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ABSTRACT

Medical large language models (LLMs) have demonstrated remarkable capabili-
ties in clinical decision support and biomedical question-answering, yet they re-
main highly vulnerable to adversarial threats such as prompt injection, data poi-
soning, and parameter tampering. As reported in Nature Medicine (2025), exist-
ing defense mechanisms based on static triple-form knowledge graphs (KGs) lack
structural adaptability, making them ineffective against multi-hop reasoning at-
tacks or semantic perturbations. To address this challenge, we propose a structure-
aware KG reconstruction framework powered by graph neural networks (GNNs),
which dynamically reweights relational edges, filters adversarial connections, and
stabilizes semantic propagation while preserving triple compatibility. By incor-
porating relation-aware weighted triples, our method exhibits stronger adversarial
robustness compared to conventional equal-weight KGs. The results show that
our method can improve accuracy and other indicators by an average of 3% on
QA benchmarks compared to existing defense methods. In terms of drug rec-
ommendation ranking tasks, our method can balance accuracy and completeness.
Our approach outperforms vanilla LLMs and existing defense methods, effectively
restoring pre-attack performance and enabling trustworthy, robust medical LLM
applications.

1 INTRODUCTION

Large Language Models (LLMs) have shown remarkable performance across natural language pro-
cessing (NLP) tasks. In the medical domain, domain-specific LLMs such as BioGPT, PubMedGPT,
and Med-PalLM have been rapidly adopted for clinical question answering, diagnosis assistance, and
biomedical literature summarization, often surpassing human-level benchmarks like PubMedQA
and MedQA [Zhao et al.|(2025); [Yang et al.| (2024c)); |Cai et al.| (2024).

However, medical LLMs are particularly vulnerable to subtle adversarial manipulations due to the
complexity of medical semantics. Attacks such as summary injection [Yang et al.| (2024a), data
poisoning |Alber et al.| (2025); [Das et al.| (2024), and parameter tampering Han et al.| (2024) can
mislead reasoning, induce harmful outputs, and evade traditional detection methods Yang et al.
(2024Db)); Ness et al.|(2024); Huang et al.| (2025).

To mitigate these risks, prior work has explored using structured medical knowledge graphs (KGs)
as external factual priors Hamid & Brohi| (2024); |Yang et al.| (2024a). These KGs, composed of
triplets (head, relation, tail), support tasks like verification and anomaly detection. Yet, static triplet-
based KGs struggle with deeper semantic perturbations and multi-hop injection attacks due to their
lack of structural adaptiveness Kumari et al.| (2025).

Graph Neural Networks (GNN5s) offer a principled framework for capturing global semantics and
modeling relation importance via attention mechanisms |Kumari et al.| (2025). By propagating mes-
sages and learning edge weights, GNNs can identify critical relational paths and suppress misleading
connections. This makes them particularly suitable for defending against false links, bridge node
insertions, and corrupted reasoning chains.



Motivated by this, we propose a structure-aware KG reconstruction framework based on GNNs to
enhance LLM robustness. Rather than embedding KG content directly, we reconstruct the graph
topology with adaptive edge weights, semantic filtering, and anomaly suppression. This enables
principled and lightweight structural defense without modifying the triplet format.

As shown in Figure[T] the plain triplet KG (left) is easily misled by injected malicious facts, resulting
in incorrect treatment recommendations. The malicious abstract defender (middle) over-prunes re-
lations, removing both malicious and some legitimate high-importance drugs, thus losing complete-
ness. In contrast, our GNN-enhanced KG (right) assigns relational weights, filters out malicious
links, and ranks trusted medical knowledge, enabling robust and complete treatment reasoning.

Unlike prior KG-GNN integrations focused on representation learning, our method is explicitly
tailored for adversarial defense. The reconstructed KG maintains triplet compatibility but is struc-
turally reinforced for resilience and accuracy.

In summary, we revisit medical LLM defense from a structural perspective and propose a GNN-
based KG reconstruction framework that dynamically adjusts topology, models fine-grained relation
importance, and stabilizes reasoning under attack. Our main contributions are:

Structure-Aware KG Reconstruction: A GNN-driven pipeline that reweights relations and prunes
adversarial links while preserving triplet structure.

Multi-Task Robustness Optimization: A dual-objective loss that enforces structural fidelity and
suppresses adversarial influence.

Comprehensive Empirical Validation: Experiments on PubMedQA and MedQA under various
attacks show that our method outperforms existing defenses, restoring factual consistency in medical
LLMs.

2 RELATED WORKS

2.1 OVERVIEW OF ATTACK METHODS

Recent studies have revealed that LLMs are increasingly susceptible to sophisticated adversarial
attacks that compromise their factual reliability, especially in high-stakes clinical contexts. Among
these, three classes of attacks—targeted misinformation injection, data poisoning, and parameter
tampering—are particularly relevant to safety-critical applications.

A prominent form of targeted attack is malicious abstract injection, where attackers craft human-like
but deceptive abstracts that subtly introduce false medical claims. Scorpius is a conditional text gen-
erator that fabricates abstracts linking a promoted drug to a target diseaseYang et al.[(2024a). These
abstracts, when inserted into medical corpora, substantially alter downstream knowledge graph con-
struction and reasoning. Astonishingly, adding just one such abstract can boost a drug’s relevance
ranking from below top 1,000 to the top ten in over 70% of tested cases. These effects are robust
even when mixed with millions of authentic documents, and are hard to detect with GPT-4-based
defenders or human reviewers.

