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ABSTRACT

While dataset condensation effectively enhances training efficiency, its application
in on-device scenarios brings unique challenges. 1) Due to the fluctuating compu-
tational resources of these devices, there’s a demand for a flexible dataset size that
diverges from a predefined size. 2) The limited computational power on devices
often prevents additional condensation operations. These two challenges connect
to the “subset degradation problem” in traditional dataset condensation: a subset
from a larger condensed dataset is often unrepresentative compared to directly con-
densing the whole dataset to that smaller size. In this paper, we propose Multisize
Dataset Condensation (MDC) by compressing N condensation processes into
a single condensation process to obtain datasets with multiple sizes. Specifi-
cally, we introduce an “adaptive subset loss” on top of the basic condensation loss
to mitigate the “subset degradation problem”. Our MDC method offers several
benefits: 1) No additional condensation process is required; 2) reduced storage
requirement by reusing condensed images. Experiments validate our findings on
networks including ConvNet, ResNet and DenseNet, and datasets including SVHN,
CIFAR-10, CIFAR-100 and ImageNet. For example, we achieved 5.22%-6.40%
average accuracy gains on condensing CIFAR-10 to ten images per class. Code is
available at: https://github.com/he-y/Multisize-Dataset-Condensation.
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Figure 1: Condense datasets to multiple sizes
requires N separate traditional condensation
processes (left) but just a single MDC pro-
cesses (right).

With the explosive growth in data volume, dataset
condensation has emerged as a crucial tool in deep
learning, allowing models to train more efficiently
by focusing on a reduced set of informative data
points. However, data processing faces new challenges
as more applications transition to on-device process-
ing (Cai et al., 2020; Lin et al., 2022; Yang et al.,
2022; 2023; Qiu et al., 2022; Lee & Yoo, 2021; Dhar
et al., 2021), whether due to security concerns, real-
time demands, or connectivity issues. Such devices’
inherently fluctuating computational resources require
flexible dataset sizes, deviating from the conventional
condensed datasets. However, this request for flexi-
bility surfaces a critical concern since the additional
condensation process is unfeasible on these resource-restricted devices.

Why not select a subset from a condensed dataset for on-device scenarios? We find the “subset
degradation problem” in traditional dataset condensation: if we select a subset from a condensed
dataset, the performance of the subset is much lower than directly condensing the full dataset
to the target small size. An intuitive solution would be to conduct the condensation process N
times. However, since each process requires 200K epochs and these processes cumulatively generate
1 + 2 + . . . + N images (left figure of Fig. 1), it is not practical for on-device applications.
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To address these issues, we present the Multisize Dataset Condensation (MDC) method to compress
N condensation processes into just one condensation process, resulting in just one dataset (right
figure of Fig. 1). We propose the novel “adaptive subset loss” on top of the “base loss” in the
condensation process to alleviate the “subset degradation problem” for all subsets. “Adaptive”
means we adaptively select the Most Learnable Subset (MLS) from N − 1 subsets for different
condensation iterations. The “subset loss” refers to the loss computed from the chosen MLS, which
is then utilized to update the corresponding subset.

How to select the Most Learnable Subset (MLS)? We integrate this selection process into the
traditional condensation process with two loops: an outer loop for weight initialization and an inner
loop for network training. MLS selection has three components. (i) Feature Distance Calculation:
Evaluating distances between all subsets and the real dataset, where smaller distances suggest better
representation. For each outer loop iteration, we calculate the average Feature Distance over all
the inner training epochs. (ii) Feature Distance Comparison: We compare the average feature
distances at two outer loops. A large rate of change in distances denotes the current subset has high
learning potential and should be treated as MLS. (iii) MLS Freezing Judgement: To further mitigate
the “subset degradation problem”, our updating strategy depends on the MLS’ size relative to its
predecessor. If the recent MLS exceeds its predecessor in size, we freeze the older MLS and only
update its non-overlapping elements in the newer MLS. Otherwise, we update the entire newer MLS.

The key contributions of our work are: 1) To the best of our knowledge, it’s the first work to condense
the N condensation processes into a single condensation process. 2) We firstly point out the “subset
degradation problem” and propose “adaptive subset loss” to mitigate the problem. 3) Our method is
validated with extensive experiments on networks including ConvNet, ResNet and DenseNet, and
datasets including SVHN, CIFAR-10, CIFAR-100 and ImageNet.

2 RELATED WORKS

Matching Objectives. The concept of dataset condensation, or distillation, is brought up by Wang
et al. (2018). The aim is to learn a synthetic dataset that is equally effective but much smaller in
size. 1) Gradient Matching (Zhao et al., 2021; Jiang et al., 2022; Lee et al., 2022b; Loo et al., 2023)
methods propose to match the network gradients computed by the real dataset and the synthetic
dataset. 2) Other matching objectives include performance matching (Wang et al., 2018; Nguyen
et al., 2021a;b; Zhou et al., 2022; Loo et al., 2022), distribution or feature matching (Zhao & Bilen,
2023; Wang et al., 2022; Zhao et al., 2023), trajectory matching (Cazenavette et al., 2022; Du et al.,
2023; Cui et al., 2023), representative matching (Liu et al., 2023b; Tukan et al., 2023), loss-curvature
matching (Shin et al., 2023), and BN matching (Yin et al., 2023; Yin & Shen, 2023). However, all the
aforementioned methods suffer from the “subset degradation problem,” failing to provide a solution.

Better Optimization. Various methods are proposed to improve the condensation process, including
data augmentation (Zhao & Bilen, 2021), data parameterization (Deng & Russakovsky, 2022; Liu
et al., 2022; Kim et al., 2022b; Nooralinejad et al., 2022; Kim et al., 2022a; Sun et al., 2023), model
augmentation (Zhang et al., 2023b), and model pruning (Li et al., 2023). Our method can combine
with these methods to achieve better performance.

Condensation with GANs. Several works (Zhao & Bilen, 2022; Lee et al., 2022a; Cazenavette
et al., 2023) leverage Generative Adversarial Networks (GANs) to enhance the condensation process.
For instance, Wang et al. (2023) generate images by feeding noise into a trained generator, whereas
Zhang et al. (2023a) employ learned codebooks for synthesis. The drawback is that they require
substantially more storage to save the model and demand 20% more computational power during
deployment (Wang et al., 2023). In contrast, our solution delivers immediately usable condensed
images, ensuring efficiency in both storage and computation.

Comparison with Slimmable Dataset Condensation (SDC; Liu et al. (2023a)). SDC aims to
extract a smaller synthetic dataset given the previous condensation results. The differences include:
1) SDC needs two separate condensation processes, while our method just needs one; 2) SDC relies
on the condensed dataset, but our method does not; 3) SDC requires computational-intensive singular
value decomposition (SVD) on condensed images, while our condensed images can be directly used
for application.
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(a) “Multi-size condensation” with three baselines to obtain
condensed datasets of size 1,2,3. Left: Baseline A conducts
3 separate condensation processes and stores 1 + 2 + 3 = 6
images. Middle: Baseline B performs 3 times IPC1 condensa-
tion with different image indices as initialization and in total
stores 3 images. Right: Baseline C condenses once and stores
3 images. Multiple sizes are achieved with subset selection.
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(c) On CIFAR-10, the accuracy of three pro-
posed baselines for “multi-size condensation”
to get IPC size from 1 to 10.

Figure 2: Three different baselines for multi-size condensation.

