layers of the transformer, whose size is the same
as the dimension of the embedding vectors. Thus, if there is no internal change in the hidden layers,
the dimension of the embedding vectors should compile with the dimension of the hidden layers. The
compressed embeddings should be reconstructed to the original dimension to enable the forwarding
process. This inference happens at the application phase shown in the upper right of Fig. 2.

Thus just before forwarding embedding vectors to the hidden layers, the memory usage increases
from l

∑N
k=1 rk−1Ikrk to ld. However, given that the vocabulary size V is normally much larger

than the input token number l, that means V ≫ l. Thus our approach can still significantly reduce
the memory usage if the embedding layer takes a significant part of the whole model parameters. The
reconstruction process follows the tensor contraction in Eq. (7), turning the TT cores {G(k)} into a
N -order tensor X according to Eq. (1), and then vectorizing X into a full-size embedding vector
according to Appx. A.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

6 EMPIRICAL EVALUATION

6.1 EXPERIMENTAL SETUP

Models, Tasks and Dataset. The sub-billion models we used are DistilGPT2 (Sanh, 2019), GPT2,
GPT2-M/L (Radford et al., 2019), CerebrasGPT-111M/256M/590M (Dey et al., 2023), OPT-125M.
We also tested the models of slightly over a billion parameters for language task performance with
GPT2-XL (1.5 billion parameters), CerebrasGPT-1.3B and OPT-1.3B for the boundary tests.

Regarding the language tasks, we have two different level language tasks:

• Simple Tasks: language modelling and sentiment classification. For language modelling, the
considered datasets are WikiText2, WikiText103 (Merity et al., 2017) and 1BW (Chelba et al.,
2013). For sentiment classification, the considered dataset is IMDB (Maas et al., 2011).

• Complex Tasks: zero-shot common sense reasoning tasks. The common sense reasoning
datasets include ARC-easy and ARC-challenge Clark et al. (2018), BoolQ Clark et al. (2019),
HellaSwag Zellers et al. (2019), PIQA Bisk et al. (2020), SIQA Sap et al. (2019) and Wino-
Grade Sakaguchi et al. (2021).

Hardware. Our main experiments were completed on a GPU workstation with an RTX A6000
48GB GPU and AMD Ryzen Threadripper PRO 5955WX CPU. The GPU resource was mainly used
to fine-tune language modelling models for sequence classification, which is the requirement of
the sentiment classification task. The inference latency of the low-end devices was measured on a
Raspberry Pi 5, with a 64-bit Arm Cortex-A76 CPU and 8GB DRAM.

6.2 EVALUATION METRICS

Compression Ratio. Denote M as a model block set containing a list of model modules like
embedding layers and attention layers. WithM0 as the original model block set, Mcmpr as the
compressed version of M0, and |M| as the parameter count of M. The compression ratio η is
defined as

η =
|M0| − |Mcmpr|
|Mcmpr|

. (5)

Specifically, the embedding compression rate is ηemb = |T0|−|Tcmpr|
|T0| , where T only contains token

embedding layer and position embedding layer.

Perplexity and Logarithmic Perplexity. We use perplexity (PPL) as our metrics of language mod-
elling. Furthermore, we use the logarithmic form of perplexity (lnPPL) and its change (∆ lnPPL)
to align with the linearity of the compression ratio Eq. (5), as defined in Appx. C.

Accuracy, Precision, Recall and F1-Score. We use these four common evaluation metrics for
classification to analyze the classification performance of the compressed model comprehensively.
To investigate the performance change before and after compression, we use the difference between
the metric values after and before the compression.

Zero-shot Reasoning Scores. For the metrics of reasoning tasks, we use the scores from (Clark
et al., 2018; 2019; Zellers et al., 2019; Bisk et al., 2020; Sap et al., 2019; Sakaguchi et al., 2021).

Energy Consumption. Since the actual energy consumption depends on multiple uncontrollable
factors, as we discussed in Sec. 2.2, it is difficult to isolate compression energy cost from the actual
measurements. Thus, we use similar approaches in (Luo & Sun, 2024) to estimate the energy
consumption.

We use the notations in Tab. 3 and Eq. (2) to (4), and approximate the ratio between computation
energy cost and memory energy cost per fload32 data as ν

τ = 5. Then, we got the configurations
of the current open-source SLMs for the values of d, V in Eq. (2) to (4). Though we cannot get the
actual energy costs, we can compare the inference energy costs of compressed and uncompressed
models with this approach.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

CerebrasGPT-111M
CerebrasGPT-256M
CerebrasGPT-590M
CerebrasGPT-1.3B

Δ
Ac

cu
ra

cy

−0.10

0
0.02

Compression Ratio0× 2×

(a) Accuracy

CerebrasGPT-111M
CerebrasGPT-256M
CerebrasGPT-590M
CerebrasGPT-1.3B

Δ
Pr

ec
is

io
n

−0.10

0

0.13

Compression Ratio0× 2×

(b) Precision

CerebrasGPT-111M
CerebrasGPT-256M
CerebrasGPT-590M
CerebrasGPT-1.3B

Δ
R

ec
al

l

−0.2

0

0.1

Compression Ratio0× 2×

(c) Recall

CerebrasGPT-111M
CerebrasGPT-256M
CerebrasGPT-590M
CerebrasGPT-1.3B

Δ
F1

-s
co

re

−0.10

0

0.05

Compression Ratio0× 2×

(d) F1-Score

DistilGPT2
GPT-2
GPT-2-M
GPT-2-L
GPT-2-XL

Δ
lo

g
(P

PL
)

0

4

Compression Ratio0.5× 4.0×

(e) Tensor order N = 2

DistilGPT2
GPT-2
GPT-2-M
GPT-2-L
GPT-2-XL

Δ
lo

g
(P

PL
)

0

4

Compression Ratio0.5× 4.0×

(f) Tensor order N = 3

DistilGPT2
GPT-2
GPT-2-M
GPT-2-L
GPT-2-XL

Δ
lo

g
(P

PL
)

