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Abstract

This paper studies offline reinforcement learning with linear function approxima-
tion in a setting with decision-theoretic, but not estimation sparsity. The structural
restrictions of the data-generating process presume that the transitions factor into a
sparse component that affects the reward, and additional exogenous dynamics that
can affect the next time step’s sparse component (but not vice versa) and do not
affect the reward. Although the minimally sufficient adjustment set for estimation
of full-state transition properties depends on the whole state, the optimal policy
and therefore state-action value function is sparse: we call this causal/decision-
theoretic sparsity. We develop a method for reward-filtering the estimation of the
state-action value function to the sparse component by a modification of thresh-
olded lasso in least-squares policy evaluation. We provide theoretical guarantees
for our reward-filtered linear fitted-Q-iteration, with sample complexity depending
only on the size of the sparse component.

1 Introduction
Offline reinforcement learning, learning to make decisions from historical data, is necessary in im-
portant application areas such as healthcare, e-commerce, and other real-world domains, where
randomized exploration is costly or unavailable. It requires certain assumptions such as full observ-
ability and no unobserved confounders. This motivates collecting as much information as possible
about the environment. On the other hand, common sensing modalities therefore also capture in-
formation about the environment that is unaffected by an agent’s actions. Given the overall high
variance of learning offline, removing such exogenous information can improve policy information
and optimization.

Though various combinations of relevance/irrelevance are possible for rewards and actions, as has
been recognized in recent work, most works methodologically impose statistically difficult condi-
tional independence restrictions with variational autoencoders that lack strong theoretical computa-
tional/statistical guarantees. Other approaches suggest simpler variable screening, but without dis-
cussion of underlying signal strength assumptions, or tradeoffs in downstream estimation and value
under potential false negatives/positives, and without guarantees. To bridge between these meth-
ods, we focus on a model with linear function approximation, a popular structural assumption in
the theoretical literature, and develop methods based on thresholded LASSO regression, connecting
classical statistical results to new decision-theoretic notions of sparsity introduced by these causal
decompositions of reward/action ir/relevance. In particular, we focus on a particular decomposition:
the transitions factor into a sparse component that affects the reward, with dynamics that can affect
the next timestep’s sparse component and an exogenous component. The exogenous component
does not affect the reward or sparse component. A toy example of such a setting is controlling a
boat with an image representation of the state environment: actions affect navigation locally and
also propagate ripples leaving the boat. Though these ripples evolve under their own dynamics, they

Accepted to the NeurIPS 2023 Workshop on Causal Representation Learning.



themselves do not affect local control of the boat or rewards. Our structural assumptions, though
restrictive, still surface what we call “decision-theoretic, but not estimation sparsity”: that is, the
minimally sufficient causal adjustment set to predict transition probabilities requires the full state
variable, but the optimal policy only depends on the sparse component.

The contributions of our work are as follows: under our structural assumptions, we develop method-
ology for filtering out exogenous states based on support recovery via thresholded lasso regression
for the rewards, and linear estimation on the recovered support for the q function via least-squares
policy evaluation/fitted-Q-iteration (FQI). We prove predictive error guarantees on the q function es-
timation, and correspondingly on the optimal policy, showing how the optimal policy now depends
on the dimensionality of the sparse component, rather than the full ambient dimension.

2 Preliminaries

We consider a finite-horizon Markov Decision Process on the full-information state space comprised
of a tuple M = (S,A, r, P, γ, T ) of states, actions, reward function r(s, a) , transition probability
matrix P , γ < 1 discount factor, and time horizon of T steps, where t = 1, . . . , T . We let the state
spaces S ⊆ Rd be continuous, and assume the action space A is finite: ϕ(s, a) denotes a (known)
feature map. A policy π : S 7→ ∆(A) maps from the state space to a distribution over actions, where
∆(·) is the set of distributions over (·), and π(a | s) is the probability of taking action a in state
s. Since the optimal policy in the Markov decision process is deterministic, we also use π(s) ∈ A
for deterministic policies, to denote the action taken in state s. The policy and MDP M induce a
joint distribution Pπ where Pπ(at | s0:t, a0:t−1) = π(at | st) and Pπ(st+1 | s0:t, a0:t) = P (st+1 |
at, st), the transition probability.

The value function is vπt (s) = Eπ[
∑T

t′=t γ
t′−trt′ | s], where Eπ denotes expectation under

the joint distribution induced by the MDP M running policy π. The state-action value func-
tion, or q function is qπt (s) = Eπ[

∑T
t′=t γrt′ | s, a]. These satisfy the Bellman operator, e.g.

qπt (s, a) = r(s, a) + γE[vπt+1(st+1) | s, a]. We focus on the offline reinforcement learning setting
where we have access to a dataset of n offline trajectories, D = {(s(i)t , a

(i)
t , s

(i)
t+1)

T
t=1}ni=1, where

actions were taken according to some behavior policy πb. We assume throughout that the underlying
policy was stationary, i.e. offline trajectories (drawn potentially from a series of episodes) that are
independent.

Linearity Throughout this paper, we focus on linear Markov decision processes. Let the feature
mapping be denoted ϕ : S×A 7→ Rd. We assume the reward function and value functions are linear
in ϕ.
Assumption 1 (Linear MDP). Assume that both the rewards and transitions are linear functions
(possibly with different parameters):

rt(s, a) = βt · ϕ(s, a), qπt (s, a) = θπt · ϕ(s, a), Pt(· | s, a) = µtϕ(s, a),∀t

The theoretical analysis of reinforcement learning typically assumes that the reward function is
known, since noise in rewards leads to lower-order terms in the analysis. However, in our setting, we
will leverage sparsity of the rewards to consider minimal state space representations (and adaptive
model selection) which affect first-order terms in the analysis.

Linear Bellman completeness is the assumption that for any linear function f(s, a) := θ⊤ϕ(s, a),
the Bellman operator applied to f(s, a) also returns a linear function with respect to ϕ. (It is an
equivalent assumption but generalizes more directly to potential nonlinear settings).
Definition 1 (Linear Bellman Completeness). the features ϕ satisfy the linear Bellman completeness
property if for all θ ∈ Rd and (s, a, h) ∈ S ×A× [H], there exists w ∈ Rd such that:

w⊤ϕ(s, a) = r(s, a) + γEs′∼Ph(s,a) max
a′

θ⊤ϕ (s′, a′) .

As w depends on θ, we use the notation Th : Rd 7→ Rd to represent such a w, i.e., w := Th(θ)
in the above equation. Note that the above implies that r(s, a) is in the span of ϕ (to see this, take
θ = 0 ). Furthermore, it also implies that q⋆h(s, a) is linear in ϕ, i.e., there exists θ⋆h such that
q⋆h(s, a) = (θ⋆h)

⊤
ϕ(s, a).