3 METHOD

3.1 PRELIMINARIES

Given a big original dataset B ∈ RM×d with M number of d-dimensional data, the objective is
to obtain a small synthetic dataset S ∈ RN×d where N ≪ M . Leveraging the gradient-based
technique (Zhao et al., 2021), we minimize the gradient distance between big dataset B and synthetic
dataset S:

min
S∈RN×d

D (∇θℓ(S; θ),∇θℓ(B; θ)) = D(S,B; θ), (1)

where the function D(·) is defined as a distance metric such as MSE, θ represents the model
parameters, and∇θℓ(·) denotes the gradient, utilizing either the big dataset B or its synthetic version
S. During condensation, the synthetic dataset S and model θ are updated alternatively,

S ← S − λ∇SD (S,B; θ) , θ ← θ − η∇θℓ (θ;S) , (2)

where λ and η are learning rates designated for S and θ, respectively.

3.2 SUBSET DEGRADATION PROBLEM

To explain the “subset degradation problem”, we name the condensation process in Eq. 1 and Eq. 2 as
“basic condensation”. This can be symbolized by C[N ]

1 , where [N ] = {1, 2, 3, . . . , N}. The subscript
of C□

□ indicates the index of the condensation process, while the superscript of C□
□ represents the

index of original images that are used as the initialization for condensation.

For on-device applications, we need condensed datasets with multiple sizes, namely, “multi-size
condensation”. Inspired by He et al. (2024); Yin et al. (2023), we introduce three distinct baselines
for “multi-size condensation”: Baseline-A, Baseline-B, and Baseline-C, denoted as C[n]

n , Cn
n, and

C[N ]
1 , respectively. Fig. 2a illustrates how to conduct “multi-size condensation” to obtain the con-

densed dataset with sizes 1, 2, and 3 with our proposed baselines. Baseline-A employs three basic
condensations of varying sizes, yielding six images. Baseline-B uses three size-1 basic condensations
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Figure 3: Explanation of Our MDC.

but varies by image index, resulting in three unique images. Baseline-C adopts a single basic conden-
sation to get three images, subsequently selecting image subsets for flexibility. Fig. 2b presents the
count of required basic condensation processes and the storage demands in terms of image numbers.

In Fig. 2c, we highlight the “subset degradation problem” using Baseline-A’s orange line and
Baseline-C’s black dashed line. Baseline-A requires ten condensation processes, while Baseline-C
just condenses once and selects subsets of the condensed dataset sized at 10. The shaded orange
region indicates a notable accuracy drop for the subset when compared to the basic-condensed dataset.
A critical observation is that the accuracy discrepancy grows as the subset’s size becomes smaller.

3.3 MULTISIZE DATASET CONDENSATION

3.3.1 SUBSET LOSS TO COMPRESS CONDENSATION PROCESSES

To address the “subset degradation problem”, the objective function now becomes:

min
S∈RN×d

D
(
∇θℓ

(
S[1],S[2], . . .S[N ]; θ

)
,∇θℓ (B; θ)

)
, (3)

where S[n] = S{1,2,...,n} ⊂ S = S[N ] represents nth subset of the synthetic dataset S ∈ RN×d.
We want each subset S[n] to have a small distance from the big dataset B. S[N ] contributes the
“base loss”, and S[1],[2],...,[N−1] contribute to the “subset loss”. Note that the subsets also have a
relationship with each other. For instance, the 2nd subset S[2] = S{1,2} is also a subset of the 4th
subset S[4] = S{1,2,3,4}.

We aim to incorporate the information of subsets without requiring additional condensation processes
or extra images. To achieve this, we need to compress the information from the N − 1 different
condensation processes of Baseline-A, including C[1]

1 ,C[2]
2 , . . . ,C[N−1]

N−1 , into the process C[N ]
N . We

propose the “subset loss” on top of the “base loss” to achieve this purpose in a single condensation
process. The “base loss” is used to maintain the basic condensation process C[N ]

N , while the “subset
loss” is used to enhance the learning process of the subsets via C[1]

1 ,C[2]
2 , . . . ,C[N−1]

N−1 . We have a
new updating strategy:

S ← S − λ
(
∇SD (S,B; θ) +∇S[n]

D
(
S[n],B; θ

))
, n ∈ [1, N − 1]. (4)

where S = S[N ] represents the condensed dataset of N images and is associated with the “base
loss”. S[n] is subset and contributes to the “subset loss”. A comparison between Eq. 4 and basic
condensation is shown in Fig. 3a. As depicted in Fig. 2b, our technique aligns with Baseline-C in
terms of the counts of both condensation processes and images.

3.3.2 SELECTING MLS FOR ADAPTIVE SUBSET LOSS

Among the N − 1 subsets from {S[1],S[2], . . . ,S[N−1]}, we identify a particularly representative
subset, S[n∗], where n∗ ∈ [1, N − 1]. We term this the Most Learnable Subset (MLS). In each
condensation iteration, the MLS is selected adaptively to fit that particular iteration. Our approach
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relies on three components to determine the MLS. Each component is illustrated in Fig. 3b. The
algorithm of the proposed method is shown in Appendix A.

Feature Distance Calculation (Fig. 3b-(i)). Eq. 3 represents the traditional approach for computing
the gradient distance between subsets {S[1],S[2], . . .S[N−1]} and the big dataset B. This method
requires gradient calculations to be performed N − 1 times across the N − 1 subsets, leading
to considerable computational overhead. To alleviate this, we introduce the concept of “feature
distance” as a substitute for the “gradient distance” to reduce computation while capturing essential
characteristics among subsets. The feature distance at a specific condensation iteration t for subset
S[n] can be represented as:

Ft

(
S[n],B

)
= D

(
ft

(
S[n]

)
, ft(B)

)
, (5)

where ft(·) is the feature extraction function for tth condensation iteration, and D(·) is a distance
metric like MSE. For subsets, the gradient distance mandates N − 1 forward passes and an equal
number of backward passes for a total of N − 1 subsets. In contrast, the feature distance requires
only a single forward pass and no backward pass. This is because the features are hierarchically
arranged, and the feature set derived from a subset of size n can be straightforwardly extracted from
the features of the larger dataset of size N .

Feature Distance Comparison (Fig. 3b-(ii)). Generally, as the size of the subset increases, the
feature distance diminishes. This is because the larger subset is more similar to the big dataset B.
Let’s consider two subsets S[p] and S[q] such that 1 < p < q < N . This implies that the size of subset
S[p] is less than the size of subset S[q]. Their feature distances at iteration t can be represented as:

Ft

(
S[p],B

)
> Ft

(
S[q],B

)
, if 1 < p < q < N. (6)

Initially, it is intuitive that S[1], being the smallest subset, would manifest the greatest distance or
disparity when compared to B. As such, S[1] should be the MLS at the beginning of the condensation
process. As the condensation process progresses, we have:

Ft−∆t

(
S[p],B

)
> Ft

(
S[p],B

)︸ ︷︷ ︸
p

, Ft−∆t

(
S[q],B

)
> Ft

(
S[q],B

)︸ ︷︷ ︸
q

, (7)

where t−∆t and t are two different time points for the condensation process. The reason for
Ft−∆t > Ft is that the subsets get more representative as the condensation progresses, causing their
feature distances to shrink. So, the most learnable subset would be the one whose feature distance
reduction rate is the highest. The feature distance reduction rate is:

R(S[n], t) =
∆FS[n]

∆t
=

∣∣Ft

(
S[n],B

)
− Ft−∆t

(
S[n],B

)∣∣
∆t

, (8)

where R(S[n], t) represents the rate of change of feature distance for subset S[n] at the time point t,
and ∆FS[n]

denotes the change in feature distance of subset S[n] from time t−∆t to t. An example
for feature distance calculation can be found in Appendix B.2. The MLS for the time t can be
described as:

SMLS(t) = S[n∗
t ]
= argmax

S[n]

(
R
(
S[n], t

))
where n ∈ [1, N − 1]. (9)

Eq. 9 seeks the subset that has the steepest incline or decline in its feature distance from B over the
time interval ∆t. This indicates the subset is “learning” at the fastest rate, thus deeming it the most
learnable subset (MLS).

