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Abstract
Differential privacy (DP) offers a theoretical
upper bound on the potential privacy leakage of an
algorithm, while empirical auditing establishes a
practical lower bound. Auditing techniques exist
for DP training algorithms. However machine
learning can also be made private at inference. We
propose the first framework for auditing private
prediction where we instantiate adversaries with
varying poisoning and query capabilities. This
enables us to study the privacy leakage of four
private prediction algorithms: PATE (Papernot
et al., 2016), CaPC (Choquette-Choo et al., 2020),
PromptPATE (Duan et al., 2023), and Private-
kNN (Zhu et al., 2020). To conduct our audit, we
introduce novel techniques to empirically evaluate
privacy leakage in terms of Renyi DP. Our
experiments show that (i) the privacy analysis of
private prediction can be improved, (ii) algorithms
which are easier to poison lead to much higher
privacy leakage, and (iii) the privacy leakage is
significantly lower for adversaries without query
control than those with full control.

1. Introduction
Differential privacy (DP) assesses an algorithm’s privacy
by examining its outputs on two adjacent datasets, S and
S′, which differ in one data point (Dwork et al., 2006). It
bounds the log ratio of output distribution probabilities on
these datasets using a parameter ε. A small ε ensures that
an adversary cannot confidently distinguish whether the
algorithm processed S or S′. Thus, ε analytically bounds
private information leakage from the algorithm’s outputs.
In contrast, auditing a private algorithm (Ding et al., 2018;
Jagielski et al., 2020) provides a lower bound on its privacy
leakage. Analyzing both upper and lower bounds can yield
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three insights: a large gap may indicate a potential slack
in the analysis; a lower bound surpassing the upper may
indicate an incorrect analysis or implementation (Tramer
et al., 2022); and tracking how these bounds shift with
changes to assumptions on the adversary’s capabilities and
knowledge can inform us of which assumptions contribute
most to the algorithm’s privacy leakage (Nasr et al., 2021).

In the context of machine learning (ML), existing work has
exclusively audited differentially private training algorithms.
These algorithms train models satisfying DP (Abadi et al.,
2016), ensuring the privacy of all model predictions due
to DP’s post-processing property.1 However, machine
learning can also be made private at inference. Here, models
are trained non-privately and their predictions are noised
before release to satisfy DP. Despite the increasing relevance
of private prediction, notably to task adaptation of large
language models (Duan et al., 2023), there are no known
techniques to audit such algorithms. Our work addresses
this gap and proposes the first auditing framework to do so.

Private prediction algorithms diverge from private training
by training multiple non-private teacher models on separate
data partitions. At inference, they compile individual
model predictions into a histogram, introduce noise to each
histogram bin, and select the most frequent bin as the output.
To quantify the privacy leakage of private prediction, we
upper bound several cumulants of the log ratio of output
distributions (instead of the log ratio directly), resulting in a
Renyi DP (RDP) guarantee. RDP, an alternative formulation
of DP, offers enhanced compositional properties which is
beneficial when assessing privacy leakage that is composed
across multiple test queries. When reporting, we convert the
composed RDP guarantees to a classical DP guarantee.

To audit private prediction, the standard approach would
consider the full output set of multiple queries and audit
the resulting distribution using classical auditing techniques.
However, the discrete high dimensional nature of the output
distribution makes the application of these techniques non-
trivial. Moreover, composition theorems in classical DP
analysis are lossy and composing corresponding lower
bounds is invalid. This necessitates developing a novel
methodology to audit RDP guarantees which we use to

1An arbitrary function can be applied to the outputs of a DP
algorithm with no consequences to privacy.
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audit per-query privacy leakage and further compose using
lossless RDP composition theorems to give lower bounds
on the privacy leakage across multiple queries. Along with
our new approach to RDP auditing, we also introduce a
technique to calculate the exact Renyi divergence between
the outputs of noisy argmax on neighboring histograms.
This dual approach enables a more nuanced assessment and
helps in attributing discrepancies between the audit and the
theoretical analysis to either looseness in the analysis or
strength of the adversary, thereby enhancing the clarity of
our audit.

We apply our auditing framework to four well-known
private prediction algorithms: PATE (Papernot et al., 2016;
2018), CaPC (Choquette-Choo et al., 2020), PromptPATE
(Duan et al., 2023) and Private-kNN (Zhu et al., 2020).
All of these algorithms except Private-kNN allow for a
data-dependent privacy analysis, where the standard data-
independent analysis can be refined in cases when most
models agree on the prediction to be made. Even so, our
exact privacy analysis is tighter than this data-dependent
calculation indicating potential slack in the analysis. Across
all algorithms, we find that an adversary’s capability to
control the test queries is an important factor contributing
to maximal privacy leakage. Furthermore, more privacy is
leaked in cases where it is easier for adversaries to impact
the behavior of a teacher model on multiple test queries.
These trends are highlighted not only by the leakage due to
different adversaries, but also due to the differences in the
relative leakage of different private prediction algorithms
correlating with their ease of poisoning.

1.1. Related Work

Malek Esmaeili et al. (2021) run attacks on PATE under
label DP (a variant of DP protecting just the labels), for
a specific type of adversary. Our goal is to audit private
prediction in general, and with more granularity to enable
improved attacks or analysis. Wang et al. (2022) show test-
time attacks on private prediction, leaking privacy of the
queries made to private prediction algorithms, while our
goal is to measure privacy leakage of the training data.

Ding et al. (2018) propose an approach to detect DP
violations in many classic DP algorithms including noisy
argmax, which we consider in our work. Our work requires
RDP auditing rather than their ε-DP auditing, and we
audit using inputs that are relevant to private prediction,
to measure the privacy leakage from these ML algorithms
rather than just the noisy argmax.

Our work measures leakage of private prediction algorithms
through their returned labels. Choquette-Choo et al. (2021);
Li & Zhang (2021) demonstrate membership inference
attacks on traditional classifiers using only returned labels.

Recent work on auditing has shown how to lower bound
general RDP guarantees using variational characterizations
(Kong et al., 2023); our work instead performs audits suited
for mechanisms with a discrete output space and with an
attack interpretation.

DP in Machine Learning DP-SGD (Abadi et al., 2016;
Bassily et al., 2014) is the canonical method for performing
machine learning while satisfying finite DP guarantees.
There have been many improvements over the past decade,
including to tighten the theoretical analysis leading to
reduced ε parameters (Balle et al., 2018; Kairouz et al.,
2021; Denisov et al., 2022; Choquette-Choo et al., 2022;
2023a;b) and other empirical tricks to improve the utility of
trained models (De et al., 2022; Papernot et al., 2021). These
improvements have enabled production deployments of DP
ML models, for examples in GBoard on-device models (Xu
et al., 2023). However, practical use cases of DP ML such
as these require a large ε > 1 to obtain reasonable utility.
Auditing helps understand if this analysis is tight and which
assumptions may be contributing most to the high privacy
budget.