2



We let ρ ∈ [d] denote an index set. We use the superscript (·)ρ to denote subindexing a (random)
vector by the index set (since time is the typical subscript), i.e. sρ is the subvector of state variable
according to dimensions ρ, sρ = {sk}k∈ρ. We also introduce a new notion of extension of a sub-
vector sρ to the ambient dimension, i.e. ρ = sk if k ∈ ρ and 0 otherwise, which makes it easier,
for example, to state equivalence of generic q functions comparing full-dimensional states vs. the
extension of sparse subvectors to the full-dimensional space, denoted q̆.

3 Related work

Our work is related to sparse offline reinforcement learning, LASSO regression for variable selec-
tion, and approaches for leveraging causal structure in reinforcement learning to remove important
information. We describe each of these in turn.

Structure in offline reinforcement learning. [11] studies LASSO estimation for fitted-q-evaluation
and interation, and also suggests thresholded LASSO. Although we also use thresholded LASSO,
our method is quite different because we directly impose the sparsity structure induced by reward-
relevance into estimation of the q function, because the optimal policy is sparse. An emerg-
ing line of work identifies causal decomposition of state variables into reward-relevant/reward-
irrelevant/controllable components (or variations thereof) [5, 23, 22, 24, 19, 8]. Methodologically,
these works regularize representation learning such as with variational autoencoders towards con-
ditional independence (which generally lacks theoretical guarantees) [5, 21, 19], or assume specific
structure such as block MDPs with deterministic latent dynamics emitting high-dimensional ob-
servations [8], or require auxiliary non-standard estimation [13]. Our model somewhat resembles
the exogenous-endogenous decomposition of [5], but swaps cross-dependence of exogenous and
endogenous components: this gives different conditional independence restrictions directly admits
sparse learning. Overall, the main simplification of our model relative to these is that rewards do not
depend on the exogenous component. The most methodologically related work is that of [9], which
studies sparse partial controllability in the linear quadratic regulator; although they also use thresh-
olded LASSO, they consider online control under a different quadratic cost, focus on controllability
(action-relevance), and consider entrywise regression of matrix entries.

Variable selection via LASSO. There is an enormous literature on LASSO. We quickly highlight
only a few works on thresholded LASSO. [16] studies model selection properties of thresholded
LASSO under a so-called “beta-min” condition, i.e. an assumed lower bound on the smallest non-
zero coefficient and gives an asymptotic consistency result. [26] also studies thresholded LASSO,
while [20] studies adaptive and thresholded LASSO. For simplicity, we focus on high-probability
guarantees under the stronger beta-min condition. But stronger guarantees on thresholded LASSO
can easily be invoked instead of the ones we use here. See [3] as well.

Our work. Even under our simpler model, leveraging classical results from the sparse regression
literature sheds light on different approaches that have already been proposed. For example, Wang
et al. [23] proposes a variable screening method based on independence testing, which performs
better for variable selection than a previous regularization-based method [22]. The improvement
of thresholding procedures upon regularized LASSO for support recovery is classically well known
[3]. The tighter analysis of thresholded lasso also sheds light on implicit signal strength assumptions
and tradeoffs of false positives for downstream policy value.

4 Structure
We describe the conditional independence and other restrictions that characterize our filtered reward-
relevant model. Let ρ ⊆ [d] denote the supported set of reward-relevant and endogenous states. Let
|ρ| be the size of the support.
Assumption 2 (Blockwise independent design). sρt ⊥⊥ sρc

t | st−1, at−1

Assumption 3 (Reward-irrelevant decomposition ). Assume that R(s, a) = R(s̃, a) when sρ = s̃ρ,
and that next-time-step endogenous states are independent of prior exogenous states given prior
endogenous states and action:

sρt+1 ⊥⊥ sρc

t | sρt , at

The conditional independence restriction implies that P (sρt+1 | st, at) = P (sρt+1 | sρt , at).
Even under these restrictions on the data structure, we can surface a nontrivial qualitative distinction
between estimation and decision-making, driven by this causal structure, which we call “causal
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Figure 1: Reward-relevant/irrelevant factored dynamics.

sparsity” for short. Although the minimal sufficient adjustment set for estimating the entire-state
transitions is the non-sparse union of sρ, sρp , our next results establish that the optimal decision
policy is sparse, and hence our thresholded lasso method depends on the sparse component alone.

Note that this decomposition differs from the exogenous-endogenous decomposition in [5] because
our sparse component can affect the exogenous component; but not the other way around – the
exogenous component does not affect the endogenous component.

Let β be the parameter for the q function, and θ be the parameter for the reward function. We let
σr, σθ, σr+γq denote the subgaussian parameters of the reward-variance, the Bellman-target, and the
transitions, respectively.

Interpreting Assumption 3. For example, consider linear dynamics (with exogenous noise) in an
interacted model, i.e. st+1(s, a) = Mas + ϵ for Ma ∈ Rd×d. Then Ma is a block matrix and it
satisfies Assumption 3 if, assuming without loss of generality, that the coordinates are ordered such
that the first ρ reward-supported components are first,

st+1(s, a) = Mas+ ϵ, where Ma =

[
Mρ→ρ

a 0
Mρ→ρc

a Mρc→ρc
a

]
.

In particular, the block matrix Mρc→ρ
a = 0.

4.1 Implications for decisions

We characterize important structural properties under the endogenous-exogenous assumption. Un-
der Assumptions 1 and 3, the optimal policy is sparse.
Proposition 1 (Sparse optimal policies). When sρt = s̃ρt , π

∗
t (st) = π̃∗

t (s̃t).

Proposition 1 is the main characterization that motivates our method. Even though the estimation of
transitions are not sparse, the optimal q- and value functions are sparse.

Although well-specification/realizability does not imply Bellman completeness of a function class
in general, the reward-sparse linear function class is Bellman-complete for q functions as well. Let
Fρ

t denote the true sparse function classes Fρ
t = {β ∈ Rd : βj = 0, j ∈ ρ}.

Proposition 2 (Reward-sparse function classes are Bellman-complete.). Let rρ(s, a) be the ρ-sparse
reward function. Let q̆ ∈ Q̆ be the extension of ρ-sparse q functions to the full space, i.e. where Q̆
is the space of functions that are zero outside the support ρ.

Then: supq̆t+1∈Q̆t+1
infqt∈Q̆t

∥qt − T ⋆
t qt+1∥2µt

≤ ϵ

5 Method

Based on the posited endogenous-exogenous structure, the sparsity in the linear rewards is the same
sparsity pattern as the optimal value function. Notably, the transitions are not sparse unless only
regressing on the endogenous states alone. In our method, we first run thresholded LASSO on
rewards to recover the sparse support. Then we fit the q function via ordinary least squares as the
regression oracle in least-squares policy evaluation/iteration on the estimated support. We describe
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each of these components in turn; thresholded LASSO, and fitted-Q-evaluation, before describing
our specific method in more detail.