MLS Freezing Judgement (Fig. 3b-(iii)). To further reduce the impact of the “subset degradation
problem”, we modify the updating strategy in Eq. 4. The judgement will be modified if the current
MLS differs in size from its predecessor; otherwise, it remains unchanged:

Using Eq. 4 to
{

Update S if SMLS(t) ⊂ SMLS(t−∆t)

Update S \ SMLS(t−∆t) if SMLS(t) ⊃ SMLS(t−∆t)
(10)

where \ is the symbol for set minus. If the size of the current MLS SMLS(t) is smaller than its
predecessor SMLS(t−∆t), we update the entire synthetic data S with Eq. 4. However, when
the size of the current MLS is larger than its predecessor, updating the entire S would cause the
optimized predecessor to be negatively affected by new gradients. Therefore, we freeze the preceding
MLS SMLS(t−∆t) to preserve already learned information, as shown in the red shadowed S[1] in
Fig. 3b-(iii). As a result, only the non-overlapping elements, i.e., S \ SMLS(t−∆t) are updated.
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Dataset 1 2 3 4 5 6 7 8 9 10 Avg. Diff.

SVHN

A 68.50† 75.27 79.55 81.85 83.33 84.53 85.66 86.05 86.25 87.50† 81.85 -
B 68.50† 71.65 71.27 71.92 73.28 70.74 71.83 71.08 71.97 71.55 71.38 -
C 35.48 51.55 60.42 67.97 74.38 77.65 81.70 83.86 85.96 87.50† 70.65 0

Ours 63.26 67.91 72.15 74.09 77.54 78.17 80.92 82.82 84.27 86.38 76.75 +6.10

CIFAR-10

A 50.80 54.85 59.79 61.84 62.49 64.59 65.53 66.33 66.82 67.50† 62.05 -
B 50.80 53.17 55.09 56.17 55.80 56.98 57.60 57.78 58.22 58.38 56.00 -
C 27.49 38.50 45.29 50.85 53.60 57.98 60.99 63.60 65.71 67.50† 53.15 0

Ours 49.66 54.58 53.92 54.55 55.18 58.80 61.51 63.36 65.41 66.72 58.37 +5.22

CIFAR-100

A 28.90† 34.28 37.35 39.13 41.15 42.65 43.62 44.48 45.07 45.40 40.20 -
B 28.90† 30.63 31.64 31.76 32.61 32.85 33.03 33.04 33.32 33.39 32.12 -
C 14.38 21.76 28.01 32.21 35.27 39.09 40.92 42.69 44.28 45.40 34.40 0

Ours 27.58 31.83 33.59 35.42 36.93 38.95 40.70 42.05 43.86 44.34 37.53 +3.13

(a) Results of SVHN, CIFAR-10, CIFAR-100 targeting IPC10.

Dataset 1 2 3 4 5 6 7 8 9 10 20 30 40 50 Avg. Diff.

SVHN
A 68.50† 75.27 79.55 81.85 83.33 84.53 85.66 86.05 86.25 87.50† 89.54 90.27 91.09 91.38 84.34 -
C 34.90 46.52 52.23 56.30 62.25 65.34 68.84 69.57 71.95 74.69 83.73 87.83 89.73 91.38 68.23 0

Ours 58.77 67.72 69.33 72.26 75.02 73.71 74.50 74.63 76.21 76.87 83.67 87.08 89.46 91.39 76.47 +8.24

CIFAR-10
A 50.80 54.85 59.79 61.84 62.49 64.59 65.53 66.33 66.82 67.50† 70.82 72.86 74.30 75.07 65.26 -
C 27.87 35.69 41.93 45.29 47.54 51.96 53.51 55.59 56.62 58.26 66.77 70.50 72.98 74.50 54.21 0

Ours 47.83 52.18 56.29 58.52 58.75 60.67 61.90 62.74 62.32 62.64 66.88 70.02 72.91 74.56 62.01 +7.80

CIFAR-100
A 28.90 34.28 37.35 39.13 41.15 42.65 43.62 44.48 45.07 45.40 49.50 52.28 52.54 53.47 43.56 -
C 12.66 18.35 23.76 26.92 29.12 32.23 34.21 35.71 37.18 38.25 45.67 49.60 52.36 53.47 34.96 0

Ours 26.34 29.71 31.74 32.95 34.49 36.36 38.49 39.59 40.43 41.35 46.06 49.40 51.72 53.67 39.45 +4.49

(b) Results of SVHN, CIFAR-10, CIFAR-100 targeting IPC50.

Dataset 1 2 3 4 5 6 7 8 9 10 15 20 Avg. Diff.

ImageNet-10

A 60.40 63.87 67.40 68.80 71.33 70.60 70.47 71.93 72.87 72.80† 75.50 76.60† 70.21 -
B 60.40 62.07 62.80 63.40 64.67 63.13 62.67 63.60 64.13 63.60 62.73 64.13 63.11 -
C 44.00 57.27 62.80 66.13 64.33 69.47 69.53 70.53 71.73 73.00 74.47 75.73 66.58 0

Ours 55.87 61.60 63.40 64.40 63.80 67.73 67.13 70.07 71.07 71.13 76.00 79.20 67.62 +1.04

(c) Results of ImageNet-10 targeting IPC20.

Table 1: Comparisons with three different baselines built with the IDC (Kim et al., 2022b). † denotes
directly cited from original papers. Numbers with standard deviation can be found in Appendix B.4.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS.

Terms. IPCn represents n Images Per Class for the condensed dataset.

Basic Condensation Training. We use IDC (Kim et al., 2022b) to condense the CIFAR-10, CIFAR-
100 (Krizhevsky et al., 2009) and SVHN (Netzer et al., 2011) with ConvNet-D3 (Gidaris & Ko-
modakis, 2018). ImageNet-10 (Deng et al., 2009) is condensed via ResNet10-AP (He et al., 2016).
For CIFAR-10, CIFAR-100 and SVHN, we use a batch size of 128 for IPC ≤ 30, and a batch size of
256 for IPC > 30. For ImageNet-10 IPC20, we use a batch size of 256. The network is randomly
initialized 2000 times for CIFAR-10, CIFAR-100 and SVHN, and 500 times for ImageNet-10; for
each initialization, the network is trained for 100 epochs. More details are provided in Appendix B.1.

Basic Condensation Evaluations. We also follow IDC (Kim et al., 2022b). For both ConvNet-D3
and ResNet10-AP, the learning rate is 0.01 with 0.9 momentum and 0.0005 weight decay. The SGD
optimizer and a multi-step learning rate scheduler are used. The network is trained for 1000 epochs.