Privacy Testing/Auditing There exist several other
recently proposed auditing methods for DP training. Nasr
et al. (2023) show how to audit DP-SGD using only two
training runs, which yields tight audits for natural datasets.
Steinke et al. (2023) show how to perform auditing of DP-
SGD in a single training run. However, their approach
comes at the cost of requiring many injected “canary”
examples to be simultaneously memorized. Our work
performs the first audits of private predictions, and designing
sets of canary examples for private prediction algorithms is
interesting future work. Finally, Andrew et al. (2023) show
how to estimate (not lower bound) the privacy parameter ε
in a single training run and focus on a federated learning
setting. Pillutla et al. (2024) audits a lifted notion of
DP with multiple randomized canaries and builds adaptive
confidence intervals to give better audits requiring fewer
model training runs.

2. Notation and Preliminaries
We work in the multiclass classification setting where we
use features from X ⊂ Rd to predict labels from Y =
1, . . . , C. Let the space of feature vector and label pairs be
S = X × Y . Let x ∈ X and y ∈ Y , with S = (xi, yi)

n
i=1

the training dataset. In ML, our task is to learn a function
(model) f(·;S) : X → Y using the training dataset S,
such that f(x;S) accurately estimates the label y of the
feature x. A long line of work has shown that machine
learning models can leak sensitive information about its
training dataset (Shokri et al., 2016; Tramèr et al., 2022;
Carlini et al., 2021). The gold standard for preventing this
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is differential privacy.

2.1. Differential Privacy

Definition 1 (Approximate DP). (Dwork et al., 2006) An
algorithm A : Sn → O is (ε, δ)-DP if for any measurable
O ∈ O and S, S′ ∈ Sn that differ in one entry, we have
P (A(S) ∈ O) ≤ eε · P (A(S′) ∈ O) + δ.

An important property of DP is sequential composition:
given two mechanisms A1,A2 each satisfying a finite DP
bound, A2(S,A1(S)) also has a finite DP bound. However,
the composition bounds for approximate DP are not exact
and lead to loose privacy accounting. Renyi DP (RDP) is
an alternative definition to (ε, δ)-DP that provides lossless
composition bounds. Thus, RDP is the analysis method
of choice for private prediction algorithms. The Renyi
divergence between distributions P and Q is defined as:

Dα(P ||Q) :=
1

α− 1
logEx∼P

{
P (x)

Q(x)

α}
.

Definition 2 (Renyi DP). (Mironov, 2017) An algorithm
A : Sn → O satisfies (α, εα)-RDP, if for any S, S′ ∈ Sn
that differ in one entry we have Dα(A(S)||A(S′)) ≤ εα.

The RDP guarantee for the composition of mechanisms is
simply the order-wise sum of individual RDP guarantee.
We keep track of the RDP for several orders, and report the
optimal (ε, δ)-DP guarantee across orders found using the
following theorem.

Theorem 1. (Balle et al., 2020, Thm. 20) If an algorithm is
(α, εα)-RDP, then it is also (εα+log(α−1α )− log δ+logα

α−1 , δ)-
DP for any δ ∈ (0, 1).

2.2. Auditing Differential Privacy

Unlike the upper bounds that any DP algorithm must satisfy,
auditing gives a lower bound. We define auditing the
approximate DP guarantees of an algorithmA as empirically
estimating parameters ε` and δ such that the algorithm does
not satisfy (ε, δ)-DP for any ε < ε`. We denote it as ε`

since it is a lower bound on the true (ε, δ)-DP satisfied by
the algorithm. To find such a lower bound for an algorithm
A, we choose neighbouring datasets S, S′ and an output
set O on which we run the algorithm A on S and S′ many
times (say T ) and check the number of times the output is in
O for both S and S′ respectively. Using these proportions
and the Clopper-Pearson confidence intevals (Clopper &
Pearson, 1934), we calculate upper and lower bounds
on the probabilities P (A(S) ∈ O) (denoted as p`0, p

u
0 )

and P (A(S′) ∈ O) (denoted as p`1, p
u
1 ) and subsequently

estimate the lower bound ε` using the following equation:

ε` = max

{
p`1 − δ
pu0

,
p`0 − δ
pu1

}
. (1)

Algorithm 1 Private prediction framework

1: Input:Training dataset S = (X,Y ), teacher count k,
query dataset Q, per-query noise scale σ

2: Params: Number of partitions m
3: Initialize PREDICTIONS = []
4: Training Phase:
5: P = PARTITION(S,m)
6: for i = 1 to m do
7: Ti = TRAINTEACHER(Pi)
8: end for
9: Prediction Phase:

10: for q ∈ Q do
11: T = CHOOSE(Tm1 , k, q)
12: HS = GETPREDICTIONS(T, q)

13: H̃S = ADDNOISE(HS , σ)

14: PREDICTIONS.append(argmax H̃S)
15: end for
16: Output: PREDICTIONS

The choice of the neighbouring datasets and the output set
partly hinges on the constraints imposed on an adversary,
influencing the strength of the calculated lower bound ε`.

Attack interpretation. We can also view auditing as a
hypothesis test, where the adversary resolves:
H0 : S was used to generate the output of the algorithm A
H1 : S′ was used to generate the output of the algorithm A,
using the output of the mechanism. For a rejection region
O, let the false positive (P(A(S) ∈ O)) and false negative
(P(A(S′) ∈ O′)) rates for this hypothesis test be FP and
FN respectively. Then, Eq. (1) can be reformulated using
upper bounds on FP and FN as:

ε` = max

{
1− δ − FNu

FPu
,

1− δ − FPu
FNu

}
.

3. Private Prediction
In this section, we define privacy-preserving prediction,
integrate known algorithms into a unified framework, and
present two prevalent methods for reporting the privacy
guarantee in this framework. Following the setup of (Dwork
& Feldman, 2018), let A(S) denote a prediction interface
produced by applying algorithm A to the training set S,
which produces an output in Y when queried with a point
in X . Let (A(S)↔ Q) denote the sequence of outputs of
the interface when queried with a test query sequence Q.
Definition 3 (Private Prediction Interface). A prediction
interface A(S) satisfies (α, εα)-RDP if for every test query
sequence Q, the output (A(S)↔ Q) satisfies (α, εα)-RDP
with respect to dataset S.

Alg. 1 gives a general framework for private prediction,
based on the Sample Aggregate framework (Nissim et al.,
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2007). It first divides the training dataset into m splits,
training a distinct teacher on each split. In the prediction
phase, for each query, it selects k teachers from the m
available, aggregating their predictions on the query point
q into a histogram HS . After adding noise to create H̃S ,
the label that achieves plurality, i.e., the label with the
highest count in H̃S , becomes the prediction for q. The
added noise typically follows a Gaussian distribution with
scale σ, chosen to satisfy the desired privacy guarantee.
Mathematically,

PREDICTIONS = arg max
y∈Y

{HS + N(0, σ2)}. (2)

The privacy guarantee of Alg. 1 hinges on the noisy argmax
(Eq. (2)) mechanism’s privacy properties. We analyze the
privacy for each query individually using RDP and combine
them using composition theorems. Working with RDP
offers tighter composition properties than approximate DP
and it facilitates data-dependent privacy leakage analysis
(see below). The RDP guarantee is calculated in two ways:

Data Independent. This approach overlooks the
histogram’s post-processing into a single label release and
assumes the release of the entire noisy histogram. It
results in conservative privacy accounting, assuming a worst-
case scenario for each query and disregards any privacy
amplification due to post-processing.

