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Abstract

The remarkable performance of Large Language Models (LLMs) can be enhanced
with test-time computation, which relies on external tools and even other deep
learning models. However, existing approaches for integrating non-text modality
representations into LLMs typically require additional costly supervised training,
restricting on-the-fly adaptation to new domains and modalities. In this work, we
explore the feasibility of integrating representations from non-text foundational
models (FMs) into text-based LLMs in a training-free manner. We propose In-
Context Representation Learning (ICRL) as a proof-of-concept to allow LLMs
to adaptively utilize non-text modality representations with few-shot learning.
Unlike traditional in-context learning, which incorporates text-label pairs, ICRL
replaces text inputs with FM representations, enabling the LLM to perform multi-
modal inference without fine-tuning. We evaluate ICRL on a suite of tasks in
the molecular domain, investigating three core research questions: (i) how to
map FM representations into LLMs in a training-free manner, (ii) what factors
influence ICRL performance, and (iii) what mechanisms underlie the effectiveness
of ICRL. To the best of our knowledge, ICRL is the first training-free framework
for integrating non-text modality representations into text-based LLMs, presenting
a promising direction for adaptable, multi-modal generalization.’

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable versatility in leveraging test-time
computation [57, 48], allowing them to dynamically adapt to new tasks and perform complex reason-
ing without additional training. A key extension of this capability is their ability to integrate external
tools, including other deep learning models [4, 10], to enhance their problem-solving potential.
Existing multi-agent frameworks allow LLMs to incorporate predictions from external models during
inference, expanding their applicability to complex, multi-step tasks [49, 24]. Despite the advances,
these methods typically use only the final outputs of external models, limiting the effective use of
their internal knowledge [25, 49]. To address this, recent efforts have explored enabling LLMs to
leverage intermediate representations from external models. A promising direction involves allowing
text-based LLMs to process non-text modalities (e.g., images [34]) by incorporating representations
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from modality-specific foundation models (FMs) (Fig. 1(b)). However, these approaches typically
require additional supervised training—either for modality-specific projection layers or even for the
LLM itself—to enable a text-based LLM to incorporate a new modality. This process is typically
computationally intensive and requires specialized paired dataset between text and the target new
modality. This raises a fundamental question: Can a text-based LLM leverage representations from
other modality-specific foundational models during inference, without such training?
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Figure 1: Comparison of (a) ICL, (b) multi-modal LLM, and (c) in-context representation learning.

In-context learning (ICL), a core capability of large language models (LLMs), enables task adaptation
at inference time through few-shot examples [56, 12], offering a promising path toward flexible,
training-free generalization. In this study, we explore how ICL can be extended to process rep-
resentations from modality-specific foundation models (FMs) during inference. To this end, we
propose In-Context Representation Learning (ICRL)—a proof-of-concept designed to enhance LLM
adaptability and enable a single model to generalize efficiently across diverse modalities (Fig. 1(c)).
In contrast to ICL where text-label pairs (Fig. 1(a)) are included in the text prompt for the LLM to
conduct few-shot prediction, ICRL replaces the sample text (e.g. SMILES of a molecule*) with the
representation from an external FM (Fig. 1(c)). Note that our primary objective is not to outperform
ICL but to investigate the feasibility of adaptively integrating non-text FM representations into a
text-based LLM in a training-free manner. We study ICRL and its mechanisms on a battery of
molecular tasks and organize our findings around 3 core research questions as follows.

‘ RQ1 (Sec. 2 & 3): How to Map FM Representations into an LLM in a Training-free Manner?

We first study ICRL designs that integrate the FM representation vectors directly in the text prompt
as few-shot examples. To fit these high-dimensional vectors as text within LLM’s limited context
window, we employ dimensionality reduction (i.e., PCA) and find this simple strategy surprisingly
effective. We also investigate using a projection module to interface between the FM representations
and a text-based LLM’s embedding layer. To enable inference-time integration of the non-text
modality, we also examine several training-free projection methods that map FM representations
into the LLM’s embedding space without fine-tuning and compare their empirical performances.
Notably, our analysis indicates that an approach based on optimal transport theory, which aligns the
distribution of FM representations with that of LLM embeddings, yields promising results.