Another severe threat is data poisoning, wherein adversaries inject imperceptible corruptions into the
training data of medical LLMs. Alber’s experiment show that adversarial examples—carefully ma-
nipulated few-shot prompts containing erroneous biomedical associations—can significantly bias
model outputsAlber et al.| (2025). Poisoned models demonstrate degraded performance on Pub-
MedQA and MedMCQA, often hallucinating clinically incorrect treatments. These manipulations
require only marginal token-level perturbations and are resilient across different fine-tuning meth-
ods.

Model-level attacks via parameter tampering present a stealthy yet potent threat. Han shows that
fine-tuning or instruction tuning with adversarially biased corpora can nudge models into preferring
specific misinformationHan et al.| (2024). These attacks can be domain-specific and instruction-
consistent, making detection difficult, especially in cases where subtle misalignment evades tradi-
tional safety benchmarks.

Together, these attack methods demonstrate how LLMs can be manipulated at differ-
ent stages—from pretraining corpora to prompt-level injections and inference-time interven-



tions—posing significant safety risks. Therefore, robust structural defense mechanisms, such as
GNN-based KG reconstruction proposed in our work, are essential for restoring trust in medical
LLM pipelines.
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Figure 1: The disadvantages of existing defense methods and the advantages of our refactoring

2.2  OVERVIEW OF DEFENSE METHODS

AlberAlber et al.| (2025) proposes a statistical filtering framework to defend against data-poisoning
attacks during the construction of medical knowledge graphs. Their method evaluates extracted
triples by computing z-scores over entity-relation frequency distributions, filtering out anomalous
links that deviate from expected statistical norms. While this approach is lightweight and easy to
integrate, it operates purely on isolated triples and lacks modeling of higher-order graph dependen-
cies or semantic flow. Consequently, it remains susceptible to structurally subtle attacks that do
not violate local frequency patterns but distort global reasoning paths. In contrast, our method in-
troduces a GNN-based reconstruction mechanism that captures contextual edge weights, semantic
coherence, and topological structure. By dynamically refining the KG through weighted attention
and multi-hop path reasoning, our approach offers significantly stronger robustness against complex
and distributed poisoning strategies that static scoring fails to detect.

YangYang et al| (2024a)) approached defense from a text-level perspective, aiming to detect and
filter maliciously generated biomedical abstracts before they are used for downstream applications.
They trained a logistic regression-based defender to predict whether a generated abstract expresses
a trustworthy relation, based on embedding shifts in pre-trained KG ranking models. Rather than
evaluating explicit graph structure or modifying the KG itself, their method leverages changes in the
ranking behavior of links induced by the abstract to infer semantic toxicity. This design allows for
lightweight, model-agnostic filtering at the input level, but does not offer mechanisms to restore or
stabilize corrupted knowledge once integrated into structured representations.

3 METHOD

3.1 STRUCTURE-AWARE KG RECONSTRUCTION FRAMEWORK

Fig. [J] presents the Adversarially Robust Structure-Aware Medical Knowledge Graph Reconstruc-
tion Framework. It begins with raw knowledge graph triplets, performing entity embedding and
relation weight initialization. An adjacency matrix is built, then processed by GNN-driven atten-
tion to calculate dynamic edge confidences and prune invalid connections. Anomaly detection and
ranking consistency modules enforce clinical logic, yielding a robustly reconstructed graph. This
pipeline equips medical LLMs with structured, trustworthy knowledge to resist adversarial attacks.



3.2 MEDICAL KG REPRESENTATION
3.2.1 ENTITY EMBEDDING

Medical entities (drugs/diseases/symptoms) are encoded with clinical semantics:

0" = Gpiorrr(vi) ® Wiep - $(v;) 0

where ¢pioperT generates 768-dim biomedical embeddings, 1 encodes ICD-10 clinical priority, and
@ denotes concatenation.

3.2.2 RELATION-AWARE INITIALIZATION

To incorporate prior clinical knowledge into the model, each medical relation » € R is assigned
an initial importance coefficient v, according to its potential impact on clinical decision-making.
These coefficients are derived from domain guidelines and empirical frequency—impact analysis on
the underlying medical knowledge graph. Specifically, relations corresponding to contraindication
are assigned higher weights due to their critical role in preventing harmful drug—disease combi-
nations, while treatment relations receive moderately high weights, and side-effect relations are
down-weighted to reduce overemphasis on secondary effects:

1.5 contraindication
e =7 W,, = =<12 treatment )
0.8 side-effect

These values serve as an informed prior and can be tuned during validation to adapt to different
datasets or application contexts.

3.3 GNN-BASED RECONSTRUCTION MECHANISM
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Figure 2: Robust GNN-based Medical Knowledge Graph Reconstruction Framework

3.3.1 ATTENTION-DRIVEN EDGE WEIGHTING

Multi-head graph attention computes relation strength:

o exp (o (@’ [W¥h;||[W¥h;])) -
Y ZmGN(i) exp (o (a”[WFh;|[WFkh,,]))
K
o1&
G = g 20 )

where K attention heads capture multi-aspect medical semanticsPark et al.[(2023)).