Data Dependent. Proposed in Papernot et al. (2018,
Appendix A), this accounting technique applies data-
dependent analysis whereby the prediction interface incurs
a smaller privacy cost when many teachers agree on a
label. It partly accounts for post-processing for these easy
queries, which improves accounting. In this case, the privacy
parameter itself may release some private information.
However, we can use the smooth sensitivity mechanism
(Papernot et al., 2018, Appendix B) to release it privately.

4. Auditing Private Prediction
We now present our framework for auditing private
prediction. Like Nasr et al. (2021), we follow an adversary
instantiation approach; we define different adversaries
based on their training data altering capabilities and the
freedom to choose the test queries. Then, we discuss how
we use the results of an adversary’s attack as input to audit
the RDP guarantees provided by the noisy argmax, which
is the core privacy primitive in private prediction. Fig. 1
shows our framework, which we divide into three parts.

1. Crafter. Starting with a dataset S, the crafter generates a
new dataset S′, differing from S by a single data point.
These datasets then become the training inputs for private
prediction algorithms. We recognize two types of crafters
based on their methods of constructing S′ from S:

• Natural Crafter: Adds an in-distribution point.
• Poisoning Crafter: Adds an adversarial point.

2. Private Prediction Algorithm. The private prediction
framework A(·), detailed in Alg. 1, accepts datasets
S and S′ to create private prediction interfaces A(S)
and A(S′), by passing the datasets through the Training
Phase. These interfaces then respond to a sequence of
queries Q = (q1, q2, . . . , ) with sequences (A(S) ↔
Q) = (A(S; q1),A(S; q2), . . . , ) and (A(S′) ↔ Q) =
(A(S′; q1),A(S′; q2), . . . , ). We audit PATE, CaPC,
PromptPATE and Private-kNN.

3. Distinguisher. The distinguisher chooses the query
sequence Q, observes the output of the interfaces
(A(S) ↔ Q) and (A(S′) ↔ Q), and estimates
the privacy leakage of the prediction framework by
comparing the output distributions. We study two
distinguishers based on their query selection methods:

• Natural Distinguisher: Chooses queries (Q) from a
natural distribution, mimicking real-world scenarios,
simulated using the test dataset.

• Adversarial Distinguisher: Chooses Q adversarially,
which, in all cases we consider, is querying the
interface with the same query q repeatedly.

4.1. Adversaries

Using the above framework, we define three adversaries
using the aforementioned crafters and the distinguishers.

Nat-AdvQ. Natural crafter, adversarial distinguisher,
simulating a membership inference adversary who tries
to infer the membership of an in-distribution training set
example, but who adversarially chooses queries.

Pois-AdvQ. Poisoning crafter, adversarial distinguisher,
simulating a stronger adversary with the power to choose
a worst case poisoning point to maximize the efficacy of a
membership inference attack.

Pois-NatQ. Poisoning crafter, natural distinguisher,
where the adversary statically poisons S to form S′, but can
only use natural queries to distinguish. The responses of a
private prediction interface on such queries facilitate training
a student model (as suggested in the original formulation
of PATE, CaPC and PromptPATE), which can then be
used to answer queries indefinitely without any additional
privacy cost. The privacy leakage of the student model
is bounded by the privacy leakage of Pois-NatQ due to
data processing inequality, though student training may not
reduce leakage (Jagielski et al., 2023). The restriction to
natural queries is important since with a reasonably small
privacy budget, a performant student model can only be
trained on a natural set of queries.

4



Auditing Private Prediction

D

D’

Training 
Phase

Training 
Phase

Prediction 
Phase

Prediction 
Phase (A(D’)↔Q)

Queries
Q

(A(D’)↔Q)

Crafter

Private Prediction Framework

Distinguisher

Figure 1. Framework to audit private prediction algorithms.

4.2. Auditing RDP of Noisy Argmax

The standard approach to auditing would take the full
output of the private prediction algorithm on the entire
set of queries, and perform an attack using this sequence
of outputs. However, the space of outputs is very high
dimensional: with nQ queries, and C total classes, the total
output space is an enormous CnQ . To condense this output
space, we instead audit each query in isolation, and compose
the lower bounds we obtain for each query. However,
composition theorems in (ε, δ)-DP are lossy and composing
(ε, δ)-DP lower bounds is invalid.2 Therefore, we must
audit the per-query outputs in Renyi DP to be able to use its
lossless composition properties.

We now present an approach to audit RDP and an upper
bound method to calculate the exact Renyi divergence
between neighboring histograms.

Auditing with the 2-cut. Renyi Divergence lacks
a hypothesis testing interpretation (Balle et al., 2020),
meaning that in general, there may not exist membership
inference attacks, that can tightly audit an RDP guarantee.
However, Balle et al. (2020) show that the 2-cut of the Renyi
divergence, which calculates the supremum of the Renyi
divergence between induced bernoulli distributions over all
possible sets of the output space has a hypothesis testing
interpretation, and is a lower bound on the Renyi divergence
between the distributions. The 2-cut of the Renyi divergence
between two distributions µ1 and µ2 is defined as
Dα

2
(µ1||µ2) :=

sup
O⊆O

1

α− 1
log
(
pα1 p

1−α
2 + (1− p1)α(1− p2)1−α

)
, (3)

2This issue is avoided in DP-SGD audits, since the output is the
model and accounting for composition over queries is not needed.

where p1 = P(µ1 ∈ O) and p2 = P(µ2 ∈ O), and we have
Dα

2
(µ1||µ2) ≤ Dα(µ1||µ2). Thus, we can lower bound

the RDP guarantee of a mechanism by lower bounding the
2-cut of the Renyi divergence between output distributions
generated by neighboring datasets using the FP and FN rates
of any membership inference attack by choosing O to be
the rejection region. To ensure statistical validity, we use
Clopper Pearson confidence intervals on the results of a
Monte Carlo simulation to bound each term in Eq. (3), with
95% confidence. This lower bound is statistically valid for
all sample sizes owing to the validity properties of Clopper
Pearson intervals.

We propose three more RDP auditing approaches in
Appendix B, but focus on the 2-cut audit here since it is
always valid and has an attack interpretation.