0

4

Compression Ratio0.5× 4.0×

(g) Tensor order N = 4

DistilGPT2
GPT-2
GPT-2-M
GPT-2-L
GPT-2-XL

Δ
lo

g
(P

PL
)

0

4

Compression Ratio0.5× 4.0×

(h) Tensor order N = 5

DistilGPT2
GPT-2
GPT-2-M
GPT-2-L
GPT-2-XL

Δ
lo

g
(P

PL
)

0

4

Compression Ratio0.5× 4.0×

(i) Tensor order N = 6

DistilGPT2
GPT-2
GPT-2-M
GPT-2-L
GPT-2-XL

Δ
lo

g
(P

PL
)

0

4

Compression Ratio0.5× 4.0×

(j) Tensor order N = Nmax

Tensor-Train Decomposition
Tucker Decomposition
Uncompressed Model PPL

PP
L

102

103

Compression Ratio
0.2× 0.4× 0.6× 0.8× 1.0× 1.2× 1.4× 1.6×

(k) Comparison of different low-rank approaches.

Mean

Δ
lo

g
(P

PL
)

0.0

1.0

2.0

3.0

Tensor Order
2 3 4 5 6 7 8 9

(l) Impacts of tensor order.

Δ
lo

g
(P

PL
)

C
om

pr
es

si
on

 R
at

io

G
PT-2

C
erebrasG

PT10−1

1

10−2

1

102

Original Model Size (B)
0.1 0.2 0.5 1.0 2.0

(m) Impacts of model size.

SVD (matrix-based)
TensorSLM (vector-based)

En
er

gy
 C

os
t R

at
io

 ω

40%

50%

60%

70%

80%

90%

OPT125M

OPT350M

DistilG
PT2

GPT-2
GPT2-M

GPT2-L

CerebrasGPT111M

CerebrasGPT256M

CerebrasGPT590M

(n) Inference energy costs.

Figure 3: Experiments results. (a)-(d): Task performance of sentiment classification, with the
increasing compression ratio. The higher the values, the better the classification performance. (e)-(j):
The language modelling performance and compression ratio, where N denotes the tensor order. (k):
Different tensor decomposition approaches. (l) Task performance changes when the compression
ratio is within 3.0×. When the tensor order increases, the language task performance tends to improve
first, then decrease after order 3. (m) The compression trade-off on different sizes. This trade-off is
roughly measured by the ratio between perplexity and compression ratio of embedding layers; the
lower the ratio value, the better the compression. We found that the larger the model size, the better
the trade-off, where CerebrasGPT has a smoother trend compared with GPT-2. (n) Energy costs ratio
of compressed/uncompressed models, our approach overall outperform the SVD-based approach.

6.3 EXPERIMENTAL RESULTS

6.3.1 COMPRESSION RATIO AND LANGUAGE TASK PERFORMANCE.

Language Modelling. The language modelling performance and the compression ratio of different
tensor orders and models are shown in Fig. 3. There is no general conclusion as to whether higher-
order tensors are better than lower-order tensors, but roughly speaking, compression ratio and
language modelling performance in Fig. 3e-Fig. 3h are better than those in Fig. 3i-Fig. 3j. This
implies that there may exist a high-dimensional representation in the weight of embedding layers,
no more than six-dimensional and most probably around three-dimensional. The best compression

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

cases (higher compression ratio with negligible drop in accuracy) occur when N = 3 (also as shown
in Fig. 3l and 3m), implying the optimal feature representation of the token embedding vectors
may be three-dimensional. On the other hand, due to the combination of tensor size and TT ranks
exponentially exploding, we could not test all the possible combinations. However, we can still
observe that independent of the tensor orders and the models used for the compression, significant
language modelling performance loss tends to appear when the compression ratio exceeds 2.0×. We
further compared our proposed approach with the Tucker decomposition in Fig. 3k with the same
tensorization strategy in Sec. 5.1, and found our adopted Tensor-Train Decomposition outperforms
the Tucker Decomposition in perplexity.

Sentiment Classification. The results of the sentiment classification task also show that the robust-
ness of larger-scale models (Cerebras-590M and Cerebras-1.3B) is better than that of the smaller
models (Cerebras-111M and Cerebras-256M), similar to the trend in language modelling tasks
mentioned above. The compressed larger-scale models tend to outperform the original model in
precision and F1-score, indicating that our compression improves the ability of the larger models to
recognize the positive texts. In contrast, the smaller models tends to have worse performance when
the compression ratio increases.

A notable observation is that in both language modelling (Fig. 3e to 3j) and sentiment classifica-
tion (Fig. 3a to 3d), the larger models (GPT-2-M, GPT-2-L, GPT-2-XL, CerebrasGPT-590M and
CerebrasGPT-1.3B) are more robust to the compression ratio increase, compared with smaller models
(DistilGPT2, GPT-2, CerebrasGPT-111M and CerebrasGPT-256M), especially when the compression
ratio is less than 1.0×. This is probably because the embedding layers take a smaller proportion of
the entire model, and it also sheds light on the fact that TensorSLM might be used to improve the
language task performance for large-scale models.

Zero-shot Reasoning. Since SLMs are incapable of the tasks that are too complex, we only
evaluate the relatively simple reasoning tasks (e.g. those that do not involve multi-hop questioning,
mathematics or multilingual), and the results are shown in in Appx. E. The bold numbers are the
cases that outperform the uncompressed models, or the best in all the compressed cases.

Our approach has a higher chance of achieving better average reasoning task scores than the SVD-
based approach, which implies that our tensors are better at extracting implicit representations in
small-size models than matrices. Moreover, in our evaluation, our approach generally has higher
scores than the SVD-based approach in ARC-challenge and BoolQ. Both of these datasets are more
unprompted and unconstrained compared to the other evaluated datasets. This fact implies that our
approach may be better at these difficult, unconstrained reasoning tasks.