3.3.2 TOPOLOGY REFINEMENT

Reconstructed adjacency matrix:

®)

. CAVij if CAYZ']‘ Z T
0 otherwise

with medical security threshold 7.

3.4 ROBUSTNESS ENHANCEMENT MODULES

3.4.1 ADVERSARIAL ANOMALY DETECTION

The anomaly detection module identifies suspicious relations in the reconstructed knowledge graph
based on their learned edge weights and clinical criticality. Specifically, given an edge e;; between
entities ¢ and j, an alert is triggered if the edge confidence score &;; is below a safety threshold and
the relation type r belongs to a clinically critical set:

Alert(eij) =1 [(@ij < 06) N (T S ch’tical)} ) (6)

where d&;; € [0, 1] denotes the final attention-based confidence weight for edge e;; produced by the
GNN, and Rl = {contraindication, dosage} represents the set of high-risk relations whose cor-
ruption can cause severe clinical consequences. The indicator function I[-] returns 1 if the condition
is satisfied and O otherwise.

3.4.2 DRUG RANKING CONSISTENCY

To maintain the integrity of downstream drug recommendation tasks, we enforce ranking consis-
tency by computing a clinical relevance score for each drug with respect to a target disease d:

Score(d, drug) = Z G (grug,r,d) - IrpA(T), ™)
7€ Rireat

where Ryea is the set of treatment relations, &(qng,r,q) i8 the learned confidence weight of the
(drug, r, d) triplet, and Igpa (7) is an indicator function equal to 1 if relation r is approved or recom-
mended by authoritative sources such as the FDA, and 0 otherwise.

3.5 OPTIMIZATION OBJECTIVE

We adopt a multi-task loss function to jointly ensure structural fidelity of the reconstructed graph
and robustness against adversarial links:

Lona = Y ||A} — A%, ®)
(4.9)€€
Loy = —log (1 — max de> , ©)]
e€Euv
L= )\1 ACslruct + )\2£adva (10)

where A’ is the adjacency matrix of the reconstructed graph, A#' is the adjacency matrix of the clean
ground-truth graph, and £ is the set of edges in the KG. The term &,4, denotes the set of adversarially
injected edges. The hyperparameters A\; and A2 balance the contribution of structural reconstruction
loss and adversarial suppression loss. The L term enforces topological similarity to the ground
truth, while £,4, penalizes high-confidence assignment to malicious edges.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

We conduct experiments on two biomedical question answering benchmarks and one knowledge
graph—based drug ranking task to evaluate the robustness of large language models and graph repre-
sentations under adversarial settings.



Algorithm 1 Medical KG Reconstruction
Require: Raw KG G = (V,£,R)

Ensure: Reconstructed KG G’ = (V, &', R)
1 Initialize b « Eq. (1)

2: forl =1to L do

3 Compute edge weights &;; < Eq. (3-4)

4:  Update embeddings h{” « GNN(h(~1, &)
5: end for
6
7
8
9

: Prune edges: &' < {e;; | &u;; > 7}
. Stabilize paths < Eq. (6)

: Generate drug ranks <— Eq. (8)

: return G’ with edge weights &

Benchmark. For QA evaluation, we use PubMedQA lin et al.| (2019) and MedQA /Jin et al.
(2021). PubMedQA consists of research questions derived from biomedical abstracts with
yes/maybe/no answers, assessing factual consistency in scientific literature. MedQA contains
multiple-choice questions from the United States Medical Licensing Examination (USMLE), testing
comprehensive clinical knowledge and multi-document reasoning.

Models. We evaluate three language models with varying levels of domain adaptation:

* BioGPT |Luo et al.|(2022): a decoder-only model pre-trained on PubMed abstracts for
biomedical generation tasks.

* LLaMA2-7B Touvron et al.|(2023): a general-purpose open-weight transformer baseline.

* Meditron-7B |Chen et al.| (2023): a domain-adapted LLaMA?2 variant further pre-trained
on clinical notes and biomedical papers, designed for zero-shot medical QA.

Knowledge Graphs. We evaluate our method on three biomedical KGs with diverse structures
and semantics:

* Hetionet [Himmelstein et al.| (2017): 47K nodes, 2.25M edges, 11 entity and 24 relation
types, focusing on high-quality drug—disease—gene interactions.

* DRKG [loannidis et al.| (2020): 97K entities, 5.87M triples, integrating multiple sources
into a dense drug-centric graph for medical recommendation tasks.

* PrimeKG |Chandak et al.|(2023)): 4.3M nodes, 18M edges, covering drugs, diseases, genes,
and pathways, providing high heterogeneity for robustness evaluation.

Adversarial Settings. We consider three attack types: Summary Injection (Scorpius) [Yang
et al.| (2024a) — Generate fabricated biomedical paper abstracts with an LLM, conditioned on a
target drug and disease, and insert them into the literature corpus before KG construction so that the
poisoned KG contains false drug—disease links. Pre-training Data Poisoning|Alber et al.|(2025) —
Inject Al-generated medical misinformation into vulnerable portions of large pre-training datasets
(e.g., Common Crawl) so that the misinformation is learned during model training without direct
access to weights. Targeted Parameter Manipulation Han et al.| (2024) — Modify specific MLP
layer weights in the transformer via gradient-based updates to encode false biomedical associations
while keeping other model behavior unchanged.