Our main estimation oracle of interest is a variant of thresholded LASSO, described in Algorithm 1.
We are not limited to thresholded lasso – we could develop analogous adaptations of any method
that performs well for support recovery. We simply require finite-sample prediction error guarantees,
high probability inclusion of the entire support, and bounds on the number of false positives.

Algorithm 1 Thresholded LASSO

1: Input: (standardized mean-zero and
unit variance) covariate matrix X , out-
come vector Y , from data-generating
process where y = w⊤x+ ϵ.

2: Obtain an initial estimator winit using
the Lasso.

3: Let ρ̂ = {j : wj
init > τ0}.

4: Compute ordinary least squares re-
stricted to ρ̂:

ŵρ = (XT
ρ̂k
Xρ̂)

−1XT
ρ̂ Y.

Algorithm 2 Reward-Filtered Fitted Q Iteration

1: At timestep t = T :
Run thresholded LASSO (Algorithm 1) on rT and
obtain sparse support ρ̂T .
π∗
T (s

ρ̂T ) = argmaxa qT (s
ρ̂T , a).

2: for timestep t = T − 1, . . . , 1 do
3: Run thresholded LASSO (Algorithm 1) on rt.

Obtain sparse support ρ̂t.
4: Compute Bellman target

yt = rt + γEπ∗,ρ
t+1

[qt+1(st+1, at+1)].

5: Fit Bellman residual restricted to ρ̂t.

β̃t ∈ argmin
β∈Rp

{ 1
2En[(β

⊤ϕt−yt)
2] : βj = 0, j ∈ ρ̂ct}

6: π∗
t (s

ρ) = argmaxa qt(s
ρ, a).

7: end for

Fitted-Q-Iteration Linear fitted-q-evaluation, equivalent to offline least-squares policy evalua-
tion, [10, 14, 17, 6], and fitted-Q-iteration [4, 7] successively approximate q̂t at each time step by
minimizing an empirical estimate of the Bellman error:

yt(q) := rt +max
a′

[q(st+1, a
′)] , qt(s, a) = E[yt(qt+1)|st = s, at = a],

q̂t ∈ arg min
qt∈Q

En,t[(yt(q̂t+1)− qt(st, at))
2].

The Bayes-optimal predictor of yt is the true qt function, even though yt is a stochastic approxima-
tion of qt that replaces the expectation over the next-state transition with a stochastic sample thereof
(realized from data).

Our method Our algorithm, described in Algorithm 2, is a natural modification of these two ideas.
At the last timestep, we simply run thresholded lasso on the rewards and set the optimal policy to be
greedy with respect to the sparsely-supported reward. At earlier timesteps, we first run thresholded
lasso on the rewards and recover an estimate of the sparse support, ρt. Then, we fit the Bellman
residual (rt + Eπ∗,ρ

t+1
[qt+1(st+1, at+1)] − qt(st, at))

2 over linear functions of ϕt that are supported
on ρt. That is, we use the sparse support estimated from rewards only in order to sparsely fit the qt
function. Again we set the optimal policy to be greedy with respect to the sparse qt function.

6 Analysis
We show a predictive error bound, approximate Bellman completeness under the strong-signal sup-
port inclusion of thresholded LASSO, and improvement in policy value. The main technical contri-
bution of our work is the finite-sample prediction error bound for the reward-thresholded fitted-Q-
regression. Typical prediction error analyses of thresholded lasso do not directly apply to our setting,
where we recover the support from the reward and apply it directly to the q-function estimation. The
key observation is that the two regressions share covariance structure and some outcome structure in
part. Given this result on the finite-sample prediction error and high-probability inclusion of high-
signal sparse covariates, since fitted-Q-evaluation analysis uses prediction bounds on regression in
a black-box way, we immediately obtain results on policy value. See [3, 1, 26] for discussion of
analysis of thresholded LASSO.
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6.1 Preliminaries: standard convergence results for thresholded LASSO

Let xt = ϕ(st, at) denote regression covariates, with yt the Bellman residual; in this statement we
drop the timestep for brevity and let (X,Y ) denote the data matrix and outcome vector, e.g. at a
given timestep concatenated over trajectories. Our first assumption is that transition probabilities are
time-homogeneous.
Assumption 4. Time-homogeneous transitions.

Next we define problem-dependent constants used in the analysis, assumptions, and statements.
Definition 2 (Problem-dependent constants.). For a ≥ 0, define

λσ,a,d := σ
√
1 + a

√
2 log p/n, Ea :=

{
ϵ :

∥∥XT ϵ/n
∥∥
∞ ≤ λσ,a,p

}
. (1)

λσ,a,d bounds the maximum correlation between the noise and covariates of X and Ea is a high
probability event where P (Ea) ≥ 1 −

(√
π log ppa

)−1
when X has column ℓ2 norms bounded by√

n. Let ρ0 ≤ s be the smallest integer such that:
∑p

i=1 min
(
β2
i , λ

2σ2
)
≤ ρ0λ

2σ2.

Let T0 denote the largest ρ0 coordinates of β in absolute values. Define an active set of strong-signal
coordinates, for which we would like to assure recovery, and ρ̃0 ⊆ T0 ⊂ ρ:

ρ̃0 = {j : |βj | > λσ} , (2)

We assume standard restricted-eigenvalue conditions and beta-min conditions for support inclusion
results.
Assumption 5 (Restricted Eigenvalue Condition RE(|ρ|, k0, X) (Bickel et al., 2009)). Let X be
the data matrix. Define

1

κ (|ρ|, k0)
≜ min

J0⊆{1,...,d}
|J0|≤|ρ|

min
∥vJ0∥1

≤k0∥vJ0∥1

∥Xv∥2√
n ∥vJ0

∥2
.

For some integer 1 ≤ |ρ| ≤ d and a number k0 > 0, it holds for all v ̸= 0,

κ (|ρ|, k0)−1
> 0, Λmin(2|ρ|) := min

v ̸=0,∥v∥0≤2|ρ|

∥Xv∥2
2

n∥v∥2
2
> 0, Λmin(2|ρ|) := max

v ̸=0,∥v∥0≤2|ρ|

∥Xv∥2
2

n∥v∥2
2
> 0.

The restricted eigenvalue condition of Assumption 5 is one of the common assumptions for LASSO.
It corresponds to assuming well-conditioning of the matrix under sparse subsets. It also ensures that
the behavior policy provides good coverage over relevant features; indeed it characterizes coverage
for linear function approximation [6].
Assumption 6 (Beta-min condition on strong signals). βmin,ρ̃0

:= minj∈ρ̃0
|βj | > λσr.