6.3.2 LATENCY.

While TensorSLM significantly reduces the model parameters and even improves the language tasks
performance, in practice it also introduced latencies - compression latency in Sec. 5.1 and inference
latency Sec. 5.2.

For the compression latency, we investigated the compression latency on the token level, as shown
in Tab. 4. Here, “original” means the uncompressed model, while PPLα means the compressed model
with a negligible task performance drop. In our case, “negligible task performance drop” means
in the language modelling task, the perplexity is no more than 100.0. The notation φmax refers to
the compressed model with maximum compression ratio. We observed that for individual token
embeddings, there was no significant latency difference between high-end servers and Raspberry Pi,
typically no more than 2 milliseconds for each token. Thus, it is acceptable for the Raspberry Pi to
compress the individual token embeddings.

For the inference latency of a single text, we chose a typical text length of 50 tokens, as shown
in Tab. 5. we used “original”, PPLα, φmax same as those in Tab. 4, to represent the uncompressed
model, the compressed model with a negligible task performance drop and the model with a maximum
compression ratio. A typically induced latency for an input text was no more than 0.3 seconds, which
is acceptable for edge applications.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: The latency (ms/token) of tensorization & decomposition token embedding vectors and
reconstruction on the high-end and lower-end devices. PPLα means the compressed model with
a negligible task performance drop, and the symbol φmax represents the case with a maximum
compression ratio. demb is the embedding dimension of the token embedding vector, and the tested
models are GPT-2 and GPT-2-M. On the CPU level, for single token embedding vector decomposition
and reconstruction, both server and edge devices have no significant computation overhead.

Device (CPU)
(ms/token) demb

tensorization
& decomposition reconstruction

PPLα φmax PPLα φmax

Server 768 0.627 1.429 0.117 0.238
1024 0.452 1.512 0.114 0.261

Raspberry Pi 5 768 0.760 1.948 0.330 0.468
1024 0.612 2.148 0.364 0.614

Table 5: Parameters, number of floating-point operations (flops) of the compressed and uncompressed
sub-billion models, and latency on Raspberry Pi CPU. For flops, the token number of the input texts
is 100, while for latency on Raspberry Pi, the token number is 50.

GPT Models GPT2 CerebrasGPT
DistilGPT2 GPT-2 GPT-2-M GPT-2-L 111M 256M 590M

Params
(M)

original 81.9 124.44 354.82 774.03 111.05 255.98 590.31
PPLα 67.06 106.36 326.45 734.28 101.78 226.69 543.45
φmax 43.45 85.99 303.88 710.83 71.87 200.59 511.07

flops
(106/text)

original 20250 40490 142250 330980 14470 40400 103060
PPLα +1.65 +1.88 +3.11 +2.30 +0.38 +1.63 +2.30
φmax +0.13 +0.13 +0.20 +0.25 +0.13 +0.12 +0.26

Latency on
Raspberry
Pi (s/text)

original 0.19±0.02 0.50±0.19 1.23±0.12 3.01±0.47 0.47±0.21 0.71±0.02 1.81±0.25

PPLα 0.36±0.19 0.50±0.16 1.26±0.22 3.01±0.29 0.48±0.23 1.01±0.29 1.89±0.28

φmax 0.19±0.03 0.71±0.38 1.55±0.36 3.52±0.44 0.72±0.42 0.95±0.27 1.91±0.24

6.3.3 ENERGY CONSUMPTION.

The estimated inference energy costs are shown in Fig. 3n. The Y-axis indicates the ratio between the
inference energy costs of the compressed model and that of the uncompressed model; the lower, the
better energy saving. For each language model, we select the compression case that has a similar
language task performance according to Sec. 6.3.1.

We can observe that our approach is mostly better than the SVD-based approach. Furthermore,
TensorSLM supports adaptivity in edge applications, while the SVD-based approach does not.

7 CONCLUSION AND FUTURE WORK

This paper focuses on the two unique requirements of Small Language Models (SLMs) deployed on
low-end devices (i.e. Raspberry Pi) - adaptivity and low energy, and proposes a training-free approach
to compress each token embedding based on Tensor-Train Decomposition. The proposed approach
can cope with a dynamic environment by adjusting its vocabulary and “exchanging” memory with
computation for longer battery life. The experimental evaluation covers GPT-2/CerebrasGPT and
OPT series models, as well as both simple language modelling/classification and more complex zero-
shot reasoning tasks. We also systematically measured the on-board inference latency of Raspberry
Pi 5 and estimated the inference energy costs based on our rigorous analysis of computation and
memory complexity. We found that the estimated inference energy cost is cut half off with neglectable
inference latency and language task performance drop.

There are both limitations to our work and, more importantly, rather a broad range of future work
following our proposed TensorSLM. Firstly, the tensorized embedding layers do not natively compile
with the hidden layers, so tensorized hidden layers are required. Also, although tensor operations,
like contraction, do not require much memory, they might need more arithmetic operations on the
CPU, thus requiring accelerated tensor operations.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

HuggingFace. SmolLM. https://huggingface.co/huggingface/Smol. [Accessed 20-
11-2024].

V Abronin, A Naumov, D Mazur, D Bystrov, K Tsarova, Ar Melnikov, I Oseledets, and R Brasher.
Tqcompressor: improving tensor decomposition methods in neural networks via permutations.
arXiv preprint arXiv:2401.16367, 2024.

Anish Acharya, Rahul Goel, Angeliki Metallinou, and Inderjit Dhillon. Online embedding com-
pression for text classification using low rank matrix factorization. In Proceedings of the AAAI
conference on artificial intelligence, volume 33, pp. 6196–6203, 2019.

Klaudia Bałazy, Mohammadreza Banaei, Rémi Lebret, Jacek Tabor, and Karl Aberer. Direction is
what you need: improving word embedding compression in large language models. arXiv preprint
arXiv:2106.08181, 2021.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Viktoriia Chekalina, Georgii Sergeevich Novikov, Julia Gusak, I. Oseledets, and Alexander
Panchenko. Efficient gpt model pre-training using tensor train matrix representation. ArXiv,
abs/2306.02697, 2023a.