Ablation Studies. Due to space constraints, all ablation studies—including (a) the effect of the
edge pruning threshold 7, (b) the contribution of the robustness enhancement modules (adversarial
anomaly detection and drug ranking consistency), and (c) the impact of varying the loss balance
coefficients A—are provided in the Appendix.

4.2 EVALUATION METRICS

QA Task Metrics. For classification-based QA evaluation, we define the standard metrics as fol-
lows:



Accuracy quantifies the proportion of correctly predicted instances relative to the total number of
predictions.

Precision reflects the ratio of true positive predictions to the sum of all positive predictions.
Recall measures the fraction of true positives among all actually positive instances.

F1 Score computes the harmonic mean of Precision and Recall, balancing their performance trade-
off.

KG-based Drug Ranking Metrics. For the KG-based drug ranking task, we assess the robustness
of entity rankings under adversarial perturbations. Following Yang Yang et al.| (2024al), we track
changes in drug rankings for given diseases before and after poisoning. The metric reflect both local
and global effects of poisoning on biomedical knowledge integrity. In our analysis, we complement
these metrics with visual comparisons of ranking distributions under attacked, and defended settings.

PUBMEDQA BioGPT LLaMA2 Meditron

Attack Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1
Scorpius 0.187 0.204 0.156  0.182 0.173 0.196 0.151  0.176 0.191 0.209 0.164  0.187
Data Poisoning 0.367 0.382 0.351 0.359 0.341 0.368 0.330 0.349 0.358 0.377 0.346  0.361
Targeted Misinformation 0.087 0.069 0.104 0.076 0.079 0.066 0.095 0.073 0.085 0.071 0.099  0.089
Ours @Hetionet 0.892 0.910 0.905 0.908 0.882 0.904 0.888  0.892 0.879 0.896 0.885 0.889
Ours@DRKG 0.881 0.899 0.893  0.895 0.872 0.887 0.879  0.883 0.867 0.881 0.874 0.877
Ours @PrimeKG 0.907 0.926 0915  0.921 0.901 0.918 0.907 0912 0.895 0.912 0.901  0.906

Table 1: Comparison of QA performance under different KG-enhanced methods and attack strate-
gies on PUBMEDQA.

MEDQA BioGPT LLaMA2 Meditron

Attack Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1
Scorpius 0.198 0.191 0.207  0.175 0.185 0.194 0.172  0.180 0.188 0.200 0.178  0.184
Data Poisoning 0.304 0.297 0.283  0.255 0.330 0.350 0.318 0.335 0.342 0.360 0331  0.346
Targeted Misinformation 0.065 0.073 0.097 0.112 0.070 0.075 0.100  0.115 0.078 0.082 0.104  0.110
Ours @Hetionet 0.894 0.892 0.899 0.891 0.885 0.905 0.892  0.889 0.886 0.894 0.882  0.888
Ours@DRKG 0.879 0.884 0.883  0.882 0.872 0.881 0.874  0.877 0.871 0.880 0.868  0.872
Ours @PrimeKG 0.916 0.905 0.924 0917 0.907 0.919 0917 0913 0.911 0.910 0.905  0.907

Table 2: Comparison of QA performance under different KG-enhanced methods and attack strate-
gies on MEDQA.

4.3 DEFENSE RESULTS AGAINST ATTACK METHODS

Medical large language models (LLMs) are vulnerable to multi-level adversarial attacks that com-
promise factual accuracy and reasoning integrity. We evaluate our proposed Graph Neural Network
(GNN)-based weighted knowledge graph (KG) reconstruction under three representative threats:
summary injection (Scorpius), data poisoning, and targeted misinformation via parameter manipu-
lation.

As shown in Table [T] and Table 2] vanilla LLMs (BioGPT, LLaMA2, Meditron) suffer substantial
performance degradation under all attacks. For example, BioGPT’s F1 score under targeted mis-
information drops to 0.076 on PubMedQA and 0.110 on MedQA, indicating severe disruption of
reasoning chains.

In contrast, our GNN-enhanced defense (Ours@PrimeKG) consistently restores or exceeds pre-
attack performance. Under Scorpius, Meditron’s F1 improves from 0.857 to 0.893, and BioGPT
on MedQA rises from 0.857 to 0.920. Similar trends hold for data poisoning and parameter tam-
pering. These gains arise from our weighted KG reconstruction, which uses message passing and
attention-based edge reweighting to assign high confidence to trustworthy relations while suppress-
ing suspicious links, thereby retaining clinically important connections.

* Summary Injection: Detects and attenuates anomalous propagation paths caused by in-
jected summaries, preventing distortion in multi-hop reasoning.

* Data Poisoning: Grounds inference in a structurally filtered KG, mitigating reasoning
shifts even when training data corruption is minimal (0.01%).



* Parameter Tampering: Acts as an external structural validator, preserving drug—disease
consistency despite hidden model weight manipulations.

Our method is attack-agnostic, requiring no handcrafted features or attack-specific assumptions. By
restoring global structural coherence and modeling fine-grained relational importance, the weighted
KG reconstruction offers a principled, interpretable, and robust defense against evolving adversarial
strategies.

4.4 EXPERIMENTAL RESULTS COMPARED WITH OTHER DEFENSE METHODS

To comprehensively evaluate the robustness and generalizability of our GNN-based knowledge
graph (KG) reconstruction framework, we compare it against two representative defense paradigms:
(1) misinformation detection via text-level filtering, and (2) triple structure consistency checks
based on KG topology analysis.