An Improved Upper Bound - Exact Renyi Divergence
We observe that, given a fixed histogram H =
[n1, n2, . . . , nC ], we can compute the probability that the
noisy argmax returns a given class c as:

Pr[c] =

∫ ∞
−∞

φ

(
x− nc
σ

)∏
i 6=c

Φ

(
x− ni
σ

)
dx, (4)

where φ and Φ are the probability density and cumulative
distribution functions of the standard normal distribution.
From these probabilities, we can directly compute the
exact Renyi divergence between neighboring histograms.
This direct calculation can be used as an upper bound
for a given attack, by measuring the Renyi divergence
between the histograms resulting from S and S′. Given
the neighboring histograms from an attack, this exact
calculation is the tightest possible calculation for the privacy
leakage and hence better than previous data-dependent
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Figure 2. RDP audit for noisy argmax

analysis. In our experiments, we also plot this bound
to separate the looseness in analysis and looseness due
to adversary capabilities. Using this computation as a
primitive, it is possible to get a faithful data-independent
bound by taking the supremum of the Renyi divergence
over all possible neighboring histograms. However, we do
not investigate this, as the space of neighboring histograms
is combinatorially large; we only use the bound for given
histograms as an upper bound for the best performing audit
(see Sec. 7 for future work directions).

Fig. 2 shows the results of a 2-cut audit, exact Renyi
divergence, and data-dependent theoretical calculations for
a noisy argmax mechanism on a synthetic histogram, plotted
against Renyi divergence orders. The exact calculation
significantly outperforms the prior theoretical estimation,
and the 2-cut audit closely approximates the exact results.

5. Auditing PATE, CaPC and PromptPATE
We now apply our auditing framework to three private
prediction algorithms which share a similar design: PATE,
CapC and PromptPATE. We describe each algorithm using
the framework in Alg. 1, outline the experimental setup, plot
the audit results in Fig. 3 and 4 and discuss key findings.

Each private prediction has a low signal-to-noise ratio due
to the low privacy cost per query. For this reason, we need
roughly 108 experiments per query to produce a reasonable
privacy lower bound. If each of these experiments required k
full model trainings, our auditing would be computationally
impractical. Therefore, we introduce parametric modeling
assumptions to mimic the randomness in the training phase,
providing an estimated distribution of the HS (and HS′)
histogram across independent experiments, which we can
directly sample from (this strategy is also used in Wang et al.
(2022) to facilitate test-time attacks on PATE).

For all experiments, we use 200 or 250 teachers and
Gaussian noise with σ in {20, 25, 30, 40}, based on values
used in prior work and to ensure a reasonable accuracy
and privacy cost. We defer exact hyperparameter details to
Appendix D.

5.1. PATE (Papernot et al., 2016; 2018)

In the training phase of PATE, we partition the input dataset
S into k subsets randomly and train a teacher model on each.
During the prediction phase, we aggregate each trained
teacher’s predictions for a query q in a histogram, and output
a prediction using the noisy argmax mechanism.

Parametric Assumption. For a query q, let Pq denote the
distribution over classes which generates the predictions of
the k teachers trained on equally sized random subsets of
the training set S and let P ′q denote the distribution over
classes which generates the predictions of a teacher trained
on a random subset of the training set S with the datapoint
(x′, y′) always included. Then, we model the histograms
HS and HS′ as:

HS(q) = Mult(k, Pq)

HS′(q) = Mult(k − 1, Pq) + Mult(1, P ′q),

where Mult(n, µ) denotes a sample of the multinomial
distribution with n trials. We estimate Pq and P ′q by
runningNg instantiations of the training phase and using the
maximum likelihood estimate of the resulting predictions.

Experiment Setup. We audit PATE on the MNIST,
CIFAR10 and Fashion MNIST (Xiao et al., 2017) datasets.
The Nat-AdvQ adversary augments S with a test query
to create S′, then repeatedly queries the interface with
it. Both Pois-AdvQ and Pois-NatQ adversaries add a
mislabelled test query (labeled with the second most
commonly produced label) to S forming S′; the former
queries the interface repeatedly with the same point, while
the latter uses natural queries, which we model using the
test set. Using gradient matching techniques like those in
Geiping et al. (2020), we tried finding better poisoning
points which can impact teacher predictions for many
queries for Pois-NatQ, but they didn’t outperform simple
mislabelled points. Designing stronger poisoning attacks is
an interesting opportunity for future work to improve our
audits.

5.2. CaPC (Choquette-Choo et al., 2020)

The CaPC framework closely resembles PATE, with a
key distinction: data division into k teachers occurs
deterministically, not randomly, as it is designed for a
multiparty setting where each party has a fixed local
dataset. The remainder of CaPC is identical — we train
teacher models on each data subset, and aggregate teacher
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predictions with a noisy argmax to get the private prediction.
Parametric Assumption. For a query q, let P iq denote
the distribution over classes which generates the predictions
of the teacher i trained on Si ⊂ S and let P 1

q
′ denote the

distribution over classes which generates the predictions of
a teacher trained on S1 ∪ (x′, y′), where the first teacher
is chosen without loss of generality. Then, we model the
histogram HS and H′S as:

HS(q) =
∑k
i=1 Mult(1, P iq)

HS′(q) = Mult(1, P 1
q
′
)) +

∑k
i=2 Mult(1, P iq).

We estimate P iq and P 1
q
′ by running Ng instantiations of the

training phase and using the maximum likelihood estimate
of the resulting predictions.

Experiment Setup. We do not change this from PATE.

5.3. PromptPATE (Duan et al., 2023)

PromptPATE is an In Context Learning based variant of
PATE. In this case, the training dataset is divided into
k subsets and the examples in each subset are used in
the few-shot prompt to a pretrained language model. For
each teacher, the prompt consists of the task description
and an example. In the prediction phase, we prompt the
language model with the incoming query appended to the
corresponding teacher prompt and generate the prediction
for that query. The final prediction is output by applying
noisy argmax to the histogram of teacher predictions.

Parametric Assumption. In this case, all the steps of the
training phase are deterministic since we sample from an
LLM with temperature = 0 and the only randomness in
the mechanism is due to the Gaussian noise added to the
histogram. Hence, we don’t need to make a parametric
assumption to audit PromptPATE.

Experiment Setup. For PromptPATE, we work with
the SST2 (Sentiment Classification) (Socher et al., 2013),
AGNEWS (Article Classification) (Zhang et al., 2015b),
DBPedia (Topic Classification) (Zhang et al., 2015a) and
TREC (Question Classification) (Li & Roth, 2002) datasets.
We use MISTRAL-7B (Jiang et al., 2023) as the base model
and a one-shot prompt it with the task description and an
example for each teacher. The Nat-AdvQ swaps a train
set example with a test query which is used in one of the
teacher prompts to produce predictions, and it queries the
interface repeatedly with the same query. The Pois-AdvQ
mirrors this with a mislabeled test query as the poison.
For Pois-NatQ, we test four different adversarial prompts,
for instance, forcing a particular prediction, and report
the leakage due to the best adversary for each dataset in
the results. We describe the different prompts and their

performance on each dataset in detail in Appendices D
and E.