Viktoriia Chekalina, Georgiy Novikov, Julia Gusak, Alexander Panchenko, and Ivan Oseledets.
Efficient GPT model pre-training using tensor train matrix representation. In Chu-Ren Huang,
Yasunari Harada, Jong-Bok Kim, Si Chen, Yu-Yin Hsu, Emmanuele Chersoni, Pranav A, Win-
nie Huiheng Zeng, Bo Peng, Yuxi Li, and Junlin Li (eds.), Proceedings of the 37th Pacific Asia
Conference on Language, Information and Computation, pp. 600–608, Hong Kong, China, De-
cember 2023b. Association for Computational Linguistics. URL https://aclanthology.
org/2023.paclic-1.60.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and Tony
Robinson. One billion word benchmark for measuring progress in statistical language modeling.
arXiv preprint arXiv:1312.3005, 2013.

Patrick Chen, Si Si, Yang Li, Ciprian Chelba, and Cho-Jui Hsieh. Groupreduce: Block-wise low-rank
approximation for neural language model shrinking. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018a.

Patrick Chen, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh. Drone: Data-aware low-rank
compression for large nlp models. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp.
29321–29334. Curran Associates, Inc., 2021.

Ting Chen, Martin Renqiang Min, and Yizhou Sun. Learning k-way d-dimensional discrete codes
for compact embedding representations. In International Conference on Machine Learning, pp.
854–863. PMLR, 2018b.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
ArXiv, abs/1803.05457, 2018.

11

 https://huggingface.co/huggingface/Smol
https://aclanthology.org/2023.paclic-1.60
https://aclanthology.org/2023.paclic-1.60

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tri Dao, Beidi Chen, Nimit S Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander Liu,
Aniruddh Rao, Atri Rudra, and Christopher Re. Monarch: Expressive structured matrices for effi-
cient and accurate training. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 4690–4721. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.press/v162/dao22a.html.

Nolan Dey, Gurpreet Gosal, Hemant Khachane, William Marshall, Ribhu Pathria, Marvin Tom, Joel
Hestness, et al. Cerebras-gpt: Open compute-optimal language models trained on the cerebras
wafer-scale cluster. arXiv preprint arXiv:2304.03208, 2023.

Ali Edalati, Marzieh Tahaei, Ahmad Rashid, Vahid Nia, James Clark, and Mehdi Rezagholizadeh.
Kronecker decomposition for GPT compression. In Smaranda Muresan, Preslav Nakov, and
Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp. 219–226, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.24. URL
https://aclanthology.org/2022.acl-short.24.

Oleksii Hrinchuk, Valentin Khrulkov, Leyla Mirvakhabova, Elena Orlova, and Ivan Oseledets.
Tensorized embedding layers. In Trevor Cohn, Yulan He, and Yang Liu (eds.), Findings of the
Association for Computational Linguistics: EMNLP 2020, pp. 4847–4860, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.436.
URL https://aclanthology.org/2020.findings-emnlp.436.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=uPv9Y3gmAI5.

Stefanos Laskaridis, Kleomenis Kateveas, Lorenzo Minto, and Hamed Haddadi. Melting point:
Mobile evaluation of language transformers. arXiv preprint arXiv:2403.12844, 2024.

Chi-Heng Lin, Shangqian Gao, James Seale Smith, Abhishek Patel, Shikhar Tuli, Yilin Shen, Hongxia
Jin, and Yen-Chang Hsu. Modegpt: Modular decomposition for large language model compression.
arXiv preprint arXiv:2408.09632, 2024.

Ji Lin, Wei-Ming Chen, Yujun Lin, john cohn, Chuang Gan, and Song Han. Mcunet: Tiny deep
learning on iot devices. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 11711–11722. Curran
Associates, Inc., 2020.

Vasileios Lioutas, Ahmad Rashid, Krtin Kumar, Md Akmal Haidar, and Mehdi Rezagholizadeh.
Improving word embedding factorization for compression using distilled nonlinear neural de-
composition. In Findings of the Association for Computational Linguistics: EMNLP 2020, pp.
2774–2784, 2020.

Shicong Liu, Hongtao Lu, and Junru Shao. Improved residual vector quantization for high-
dimensional approximate nearest neighbor search. arXiv preprint arXiv:1509.05195, 2015.

Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang
Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, Liangzhen Lai, and Vikas
Chandra. MobileLLM: Optimizing sub-billion parameter language models for on-device use cases.
In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan
Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp. 32431–32454.
PMLR, 21–27 Jul 2024.

Zhenyan Lu, Xiang Li, Dongqi Cai, Rongjie Yi, Fangming Liu, Xiwen Zhang, Nicholas D Lane,
and Mengwei Xu. Small language models: Survey, measurements, and insights. arXiv preprint
arXiv:2409.15790, 2024.

Hongyin Luo and Wei Sun. Addition is all you need for energy-efficient language models. arXiv
preprint arXiv:2410.00907, 2024.

12

https://proceedings.mlr.press/v162/dao22a.html
https://aclanthology.org/2022.acl-short.24
https://aclanthology.org/2020.findings-emnlp.436
https://openreview.net/forum?id=uPv9Y3gmAI5

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

Yihuan Mao, Yujing Wang, Chufan Wu, Chen Zhang, Yang Wang, Yaming Yang, Quanlu Zhang,
Yunhai Tong, and Jing Bai. Ladabert: Lightweight adaptation of bert through hybrid model
compression. arXiv preprint arXiv:2004.04124, 2020.