Misinformation Detection-Based Defense. This approach classifies biomedical abstracts before
KG construction to filter potentially harmful content. While effective against obviously fabricated or
semantically inconsistent text, it degrades when facing fluent, contextually plausible misinformation
generated by advanced LLMs. As shown in Table[3|and Table ] its improvements are moderate: for
example, BioGPT’s F1 reaches 0.865 on PubMedQA and 0.860 on MedQA, which is significantly
lower than our method’s 0.921 and 0.920 on the same tasks.

Structure Consistency Detection-Based Defense. This method detects anomalies by comparing
entity rankings before and after KG updates, aiming to identify large-scale structural disruptions.
However, it struggles with subtle multi-hop manipulations that preserve local triplet validity. For
instance, on PubMedQA, BioGPT’s F1 rises to 0.908 (Ours @Hetionet) or 0.895 (Ours@DRKG),
yet both remain below the 0.921 achieved by our GNN-enhanced KG reconstruction.

Our GNN-Based KG Reconstruction Defense. Our approach embeds structural reasoning directly
into KG refinement via attention-weighted message passing, enabling it to identify and down-weight
adversarially induced low-confidence relations. This allows the KG to maintain semantic integrity
while filtering malicious edges without excessive pruning. The results show consistent superiority:

* PubMedQA: BioGPT improves from 0.865 (misinformation detection) to 0.921, and
LLaMA?2 improves from 0.853 to 0.889.

¢ MedQA: BioGPT rises from 0.860 to 0.920, and Meditron from 0.848 to 0.893.

Unlike detection-based methods that rely on spotting malicious patterns or one-time ranking de-
viations, our GNN models relational trust and propagation paths in the KG itself. This structural
modeling enables fine-grained, context-aware filtering that preserves legitimate medical knowledge
while suppressing adversarial noise. Consequently, our framework delivers both higher defense
efficacy and better knowledge completeness across tasks and attack types.

PUBMEDQA BioGPT LLaMA2 Meditron

Defense Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1
Scorpius 0.864 0.887 0.869 0.882 0.861 0.813 0.907  0.868 0.859 0.822 0.889  0.864
Misinformation Detection 0.855 0.809 0.908  0.865 0.846 0.887 0917 0.853 0.843 0.876 0913 0.851
Ours @Hetionet 0.892 0919 0.905  0.908 0.877 0.865 0.901  0.893 0.875 0.868 0.895  0.880
Ours@DRKG 0.881 0.899 0.893  0.895 0.865 0.854 0.894 0.871 0.861 0.850 0.882  0.865
Ours@PrimeKG 0.907 0.926 0915 0921 0.884 0.874 0915 0.889 0.889 0.881 0910 0.892

Table 3: Comparison of QA performance under different KG - enhanced methods and defense strate-
gies on PUBMEDQA.

4.5 DRUG RANKING RESULTS OF DEFENSE

To further assess the practical effectiveness of our GNN-based knowledge graph (KG) reconstruc-
tion, we conducted a drug ranking task under adversarial poisoning scenarios. In this task, the
z-axis denotes the drug ranking before poisoning, while the y-axis denotes the ranking after poi-
soning. Points along the y = x diagonal represent unchanged rankings, whereas points below the
diagonal indicate successful promotion of targeted drugs.



MEDQA BioGPT LLaMA2 Meditron

Defense Accuracy Precision Recall F1 Accuracy Precision Recall F1  Accuracy Precision Recall F1

Scorpius 0.866 0.882 0.873  0.877 0.860 0.826 0.888  0.857 0.857 0.835 0.880  0.857
Misinformation Detection 0.854 0.805 0910 0.860 0.845 0.872 0914 0.850 0.842 0.861 0911 0.848
Ours@Hetionet 0.896 0.916 0.906 0911 0.880 0.868 0.897 0.882 0.882 0.865 0.890 0.876
Ours@DRKG 0.884 0.890 0.892  0.891 0.867 0.853 0.885  0.869 0.863 0.848 0.872  0.860
Ours@PrimeKG 0.911 0.925 0.918  0.920 0.888 0.879 0913 0.892 0.890 0.884 0.905  0.893

Table 4: Comparison of QA performance under different KG-enhanced methods and defense strate-
gies on MEDQA.

For clarity, the detailed comparisons across different defense settings and corresponding figures are
provided in Appendix

5 CONCLUSION

In this work, we present a novel defense framework for medical large language models based on
GNN-powered knowledge graph reconstruction. Motivated by the limitations of static triplet-based
KGs in resisting structural and semantic adversarial attacks, our method introduces a structure-
aware reconstruction pipeline that dynamically reweights relational edges, filters adversarial con-
nections, and stabilizes reasoning paths. By explicitly modeling relation importance, our framework
achieves a balanced defense that removes harmful links while preserving clinically critical knowl-
edge—addressing the over-pruning and under-protection issues of existing methods. Extensive ex-
periments across PubMedQA, MedQA, and KG-based drug ranking tasks demonstrate that our ap-
proach significantly outperforms existing defenses in accuracy, robustness, and semantic fidelity,
remaining effective under diverse attack types including summary injection, data poisoning, and
parameter tampering. By restoring trust in the structural integrity of medical KGs, our framework
not only strengthens the security of medical LLMs but also enhances their reliability in real-world
healthcare applications such as clinical decision support, evidence-based drug recommendation, and
patient safety assurance. Future work may explore integrating our structural defense with generative
model alignment and expanding its applicability to multimodal clinical settings.