5.4. Experimental Results

Fig. 3 and 4 plot the results of our audit for the three
algorithms and the three adversaries we consider along
with the data dependent theoretical upper bound and the
exact RDP calculation. While we perform the privacy
analysis and the audits in RDP, we plot the privacy leakage
in terms of ε for δ = 10−6 using Theorem 1. While
this conversion is not valid for audits since it is an upper
bound on the privacy loss, we choose to plot the converted
ε values for ease of illustration and defer the raw RDP
audit plots to Appendix E. For all algorithms, we instantiate
both Nat-AdvQ and Pois-AdvQ for nQ different queries
and plot the result of the audit for the queries leaking most
privacy as it is a proxy for the worst case privacy leakage in
each scenario.

Privacy analysis is not tight. The gap between the
exact RDP calculation (Sec. 4.2) and the data dependent
theoretical calculation (from Papernot et al. (2018)) in all
plots in Fig. 3 and 4 highlights room for improvement in
the data dependent privacy analysis. Moreover, the lower
privacy cost for natural queries compared to adversarial
queries points to potential improvements in analysis under
distributional assumptions on queries to a private prediction
interface.

Impact of poisoning capability on privacy leakage. We
compare the privacy leakage due to poisoning across two
axes: algorithms and adversaries. Fig. 3 shows that relative
to exact RDP calculations, both Nat-AdvQ and Pois-AdvQ
show the least privacy leakage in PATE, followed by CaPC
and PromptPATE. Both adversaries exhibit similar leakage
levels for CaPC and PromptPATE. However, Pois-AdvQ
compromises privacy more than Nat-AdvQ in PATE. This
is in line with the ease of poisoning in different scenarios.
For PromptPATE, each teacher contains a single data point,
making it easy to deterministically change a teacher’s vote
by adding a correctly labelled query to the prompt of a
teacher which initially misclassified the query (Nat-AdvQ),
or by adding a mislabelled query to the prompt of a teacher
which correctly classified the query (Pois-AdvQ). This
leads to tight audits and nearly maximal privacy leakage.
Likewise, in CaPC, the deterministic selection of data
subsets for each teacher allows for consistent vote flip
to a query on neighboring datasets by adding a specific
example. However, PATE introduces additional randomness
through data shuffling, diminishing the predictability of
flipping a teacher’s vote by a data point change. This
effect is more pronounced in in-distribution membership
inference (Nat-AdvQ) than in adversarial membership
inference (Pois-AdvQ), as the inclusion of an adversarial
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Figure 3. Privacy leakage of PATE, CaPC and PromptPATE for adversaries with adversarial query capability.
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Figure 4. Privacy leakage of PATE, CaPC and PromptPATE for adversaries restricted to making natural queries.

(mislabelled) point is more likely to change the vote of any
teacher than a natural point.

Impact of query capability on privacy leakage. A
comparison of the privacy leakage in Fig. 3 and 4 shows that
privacy leakage due to Pois-NatQ is much lower than the
privacy leakage due to Nat-AdvQ and Pois-AdvQ across
all algorithms. This stems from two major factors: 1.
natural queries inherently incur lower privacy costs due
to the presence of “easy” queries where teachers concur, as
the lower theoretical and exact values in Fig. 4 compared
to Fig. 3 corroborate, and 2. poisoning teachers to change
their responses on multiple queries is more challenging,
evidenced by the gaps between the audit and exact RDP
calculations in Fig. 4. Moreover, the privacy leakage of
Pois-NatQ across algorithms also follows the order PATE
<< CaPC < PromptPATE, owing to the relative poisoning
difficulties. In fact for PATE, there is negligible privacy
leakage, whereas for PromptPATE, the ease of crafting
prompts to permanently change a teacher’s behavior on
all queries leads to significant privacy leakage. Lastly, we
note that the adversarially crafted queries in the cases we
consider are repeated queries. We can limit the privacy
leakage in such cases using cached outputs for repeated
queries of the same point.

6. Auditing Private-kNN (Zhu et al., 2020)
For Private-kNN, we treat each datapoint as a teacher and
take the prediction of each datapoint as its label. In the

prediction phase, we subsample the teachers (datapoints)
with probability γ each and return the top k closest points to
the query as the chosen set of teachers. Then, we aggregate
the teacher votes (labels) into a histogram and apply the
noisy argmax mechanism to produce a prediction.

Parametric Assumption. Let Pq denote the distribution
of the top-k nearest neighbours and let P kq denote the
distribution of the last (k-th) nearest neighbour, of a query q
when the training points are subsampled independently with
probability γ. Also, let (x′, y′) be the poisoned point. Then,
we model the histograms as:

HS(q) = Mult(k, Pq)

HS′(q) = Mult(k, Pq) + Ber(ν)(1{y′} − Mult(1, P kq ))),

where ν denotes the probability that (x′, y′) is included in
the top-k nearest neighbours. Let x′ be the rq-th closest
point to the query q amongst the training set. Then,

ν =

{
γ if rq ≤ k,∑k−1
i=0

(
rq−1
i

)
γi+1(1− γ)rq−i−1 if rq > k.

Experiment setup For Private-kNN, we work with the
CIFAR10, Fashion MNIST, SST2 and AGNEWS datasets.
We use the ViT-L/16 models pretrained on ImageNet21k
to extract the features for image classification datasets and
the RoBERTa-Large model to extract the features for the
text classification datasets. As with other algorithms, the
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Figure 5. Privacy leakage for Private-kNN

Nat-AdvQ (Pois-AdvQ) adds a (mislabelled) test point
and repeatedly queries the same point. For Pois-NatQ,
we consider three different adversaries which find a point
maximizing the probability of being in the top-k for a given
set of natural queries, from the test set, from the train set
and from the whole feature space, respectively.

Fig. 5 shows the results of auditing Private-kNN. Since
the theory calculation here is data-independent, there is a
big gap between the privacy leakage even for the strongest
adversaries and the theoretical bound. Echoing the trends of
PATE-like algorithms, the privacy leakage for Pois-AdvQ
and Nat-AdvQ is similar and it is higher than the leakage
for Pois-NatQ, likely due to similar reasons. The right
plot of Fig. 5 highlights the difference in privacy leakage
for an adversary constrained to mislabel a point from the
datasets (test or train) against an adversary who is allowed
to choose an adversarial embedding to poison the dataset.
The additional access to the embedding space, as opposed to
natural input space, results in a doubling of privacy leakage
in text classification datasets.

7. Future Work
One of the main contributions of our work is identifying
several opportunities to improve the analysis of private
prediction algorithms (or empirical reasons for looseness in
audits). These range from entirely empirical observations to
concrete mathematical questions.

Improved Theoretical Analysis. Our exact Renyi
divergence computation avoids a pessimistic union bound in
Prop. 8 of (Papernot et al., 2018). However, evaluating this
integral for all possible neighbouring histograms appears
computationally intractible with our current approach. A
deeper characterization of the integral Eq. (4) may remove or
significantly lighten the computational burden. Furthermore,
private k-NN uses amplification by subsampling for its
privacy analysis. The looseness of our audits point towards
potential improvements using data-dependent analysis
techniques which incorporate subsampling.