MDC Settings. i) Feature Distance Calculation. The last layer feature is used for the feature
distance calculation. The computed feature distance is averaged across 100 inner loop training
epochs for a specific outer loop. ii) Feature Distance Comparison. For CIFAR-10, CIFAR-100 and
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DC DSA MTT IDC DREAM Ours

1 15.35 16.76 18.80 27.49 32.52 49.66

2 19.75 21.22 24.90 38.50 39.57 54.58

3 22.54 26.78 31.90 45.29 48.21 53.92

4 26.28 30.18 38.10 50.85 53.84 54.55

5 30.37 33.43 43.20 53.60 55.25 55.18

6 33.99 38.15 49.20 57.98 60.46 58.80

7 36.36 41.18 51.60 60.99 63.27 61.51

8 39.83 45.37 56.30 63.60 65.04 63.36

9 42.68 49.21 58.50 65.71 67.40 65.41

10 44.90† 52.10† 62.80† 67.50† 69.40† 66.72

Avg. 31.21 35.44 43.53 53.15 55.50 58.37

Diff. -27.16 -22.93 -14.84 -5.22 -2.87 -

(a) CIFAR-10, IPC10.

DC DSA MTT IDC DREAM Ours

1 16.32 12.50 15.13 27.87 27.57 47.83

2 18.77 15.19 23.92 35.69 36.57 52.18

3 21.24 19.69 26.53 41.93 43.50 56.29

4 21.42 22.02 30.30 45.29 47.35 58.52

5 23.32 23.28 32.71 47.54 49.81 58.75

6 23.63 24.79 35.54 51.96 53.38 60.67

7 25.35 25.62 34.12 53.51 54.58 61.90

8 27.40 27.84 40.60 55.59 56.78 62.74

9 27.93 29.57 43.43 56.62 58.91 62.32

10 28.00 32.51 45.99 58.26 60.10 62.64

20 36.53 40.94 60.41 66.77 68.07 66.88

30 42.82 48.05 67.68 70.50 70.48 70.02

40 48.90 54.24 69.71 72.98 72.79 72.91

50 53.90† 60.60† 71.60† 74.50† 74.80† 74.56

Avg. 29.68 31.20 42.69 54.21 55.33 62.01

Diff. -32.33 -30.81 -19.32 -7.80 -6.68 -

(b) CIFAR-10, IPC50

R1 1 2 5 10 20 Avg.

LFS (1, 20) 20.34 23.69 28.58 35.39 42.47 30.09
LBS (20 , 210) 26.04 29.27 33.49 36.23 42.47 33.50
Ours (1, 20) 27.66 31.09 35.50 41.56 49.30 37.02

(c) Comparing results with LFS and LBS (Liu et al.,
2023a). CIFAR-100, IPC20.

Table 2: Comparison with SOTA condensation methods. † denotes directly cited from original papers.

SVHN, the feature distance is calculated at intervals of every ∆t = 100 outer loop. For ImageNet-10,
∆t = 50. iii) MLS Freezing Judgement. We follow Eq. 10 for MLS freezing.

4.2 PRIMARY RESULTS

Comparison with Baseline-A, B, C. Three baselines defined in Sec. 3.2, including Baseline-A,B,C,
are created with IDC (Kim et al., 2022b). Tab. 1a and Tab. 1b provide the comparisons on three
datasets: SVHN, CIFAR-10, and CIFAR-100 targeting IPC10 and IPC50; Tab. 1c provides the results
on the ImageNet-10 dataset of IPC20. As detailed in Fig. 2b, Baseline-C aligns with our condensation
and storage requirements, so we mainly compare with Baseline-C. The results of Baseline-C are
shaded in grey, while our method’s accuracy is shaded in blue. Evidently, our approach consistently
outperforms Baseline-C. For instance, on CIFAR-10 targeting IPC10, our method improves 5.22%
in average accuracy. The proposed method effectively addresses the “subset degradation problem”
at small subsets. For S[1] of IPC10, we improve accuracy by +27.78% on SVHN, +22.17% on
CIFAR-10, and +13.20% on CIFAR-100. Even though Baseline-B requires much more image storage
(N v.s. 1), our method beats Baseline-B for IPC10 by +5.37% on SVHN, +2.37% on CIFAR-10, and
+5.41% on CIFAR-100. The visualization of accuracies is presented in Fig. 2c.

Comparison with State-of-the-art Methods. In Tab. 2, we evaluate our approach against state-of-
the-art (SOTA) condensation techniques including DC (Zhao et al., 2021), DSA (Zhao & Bilen, 2021),
MTT (Cazenavette et al., 2022), IDC (Kim et al., 2022b), and DREAM (Liu et al., 2023b). From the
table, it becomes evident that not only IDC (Kim et al., 2022b) but all condensation methods face the
“subset degradation problem”. Our MDC shows a clear advantage over other methods with a single
condensation process and IPCN storage. Importantly, the accuracy of S[1] is improved by 17.14%
for IPC10 and 20.26% for IPC50 compared to DREAM (Liu et al., 2023b). Tab. 2c illustrates that
our approach outperforms Slimmable DC (Liu et al., 2023a), another method for dataset flexibility.
Notably, our method excels by 3.52% even against the resource-intensive LBS.

1R = (1, 20) means requiring one condensation process and storing 20 images.
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Calculate Compare Freeze 1 2 3 4 5 6 7 8 9 10 Avg.

- - - 27.49 38.50 45.29 50.85 53.60 57.98 60.99 63.60 65.71 67.50 53.15
✓ - - 49.35 48.27 50.00 52.30 54.20 58.29 60.90 63.63 65.90 67.63 57.08
✓ ✓ - 40.12 54.91 56.02 56.12 56.18 59.74 61.68 63.41 65.56 67.01 58.08
✓ ✓ ✓ 49.66 54.58 53.92 54.55 55.18 58.80 61.51 63.36 65.41 66.72 58.37

Table 3: Ablation study of the proposed components. Calculate denotes whether to compute the
feature distance and include subset loss. Compare denotes whether to compare the feature distance.
Freeze means whether to freeze preceding SMLS. CIFAR-10, IPC10.

1 2 3 4 5 6 7 8 9 10 Avg. Diff.

R
es

N
et A 41.6 49.6 52.5 54.8 57.9 59.0 61.0 61.4 62.1 63.7 56.4 -

B 41.2 47.0 49.5 51.4 53.3 52.8 54.5 54.4 55.5 55.8 51.5 -
C 25.5 34.0 39.1 45.9 53.0 54.6 57.3 59.7 61.7 63.7 49.5 0

Ours 39.3 47.3 48.6 52.7 54.9 55.3 57.2 59.3 61.0 62.7 53.8 +4.3

D
en

se
N

et A 39.8 49.3 51.5 54.4 56.6 58.5 59.1 60.2 60.7 62.5 55.3 -
B 41.0 48.1 48.3 52.3 54.8 53.0 55.3 53.5 54.1 55.3 51.6 -
C 26.4 35.4 40.3 47.3 53.1 54.6 57.9 59.0 60.6 62.5 49.7 0

Ours 38.5 46.8 49.6 53.4 54.6 56.3 57.5 58.4 59.7 61.0 53.6 +3.9

Table 4: Cross-architecture performance of the proposed method.
CIFAR-10, IPC10.