REFERENCES

Daniel Alexander Alber, Zihao Yang, Anton Alyakin, Eunice Yang, Sumedha Rai, Aly A Valliani,
Jeff Zhang, Gabriel R Rosenbaum, Ashley K Amend-Thomas, David B Kurland, et al. Medical
large language models are vulnerable to data-poisoning attacks. Nature Medicine, pp. 1-9, 2025.

Yan Cai, Linlin Wang, Ye Wang, Gerard de Melo, Ya Zhang, Yanfeng Wang, and Liang He. Med-
bench: A large-scale chinese benchmark for evaluating medical large language models. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 17709-17717, 2024.

Payal Chandak, Kexin Huang, and Marinka Zitnik. Building a knowledge graph to enable precision
medicine. Scientific Data, 10(1):67, 2023.

Zeming Chen, Alejandro Herndndez-Cano, Angelika Romanou, Antoine Bonnet, Kyle Matoba,
Francesco Salvi, Matteo Pagliardini, Simin Fan, Andreas K&pf, Amirkeivan Mohtashami, Alexan-
dre Sallinen, Alireza Sakhaeirad, Vinitra Swamy, Igor Krawczuk, Deniz Bayazit, Axel Marmet,
Syrielle Montariol, Mary-Anne Hartley, Martin Jaggi, and Antoine Bosselut. Meditron-70b: Scal-
ing medical pretraining for large language models, 2023.

Avisha Das, Amara Tariq, Felipe Batalini, Boddhisattwa Dhara, and Imon Banerjee. Exposing vul-
nerabilities in clinical llms through data poisoning attacks: Case study in breast cancer. medRxiv,
2024.

Rida Hamid and Sarfraz Brohi. A review of large language models in healthcare: Taxonomy, threats,
vulnerabilities, and framework. Big Data and Cognitive Computing, 8(11):161, 2024.

Tianyu Han, Sven Nebelung, Firas Khader, Tianci Wang, Gustav Miiller-Franzes, Christiane Kuhl,
Sebastian Forsch, Jens Kleesiek, Christoph Haarburger, Keno K Bressem, et al. Medical large



language models are susceptible to targeted misinformation attacks. NPJ digital medicine, 7(1):
288, 2024.

Daniel Scott Himmelstein, Antoine Lizee, Christine Hessler, Leo Brueggeman, Sabrina L Chen,
Dexter Hadley, Ari Green, Pouya Khankhanian, and Sergio E Baranzini. Systematic integration
of biomedical knowledge prioritizes drugs for repurposing. elife, 6:€26726, 2017.

Xijie Huang, Xinyuan Wang, Hantao Zhang, Yinghao Zhu, Jiawen Xi, Jingkun An, Hao Wang, Hao
Liang, and Chengwei Pan. Medical mllm is vulnerable: Cross-modality jailbreak and mismatched
attacks on medical multimodal large language models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 39, pp. 3797-3805, 2025.

Vassilis N. Ioannidis, Xiang Song, Saurav Manchanda, Mufei Li, Xiaoqgin Pan, Da Zheng, Xia Ning,
Xiangxiang Zeng, and George Karypis. Drkg - drug repurposing knowledge graph for covid-19.
https://github.com/gnn4dr/DRKG/, 2020.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What dis-
ease does this patient have? a large-scale open domain question answering dataset from medical
exams. Applied Sciences, 11(14):6421, 2021.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W Cohen, and Xinghua Lu. Pubmedqa: A
dataset for biomedical research question answering. arXiv preprint arXiv:1909.06146, 2019.

Madhavi Kumari, Rohit Chauhan, and Prabha Garg. Medkg: enabling drug discovery through a
unified biomedical knowledge graph. Molecular Diversity, pp. 1-19, 2025.

Rengian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon, and Tie-Yan Liu. Biogpt:
generative pre-trained transformer for biomedical text generation and mining. Briefings in bioin-
formatics, 23(6):bbac409, 2022.

Robert Osazuwa Ness, Katie Matton, Hayden Helm, Sheng Zhang, Junaid Bajwa, Carey E Priebe,
and Eric Horvitz. Medfuzz: Exploring the robustness of large language models in medical ques-
tion answering. arXiv preprint arXiv:2406.06573, 2024.

Jinyoung Park, Hyeong Kyu Choi, Juyeon Ko, Hyeonjin Park, Ji-Hoon Kim, Jisu Jeong, Kyungmin
Kim, and Hyunwoo Kim. Relation-aware language-graph transformer for question answering.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 13457-13464,
2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Junwei Yang, Hanwen Xu, Srbuhi Mirzoyan, Tong Chen, Zixuan Liu, Zequn Liu, Wei Ju, Luchen
Liu, Zhiping Xiao, Ming Zhang, et al. Poisoning medical knowledge using large language models.
Nature Machine Intelligence, 6(10):1156-1168, 2024a.

Yifan Yang, Qiao Jin, Furong Huang, and Zhiyong Lu. Adversarial attacks on large language models
in medicine. ArXiv, pp. arXiv—2406, 2024b.