Assumption 6 is a signal-strength condition, that the smallest coordinate of the active set is separated
from the threshold defining the active set. This prevents knife-edge situations where a relevant
coordinate is not recovered (but is also of irrelevant signal strength). Analogous assumptions are
generally required to show support inclusion. Assumption 6 is somewhat milder; instead imposing
a stronger version would give correspondingly stronger recovery results.

Under these assumptions, our main result is a prediction error bound on q-function estimation under
reward-thresholded lasso, under given rate conditions on threshold and regularization strength of
initial lasso.
Theorem 1 (Prediction error bound for reward-thresholded LASSO). Suppose Assumptions 1 to 6.
Suppose Assumption 5, RE (ρ0, 4, X) holds with κ (ρ0, 4).

Let βinit be an optimal solution to LASSO(ϕ, r;λn), e.g. lasso regression of rewards on
features, with λn ≥ ∥Xϵθ∥∞

n . Suppose that for some constants D̆1 ≥ D1, and for
D0(Λmax,Λmin, |ρ|, ρ0), D1(Λmax,Λmin, |ρ|, ρ0) specified in the appendix, it holds that βmin,ρ̃0 ≥
D0λnσ

√
ρ0 + D̆1λnσ. Choose threshold τ0 = Cλσ ≥ 2

√
1 + aλσ, for some constant C ≥ D1.

Let I be the recovered support on βinit.

I = {j : |βj,init | ≥ τ0} , where τ0 ≥ D̆1λσ.

Then on Ea, ρ̃0 ⊂ I, |I| ≤ 2ρ0, and |I ∩ T c
0 | ≤ ρ0. And, with high probability we have predictive

error bounds:
1
n∥Xθ̂ −Xθ∗∥22 ≤ 4

σ2
q(|I|(1+468 log(2d))+2(1+2

√
|I|)

n .
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Given this “fast rate” on the prediction error of the reward-thresholded LASSO, we obtain a bound
on the policy error of the fitted-Q-iteration procedure that depends primarily on the sparsity (up to
constant factors) rather than the potentially high-dimensional state. The analysis is standard, given
the result we prove above specialized for our method. Note that we did not attempt to optimize
problem-independent constants in our analysis.

Before we do so, we show how the thresholded procedure also quantifies an important structural
restriction for policy evaluation/optimization: (approximate) Bellman completeness, which states
that the Bellman operator is approximately closed under the regression function class. Although
Proposition 2 establishes that the class of linear functions restricted to the sparse component is
Bellman complete, in practice, thresholding noisy estimates may lead to false positives and false
negatives. Our previous analysis establishes that these are of controlled magnitude due to the choices
of thresholding and regularization parameter. This also implies that the misspecification bias due to
finite-sample estimation is also vanishing in n at the same rate, stated in the following proposition
on approximate instance-dependent Bellman completeness.

Proposition 3 (Bound on Bellman completeness violation under approximate recovery). With high
probability, under Ea,

sup
qt+1∈QI,ρ\ρ̃0 ̸⊆I

inf
qt∈QI,ρ\ρ̃0 ̸⊆I

∥qt − T ⋆
t qt+1∥2µt

= Op(n
−1).

With these results, we can establish a finite-sample bound on the policy value under Algorithm 2.

Theorem 2. Suppose Assumptions 1 to 6.

V ∗
1 (s1)− V π

1 (s1) ≤ 2T

√
Λminσ2

q(2|ρ|(1+468 log(2d))+2(1+2
√

|ρ|)
n .

The result follows straightforwardly given our predictive error bound and standard analysis of fitted-
Q-iteration. This sample complexity result improves upon prior work since it now depends on the
underlying sparsity rather than the full ambient dimension.

7 Experiments
We first consider a simulated setting to validate the method. Our primary comparison is with thresh-
olded LASSO regression for fitted-Q-evaluation. This highlights the benefit of tailoring estimation
for the inductive bias. The figures are in Figures 2a to 2c but due to space constraints, see the Ap-
pendix for experimental details. We benchmark against naive thresholded LASSO estimation and
improve estimation error while controlling false positives incorrectly included by the baseline.
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Checklist

1. For all models and algorithms presented, check if you include:
(a) A clear description of the mathematical setting, assumptions, algorithm, and/or model.

[Yes, e.g. assumptions about DGP in Sec. 4 and about method in Sec. 6.1]
(b) An analysis of the properties and complexity (time, space, sample size) of any algo-

rithm. [Yes, sample complexity analysis. We reduce to LASSO, which is classical and
has well-described computational complexity elsewhere.]

(c) (Optional) Anonymized source code, with specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:
(a) Statements of the full set of assumptions of all theoretical results. [Yes]
(b) Complete proofs of all theoretical results. [Yes, in appendix.]
(c) Clear explanations of any assumptions. [Yes, right after assumptions made.]

3. For all figures and tables that present empirical results, check if you include:
(a) The code, data, and instructions needed to reproduce the main experimental results

(either in the supplemental material or as a URL). [Yes, in supplementary material.]
(b) All the training details (e.g., data splits, hyperparameters, how they were chosen).

[Yes]
(c) A clear definition of the specific measure or statistics and error bars (e.g., with respect

to the random seed after running experiments multiple times). [Yes]
(d) A description of the computing infrastructure used. (e.g., type of GPUs, internal clus-

ter, or cloud provider). [Yes, run on 16gb Macbook with M1 chip ]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets,

check if you include:
(a) Citations of the creator If your work uses existing assets. [Not Applicable]
(b) The license information of the assets, if applicable. [Not Applicable]
(c) New assets either in the supplemental material or as a URL, if applicable. [Not Ap-

plicable]
(d) Information about consent from data providers/curators. [Not Applicable]
(e) Discussion of sensible content if applicable, e.g., personally identifiable information

or offensive content. [Not Applicable]
5. If you used crowdsourcing or conducted research with human subjects, check if you in-

clude:
(a) The full text of instructions given to participants and screenshots. [Not Applicable]
(b) Descriptions of potential participant risks, with links to Institutional Review Board

(IRB) approvals if applicable. [Not Applicable]
(c) The estimated hourly wage paid to participants and the total amount spent on partici-

pant compensation. [Not Applicable]
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A Further Discussion

Interpreting Assumption 1: We can also specify a corresponding probabilistic model. Suppose
Pa(st+1 | st) ∼ N(µa,Σa). and that Pa(st+1 | st) is partitioned (without loss of generality) as
Pa(s

ρ
t+1, s

ρc

t+1 | sρt , s
ρc

t ). Then by Assumption 3

Pa(s
ρ
t+1 | sρt )

D
= Pa(s

ρ
t+1 | sρt , s

ρc

t ) ∼ N(µρ
a,Σ

ρ,ρ
a ).

where the first equality in distribution follows from the conditional independence restriction of As-
sumption 3 and the parameters of the normal distribution follow since marginal distributions of a
jointly normal random variable follow by subsetting the mean vector/covariance matrix appropri-
ately.
Remark 1. Similar to previous works studying similar structures, we assume this structure holds.
If it may not, we could use model selection methods [15]: if we incorrectly assume this structure, we
would obtain a completeness violation; so the model selection method’s oracle inequalities would
apply and be rate-optimal relative to non-sparse approaches. We emphasize that we don’t posit this
method as a general alternative to general sparsity, but rather as a simple principled approach to
estimate in settings with this exogenous structure.