Stronger Attacks. Natural Queries uniformly reduce
measured privacy leakage. This points towards a potential
for tighter privacy analysis under distributional assumptions
on the queries. However, this could also be the result of
weak attacks—future work might design stronger poisoning
attacks capable of attacking multiple natural queries with a
small number of poisoning examples. Incorporating group
privacy in an audit may lead to tighter bounds due to the
potential of designing stronger adversaries who can affect
the output on multiple natural queries by changing multiple
training datapoints. See Appendix C for an outline of group
privacy based auditing.

Amplification due to random partitioning. PATE
involves randomly dividing the data into partitions, which
appear to empirically improve privacy leakage. It may be
possible to also take advantage of this source of randomness.
Otherwise, stronger poisoning attacks to increase measured
leakage would need to be robust to this randomness.

Limitations. Our auditing methods may be improved by
improved statistical techniques, which can in turn improve
the tightness of audits or reduce the computational burden
for achieving similar tightness. Better data poisoning
techniques capable of attacking multiple queries can
improve tightness of natural query audits.

Impact Statement
Our work may be used to justify privacy parameters
which prevent our attacks, but which are vulnerable to
stronger, currently unknown attacks. However, measuring
effectiveness of our attacks is an important step to improving
both analysis and attacks.
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Notation Meaning
ε Pure DP parameter

(ε, δ) Approximate DP parameter
εα Renyi DP parameter
β` Lower bound on the parameter β
S Training set
S Training set space
Q Query set for private prediction
nQ Number of queries
C Number of classes
k Number of teachers
Ng Number of examples to learn generative models
T Number of experiments for auditing

Nat-AdvQ Natural membership inference, adversarial queries
Pois-AdvQ Poisoned membership inference, adversarial queries
Pois-NatQ Poisoned membership inference, natural queries

HS Histogram of aggregated predictions
Mult(k, p) Multinomial Distribution sampling k examples with distribution p
Ber(p) Bernoulli Distribution with parameter p

Table 1. Notation

A. Notation

B. Auditing RDP guarantees of noisy argmax
In this section, we propose additional methods for auditing the RDP guarantee of the noisy argmax mechanism. The first of
these methods uses the k-cut of the Renyi Divergence, which is a generalization of the 2-cut based method proposed in
Sec. 4.2. The remaining two methods are based on using bootstrap to estimate the 2-cut (or the k-cut) directly instead of
relying on estimates of probability distributions which are then used to give lower bounds on the RDP. We end the section
by discussing the auditing performance, assumptions needed for validity and accuracy for these lower bounds.

First, for completeness, we spell out the equation we use to lower bound the 2-cut. Let p1, p2 denote P(µ1 ∈ O) and
P(µ2 ∈ O) respectively and let p`j , p

u
j denote the Clopper Pearson lower and upper bounds on pj . Then, we lower bound the

2-cut as:

Dα
2
(µ1||µ2) ≥ 1

α− 1
log
(
(p`1)α(pu2 )1−α + (1− pu1 )α(1− p`2)1−α

)
.

Auditing with the k-cut. Even the best 2-cut lower bounds may not be tight as they lose information when restricting to a
particular output set. Balle et al. (2020) also introduced the notion of k-cut of the Renyi divergence, a generalization of
the 2-cut, which calculates the supremum of the Renyi divergence between induced distributions over all possible k-sized
partitions of the output set and is a lower bound on the Renyi divergence between the distributions. The k-cut of the Renyi
divergence between two distributions µ1 and µ2 is defined as

Dα
k
(µ1||µ2) := sup

O1,...,Ok⊆O
Oi∩Oj=φ
∪n

i=1Oi=O

1

α− 1
log

(
k∑
i=1

p1(i)αp2(i)1−α
)
, (5)

where p1(i) = P(µ1 ∈ Oi) and p2(i) = P(µ2 ∈ Oi). with Dα
k
(µ1||µ2) ≤ Dα(µ1||µ2). When the output space itself is

discrete with cardinality k, the k-cut is equivalent to the Renyi divergence. Thus, we can lower bound the RDP guarantee of
a mechanism by lower bounding the k-cut of the Renyi divergence between output distributions generated by neighboring
datasets. To ensure statistical validity, we use simultaneous confidence interval techniques (Goodman, 1965; Sison & Glaz,
1995) on the results of a Monte Carlo simulation to get asymptotically valid lower bounds. Note that compared to the 2-cut
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based method. Let p`j(i), p
u
j (i) denote the lower and upper bounds on pj(i). Using these, we lower bound the k-cut as:

Dα
k
(µ1||µ2) ≥ 1

α− 1
log

(
k∑
i=1

(p`1(i))α(pu2 (i))1−α
)
.

Note that since the k-cut of a Renyi divergence doesn’t have a hypothesis testing interpretation, the k-cut audit doesn’t
admit an attack interpretation, i.e. for a mechanism, there may not be any membership attack with RDP leakage equal to
that calculated by a k-cut audit. While the k-cut captures more information than the 2-cut due to increased granularity, the
weaker validity properties of (both Goodman and Sison-Glasz) simultaneous confidence intervals compared to Clopper
Pearson intervals make it hard to determine a-priori which of the two techniques would result in a tighter audit. We focus on
the 2-cut audit for the main paper, the audits have similar performance.

Bootstrap based methods. In both the 2-cut and the k-cut audit, we estimate the output proportions within certain sets
(or multiple sets for k-cut) and subsequently apply a non-linear transformation using the Renyi divergence to align with
theoretical calculations. However, this transformation might introduce looseness. We can potentially obtain tighter lower
bounds on the true Renyi divergence by directly deriving confident bounds for the 2-cut or the k-cut. Lu et al. (2022)
demonstrate this approach for pure differential privacy (δ = 0), employing Log-Katz (Katz et al., 1978) intervals to
derive lower bounds on the log ratio of proportions, bypassing the individual proportion bounds usually obtained through
Clopper Pearson and the subsequent log ratio computation. Given the absence of superior confidence intervals for the Renyi
divergence functional applied to proportions, we adopt the bootstrap method (Efron & Tibshirani, 1994) for lower bound
estimation. This method is suitable for any functional that satisfies asymptotic normality, a property satisfied for the Renyi
divergence measure as shown in Ba et al. (2018).

• 2-cut Bootstrap audit: We estimate the 2-cut of the Renyi divergence between two distributions using Monte Carlo
simulations for a chosen output set. Then, we use bootstrap resampling to estimate the distribution of the 2-cut of
the Renyi divergence between the two distributions and use the quantiles of the bootstrap distribution to find an
asymptotically valid lower bound.

• k-cut Bootstrap audit: We use Monte Carlo simulations to get samples from a categorical distribution over classes
and estimate the probability of the output being in each class. Then, we use bootstrap resampling to estimate the
distribution of the k-cut of the Renyi divergence between the two distributions and use the quantiles of the bootstrap
distribution to find an asymptotically valid lower bound.