Sachin Mehta, Mohammad Hossein Sekhavat, Qingqing Cao, Maxwell Horton, Yanzi Jin, Chenfan
Sun, Iman Mirzadeh, Mahyar Najibi, Dmitry Belenko, Peter Zatloukal, et al. Openelm: An
efficient language model family with open-source training and inference framework. arXiv preprint
arXiv:2404.14619, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2017. URL https://
openreview.net/forum?id=Byj72udxe.

I. V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):2295–2317,
2011. doi: 10.1137/090752286. URL https://doi.org/10.1137/090752286.

Shikai Qiu, Andres Potapczynski, Marc Finzi, Micah Goldblum, and Andrew Gordon Wil-
son. Compute better spent: Replacing dense layers with structured matrices. arXiv preprint
arXiv:2406.06248, 2024.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

V Sanh. Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social iqa: Common-
sense reasoning about social interactions. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 4463–4473, 2019.

Marzieh Tahaei, Ella Charlaix, Vahid Nia, Ali Ghodsi, and Mehdi Rezagholizadeh. KroneckerBERT:
Significant compression of pre-trained language models through kronecker decomposition and
knowledge distillation. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir
Meza Ruiz (eds.), Proceedings of the 2022 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp. 2116–2127,
Seattle, United States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/
2022.naacl-main.154. URL https://aclanthology.org/2022.naacl-main.154.

Haoyu Wang, Ruirui Li, Haoming Jiang, Zhengyang Wang, Xianfeng Tang, Bin Bi, Monica Cheng,
Bing Yin, Yaqing Wang, Tuo Zhao, and Jing Gao. Lighttoken: A task and model-agnostic
lightweight token embedding framework for pre-trained language models. In Proceedings of
the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’23,
pp. 2302–2313, New York, NY, USA, 2023. Association for Computing Machinery. ISBN
9798400701030. doi: 10.1145/3580305.3599416. URL https://doi.org/10.1145/
3580305.3599416.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd: Activation-
aware singular value decomposition for compressing large language models. arXiv preprint
arXiv:2312.05821, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

13

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://doi.org/10.1137/090752286
https://aclanthology.org/2022.naacl-main.154
https://doi.org/10.1145/3580305.3599416
https://doi.org/10.1145/3580305.3599416

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Appendix

A PRELIMINARIES

A.1 NOTATION

Table 6: Notation in this paper.

Symbol Meaning
a Scalar
x Vector
A Matrix

X , A, B Tensor
N Tensor order

X [i1, i2, . . . , iN] The (i1, i2, . . . , iN)th entry of the tensor
I, Ik Tensor dimension, tensor dimension for the kth mode
M Model module set

|M|, |G|, |S| Parameter count of the model module setM, tensor G or cardinality of set S
V Vocabulary of the language model
d Token embedding dimension
l Input text length

r, rk TT rank, TT rank of the kth mode of the tensor
G(k) TT(MPS) core of the kth mode of the tensor
×p

k Tensor contraction for the pth (formal tensor) and kth (latter tensor) mode
η Compression ratio of the entire model

ηemb Compression ratio of the embedding layer
φ Parameter reduction ratio of the whole model.

φemb Parameter reduction ratio of the embedding layer.
ν Memory energy consumption per float32 data.
τ Computation energy consumption per float32 data.
Eν Estimated energy cost regarding memory.
Eτ Estimated energy cost regarding computation.
ωTT Estimated energy cost ratio between the compressed model with TensorSLM

and uncompressed model.
ωSVD Estimated energy cost ratio between the compressed model with SVD and

the uncompressed model.

Algorithm 2: Tensor-Train Singular Value Decomposition (TT-SVD)(Oseledets, 2011)

Input : Data tensor, X ∈ RI1×I2×···×IN , and approximation accuracy, ϵ
Output : Core tensors, G(1), . . . ,G(N), approximating X ∈ RI1×I2×···×IN

1 Initialize cores, G(1), . . . ,G(N), and R0 = 1
2 Compute truncation parameter δ = ϵ√

N−1
||X ||F

3 Z ← X , and Z← Z(1)

4 for n = 1 to N − 1 do
5 Compute δ-truncated SVD: Z = USV +E, s.t. ||E||F ≤ δ;U ∈ RR(n−1)In×Rn

6 G(n) ← reshape
(
U, [R(n−1), In, Rn]

)
7 Z← reshape

(
SVT , [RnI(n+1), I(n+2)I(n+3) . . . IN])

)
8 G(N) ← Z

9 return G(1),G(2), . . . ,G(N)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 TENSORS AND TENSOR OPERATIONS

This section gives brief mathematical preliminaries of tensor algebra, and basic knowledge in LLMs
to facilitate the understanding of our proposed methodology in Sec. 5.

Order-N Tensor. An order-N real-valued tensor is a multi-dimensional array, denoted by a cal-
ligraphic font, e.g., A ∈ RI1×···×IN , where N is the order of the tensor (i.e., number of modes),
and In (1 ≤ n ≤ N) is the size (i.e., the dimension) of its n-th mode. Matrices (denoted by bold
capital letters, e.g., A ∈ RI1×I2) can be seen as order-2 tensors (N = 2), vectors (denoted by bold
lower-case letters, e.g., a ∈ RI) can be seen as order-1 tensors (N = 1), and scalars (denoted by
lower-case letters, e.g., a ∈ R) are order-0 tensors (N = 0).

Tensor Entries. The (i1, . . . , iN)-th entry of an order-N tensor is denoted by ai1,··· ,iN ∈ R, where
in = 1, . . . , In for n = 1, . . . , N . A tensor fiber is a vector of tensor entries obtained by fixing all but
one index of the original tensor (e.g., a:,i2,i3,...,iN ∈ RI1). Similarly, a tensor slice is a matrix of tensor
entries obtained by fixing all but two indices of the original tensor (e.g., A:,:,i3,i4,...,iN ∈ RI1×I2).