Why not simply run thresholded LASSO fitted-Q-iteration? Lastly, we provide some impor-
tant motivation by outlining potential failure modes of simply applying thresholded lasso fitted-Q-
iteration (without specializing to the endogenous-exogenous structure here). The first iteration (last
timestep), qT = RT . So thresholded regression at last timestep is analogous to thresholded reward
regression. Note that if reward regression succeeds at time T , then we are integrating a dense mea-
sure against the sparse function VT . On the other hand, mistakes in time T will get amplified (i.e.
upboosted as “signal” by the dense transition measure). Our reward-thresholded LASSO will not
accumulate this error based on the structural assumptions. Without these structural assumptions, it
would be unclear whether the rewards are truly dense or whether the dense transitions are amplifying
errors in support recovery on the rewards.

B Further details on method

Choosing the penalty level in practice A data driven suggestion of [2] is to choose

λ =
c′σ̂Λ(1− α | X)

n

where Λ(1−α | X) is the (1−α) quantile of n∥S/σ∥∞. They also suggest to choose a data-driven
upper bound for σ̂0 the sample deviation of yi, compute LASSO, and then set σ̂2 = q̂(β̂).

C Proofs

C.1 Proofs of characterization

Proof of Proposition 1. The proof follows by induction. We first show the base case, for t = T .
Recall that we take the convention that rT = qT = 0, so that qT (s, a) = rT (s, a). Therefore since
rT (s, a) = rT (s̃, a) for sT , s̃T such that sρT = s̃ρT , we also have that for

π∗
T (s) ∈ argmax

a∈A
r(s, a), π̃∗

T (s̃) ∈ argmax
a∈A

r(s̃, a),

and when sρT = s̃ρT , π
∗
T (sT ) = π̃∗

T (s̃T ). Therefore q∗T (sT , a) = q∗T (s̃T , a) when sρ = s̃ρ. Next we
show the inductive step. The inductive hypothesis is that

q∗t+1(st+1, a) = q∗t+1(s
ρ
t+1, a) = q∗t+1(s̃t+1, a),∀a ∈ A, and π∗

t+1(st+1) = π̃∗
t+1(s̃t+1) when sρt+1 = s̃ρt+1.

Then for

π∗
t (s) ∈ argmax

a∈A
{rt(s, a) + γE[q∗t+1(st+1, π

∗
t+1(st+1)) | s, a]}

π̃∗
t (s̃) ∈ argmax

a∈A
{rt(s̃, a) + γE[q∗t+1(s̃t+1, π

∗
t+1(st+1)) | s̃, a]}
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we have that

q∗t (st, a) = rt(st, a) + γE[q∗t+1(st+1, π
∗
t+1(st+1)) | st, a]

= rt(st, a) + γE[q∗t+1(s
ρ
t+1, π

∗
t+1(s

ρ
t+1)) | st, a] (induction hypothesis)

= rt(st, a) + γE[q∗t+1(s
ρ
t+1, π

∗
t+1(s

ρ
t+1)) | s

ρ
t , a] (Assumption 3)

= rt(s̃t, a) + γE[q∗t+1(s̃t+1, π
∗
t+1(s̃t+1)) | s̃ρt , a] (sρt = s̃ρt )

= q∗t (s̃t, a)

when sρt = s̃ρt .

Therefore, when sρt = s̃ρt ,
π∗
t (st) = π̃∗

t (s̃t).

This completes the induction.

Proof of Proposition 2. Let π∗(st+1) ∈ argmaxa∈A q̆(st+1, a). Note that when q̆ ∈ ⨿̆t+1, the
optimal action remains the same for states that differ only outside of the sparse support: π∗(st+1) =
π∗(s̃t+1) when sρt+1 = s̃ρt+1.

Therefore for any q̆ ∈ ⨿̆t+1,

T ∗q̆ = Esρt+1

[
Esρct+1

[
q̆t+1(st+1, a

∗(st+1)) | sρt+1, s, a
]
| s, a

]
= Esρt+1

[
qt+1(s

ρ
t+1, a

∗(sρt+1)) | s, a
]

= Esρt+1

[
qt+1(s

ρ
t+1, a

∗(sρt+1)) | sρ, a
]

by Assumption 3

where the second-to-last equality holds since q̆t+1(st+1, a
∗(st+1)) = q̆t+1(s̃t+1, a

∗(st+1)) when
sρt+1 = s̃ρt+1, for any q̆t+1 ∈ q̆t+1.

Next we show that under Assumptions 1 and 3, E[rt(s, a) + T ∗q̆t+1 | s, a] is linear and is rep-
resentable by a function q̆ ∈ ⨿t. Under linear rewards, rt(s, a) = θ∗t ϕρ(s, a) for some θ∗t that
is ρ-sparse. And, under linear transitions, Esρt+1

[T ∗q̆t+1 | st, at] = ϕ⊤
ρ µ

∗,⊤
ρ q̆∗t+1 where µ∗

ρ is the
ρ−marginalized linear transition map. Hence

E[rt(s, a) + T ∗q̆t+1 | s, a] = (θ∗t + q̆∗,⊤t+1µ
∗
ρ)︸ ︷︷ ︸

w∗
ρ

ϕρ(s, a)

C.2 Intermediate results

We first study the parameter error of ordinary least squares under a missing set of covariates. We let
I denote the subset of covariates, for example that returned by thresholded lasso. We first consider
the case when I is a given subset containing the true support. The next theorem is a more complex
extension, specialized to our reward-thresholded q-estimation setting, of a result about estimation
under omitted variables of [26, 25]. The key structure allowing us to link thresholded lasso of reward
to prediction error of estimated q functions is the shared covariance structure. Theorem 3 is the main
technical contribution of our work.
Theorem 3 (Prediction error bounds of I-restricted ordinary least squares of the Bellman residual).
Suppose Assumptions 1 to 5. Let D = {1, . . . , d}\I and ρD = D

⋂
ρ (e.g. the set of false negatives

of support recovery). Suppose |ρ
⋃
ρD| ≤ 2|ρ| and that ρ ⊆ I. Suppose that λ ≥ ∥X⊤ϵr+q√

n
∥∞.