Yifan Yang, Qiao Jin, Robert Leaman, Xiaoyu Liu, Guangzhi Xiong, Maame Sarfo-Gyamfi,
Changlin Gong, Santiago Ferriere-Steinert, W John Wilbur, Xiaojun Li, et al. Ensuring
safety and trust: Analyzing the risks of large language models in medicine. arXiv preprint
arXiv:2411.14487, 2024c.

Lulu Zhao, Weihao Zeng, Xiaofeng Shi, and Hua Zhou. Carebot: A pioneering full-process open-
source medical language model. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 26039-26047, 2025.

10


https://github.com/gnn4dr/DRKG/

A APPENDIX

A.1 DRUG RANKING RESULTS OF DEFENSE

Figure |3| presents four representative defense settings for the drug ranking task under adversarial
poisoning:

(a) Poisoned ranking results without defense: The majority of points lie below the diagonal,
indicating that most targeted drugs are promoted after poisoning, consistent with prior findings|Yang
et al.|(2024a).

(b) Link faithfulness defender (Medium level) [Yang et al.| (2024a): Moderate filtering partially
mitigates ranking distortion, with some recovery for top-ranked drugs, but many mid- and low-
ranked drugs remain affected.

(c) Link faithfulness defender (High level) Yang et al.| (2024a)): Aggressive filtering strongly
suppresses poisoning effects, but over-defends by removing legitimate high-ranking drugs, leading
to the loss of valuable candidates.

(d) Our GNN-based reconstruction: By reweighting relations and pruning only low-confidence
edges, our method maintains top-ranked drugs while resisting adversarial promotion, achieving a
balanced trade-off between robustness and completeness.
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Figure 3: Drug ranking evaluation under poisoning attacks using different defense methods. (a) No
defense. (b) Medium-level defense. (c) High-level defense. (d) Our GNN-based KG reconstruction.

A.2 ABLATION EXPERIMENT

To dissect the contributions of key components in our structure-aware KG reconstruction frame-
work and validate their necessity, we conduct systematic ablation experiments. All evaluations are
performed under Scorpius attacks (summary injection), using BioGPT, LLaMA?2, and Meditron as
base models with PrimeKG, and results are averaged over 5 independent runs on PubMedQA and
MedQA benchmarks .

A.2.1 EFFECT OF EDGE PRUNING THRESHOLD T

The threshold 7 in topology refinement (Eq. 7) determines which edges are retained in the recon-
structed graph, balancing between filtering adversarial links and preserving valid medical relations.
We test 7 € {0.05,0.10,0.15,0.20,0.25} and compare performance metrics in Tableand@

- 7 = 0.05: Retains excessive low-confidence edges, including a large number of adversarial in-
jections. This leads to degraded precision and F1 scores (BioGPT: Precision=0.872, F1=0.865 on
PubMedQA) due to noisy propagation in multi-hop reasoning.

-1 = 0.10: Still retains some low-confidence adversarial edges, resulting in suboptimal performance
(LLaMA2: Accuracy=0.864, Recall=0.850 on PubMedQA).
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-7 = 0.15: Achieves optimal balance, preserving high-confidence clinical relations (e.g., primary
treatment links with é&;; > 0.6) while filtering most adversarial edges. This configuration yields
the highest scores across all metrics (BioGPT: Accuracy=0.907, Precision=0.926, Recall=0.915,
F1=0.921 on PubMedQA), consistent with our main results.

- 7 = 0.20: Moderately over-prunes edges, removing some valid low-weight relations, which re-
duces recall (Meditron: Recall=0.874 on PubMedQA).

- 7 = 0.25: Further increases pruning stringency, causing noticeable drops in recall and F1
(LLaMAZ2: Recall=0.862, F1=0.883 on PubMedQA) due to loss of legitimate medical connections.

PubMedQA BioGPT LLaMA2 Meditron

T Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1
0.05 0.862 0.872 0.855 0.865 0.851 0.863 0.840 0.852 0.847 0.859 0.836  0.848
0.10 0.876 0.889 0.865 0.882 0.864 0.881 0.850 0.871 0.859 0.872 0.845 0.865
0.15 0.907 0.926 0915 0.921 0.901 0.918 0.907 0.912 0.895 0.912 0.901 0.906
0.20 0.892 0.910 0.885  0.895 0.882 0.904 0.879 0.883 0.877 0.896 0.868  0.877
0.25 0.881 0.899 0.870  0.885 0.873 0.892 0.862 0.883 0.866 0.881 0.855 0.868

Table 5: Performance metrics under varying edge pruning threshold 7 on PubMedQA.

MedQA BioGPT LLaMA2 Meditron

T Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1
0.05 0.855 0.863 0.847 0.855 0.843 0.856 0.832 0.844 0.839 0.851 0.828  0.840
0.10 0.870 0.881 0.862 0.871 0.858 0.872 0.846  0.859 0.853 0.865 0.841 0.853
0.15 0.916 0.905 0.924 0.917 0.907 0.919 0917 0.913 0.911 0.910 0.905  0.907
0.20 0.894 0.892 0.899  0.891 0.885 0.905 0.892  0.889 0.886 0.894 0.882 0.888
0.25 0.880 0.884 0.876  0.880 0.871 0.887 0.865 0.876 0.868 0.876 0.859  0.867

Table 6: Performance metrics under varying edge pruning threshold 7 on MedQA.