Tensorization. A vector a = (a1, a2, . . . , aI1I2···IN) ∈ RI1I2···IN , can be tensorized (or “folded”,
“reshaped”) into an order-N tensor A ∈ RI1×I2×···×IN , so that

A[i1, i2, . . . , iN] = a1+
∑N

k=1(ik−1)
∏k−1

p=1 Ip
, 1 ≤ ik ≤ Ik, (6)

where A[i1, i2, . . . , iN] denotes the (i1, i2, . . . , iN)-th entry of tensor A.

Vectorization. Given an order-N tensor, A ∈ RI1×···×IN , its vectorization reshapes the high-
dimensional matrix into a vector, vec (A) = a ∈ RI1···IN .

Tensor Contraction. The contraction of A ∈ RI1×···×IN and B ∈ RJ1×···×JM , over the kth
and pth modes respectively, where Ik = Jp is denoted as A ×p

k B and results in a tensor C ∈
RI1×···×Ik−1×Ik+1×···×IN×J1×···×Jp−1×Jp+1×···×JM , with entries

C[i1, . . . , ik−1, ik+1, . . . , iN , j1, . . . , jp−1, jp+1, . . . , jM]

=

Ik∑
q=1

A[i1, . . . , ik−1, q, ik+1, . . . , iN]B[j1, . . . , jp−1, q, jp+1, . . . , jM]
(7)

Matricization (Mode-n unfolding). Mode-n matricization of a tensor, mat (A, n) = A{n} ∈
RIn×(I1···In−1In+1···IN), is a procedure of mapping the elements from a multidimensional array to a
two-dimensional array (matrix). Conventionally, such procedure is associated with stacking mode-n
fibers (modal vectors) as column vectors of the resulting matrix. For instance, the mode-1 unfolding
of A ∈ RI1×I2×···×IN is represented as mat (A, 1) = A{1} ∈ RI1×(I2···IN), where the subscript,
{1}, denotes the mode of matricization, and is given by

A(1)

[
i1, i2i3 . . . iN

]
= A[i1, i2, . . . , iN] (8)

Note that the overlined subscripts refer to linear indexing (or Little-Endian), given by:

i1i2 . . . iN = 1 +

N∑
n=1

[
(in − 1)

n−1∏
n′=1

In′

]
= 1 + i1 + (i2 − 1)I1 + · · ·+ (in − 1)I1 . . . IN−1

(9)

A.3 TENSOR-TRAIN SINGULAR VALUE DECOMPOSITION (TT-SVD)

Tensor-Train Singular Value Decomposition (TT-SVD) is clarified in Alg. 2.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B RELATED WORK IN DETAIL

Low-rank factorization can break the high-dimensional weight matrices into smaller matrices or
tensors, so that the overall size of the model can be shrunk. According to the dimensions of the
structure that the original weight matrices are broken into, these approaches can be divided into
matrix-based and tensor-based.

Matrix-based Approaches. A straightforward way to shrink the model size is to decompose
weight matrices via singular value decomposition (SVD) (Acharya et al., 2019), which can be
further improved by the weighted approach considering the model performance afterwards (Hsu
et al., 2022), knowledge distillation (Lioutas et al., 2020; Mao et al., 2020) and pruning (Mao
et al., 2020). There are also some block-wise decomposition approaches used in language model
compression, like Kronecker Products (Tahaei et al., 2022; Edalati et al., 2022) and data-driven
block-wise partitioning (Chen et al., 2018a; 2021).

(Dao et al., 2022; Qiu et al., 2024) used the block-diagonal matrices to reduce the FLOPs in the
linear layers computation, with the bonus of shrinking the model size. However, our paper focuses
on reducing the parameters of embedding layers, and there is no monotonous relationship between
the FLOPs (computation cost) and parameters (memory usage) (Lin et al., 2020). Also, their
investigated matrix multiplication only occurs in feed-forward layers, thus their approaches do not
fit the embedding layer compression. Moreover, block-diagonal matrices are optimised for GPUs
for better parallelization. Our aim of minimizing the number of parameters, makes it optimized for
lower-end edge devices rather than GPUs. Indeed, on Raspberry Pi 5, the additional forwarding
latency due to compressed embeddings (0.330 - 0.364ms /token in Tab. 4) is even faster than that
on GPU (measured as 0.463ms /token in our setting), since there is no parallelization during this
forwarding process.

Tensor-based Approaches. Despite some efforts to use tensor decomposition to compress the
language model size, all come with an extra training process. The works in (Abronin et al., 2024)
use Kronecker decomposition with row-column permutation during the GPT model fine-tuning
process, while (Hrinchuk et al., 2020) and (Chekalina et al., 2023b) propose a tensor-train structured
embedding layer and GPT model respectively, yet both train the new-structured model from scratch.

C PERPLEXITY AND LOGARITHMIC PERPLEXITY.

Perplexity is used as a performance evaluation metric of the language modelling task, which has the
following form

PPL(S,M) =

 |S|∏
i=1

pM(xi|x1, x2, . . . , xi−1)

−1

(10)

where S is an ordered set (token sequence), consisting of a set of tokens {xt}, t = 1, 2, . . . , |S|, and
M is the model block that contains all the modules of the language model we evaluate.

Notice that the compression ratio Eq. (5) has a linear form, while perplexity Eq. (10) has an exponen-
tial form, so it is hard to combine them as a description of a model compression result, since when
compression ratio η linearly increases, the perplexity PPL explodes exponentially. To this end, we
use the following logarithmic form to describe the language modelling performance

lnPPL(S,M) = −
|S|∑
i=1

ln pM(xi|x1, x2, . . . , xi−1) (11)

Now, the language modelling performance change before and after compression is given by

∆lnPPL(S,M) = lnPPL(S,Mcmpr)− lnPPL(S,M0) =

|S|∑
i=1

ln
pM0(xi|x1, x2, . . . , xi−1)

pMcmpr(xi|x1, x2, . . . , xi−1)
, (12)

observe that Eq. (12) exhibits linearity, like Eq. (5).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D PROOF OF THE HIGHEST COMPRESSION RATIO IN TAB. 3

Setting the tensor size [I1, . . . , IN] for the tensor X to achieve the highest compression rate, we next
give the proof of this hyperparameter selection.