Consider I−restricted ordinary least squares regression of sparse q. In the following, we omit the
time index for brevity. Then:

∥θ̂I − θI∥2 ≤
√

|I|
Λmin(|I|)

λ.+ ∥θD∥2

1

n
∥Xθ̂ −Xθ∗∥22 ≤ 4

σ2
q (|I|+ 2

√
|I| log(1/δ) + log(1/δ))

n
+max

(
36

|I|λ2

κ
, 162

σ2
θ |I| log(d/|I|)

n

)
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Proof of Theorem 3. Let θ be the full ordinary least squares solution for the q estimation, θ̂I , θ∗I be
the estiamted and true restricted OLS solution computed on I, respectively, and θ∗ the true (sparse)
solution.

θ̂I = (X⊤
I XI)

−1X⊤
I Y (q) = (X⊤

I XI)
−1X⊤

I Y (q)

= (X⊤
I XI)

−1X⊤
I (X⊤

I θ∗I + ϵ) (sparse rewards and asn. about sparse Q function)

= θ∗I + (X⊤
I XI)

−1X⊤
I ϵr+γq

Hence,
∥θ̂I − θ∗I∥2 ≤ ∥(X⊤

I XI)
−1X⊤

I ϵr+γq∥2.
We bound the second term as follows:

∥(X⊤
I XI)

−1X⊤
I ϵr+γq∥2 ≤

∥∥∥∥∥
(
X⊤

I XI

n

)−1
∥∥∥∥∥
2

∥∥∥∥X⊤
I ϵr+γq

n

∥∥∥∥
2

≤
√

|I|
Λmins(|I|)

λ,

yielding that

∥θ̂I − θ∗I∥2 ≤
√

|I|
Λmin(|I|)

λ.

The result follows since ∥θ̂I − θ∗∥22 ≤ 2∥θ̂I − θ∗I∥22 + 2∥θ∗I − θ∗∥22.
Next we bound the prediction error,

1

n
∥Xθ̂ −Xθ∗∥22 ≤ 1

n
∥Xθ̂ −Xθ∗I∥22 +

1

n
∥Xθ∗I −Xθ∗∥22.

We will decompose relative to β̂, a thresholded lasso regression on rewards r alone but also restricted
to I. Note that by the elementary bound (a− b)b ≤ (a− b)2 + b2:

1

n
∥Xθ̂ −Xθ∗I∥22 ≤ 2

n
∥Xθ̂ −Xθ∗I − (Xβ̂ −Xβ∗

I)∥22 +
2

n
∥Xβ̂ −Xβ∗

I∥22
:= T1 + T2.

First we bound T1 := 2
n∥Xθ̂−Xθ∗I − (Xβ̂−Xβ∗

I)∥22. Observe that it is equivalently the prediction
error when regressing the next-stage q function alone, i.e. yt − rt, on the I-restricted features, since
(θ̂ − β̂) = (X⊤

I XI)
−1X⊤

I {γv(s′)}. Then

2

n

∥∥∥X(θ̂ − β̂)−X(θ∗I − β∗
I)
∥∥∥2
2
=

2

n

∥∥X {
(X⊤

I XI)
−1X⊤

I (γv(st+1))− (θ∗I − β∗
I))

}∥∥2
2
,

where the last term can be identified as the noise term in (V (st+1)) − (θ∗I − β∗
I)) ≈ ϵq under the

linear MDP assumption. By the sparsity properties of θ̂, β̂ (they are both restricted to I):

2

n

∥∥∥X(θ̂ − β̂)−X(θ∗I − β∗
I)
∥∥∥2
2
=

2

n

∥∥∥XI(θ̂ − β̂)−XI(θ
∗
I − β∗

I)
∥∥∥2
2

(by two-step procedure and realizability)

≤
σ2
q (2|I|+ 2

√
2|I| log(1/δ) + 2 log(1/δ))

n
. (by Lemma 1)

Next we bound T2 := 2
n∥Xβ̂−Xβ∗

I∥22. Let βλ denote the initial LASSO solution in the thresholded
lasso β̂.

By optimality of β̂,

2

n
∥Xβ̂ −Xβ∗

I∥22 ≤ 2

n
∥Xβλ −Xβ∗

I∥22

≤ 4

n
∥Xβλ −Xβ∗∥22 +

4

n
∥Xβ∗ −Xβ∗

I∥22

13



The first of these is bounded via standard analysis of prediction error in LASSO, and the second by
a maximal inequality as previously.

By the penalized formulation:

1

2n

∥∥Xβλ −Xβ∗∥∥2
2
≤ λ

2

∥∥βλ − β∗∥∥
1
+ λ

(
∥β∗∥1 − ∥βλ∥1

)
≤ λ

2

∥∥βλ
I − β∗

I
∥∥
1
+ λ

∥∥βλ
Ic

∥∥
1
+ λ

(
∥β∗∥1 − ∥βλ∥1

)
≤ λ

2

∥∥βλ
I − β∗

I
∥∥
1
+ λ

∥∥βλ
Ic

∥∥
1
+ λ

(∥∥β∗
I − βλ

I
∥∥
1
−

∥∥βλ
Ic

∥∥
1

)
=

3λ

2

∥∥βλ
I − β∗

I
∥∥
1
− λ

2

∥∥βλ
Ic

∥∥
1
,

The above, with the restricted eigenvalue condition of Assumption 5, implies that

3λ

2

∥∥βλ
I − β∗

I
∥∥
1
− λ

2

∥∥βλ
Ic

∥∥
1
≥ 1

2n
∥Xβλ −Xβ∗∥22 ≥ κ∥βλ − β∗∥22 (3)

Therefore, by properties of the ℓ1 and ℓ2 norm:

1

2n
∥Xβλ −Xβ∗∥22 ≤ 3λ

2
∥βλ

I − β∗
I∥1 ≤

3λ
√
|I|

2
∥βλ

I − β∗
I∥2

Then applying the restricted eigenvalue condition of Assumption 5 to the last term of the above, we
obtain that

1

2n

∥∥Xβλ −Xβ∗∥∥2
2
≤

3λ
√
|ρ|

∥∥Xβλ −Xβ∗
∥∥
2√

nκ
.

Rearranging, this gives the bound

4

n

∥∥Xβλ −Xβ∗∥∥2
2
≤ 144

|I|λ2

κ
.

Finally, we can bound 2
n∥Xβ∗

I − Xβ∗∥22 via a maximal inequality over the ℓ0 norm ball of radius
2ρ0 since earlier we showed that |I| ≤ 2ρ0. Applying the maximal inequality of Lemma 2 gives

4

n
∥Xβ∗

I −Xβ∗∥22 ≤ 324
σ2
θ |I| log(d/|I|)

n
.