A.2.2 CONTRIBUTION OF ROBUSTNESS ENHANCEMENT MODULES

In Table|/| and [§] we ablate two core modules: Adversarial Anomaly Detection(AAD) (Eq@) and
Drug Ranking Consistency(DRC) (Eq[7), evaluating their individual and combined impacts.

- Full Model: Achieves the highest performance across all metrics (BioGPT: Accuracy=0.907, Pre-
cision=0.926, Recall=0.915, F1=0.921 on PubMedQA) by leveraging both modules synergistically.

- Without AAD: Removes the mechanism to flag suspicious high-risk relations, leading to decreased
precision and F1 (LLaMAZ2: Precision=0.875, F1=0.875 on PubMedQA).

- Without DRC: Disables enforcement of clinical relevance ranking, causing reduced recall (Med-
itron: Recall=0.880 on PubMedQA).

- Without Both Modules: Results in cumulative performance degradation, with the lowest scores
across all metrics (BioGPT: Accuracy=0.870, Precision=0.862, Recall=0.858, F1=0.870 on Pub-
MedQA).

A.2.3 IMPACT OF Loss Loss FUNCTION COEFFICIENTS

Our dual dual-objective loss formulation £ = Aj Lyt + A2Lagy Orchestrates a critical tradeoff
between two competing objectives:

1. Structural fidelity (Lgruer): Maintaining topological alignment with the clean medical knowledge
graph to preserve evidence-based relationships;

2. Adversarial resilience (Laqy): Suppressing suppressing suppression of adversarial edges injected
via attacks like Scorpius.

To optimize this balance, we conducted exhaustive experiments with g €
{0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0} (where A\ = 1 — )\;), evaluating BioGPT
on both PubMedQA and MedQA. Representative results for BioGPT are visualized in Figure 4]
with consistent trends observed across all models.
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1. Optimal Balance at \; = 0.5: All metrics peak at this configuration, demonstrating synergistic
alignment of structural preservation and adversarial filtering. For BioGPT:

e PubMedQA: Accuracy = 0.907, Precision = 0.926, Recall = 0.915, F1 =0.921
e MedQA: Accuracy = 0.916, Precision = 0.905, Recall = 0.924, F1 =0.917

This balance is clinically critical—preserving high-confidence treatment pathways (e.g., FDA-
approved drug-indication pairs) while eliminating spurious contraindications injected by adver-
saries.

2. Risk of Over-Suppression (\; < 0.3): Overweighting L.q, leads to aggressive pruning that
inadvertently removes valid low-weight medical relationships (e.g., off-label uses with emerging
evidence). This causes:

o Significant recall degradation (BioGPT on PubMedQA: Recall = 0.840 at A; = 0.0)

e Compromised clinical completeness, as critical differential diagnosis pathways are truncated

3. Risk of Under-Suppression (\; > 0.7): Overweighting L. preserves adversarial edges (e.g.,
Scorpius-injected drug-disease links), corrupting inference enough.

e Precision erosion (BioGPT on PubMedQA: Precision = 0.862 at A\; = 1.0)

e Clinically hazardous recommendations, including contraindicated drug combinations

PubMedQA MedQA
0.94 Q 0.94 Q
—e— Accuracy —e— Accuracy
Precision Precision
0.92 —— Recall 0.92 —+— Recall
—— F1 —— F1
0.90 0.90
o [
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Figure 4: BioGPT performance metrics across A1 values. Metrics include Accuracy (blue), Precision
(orange), Recall (green), and F1 (red).

PubMedQA BioGPT LLaMA2 Meditron
Configuration Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1
W/O AAD + W/O DRC 0.870 0.862 0.858  0.870 0.855 0.854 0.846  0.855 0.863 0.860 0.852  0.863
W/O AAD 0.889 0.901 0.892  0.889 0.880 0.875 0.888  0.875 0.875 0.882 0.880 0.874
W/O DRC 0.896 0915 0.885  0.896 0.889 0.902 0.880  0.889 0.880 0.890 0.880  0.880
Full Model 0.907 0.926 0915  0.921 0.901 0.918 0.907  0.912 0.895 0.912 0.901  0.906

Table 7: Performance metrics of robustness module ablation on PubMedQA.

MedQA BioGPT LLaMA2 Meditron
Configuration Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1
W/O AAD + W/O DRC 0.866 0.865 0.860  0.866 0.869 0.870 0.862  0.869 0.850 0.852 0.848  0.850
W/O AAD 0.886 0.892 0.890  0.886 0.882 0.880 0.885 0.882 0.876 0.878 0.875 0.876
W/O DRC 0.892 0.895 0.898  0.892 0.888 0.901 0.889  0.888 0.882 0.885 0.880  0.882
Full Model 0.916 0.905 0.924  0.917 0.907 0.919 0917 0.913 0.911 0.910 0.905  0.907

Table 8: Performance metrics of robustness module ablation on MedQA.

4. Dataset-Specific Consistency: MedQA (structured clinical questions) consistently outperforms
PubMedQA (unstructured literature-derived queries) across all A\; values, with a 1.2 - 2.3% F1
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gap. This highlights the importance of balanced loss weighting for unstructured medical text,
where adversarial signals are more subtly embedded.
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