Regarding the definition of the compression rate in Sec. 6, and r0 = rN = 1 in Sec. 5.1, the
compression rate can be represented as

η =
V × d∑V

j=1

∑N
n=1(rn−1 × In × rn)j

(13)

=
V × d

I1r1 + r1I2r2 + · · ·+ rN−2IN−1rN−1 + rN−1IN
(14)

=
V × d∑⌊N+1

2 ⌋
k=1 r2k−1 (r2k−2I2k−1 + I2kr2k+1)

(15)

For the simplest case, assume I1 = · · · = IN = I and r1 = · · · = rN = r. Given d =
∏N

n=1 In =
IN , we have N = logI D, and

η =
V × d

rI [2 + (N − 2)r]
(16)

=
V × d

rI [2 + (logI d− 2)]
. (17)

In Equation 17, the numerator is a constant, and in the denominator, R is a hyperparameter for the
Tensor-Train Decomposition. Thus the objective function for the highest compression rate η is

min
I,N

rI [2 + (N − 2)] s.t. N = logI d (18)

I,N, r ∈ Z+ (19)
2 ≤ I ≤ N ≤ ⌊log2 d⌋ (20)

Regarding Eq. (18), if eliminate N then we have a function h = rI [2 + (logI d− 2)]. Regarding d
in Eq. (20), the largest token embedding size of recent GPT-3 (Brown, 2020) is 12,888. Thus, for the
GPT series models no later than GPT-3, Eq. (18) should be 2 ≤ I ≤ N ≤ 13. In this range, h is a
monotonically increasing function, where the minimum h occurs at I = 2.

Therefore, for the simplest case, we have the best hyperparameter selection of I1 = I2 = · · · = IN =
2, N = ⌊log2 d⌋.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

E EXPERIMENT RESULTS OF ZERO-SHOT REASONING.

E.1 OPT

The evaluation results of OPT-125M/350/1.3B as follows:

Table 7: Zero-shot reasoning performance for OPT-125M and its compressed versions.

Param (%) ARC-c ARC-e BoolQ HellaS. PIQA SIQA WinoG. Avg.

Original 100.00 23.38 57.11 57.74 41.53 71.71 34.49 59.35 49.33

SVD
(matrices)

0.13 21.5 25.84 37.83 25.81 52.5 32.91 49.01 35.06

26.57 20.05 31.14 37.83 26.59 56.31 34.03 50.59 36.65

53.01 18.17 34.26 37.83 26.96 57.56 33.78 52.88 37.35

79.45 18.77 39.9 45.63 27.38 59.9 34.34 50.83 39.54

92.67 18.77 43.14 47.37 28.51 63 34.14 51.3 40.89

Ours
(vectors)

2.47 21.33 26.39 37.83 25.63 52.94 33.98 50.59 35.53

29.17 20.22 28.66 39.14 26.17 53.54 33.83 49.88 35.92

50.78 21.25 29.55 40.15 26.19 54.9 33.37 50.12 36.50

71.88 19.37 35.31 47.09 27.78 59.58 33.37 50.59 39.01

87.11 19.03 39.6 59.51 28.41 61.15 33.78 51.14 41.80

Table 8: Zero-shot reasoning performance for OPT-350M and its compressed versions.

Param (%) ARC-c ARC-e BoolQ HellaS. PIQA SIQA WinoG. Avg.

Original 100.00 20.82 44.19 57.68 32.03 64.64 32.96 52.09 43.49

SVD
(matrices)

0.20 21.5 25.25 37.83 25.67 51.36 32.32 49.17 34.87

19.93 20.82 25.93 38.53 25.94 53.92 32.11 51.07 35.62

39.66 20.22 25.8 38.62 26.22 53.26 32.16 50.59 35.41

59.39 19.2 25.55 38.5 26.54 53.97 33.03 51.46 35.61

79.12 19.2 27.53 37.83 27.16 55.93 32.62 49.33 35.80

98.85 20.73 41.37 37.89 30.47 62.95 32.73 49.25 39.48

Ours
(vectors)

3.52 21.08 24.92 45.47 25.66 53.1 33.7 51.14 36.58

18.75 20.39 26.01 62.17 25.9 53.16 32.16 48.7 38.50

28.13 20.05 24.87 62.17 26.08 53.54 33.14 49.33 38.60

42.19 20.05 25.25 48.44 26.18 53.7 32.32 49.09 36.58

70.31 20.48 25.42 62.17 26 53.16 32.27 51.62 38.87

94.53 21.42 36.15 45.9 29.59 61.92 33.14 52.33 40.21

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 9: Zero-shot reasoning performance for OPT-1.3B and its compressed versions.

Param (%) ARC-c ARC-e BoolQ HellaS. PIQA SIQA WinoG. Avg.

Original 100.00 23.38 57.11 57.74 41.53 71.71 34.49 59.35 49.33

SVD
(matrices)

0.05 21.93 26.43 38.75 25.66 53.75 33.32 49.8 35.66

25.46 20.31 34.85 40.89 26.46 57.07 34.29 50.91 37.83

50.87 20.56 44.87 57.34 28.04 63.28 35.52 51.3 42.99

76.28 22.01 50.13 61.8 30.69 66.76 34.65 56.51 46.08

96.61 23.55 53.96 60.28 36.35 69.59 34.7 57.77 48.03

Ours
(vectors)

1.07 21.33 25.38 42.69 25.39 53.32 33.98 50.28 36.05

24.22 21.16 25.93 60.43 25.88 54.9 34.54 50.36 39.03

49.41 21.08 26.35 54.04 25.91 53.81 34.54 48.93 37.81

70.70 25.26 52.86 57.98 38.78 69.48 35.31 58.48 48.31

94.73 23.38 55.22 51.68 40.43 71 35.31 59.43 48.06

E.2 CEREBRASGPT

The evaluation results of CerebrasGPT-111M/256M/590M/1.3B as follows:

Table 10: Zero-shot reasoning performance for CerebrasGPT-111M and its compressed versions

Param (%) ARC-c ARC-e BoolQ HellaS. PIQA SIQA WinoG. Avg.