C.3 Proofs of main results for method

Proof of Theorem 1. Because the support is recovered from a thresholded LASSO on the rewards,
the support inclusion result is a consequence of [26, Thm. 6.3], although analogous results essen-
tially hold under stronger beta-min conditions (i.e, on the support ρ and correspondingly stronger
support inclusion conditions). Namely, it gives that, suppose for some constants D̆1 ≥ D1, and for
D0, D1 such that: For K := κ (ρ0, 6), b0 ≥ 2,

D0 = max
{
D,K

√
2
(
2
√
Λmax (|ρ| − ρ0) + 3b0K

)}
where D = (

√
2 + 1)

√
Λmax (|ρ| − ρ0)√
Λmin (2ρ0)

+
θρ0,2ρ0Λmax (|ρ| − ρ0)

Λmin (2ρ0)
and

D1 = 2Λmax (|ρ| − ρ0) /b0 + 9K2b0/2,

it holds that, for D̆1 ≥ D1,

βmin,A0
≥ D0λσ

√
ρ0 + D̆1λσ, where λ :=

√
2 log p/n.

Choose a thresholding parameter τ0 and set

I = {j : |βj,init| ≥ τ0} , where τ0 ≥ D̆1λσ.
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Then on Ea,
ρ̃0 ⊂ I, |I ∩ T c

0 | ≤ ρ0, |I| ≤ 2ρ0, (4)

∥βD∥22 ≤ (ρ0 − a0)λ
2σ2. (5)

This yields the first statement about support recovery.

For prediction error, we then apply Theorem 1 and this yields the result.

Proof of Proposition 3. True β∗ is ρ-sparse but the worst case situation is if ρ \ ρ̃0 ̸⊆ I, i.e. the
low-signal coefficients are not returned by the thresholding algorithm. On the other hand, they
are assuredly of magnitude ≤ |λσ| and hence ought to lead to less violation of the completeness
condition. Let QI,ρ\ρ̃0 ̸⊆I denote the set of linear coefficients with support on ∥I∥0 ≤ 2ρ0 such that
it does not contain the low signal variables ρ \ ρ̃0, and

sup
qt+1∈QI,ρ\ρ̃0 ̸⊆I

inf
qt∈QI,ρ\ρ̃0 ̸⊆I

∥qt − T ⋆
t qt+1∥2µt

≤ ϵ.

The infimum over qt is equivalent to a further-restricted ℓ0 norm regression problem.
sup

qt+1∈QI,ρ\ρ̃0 ̸⊆I

inf
qt∈QI,ρ\ρ̃0 ̸⊆I

∥qt − T ⋆
t qt+1∥2µt

= inf
qt∈QI,ρ\ρ̃0 ̸⊆I

sup
qt+1∈QI,ρ\ρ̃0 ̸⊆I

∥qt − T ⋆
t qt+1∥2µt

and
sup

qt+1∈QI,ρ\ρ̃0 ̸⊆I

{∥qt − T ⋆
t qt+1∥2µt

+ ∥qt − T ⋆
t qt+1∥2µt

}

≤ sup
qt+1∈QI,ρ\ρ̃0 ̸⊆I

∥qt − T ⋆
t qt+1∥2µt

+ sup
qt+1∈QI,ρ\ρ̃0 ̸⊆I

∥T ⋆
t q∗t+1 − T ⋆

t qt+1∥2µt

Then
sup

qt+1∈QI,ρ\ρ̃0 ̸⊆I

∥T ⋆
t q∗t+1−T ⋆

t qt+1∥2µt
≤ (∥(qt+1)I\ρ̃0

∥1+∥(qt+1)ρ\ρ̃0
∥1)2 ≤ (2sτ0+

√
2s∥β̂−β∥2+sλσ)2

That is, false positives are of low signal strength (by the algorithm, and by prediction error bound)
while false negatives not in the active set are also of low signal strength. The threshold and signal
strength definitions tend to 0 at a rate overall depending on λ. Therefore, using a (loose) bound that
(a+ b)2 ≤ 2a2 + 2b2,

sup
qt+1∈QI,ρ\ρ̃0 ̸⊆I

∥T ⋆
t q∗t+1−T ⋆

t qt+1∥2µt
≤ (2s(τ0+λσ)+

√
2s∥β̂−β∥2)2 ≤ 16s2(τ20+λ2σ2)+4s∥β̂−β∥22

Next we bound:
inf

qt∈QI,ρ\ρ̃0 ̸⊆I
sup

qt+1∈QI,ρ\ρ̃0 ̸⊆I

∥qt − T ⋆
t qt+1∥2µt

The outer minimization is simply least-squares regression over a further restricted ℓ0 norm ball.
Consider Q̃ such that Q̃ = {q ∈ QI,ρ\ρ̃0 ̸⊆I : qρ̃0

> 0, qI\ρ̃0
= 0}, and note that Q̃ ⊆ QI,ρ\ρ̃0 ̸⊆I .

inf
qt∈QI,ρ\ρ̃0 ̸⊆I

sup
qt+1∈QI,ρ\ρ̃0 ̸⊆I

∥qt − T ⋆
t qt+1∥2µt

≤ inf
qt∈Q̃

sup
qt+1∈QI,ρ\ρ̃0 ̸⊆I

∥qt − T ⋆
t qt+1∥2µt

The worst-case error is incurred when qt+1,ρ\ρ̃0
> 0; these are the low-signal variables not guaran-

teed to be recovered by the algorithm. Then for q′ ∈ Q\ρ̃0
:= {q ∈ QI,ρ\ρ̃0 ̸⊆I : qρ\ρ̃0

> 0}, and we
have that

≤ inf
qt∈Q̃

sup
qt+1∈Q\ρ̃0

∥qt − T ⋆
t qt+1∥2µt

,

where the leading order dependence is described by Theorem 3’s analysis of least-squares regression
on a restricted covariate set: Q̃ omits the low-signal variables ρ\ρ̃0. Therefore, by Theorem 3, w.h.p.
under Ea and assumptions on λ in Theorem 3,

sup
qt+1∈QI,ρ\ρ̃0 ̸⊆I

inf
qt∈QI,ρ\ρ̃0 ̸⊆I

∥qt − T ⋆
t qt+1∥2µt

= Op(n
−1).
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C.4 Technical results

We list standard technical results from other works that we use without proof.