Av
er

ag
e 

A
cc

ur
ac

y 
(%

)

Time (hrs)

MDC
IDC (11.5 hrs)

IDC requires 11.5 hrs

MDC uses 0.6 hrs to
reach the same level

Figure 4: Accuracy vs. train-
ing time. CIFAR-10, IPC10.

4.3 MORE ANALYSIS

Ablation Study. Tab. 3 provides the ablation study of the components for MLS selection. The first
row is exactly the Baseline-C, which condenses once but does not include the subset loss. We can
clearly observe the “subset degradation problem” in this case. Row 2 includes the subset loss but
does not consider “rate of change” for feature distance. In such a case, we find SMLS=S[1] for all
outer loops. We observe a large improvement for S[1]. However, the accuracy of S[2] does not exceed
S[1] even though the dataset size is larger. Row 3 does not consider the freezing strategy. It improves
the average accuracy from 57.08% to 58.08% but makes the accuracy of S[1] drop from 49.35% to
40.12%. Row 4 is the proposed method’s complete version, enjoying all components’ benefits.

Performance on Different Architectures. Tab. 4 shows that the “subset degradation problem” is not
unique to the ConvNet (Gidaris & Komodakis, 2018) model but also exists when using ResNet (He
et al., 2016) and DenseNet (Huang et al., 2017). Not surprisingly, the proposed method generalizes
to other models with improvement of +4.3% and +3.9% on the average accuracy for ResNet and
DenseNet compared to Baseline-C, respectively.

Performance on Different Condensation Method. Apart from IDC, our MDC method can be
applied to other basic condensation methods such as DREAM (Liu et al., 2023b). The average
accuracy increases from 58.37% to 60.19%. Appendix B.3 shows the detailed accuracy numbers.

Reduced Training Time Needed. As shown in Fig. 4, the introduction of “Adaptive Subset Loss”
increases our total training time from 11.5 hours (IDC) to 15.1 hours. However, our MDC method
does not need such a long training time. As depicted by the red vertical line, our MDC method only
needs 0.6 hours to match IDC’s average accuracy. In other words, we reduce the training time by
94.8% for the same performance. This might be because our “adaptive subset loss” provides extra
supervision for the learning process. More details can be found in Appendix B.5.

Subset Evaluation Metrics. To evaluate the subsets, we have more metrics apart from the feature
distance, which is the first component in Sec. 3.3.2. As shown in Tab. 5, we can also consider gradient
distances or evaluate subsets based on model accuracy when trained on them. Our “Feature Distance”
metric just needs two forward processes to calculate the feature of the subset S[N−1] and real images.
Compared to “Feature Distance”, “Gradient Distance” demands more computational processes (ten
forward and ten backward processes) but yields a similar accuracy. While using “Accuracy Difference”
outperforms “Feature Distance”, it is computationally intensive and impractical. Here, the required
number of forward process F and backward process B is E × (N − 1) = 1000× 9 = 9, 000.

Visualization of MLS. Selection of SMLS is shown in Fig. 5. See Appendix B.6 for class-wise MLS.
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Most Learnable Subset (MLS)
Frozen Subset
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Figure 5: MLS and frozen subsets
visualization. CIFAR-10, IPC10.

(a) (b) IDC
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car
bird
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dog
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horse
ship
truck

(c) MDC

Figure 6: (a) IDC condensed IPC1; (b) IDC condensed IPC10;
(c) our MDC condensed IPC10.

Evaluation
Metric

1 2 3 4 5 6 7 8 9 10 Avg. F B

Feature
Distance

49.66 54.58 53.92 54.55 55.18 58.80 61.51 63.36 65.41 66.72 58.37 2 0

Gradient
Distance

49.20 53.64 56.48 56.37 55.82 59.53 61.05 63.31 65.00 66.90 58.73 N N

Accuracy
Difference

48.18 52.66 57.10 58.62 59.75 62.11 63.17 63.99 65.48 66.57 59.76 E×(N−1) E×(N−1)

Table 5: Different subset evaluation metrics for MLS. F and B denote the number of
forward and backward propagation, respectively. E and N denote the number of
training epochs (i.e., 1000) and target IPC (i.e., 10), respectively. CIFAR-10, IPC10.

Acc. Diff.

Runs

58.37 +5.22
58.49 +5.34
58.73 +5.58
58.90 +5.75
59.20 +6.05
59.55 +6.40

Avg. 58.87 +5.72

Table 6: Effects
of condensation
runs.

Effects of Condensation Runs. The variation in our results arises from two aspects: the condensation
process and the model training using the condensed dataset. Tab. 6 shows that different condensation
runs lead to improvements ranging from 5.22% to 6.40% over Baseline-C (53.15%). This variation
is more substantial than the variation in model training (see Appendix B.4). Therefore, we report a
lower result (58.37%) in Tab. 1 to illustrate the effectiveness of our method conservatively.

Visualization of Condensed Dataset. As shown in Fig. 6, we visualize and compare the dataset
condensed with IDC (Kim et al., 2022b) and our MDC. We utilize three horse images from different
settings to articulate our findings. The horse image in IDC condensed IPC1 is highlighted with a
yellow border, in the IDC condensed IPC10 with a red border, and in our MDC condensed IPC1 with
a green border. For clarity, we’ll refer to these as horseorange, horsered, and horsegreen. 1) Upon
comparing horseorange with horsered, it’s evident that horseorange exhibits more distortion than
horsered to save other images’ information. 2) Furthermore, when aligning horseorange with actual
images (see Fig. 10 in Appendix C) , horseorange is almost the same as the real counterpart image,
suggesting it doesn’t include information from other images. This highlights the “subset degradation
problem” – when a small subset, such as horsered, lacks guidance during condensation, it fails to
adequately represent the complete dataset. 3) Upon evaluating horseorange against horsegreen, we
can observe that images condensed using our MDC approach display more pronounced distortion
than those from IDC IPC1. This increased distortion in horsegreen arises because it also serves as
a subset for IPC2, IPC3, ... , IPCN . This increased distortion demonstrates our method effectively
addresses the “subset degradation problem”. More visualization can be found in Appendix C.

5 CONCLUSION AND FUTURE WORK

To achieve multisize dataset condensation, our MDC method is the first to compress multiple
condensation processes into a single condensation process. We adaptively select the most learnable
subset (MLS) to build “adaptive subset loss” to mitigate the “subset degradation problem”. Extensive
experiments show that our method achieves state-of-the-art performance on the various models and
datasets. Future works can include three directions. First, our subset loss has an impact on the
accuracy of the full synthetic dataset, so we plan to find a way to maintain the accuracy better. Second,
we aim to explore why our MDC learns much faster than previous methods. Third, better subset
selection metrics are worth investigating.
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A ALGORITHM

Algo. 1 provides the algorithm of the proposed MDC method.

Algorithm 1 Multisize Dataset Condensation

Input: Full dataset B, model Θ, MLS selection period ∆t, learning rate of the synthetic dataset
λ, learning rate of the model η, outer loop iterations T , inner loop epochs E, and class loop
iterations C.