Original 100.00 16.64 37.88 62.14 26.76 59.41 33.88 49.01 40.82

SVD
(matrices)

0.13 20.9 26.52 37.86 25.46 52.45 33.57 48.93 35.10

26.57 17.49 31.44 37.77 26.53 56.2 33.57 50.99 36.28

53.01 17.06 35.27 44.16 26.57 56.75 34.08 50.28 37.74

79.45 16.55 37.08 59.88 26.76 58.81 33.88 49.72 40.38

92.67 15.44 37.92 61.77 26.84 59.19 33.62 49.17 40.56

Ours
(vectors)

2.47 19.97 28.24 61.93 26.09 54.13 34.54 50.36 39.32

29.17 20.48 29.84 59.85 26.26 55.66 34.7 50.04 39.55

50.78 19.8 31.48 49.11 26.78 57.51 33.42 49.09 38.17

71.88 17.92 34.51 58.32 26.74 58.05 34.54 50.28 40.05

87.11 20.99 24.07 61.04 25.66 52.67 33.98 49.49 38.27

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 11: Zero-shot reasoning performance for CerebrasGPT-256M and its compressed versions

Param (%) ARC-c ARC-e BoolQ HellaS. PIQA SIQA WinoG. Avg.

Original 100.00 16.89 40.95 61.5 27.44 61.37 34.24 51.3 40.82

SVD
(matrices)

0.09 21.16 26.73 37.83 25.74 52.29 32.8 51.22 35.40

28.26 17.75 33 38.2 26.48 58.05 33.98 50.43 36.84

47.05 17.15 35.61 39.97 26.83 59.03 34.19 51.78 37.79

75.22 18.09 39.44 61.01 27.4 60.83 34.03 51.62 41.77

94.00 18.17 40.74 59.94 27.4 61.04 33.67 50.91 41.70

Ours
(vectors)

2.67 20.22 24.62 37.74 25.5 54.57 34.19 50.75 35.37

38.60 20.9 27.57 37.83 25.8 53.48 33.47 49.96 35.57

50.37 18.94 31.52 52.35 26.76 56.86 33.93 50.67 38.72

61.40 20.05 35.02 59.91 27.3 57.94 33.88 50.59 40.67

98.90 19.28 40.74 61.5 27.39 61.43 33.98 52.01 42.33

Table 12: Zero-shot reasoning performance for CerebrasGPT-590M and its compressed versions

Param (%) ARC-c ARC-e BoolQ HellaS. PIQA SIQA WinoG. Avg.

Original 100.00 19.03 46.42 59.17 29.12 62.73 35.31 49.8 43.08

SVD
(matrices)

0.07 21.33 27.1 37.92 25.79 52.45 34.03 47.99 35.23

26.91 18.09 35.98 37.83 26.82 58 34.14 50.59 37.35

47.03 17.24 39.31 37.83 27.56 59.74 34.75 50.83 38.18

73.87 18.86 44.11 49.45 28.42 61.64 34.8 50.75 41.15

94.00 19.8 46.17 52.72 28.97 62.19 35.62 49.88 42.19

Ours
(vectors)

1.37 23.38 24.87 56.61 25.59 52.67 33.73 52.17 38.43

19.21 19.97 26.81 49.82 25.66 52.72 34.24 49.17 36.91

46.88 19.54 35.9 40.89 27.04 57.83 34.54 49.72 37.92

66.41 20.31 38.09 58.87 28.21 60.28 34.29 49.88 41.42

94.34 22.1 44.7 56.42 29.02 61.64 35.52 49.49 42.70

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 13: Zero-shot reasoning performance for CerebrasGPT-1.3B and its compressed versions

Param (%) ARC-c ARC-e BoolQ HellaS. PIQA SIQA WinoG. Avg.

Original 100.00 22.35 50.88 59.33 32.55 66.49 34.44 51.93 45.42

SVD
(matrices)

0.05 21.33 26.73 40.06 25.65 52.39 33.32 48.86 35.48

25.46 18 38.59 37.83 27.38 59.3 34.95 51.85 38.27

50.87 19.71 45.08 50.49 29.13 62.35 34.29 52.25 41.90

76.28 19.97 49.03 55.6 30.7 64.85 34.49 49.96 43.51

96.61 20.99 50.51 53.82 32.06 65.61 34.54 50.43 43.99

Ours
(vectors)

1.07 22.53 27.95 40.03 25.86 54.35 34.24 50.75 36.53

24.22 21.42 27.36 39.54 25.78 53.37 33.78 50.59 35.98

57.03 22.61 39.56 53.52 30.44 63.06 33.62 47.75 41.51

70.70 22.61 43.6 61.35 31.4 65.07 34.95 50.04 44.15

94.73 22.35 46.97 56.36 32.21 65.61 33.98 51.78 44.18

21

	Introduction
	Unique Requirements of SLM Applications
	Adaptability
	Low Energy Consumption

	Why not existing solutions?
	Preliminaries
	Methodology
	Individual Embedding Vector Compression
	Language Model Inference Process with the Compressed Embeddings

	Empirical Evaluation
	Experimental Setup
	Evaluation Metrics
	Experimental Results
	Compression Ratio and Language Task Performance.
	Latency.
	Energy Consumption.

	Conclusion and Future Work
	Appendix
	Preliminaries
	Notation
	Tensors and Tensor Operations
	Tensor-Train Singular Value Decomposition (TT-SVD)

	Related Work in Detail
	Perplexity and Logarithmic Perplexity.
	Proof of the Highest Compression Ratio in tab:complexity
	Experiment results of Zero-shot Reasoning.
	OPT
	CerebrasGPT