C.4.1 Concentration

Lemma 1 (Theorem 1 of [12], random design prediction bound for linear regression. ). Define
Σ̂ := Ê[x ⊗ x] = 1

n

∑n
i=1 xi ⊗ xi. Suppose outcomes are σnoise-subgaussian and “bounded

statistical leverage”, then there exists a finite ρ2,cov ≥ 1 such that almost surely:∥∥Σ−1/2X
∥∥

√
d

=
∥Σ−1/2X∥√
E[∥Σ−1/2X∥2]

≤ ρ2,cov

If n > n2,δ , then with probability at least 1− 2δ, we have that the matrix error
∥∥∥Σ1/2Σ̂−1Σ1/2

∥∥∥ ≤
K2,δ,n ≤ 5; and the excess loss satisfies:

∥ŵols − w∥2Σ ≤ K2,δ,n ·
σ2

noise · (d+ 2
√

d log(1/δ) + 2 log(1/δ))

n

Lemma 2 (Prediction error bounds via maximal inequalities over an ℓ0 ball, Theorem 4 of [18] .).
For any covariate matrix X , with probability greater than 1 − exp(−10s log(d/s)) the minimax
prediction risk is upper bounded as

min
ŵ

max
w∗∈B0(|I|)

1

n
∥X (ŵ − w∗)∥22 ≤ 81

σ2|I| log(d/|I|)
n

,

where B0(|I|) is the ℓ0 norm ball of radius |I|.

C.4.2 Analysis of fitted-Q-evaluation

Definition 3 (Bellman error). Under data distribution µt, define the Bellman error of function q =

(q0, . . . , qT−1) as: E(q) = 1
T

∑T−1
t=0 ∥qt − T ∗

t qt+1∥2µt

Lemma 3 (Bellman error to value suboptimality). Under Assumption 5, for any q ∈ Q, we have
that, for π the policy that is greedy with respect to q, V ∗

1 (s1)− V π
1 (s1) ≤ 2T

√
C · E(qπ).

Proof of Theorem 2. Under Lemma 3, it suffices to bound the Bellman error, 1
T

∑T−1
t=0 ∥qt −

T ∗
t qt+1∥2µt

. We start with one timestep. Let ℓ(f, g) = (f − g)2 be the squared error. The Bell-
man error satisfies that ∥q̂h − T ⋆

h q̂h+1∥2µh
and can be lower bounded as follows:

∥q̂h − T ⋆
h q̂h+1∥2µh

= Eµh
[ℓ(q̂h, q̂h+1)]− Eµh

[ℓ(q†h, q̂h+1)] + ∥q†h − T ⋆
h q̂h+1∥2µh

≤ Eµh
[ℓ(q̂h, q̂h+1)] + ϵ (by Proposition 3 on apx. Bellman completeness)

where ϵ is the parameter for approximate Bellman completeness, such that

sup
qt+1∈QI,ρ\ρ̃0 ̸⊆I

inf
qt∈QI,ρ\ρ̃0 ̸⊆I

∥qt − T ⋆
t qt+1∥2µt

≤ ϵ.

By Proposition 2 we have that ϵ = Op(n
−1).

The prediction error bound of Theorem 1 bounds Eµh
[ℓ(q̂h, q̂h+1)] so we have that

V ∗
1 (s1)− V π

1 (s1) ≤ 2T

√
Λminσ2

q (2|ρ|(1 + 468 log(2d)) + 2(1 + 2
√

|ρ|)
n

.
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Figure 3: Reward-relevant/irrelevant factored dynamics.

D Alternative model: endogenous/exogenous decomposition of [5]

We discuss a related, but different model: a sparse reward variant of the endogenous-exogenous
variable decomposition of Dietterich et al. [5]. The main difference is that the exogenous compo-
nents instead can affect the endogenous components, as opposed to the other way around in our
model, where endogenous components affect exogenous components. We include the illustration in
Figure 3.

A natural question is whether our methods can handle this setting as well, especially since Dietterich
et al. [5] that the optimal policy is sparse in the endogenous MDP alone. Our exact characterization
in this paper used the conditional independence restriction of Assumption 3, which does not hold
in the exo-endo MDP since exogenous variables can affect next-timestep endogenous variables. On
the other hand, that the optimal policy is sparse in the endogenous MDP alone implies that the
corresponding advantage functions, i.e. Deltaa0(s, a) = q(s, a) − q(s, a0) do in fact satisfy the
conditional independence restriction of Assumption 3.

Hence, under the additional restriction of reward sparsity where exogenous variables do not affect
reward, we can extend methods in this paper to thresholded-LASSO based on estimating reward
contrast functions and hence advantage functions. To sketch this extension, note that we can run
CATE estimation at the final timestep and then simply redefine Bellman targets to be differences of
q-functions over actions.

This additional assumption of reward sparsity is required: in the original paper of [5], rewards are
additively decomposable but there can be direct effect of exogenous variables on the reward.

E Experiments

In the data-generating process, we first consider |S| = 50, |ρ| = 10, and A = {0, 1}. The reward
and states evolve according to

rt(s, a) = β⊤ϕt(s, a) + ϵr, st+1(s, a) = Mas+ ϵs.

Recalling that Ma =

[
Mρ→ρ

a 0
Mρ→ρc

a Mρc→ρc
a

]
, we generate the coefficient matrix with independent

normal random variables ∼ N(0.2, 1). (Note that the nonzero mean helps ensure the beta-min
condition). The zero-mean noise terms are normally distributed with standard deviations σs =
0.4, σr = 0.6. In the estimation, we let ϕ(s, a) be a product space over actions, i.e. equivalent to
fitting a q function separately for every action.

We first show experiments for policy evaluation in the main text due to space constraints. Fitted-Q-
evaluation is similar to fitted-Q-iteration, but replaces the max over q functions with the expectation
over actions according to the next time-step’s policy. See the appendix for additional experiments for
policy optimization specifically. We compare our reward-filtered estimation using Algorithm 2 with
naive thresholded lasso, i.e. thresholding lasso-based estimation of q-functions alone in Figures 2a
to 2c. (We average the q function over actions; results are similar across actions). The behavior
and evaluation policies are both (different) logistic probability models in the state variable, with the
coefficient vector given by (different) random draws from the uniform distribution on [−0.5, 0.5].
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We average over 50 replications from this data generating process and add standard errors, shaded,
on the plot. The first plot, Figure 2a, shows the benefits in mean-squared error estimation of the
q-function qpie1 (s, a), relative to the oracle q function, which is estimated from a separate dataset
of n = 20000 trajectories. The reward-filtered method achieves an order of magnitude smaller
mean-squared error for small sample sizes, with consistent improvement over thresholded LASSO
estimation on the q function alone. Next in Figure 2b we show the true positive rate: both methods
perform similarly in including the sparse component the recovered support. But the last plot of Fig-
ure 2c shows that the naive thresholded lasso method includes many exogenous variables that are not
necessary to recover the optimal policy, while the false positive rate for the reward-filtered method
is controlled throughout as a constant fraction of the sparsity. Overall this simple simulation shows
the improvements in estimation of the q function (which translate down the line to improvements in
decision-value) under this special structure.
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