Output: Synthetic dataset S
1: Initialize synthetic dataset S
2: Initialize the most learnable subset (MLS) SMLS
3: for t = 1 to T do ▷ Outer loop
4: Randomly initialize model weight θt
5: for e = 1 to E do ▷ Inner loop
6: for c = 1 to C do ▷ Class loop
7: Sample class-wise mini-batches Bc ∼ B, Sc ∼ S
8: Update Sc with subset loss according to Eq. 10
9: end for

10: θt,e+1 ← θt,e − η∇θℓ (θt,e;B) ▷ Update model with real image mini-batch B ∼ B
11: end for
12: if t% ∆t is 0 then ▷ Every ∆t iterations
13: Select SMLS according to Eq. 9
14: end if
15: end for
16: return Synthetic dataset S

B EXPERIMENT

B.1 EXPERIMENT SETTINGS

Datasets:

• SVHN (Netzer et al., 2011) contains street digits of shape 32× 32× 3. The dataset contains
10 classes including digits from 0 to 9. The training set has 73257 images, and the test set
has 26032 images.

• CIFAR-10 (Krizhevsky et al., 2009) contains images of shape 32×32×3 and has 10 classes
in total: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. The training
set has 5,000 images per class and the test set has 1,000 images per class, containing in total
50,000 training images and 10,000 testing images.

• CIFAR-100 (Krizhevsky et al., 2009) contains images of shape 32× 32× 3 and has 100
classes in total. Each class contains 500 images for training and 100 images for testing,
leading to a total of 50,000 training images and 10,000 testing images.

• ImageNet-10 (Deng et al., 2009) is a subset of ImageNet-1K (Deng et al., 2009) containing
images with an average 469× 387× 3 pixels but reshaped to resolution of 224× 224× 3. It
contains 1,280 training images per class on average and a total of 50,000 images for testing
(validation set). Following Kim et al. (2022b), the ImageNet-10 contains 10 classes: 1) poke
bonnet, 2) green mamba, 3) langur, 4) Doberman pinscher, 5) gyromitra, 6) gazelle hound,
7) vacuum cleaner, 8) window screen, 9) cocktail shaker, and 10) garden spider.

Augmentation: Following IDC (Kim et al., 2022b), we perform augmentation during training
networks in condensation and evaluation, and we use coloring, cropping, flipping, scaling, rotating,
and mixup. When updating network parameters, image augmentations are different for each image
in a batch; when updating synthetic images, the same augmentations are utilized for the synthetic
images and corresponding real images in a batch.

• Color which adjusts the brightness, saturation, and contrast of images.
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• Crop which pads the image and then randomly crops back to the original size.
• Flip which flips the images horizontally with a probability of 0.5.
• Scale which randomly scales the images by a factor according to a ratio.
• Rotate which rotates the image by a random angle according to a ratio.
• Cutout which randomly removes square parts of the image, replacing the removed parts with

black squares.
• Mixup which randomly selects a square region within the image and replaces this region with

the corresponding section from another randomly chosen image. It happens at a probability
of 0.5.

Multi-formation Settings. For all results we use IDC (Kim et al., 2022b) as the “basic condensation
method” otherwise stated. Following its setup, we use a multi-formation factor of 2 for SVHN,
CIFAR-10, CIFAR-100 datasets and a factor of 3 for ImageNet-10.

Reason for Using Large Batch Size for IPC > 32. For CIFAR-10, CIFAR-100 and SVHN, we
use the default batch size (128) when IPC < 32 and a larger batch size (256) when 32 ≤ IPC ≤ 64.
The reason is that our method is based on IDC (Kim et al., 2022b) which uses a multi-formation
factor of f = 2 for CIFAR-10, CIFAR-100, and SVHN datasets. The multi-formation function
splits a synthetic image into f2 = 22 = 4 images during the condensation process. To ensure
all samples in a subset can be sampled during condensation, we increase the subsets when the
number of images exceeds the default batch size, which is 128. With a multi-formation factor
f = 2, the maximum IPC of each sampling process is IPC = 32 (i.e., IPC × 22 ≤ 128). For
ImageNet-10 IPC20, a multi-formation factor of f = 3 is used. Hence, we use a batch size of 256
(i.e., 128 ≤ 20× 32 ≤ 256).

MTT Settings. The reported numbers of MTT (Cazenavette et al., 2022) are obtained without ZCA
normalization to keep all methods using the standard normalization technique.

B.2 FEATURE DISTANCE CALCULATION

Tab. 7 presents the feature distance computed at a specific outer loop t without imposing the subset
loss. The table conveys two pieces of information. First, the feature loss of a smaller subset is always
greater than that of a larger subset. That is a reason why we need to find the rate of change. Otherwise,
S[1] will always be selected. Second, the feature distance of the smallest subset changes the most,
and this contributes to why we select S[1] as the subset initialization.

1 2 3 4 5 6 7 8 9

t = 1 3012 1678 1249 1013 896 807 738 701 675
t = 50 2596 1294 891 661 514 429 373 332 298
Diff. 416 384 358 352 382 378 365 369 377

Rate of change 8.32 7.68 7.16 7.04 7.64 7.56 7.30 7.38 7.54

Table 7: Feature distance of subsets summed over inner loop training. CIFAR-10, IPC10.

B.3 THE INFLUENCE OF BASIC CONDENSATION METHOD

Tab. 8 shows our method works on other basic condensation methods such as DREAM (Liu et al.,
2023b).

1 2 3 4 5 6 7 8 9 10 Avg.

IDC 49.66 54.58 53.92 54.55 55.18 58.80 61.51 63.36 65.41 66.72 58.37

DREAM 49.70 55.12 55.84 57.59 58.72 62.92 63.61 64.71 66.26 67.44 60.19

Table 8: Comparison between the proposed method applied to IDC Kim et al. (2022b) and to
DREAM Liu et al. (2023b) on CIFAR-10 IPC10.
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B.4 PRIMARY RESULTS WITH STANDARD DEVIATION

In Tab. 9, we list the primary results with standard deviation for synthetic datasets with IPC10 and
IPC50, including SVHN, CIFAR-10, and CIFAR-100 datasets. The standard deviation is computed
from three randomly initialized networks since the same subset is selected for each run. Even by
taking into account these standard deviations, our method shows a consistent improvement in the
average accuracy.

Dataset 1 2 3 4 5 6 7 8 9 10 Avg. Diff.

SVHN

A 68.50†±0.9 75.27±0.3 79.55±0.4 81.85±0.2 83.33±0.1 84.53±0.3 85.66±0.3 86.05±0.1 86.25±0.2 87.50†±0.3 81.85 -
B 68.50†±0.9 71.65±0.1 71.27±0.9 71.92±0.3 73.28±0.3 70.74±0.4 71.83±0.4 71.08±0.8 71.97±1.0 71.55±0.7 71.38 -
C 35.48±0.4 51.55±0.6 60.42±1.0 67.97±0.5 74.38±0.5 77.65±0.7 81.70±0.2 83.86±0.5 85.96±0.4 87.50†±0.3 70.65 0

Ours 63.26±1.0 67.91±0.7 72.15±1.0 74.09±0.3 77.54±0.4 78.17±0.3 80.92±0.3 82.82±0.5 84.27±0.3 86.38±0.2 76.75 +6.10

CIFAR-10

A 50.80±0.3 54.85±0.4 59.79±0.2 61.84±0.1 62.49±0.3 64.59±0.1 65.53±0.2 66.33±0.1 66.82±0.3 67.50†±0.5 62.05 -
B 50.80±0.3 53.17±0.4 55.09±0.4 56.17±0.3 55.80±0.3 56.98±0.3 57.60±0.3 57.78±0.1 58.22±0.4 58.38±0.1 56.00 -
C 27.49±0.8 38.50±0.5 45.29±0.1 50.85±0.5 53.60±0.3 57.98±0.2 60.99±0.5 63.60±0.2 65.71±0.1 67.50†±0.5 53.15 0