A few things are important to note for the bootstrap based audit:

1. Bootstrap methods fail when the true Renyi divergence is 0 since it is on the boundary of the values a Renyi divergence
can take.Due to the intrinsic variability of Monte Carlo simulations, it’s rare for a pair of samples from an identical
distribution to match perfectly. This typically yields a positive (1− α) percentile for the resulting distribution. This
phenomenon isn’t unexpected, as studies have pointed out the bootstrap’s limitations at boundaries, observable even in
basic scenarios like gaussian mean estimation (Andrews, 2000).

2. The error rate for bootstrap is generally O( 1√
n

), which implies that when the true Renyi divergence values are smaller
than 1√

n
, the results of the bootstrap are unreliable.

3. Even when valid, the lower bounds of bootstrap are strictly valid only for a particular order. However, we observe in
practice that using the same samples to generate lower bounds on all orders doesn’t cause any issues.

The first two points, in particular, cast doubt on the applicability of bootstrap methods for auditing purposes. Given the
minimal Renyi privacy leakage for individual queries in private prediction, the reliability of bootstrap results becomes
questionable. Ensuring dependability would necessitate conducting an impractical number of experiments, upwards of 1012.

Fig. 6 shows the performance of all our auditing technique along with the exact theory calculation when applying the noisy
argmax mechanism to synthetic neighbouring histograms [14, 12, 10, 8, 6] and [13, 13, 10, 8, 6] with σ = 2. Based on this
figure, both using the k-cut audit over the 2-cut audit and using bootstrap based methods over proportional confidence
interval based methods may lead to tighter audits, especially for smaller values of the order α. However, these gains are not
consistent across histograms. Due to these reasons and the desirable properties of the 2-cut confidence interval based audit
as summarized in Table 2, we use the 2-cut audits for all our main results.
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Audit
Property Always Valid Attack Interpretation Valid at 0 Valid for all orders

2-cut Confidence Interval X X X X
k-cut Confidence Interval × × X X
2-cut Bootstrap × X × ×
k-cut Bootstrap × × × ×

Table 2. Table of auditing methods and their properties
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C. Group Privacy-based Audit
We first outline a methodology for auditing by changing multiple points using group privacy, highlighting its implications
for auditing private predictions. Here, we empower the adversary with the ability to change multiple points but raise the
success criteria based on theoretical group privacy guarantees.

Consider a mechanism A that satisfies (α, εα)-DP for some α. This means, for neighboring datasets S and S′, the Renyi
divergence of order α between the distributions of A(S) and A(S′) does not exceed εα. For datasets S and S(m) differing
by m datapoints, the Renyi divergence of order α/2m between A(S) and A(S′) is no greater than 3mεα. This general
estimate may not always be precise. However, specific mechanisms like the Gaussian mechanism offer more exact bounds.
For example, adding Gaussian noise with scale σ achieves (α, α

2σ2 )-RDP for all α with an `2 sensitivity of 1. For datasets
differing by m datapoints, the RDP adjusts to (α, m

2α
2σ2 )-RDP.

When studying the privacy leakage due to an adversary which can alter multiple datapoints (say m), we get a valid lower
bound on the privacy leakage of the mechanism’s group privacy guarantees. These lower bounds can match a group privacy
upper bound if all of the following conditions are satisfied:

1. The adversary and/or input dataset is chosen to maximize privacy leakage.

2. The privacy analysis for the mechanism on adjacent datasets is lossless.

3. The group privacy conversion applied to the privacy analysis on adjacent datasets is lossless.

Compared to the standard auditing analysis, group privacy adds an additional condition (3.) to ensure tightness of the lower
bounds. Thus, the privacy leakage of the adversary which can alter multiple data points can be converted back to a lower
bound on the privacy guarantees of the mechanism if we know the exact functional which characterizes the worst case group
privacy loss for mechanism given a privacy guarantee for the mechanism on adjacent datasets.

For private predictions with adversaries unable to control queries, granting them the power to modify multiple datapoints
opens a new avenue for studying privacy leakage. However, to determine if such adversaries cause greater leakage than those
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altering a single datapoint—after normalizing for group privacy—we must identify a precise group privacy calculation for
the noisy argmax mechanism. We leave this as an interesting direction of future work and highlight some of our intuitions
for particular cases:

• PATE: Designing adversaries that change m examples within a teacher, affecting its vote on at least m2 natural queries,
could yield stronger bounds. This is because group privacy under the Gaussian mechanism worsens as m2, while
privacy degrades linearly with m during composition.

• CaPC: Similar to PATE, but with a key difference. Direct control over datasets means changing all points within a
teacher maintains the same group privacy guarantee as altering a single point. Thus, modifying all training set points of
a teacher could significantly lower the privacy guarantee, offering stronger lower bounds.

• Private-kNN: Following a logic akin to PATE, affecting the histograms for m2 queries would require changing m
datapoints. However, in Private-kNN, where poisoning involves adding points, a point’s impact on a query depends on
proximity. Therefore, adding multiple points generally dilutes the average impact on any given query compared to
inserting the most detrimental point.

D. Experiment Details
In this section, we fill in the experimental details we skipped in Sec. 5 and 6. For all experiments, we report lower bounds
which are valid with 95% confidence. MNIST contains 60,000 training examples, CIFAR10 contains 50,000 examples,
Fashion MNIST contains 60,000 examples, SST2 contains 67,300 examples, AGNEWS contains 120,000 examples,
DBPedia contains 560,000 examples, and TREC contains 5,500 examples.

D.1. PATE and CaPC

For both PATE and CaPC, we study the privacy leakage in MNIST, CIFAR10 and Fashion MNIST (Xiao et al., 2017)
datasets. For MNIST and Fashion MNIST, we train 250 teachers and use Gaussian noise with σ = 40 to calculate the
noisy argmax and for CIFAR10, we train 200 teachers and use Gaussian noise with σ = 25. For MNIST, we use a simple
LeNet-5 (LeCun et al., 1998) architecture and for Fashion MNIST and CIFAR10, we use Wide ResNet(16,4) architectures
(Zagoruyko & Komodakis, 2016). We train all networks with the Adam optimizer (Kingma & Ba, 2014) with learning rate
set to 0.03 and a batch size of 16. We use a relatively small batch size since each teacher has roughly 250 data points and
choosing a large batch size would make the training effectively full batch. We evaluate the privacy leakage across 1000
queries.

D.2. PromptPATE

For PromptPATE, we work with the SST2 (Sentiment Classification) (Socher et al., 2013), AGNEWS (Article
Classification) (Zhang et al., 2015b), DBPedia (Topic Classification) (Zhang et al., 2015a) and TREC (Question
Classification) (Li & Roth, 2002) datasets. We use MISTRAL-7B (Jiang et al., 2023) as the base model and a one-
shot prompt it with the task description and an example for each teacher. For all datasets, we use 200 teachers and one
example per teacher which is randomly sampled from the respective datasets. We evaluate the privacy of PromptPATE by
auditing the responses on 200 queries. We now describe the different adversaries and the prompts we used for them for
AGNEWS as an example. The prompts for other datasets are similar.