Ours 49.66±0.4 54.58±0.2 53.92±0.3 54.55±0.2 55.18±0.2 58.80±0.5 61.51±0.3 63.36±0.2 65.41±0.3 66.72±0.1 58.37 +5.22

CIFAR-100

A 28.90†±0.2 34.28±0.2 37.35±0.2 39.13±0.1 41.15±0.4 42.65±0.4 43.62±0.3 44.48±0.2 45.07±0.1 45.40±0.4 40.20 -
B 28.90†±0.2 30.63±0.1 31.64±0.0 31.76±0.2 32.61±0.2 32.85±0.2 33.03±0.3 33.04±0.2 33.32±0.2 33.39±0.2 32.12 -
C 14.38±0.2 21.76±0.2 28.01±0.2 32.21±0.3 35.27±0.3 39.09±0.2 40.92±0.1 42.69±0.2 44.28±0.2 45.40±0.4 34.40 0

Ours 27.58±0.2 31.83±0.0 33.59±0.2 35.42±0.1 36.93±0.1 38.95±0.4 40.70±0.1 42.05±0.1 43.86±0.1 44.34±0.2 37.53 +3.13

(a) Results of SVHN, CIFAR-10, CIFAR-100 targeting IPC10.

Dataset 1 2 3 4 5 6 7 8 9 10

SVHN
A 68.50†±0.9 75.27±0.3 79.55±0.4 81.85±0.2 83.33±0.1 84.53±0.3 85.66±0.3 86.05±0.1 86.25±0.2 87.50†±0.3

C 34.90±0.9 46.52±0.4 52.23±0.9 56.30±0.4 62.25±0.5 65.34±0.5 68.84±0.3 69.57±1.7 71.95±0.5 74.69±0.2

Ours 58.77±1.5 67.72±0.3 69.33±0.5 72.26±0.4 75.02±0.3 73.71±0.7 74.50±0.5 74.63±0.6 76.21±0.4 76.87±0.7

CIFAR-10
A 50.80±0.3 54.85±0.4 59.79±0.2 61.84±0.1 62.49±0.3 64.59±0.1 65.53±0.2 66.33±0.1 66.82±0.3 67.50†±0.5

C 27.87±0.4 35.69±0.5 41.93±0.2 45.29±0.2 47.54±0.4 51.96±0.4 53.51±0.3 55.59±0.1 56.62±0.2 58.26±0.1

Ours 47.83±0.6 52.18±0.2 56.29±0.1 58.52±0.2 58.75±0.4 60.67±0.3 61.90±0.1 62.74±0.2 62.32±0.2 62.64±0.2

CIFAR-100
A 28.90†±0.2 34.28±0.2 37.35±0.2 39.13±0.1 41.15±0.4 42.65±0.4 43.62±0.3 44.48±0.2 45.07±0.1 45.40±0.4

C 12.66±0.1 18.35±0.1 23.76±0.4 26.92±0.4 29.12±0.2 32.23±0.1 34.21±0.4 35.71±0.3 37.18±0.3 38.25±0.3

Ours 26.34±0.2 29.71±0.3 31.74±0.4 32.95±0.4 34.49±0.3 36.36±0.2 38.49±0.4 39.59±0.1 40.43±0.4 41.35±0.2

Dataset 20 30 40 50 Avg. Diff.

SVHN
A 89.54±0.2 90.27±0.1 91.09±0.1 91.38±0.1 84.34 -
C 83.73±0.1 87.83±0.1 89.73±0.0 91.38±0.1 68.23 0

Ours 83.67±0.2 87.08±0.2 89.46±0.2 91.39±0.1 76.47 +8.24

CIFAR-10
A 70.82±0.3 72.86±0.5 74.30±0.0 75.07±0.2 65.26 -
C 66.77±0.1 70.50±0.2 72.98±0.3 74.50±0.2 54.21 0

Ours 66.88±0.2 70.02±0.2 72.91±0.5 74.56±0.3 62.01 +7.80

CIFAR-100
A 49.50±0.5 52.28±0.3 52.54±0.3 53.47±0.5 43.56 -
C 45.67±0.3 49.60±0.2 52.36±0.1 53.47±0.5 34.96 0

Ours 46.06±0.3 49.40±0.1 51.72±0.1 53.67±0.4 39.45 +4.49

(b) Results of SVHN, CIFAR-10, CIFAR-100 targeting IPC50.

Table 9: Comparisons between the proposed method and three different baselines built with the
IDC Kim et al. (2022b). † represents the numbers reported in the original paper. Results from
sub-table (b) are divided into two parts due to limited space.
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B.5 ACCURACY OF SUBSETS DURING CONDENSATION PROCESS

Using different condensation runs in Tab. 6, we analyze the effect of subset selection during conden-
sation. As shown in Fig. 7, the run with an accuracy of 58.37% has only IPC-{1,2} are selected as
SMLS. Tab. 10 shows the accuracies for each subset during the condensation process. As shown in
Fig. 8, the run with an accuracy of 59.55% has IPC-{1,2,3,4} are selected as SMLS. Tab. 11 shows the
accuracies for each subset during the condensation process. We hypothesize that optimizing a subset
with a larger IPC during the condensation process will lead to higher accuracy as it provides more
supervision signals to guide the subset optimization.

Most Learnable Subset (MLS)
Frozen Subset

Se
le

ct
ed
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ub

se
t

Selection Interval
0 1 2 3 4 5 6 7 8 9 10 11121314 1516171819 20

Figure 7: Visualization for the run with SMLS including IPC1 and IPC2.

100 200 300 400 500 600 700 800 900 1000

1 48.79 48.62 48.16 48.81 49.58 49.03 49.22 49.37 49.19 49.75

2 47.24 46.45 46.56 47.02 53.94 53.76 53.93 54.20 54.49 53.93

3 47.95 48.14 48.04 47.93 54.02 53.73 53.91 53.74 53.81 53.82

4 51.07 50.54 50.98 50.82 54.31 54.17 53.98 54.16 54.55 54.51

5 52.92 52.05 52.18 52.08 54.84 54.53 54.77 54.38 55.17 55.26

6 56.03 55.58 56.01 55.74 57.63 57.99 57.78 58.14 58.73 58.10

7 58.09 58.27 57.92 57.81 60.46 60.56 60.97 60.14 60.97 60.90

8 59.72 60.31 60.03 59.83 62.43 62.21 62.17 62.27 62.82 62.68

9 61.88 61.90 61.60 62.13 63.79 63.95 64.31 63.97 64.64 64.54

10 63.21 63.19 63.52 63.00 65.79 65.59 65.70 65.38 66.35 66.28

Avg. 54.69 54.51 54.50 54.52 57.68 57.55 57.67 57.57 58.07 57.98

1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

1 49.75 49.76 49.25 49.18 49.76 49.64 49.61 49.63 49.44 49.66

2 54.38 53.87 54.47 53.33 53.77 53.87 54.72 54.82 54.55 54.58

3 53.52 53.46 53.51 53.39 53.94 53.56 54.69 54.00 54.27 53.92

4 54.67 54.80 54.72 54.71 54.34 54.51 54.34 54.66 54.73 54.55

5 54.94 55.04 54.58 54.60 55.04 54.63 55.25 54.57 55.20 55.18

6 58.40 58.68 58.16 58.06 58.83 58.45 58.97 58.65 58.92 58.80

7 60.83 60.77 61.08 61.14 61.06 61.13 60.99 61.45 61.07 61.51

8 62.78 62.76 62.68 62.95 63.04 62.88 63.23 63.65 63.90 63.36

9 64.91 64.91 64.99 64.52 64.87 64.86 64.98 65.29 65.05 65.41

10 66.04 65.90 66.37 66.69 66.56 66.41 66.76 67.10 66.40 66.72

Avg. 58.02 57.99 57.98 57.86 58.12 57.99 58.35 58.38 58.35 58.37

Table 10: Accuracy of subsets evaluated at different outer loops. Selected SMLS includes IPC1 and
IPC2. CIFAR-10, IPC10.