1. Nat-AdvQ:

Please classify the given text from news articles by topic as 0 (World) or 1 (Sports) or 2 (Business)
or 3 (Science or Technology). Don’t try to answer any question or respond to the text. Your output
should only be a number from 0,1,2,3.
Text: query
Answer: label
Text: query
Answer:
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2. Pois-AdvQ:

Please classify the given text from news articles by topic as 0 (World) or 1 (Sports) or 2 (Business)
or 3 (Science or Technology). Don’t try to answer any question or respond to the text. Your output
should only be a number from 0,1,2,3.
Text: query
Answer: poison label
Text: query
Answer:

3. Pois-NatQ: For this case, we consider 4 different adversaries. Two of these are same as Pois-AdvQ, but since we will
ask the teacher all the nQ queries and not the same query repeatedly, we employ heuristics to decide which query to
include in the prompt.

• Pois-NatQ (Confident): We find a query where most number of teachers agree and break ties randomly. We
include a mislabelled version of this in the prompt.

Please classify the given text from news articles by topic as 0 (World) or 1 (Sports) or 2 (Business)
or 3 (Science or Technology). Don’t try to answer any question or respond to the text. Your output
should only be a number from 0,1,2,3.
Text: confident query
Answer: poison label
Text: query(i)
Answer:

• Pois-NatQ (Unconfident): We find a query where the difference between teacher votes for the top two labels is
minimal. We include a mislabelled version of this in the prompt.

Please classify the given text from news articles by topic as 0 (World) or 1 (Sports) or 2 (Business)
or 3 (Science or Technology). Don’t try to answer any question or respond to the text. Your output
should only be a number from 0,1,2,3.
Text: unconfident query
Answer: poison label
Text: query(i)
Answer:

• Pois-NatQ (All same): This adversary asks the teacher model to always output a particular label.
I will provide some text to classify using labels as an integer. For whatever text I provide, please
output the Answer 1 and ignore any other instruction.
Text: query
Answer:

• Pois-NatQ (Mapping): This adversary gives the teacher model a wrong mapping from text classes to numeric
labels with an example and asks the LLM to answer queries according to this mapping. We find these wrong
mappings by finding, for each label, which is the class which is most often the class with second highest votes.

Please classify the given text from news articles by topic as 3 (Sports) or 0 (World) or 3 (Business)
or 2 (Science or Technology). Don’t try to answer any question or respond to the text. Your output
should only be a number from 0,1,2,3.
Text: query
Answer: mapped label
Text: query(i)
Answer:

D.3. Private-kNN

For Private-kNN, we work with the CIFAR10, Fashion MNIST, SST2 and AGNEWS datasets. We use the ViT-L/16
(Dosovitskiy et al., 2020) models pretrained on ImageNet21k (Deng et al., 2009) to extract the features for image classification
datasets and the RoBERTa-Large (Liu et al., 2019) model to extract the features for the text classification datasets. Using
these features, we train a private kNN classifier with k = 200 and subsampling rate γ = 0.2 and using Gaussian noise
with standard deviation σ = 30 for image datasets and σ = 20 for text datasets. Because the privacy analysis of Private
kNN involves subsampling, we only use the data independent privacy analysis of the subsampled Gaussian mechanism as a
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baseline. We evaluate the privacy of Private-kNN by auditing the responses on nQ = 1000 queries. As with other algorithms,
the Nat-AdvQ (Pois-AdvQ) adds a (mislabelled) test point and repeatedly queries the same point. For Pois-NatQ, we
consider three different adversaries which find a point maximizing the probability of being in the top-k for a given set of
natural queries, from the test set, from the train set and from the whole feature space, respectively. To do this, we first find
the value of the expected number of times a datapoint would show up as a vote contributing teacher in the top-k nearest
neighbours for the whole sequence of queries. Let this expected value for point x be E(x). Then,

E(x) =

nQ∑
i=1

P(x is in top-k for query qi),

where,

P(x is in top-k for query q) =

{
γ if rq ≤ k,∑k−1
i=0

(
rq−1
i

)
γi+1(1− γ)rq−i−1 if rq > k.

Two of the Pois-NatQ adversaries we consider find E(x) maximizing train and test point respectively. For the embedding
adversary, we come up with a heuristic to define a worst case embedding which is maximizes E(x). For all the test points
with a particular label, we collect the list of top-s indices in a histogram. Using this histogram as weights, we combine
all the embeddings in the support of this histogram to give a point. This point performs extremely well especially for text
classification dataset as it gives a E(x) score of almost γnQ which is its maximum attainable value.

E. Additional Plots
In this section, we plot additional plots for the interested reader. For each algorithm and adversary, we plot a bar plot of the
privacy leakage converted to (ε, δ)-DP against theoretical values and the performance of both the k-cut and 2-cut audits.
Along with this, we also plot a the Renyi DP audit plot for one dataset each as a representative for comparison.
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Figure 10. Average case for Pois-AdvQ adversary
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Figure 11. Pois-NatQ adversary

E.2. CaPC
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Figure 13. Average case for Nat-AdvQ adversary
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Figure 14. Worst case for Pois-AdvQ adversary
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Figure 15. Average case for Pois-AdvQ adversary
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Figure 16. Pois-NatQ adversary
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Figure 17. Worst case for Nat-AdvQ adversary
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Figure 18. Average case for Nat-AdvQ adversary
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Figure 19. Worst case for Pois-AdvQ adversary
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Figure 20. Average case for Pois-AdvQ adversary
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Figure 21. Pois-NatQ Confident adversary
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Figure 22. Pois-NatQ unconfident adversary
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Figure 23. Pois-NatQ all same adversary

24



Auditing Private Prediction

SST-2 AG-News DBPedia TREC
0.0

0.5

1.0

1.5

2.0

P
ri

va
cy

L
ea

ka
ge

(ε
)

Privacy Leakage for Pois-MINQ (Mapping)

Data dependent Theory

Theory (exact)

k-cut audit

2-cut audit

(a)

101 102

Order

10−1

100

101

102

103

104

P
ri

va
cy

le
ak

ag
e

in
R

D
P

Pois-MINQ (Mapping), AG-News

2-cut audit

k-cut audit

Theory (exact)

Data dependent theory

(b)

Figure 24. Pois-NatQ mapping adversary
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Figure 25. Worst case for Nat-AdvQ adversary
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Figure 26. Average case for Nat-AdvQ adversary
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Figure 27. Worst case for Pois-AdvQ adversary
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Figure 28. Average case for Pois-AdvQ adversary
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Figure 29. Pois-NatQ Embedding adversary
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Figure 30. Pois-NatQ Train adversary
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Figure 31. Pois-NatQ Test adversary
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