16



Published as a conference paper at ICLR 2024

Most Learnable Subset (MLS)
Frozen Subset
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Figure 8: Visualization for the run with SMLS including IPC1, IPC2, IPC3, and IPC4.

100 200 300 400 500 600 700 800 900 1000

1 49.40 50.20 50.10 51.00 50.00 50.60 49.80 48.70 48.90 49.74

2 47.30 47.60 50.30 50.10 48.20 49.50 49.50 53.10 53.60 53.41

3 48.40 48.60 57.80 57.90 55.30 57.20 55.80 55.70 56.00 57.46

4 52.30 51.80 57.40 57.60 55.00 57.60 56.60 55.60 55.90 56.93

5 52.80 53.60 56.30 56.50 56.20 57.10 56.30 55.80 56.20 56.59

6 57.00 57.90 59.60 58.50 59.20 60.10 60.00 59.00 58.50 59.58

7 58.10 59.50 61.10 60.00 61.50 61.50 61.30 60.70 60.50 61.24

8 60.50 61.90 62.30 62.20 62.50 63.30 63.10 63.10 62.50 63.13

9 62.00 63.10 64.10 64.20 63.90 64.40 65.30 64.20 64.30 64.72

10 63.40 65.10 64.60 64.50 65.90 64.90 66.50 65.80 66.40 66.03

Avg. 55.12 55.93 58.36 58.25 57.77 58.62 58.42 58.17 58.28 58.88

1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

1 49.19 49.58 49.36 49.38 49.41 49.68 49.68 49.14 49.41 49.55

2 53.40 53.05 54.14 53.78 53.93 53.11 53.48 53.79 53.86 53.75

3 57.00 57.19 57.03 57.51 56.61 56.74 56.58 56.54 56.20 56.39

4 57.12 57.38 56.81 57.17 57.17 56.75 56.88 56.51 58.88 59.33

5 56.88 56.49 56.84 56.80 56.72 56.33 56.33 56.64 58.05 58.13

6 59.58 59.37 59.29 59.62 59.62 59.38 59.59 59.22 60.55 60.62

7 61.35 61.51 61.41 61.20 61.66 61.48 61.32 61.13 61.72 62.06

8 62.78 63.93 63.38 63.55 63.20 63.64 63.41 63.18 63.41 63.59

9 64.75 64.68 65.12 65.36 65.14 65.32 64.88 65.52 65.40 65.25

10 66.15 66.56 66.22 66.22 66.80 66.36 66.64 66.88 66.91 66.79

Avg. 58.82 58.97 58.96 59.06 59.03 58.88 58.88 58.86 59.44 59.55

Table 11: Accuracy of subsets evaluated at different outer loops. Selected SMLS includes IPC1, IPC2,
IPC3, and IPC4. CIFAR-10, IPC10.
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B.6 CLASS-WISE MLS SELECTION

Stable to Class-wise and Non-class-wise. By default, we employ a uniform MLS size across all
image classes for simplicity. However, our approach can be easily extended to maintain class-specific
MLS sizes. As indicated in Tab. 12, our approach performs consistently in both class-wise and
non-class-wise settings.

Visualization of Class-wise MLS Selection. Fig. 6 presents the choice of MLS of each class at every
selection round. Compared to the non-class-wise manner (Fig. 3b), the class-wise manner selection
tends to select relatively larger subsets.

class-wise 1 2 3 4 5 6 7 8 9 10 20 30 40 50 Avg.

IPC10
✓ 49.22 52.90 56.13 56.98 57.55 61.05 62.22 63.57 65.44 66.90 - - - - 59.19
- 49.66 54.58 53.92 54.55 55.18 58.80 61.51 63.36 65.41 66.72 - - - - 58.37

IPC50
✓ 48.17 53.35 55.68 57.11 56.75 59.57 60.02 60.31 60.76 61.55 66.79 70.29 72.77 74.57 61.26
- 47.83 52.18 56.29 58.52 58.75 60.67 61.90 62.74 62.32 62.64 66.88 70.02 72.91 74.56 62.01

Table 12: Class-wise v.s. non-class-wise SMLS . CIFAR-10.
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Figure 9: Visualization of selected subsets using a class-wise approach.
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C VISUALIZATION OF CONDENSED IMAGES

C.1 CIFAR-10

Fig. 10, 11 show the effectiveness of the proposed method. Note that the two figures using a multi-
formation factor of 1 are for the purpose of better visualization. All experimental results shown in
this visualization use the same settings as the main results reported in Tab. 1. Fig. 12 presents the
visualizations of MDC on the CIFAR-10 dataset using a factor of 2 (Kim et al., 2022b).

Figure 10: Visualization of the initialization of CIFAR-10, IPC10.

(a) (b) IDC (Kim et al., 2022b)

airplane
car
bird
cat
deer
dog
frog
horse
ship
truck

(c) MDC

Figure 11: Visualization of the proposed condensation method. (a) and (b) are IDC (Kim et al.,
2022b) condensed to IPC1 and IPC10, respectively. (c) is the proposed method, MDC. CIFAR-10.

(a) Initialization (b) IDC (Kim et al., 2022b) (c) MDC

Figure 12: Visualization of the proposed method. The number of the multi-formation factor is 2,
meaning each condensed image is a composite of four original images. CIFAR-10, IPC10.
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C.2 CIFAR-100

Fig. 13 visualizes the effects of MDC on the CIFAR-100 dataset using a factor of 2 (Kim et al.,
2022b).

(a) Initialization

(b) IDC (Kim et al., 2022b)

(c) MDC

Figure 13: Visualization of the proposed condensation method. The number of the multi-formation
factor is 2, meaning each condensed image is a composite of four original images. CIFAR-100,
IPC10, class: apple.

C.3 SVHN

Fig. 14 presents the visualizations of MDC on the SVHN dataset using a factor of 2 (Kim et al.,
2022b).

(a) Initialization (b) IDC (Kim et al., 2022b) (c) MDC

Figure 14: Visualization of the proposed condensation method. The number of the multi-formation
factor is 2, meaning each condensed image is a composite of four original images. SVHN, IPC10.
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C.4 IMAGENET

Fig. 15 uses a factor of 3 for ImageNet. Through comparing the images (class: gazelle hound)
highlighted by orange, red and green boxes in Fig. 15, we observe the similar pattern shown in Fig. 6
that our MDC has large distortion.

(a) Initialization

(b) IDC (Kim et al., 2022b)

(c) MDC

Figure 15: Visualization of on ImageNet targeting IPC20. The number of the multi-formation factor
is 3, meaning each condensed image is a composite of nine original images. class: gazelle hound.
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