‘ RQ2 (Sec. 4): What Factors affect ICRL Performance?

We found that key parameters affecting standard ICL, such as the number of few-shot examples,
similarly influence ICRL. Additionally, we analyze various parameters in ICRL to gain deeper
insights into their impact on performance.

“To ensure a fair comparison, we use molecular datasets where SMILES strings encode structural information
in a textual format naturally compatible with LLMs, avoiding the need for architectural changes or fine-tuning.
This allows us to study non-text modality integration into ICL pipelines in a clean, training-free setting. Related
modalities (e.g., protein sequences) and preliminary results on vision and speech are discussed in Sec. 7.



‘ RQ3 (Sec. 5): What are the Mechanisms behind ICRL?

Our findings show that ICRL performance improves when projected FM representations closely
resemble their corresponding text embeddings, while larger deviations can harm performance. Addi-
tionally, we observed an inverse correlation between the similarity of ICRL-projected representations
across different few-shot examples and ICRL performance, implying that excessive uniformity among
projected representations may hinder effectiveness. Lastly, we found that when traditional ICL is
present, the mode of ICRL representations shifts, leading them to be treated as pause tokens [17].

The main contributions of this paper are as follows: (i) To the best of our knowledge, the proposed
in-context representation learning is the first training-free approach to integrate non-text modalities
into a text-based LLM. (ii) We explore various design choices and analyze their impact on ICRL
performance across a range of molecular domain tasks. (iii) We present mechanistic insights behind
ICRL to show how the distribution of projected representation affects performance.

2 How to Map FM Representations into an LLM in a Training-free Manner?

In this section, we first discuss the proposed ICRL framework, which encompasses two different loca-
tions to integrate FM representations into a text-based LLM: (1) introduction of the representation as
a string in the prompt text and (2) injection of the FM features into the LLM embedding spaces. Then,
we introduce several methods that constitute the proposed ICRL framework; detailed algorithmic
descriptions of the overall pipeline and each injection strategy are provided in Appendix D.

2.1 Preliminaries

In-Context Learning & LLM. Consider the general ICL framework [12]: given a set of text inputs
X = [z1,...,%y), i.e., molecular SMILES sequences, and the task label y € Y, a pre-trained LLM
1) predicts by selecting the candidate with the highest score based on a demonstration set E. This set
comprises the instruction I and k& demonstration examples: E = {I, (z1,v1),. .., (k,yr)}, where
each (x;, y;) represents a few-shot learning exemplar. The final prediction 3 is computed using a
scoring function f over the entire input sequence:

§ = arg max fy (y;, E,X). (1)
y; €Y

where X represents a set of text examples. Within this framework, the LLM ¢ implements the
above formulation through sequential token processing. Specifically, for each input sequence z;,
the embedding layer of LLM 1, converts it into a sequence of token embeddings: g; = ¥.(x;) €
Rti*drinm where ¢; is the number of tokens corresponding to x;, and dy 1,5 is the dimensionality of
each token embedding. For convenience, the distribution of LLM outputs is denoted as: Dy €
RT*drem  where T = >, t; is the total number of tokens across all inputs.

Foundation Model. We define the FM as a mapping: ¢ : X — RNVXdrum and the extracted
representations are structured as: H € RN*xMxdram  wwhere M is the number of extracted feature
vectors, and d gy is the corresponding dimensionality. In this article, we focus on the sentence-level
classification feature, i.e., M = 1, and denote the distribution of the extracted representations as
Dray € RVXdrv | Further details on feature extraction schemes can be found in Appendix F.6.

Projector. We employ a simple multilayer linear model (MLM) to align the FM and LLM embedding
spaces, defined as P : R4"» — RIz2M  The projected embedding distribution is denoted as Dpy.o; .

2.2 In-Context Representation Learning

Unlike standard ICL, which constructs examples (z;,y;) only from textual inputs, and Multi-modal
Large Language Model (MLLM) methods requiring supervised training for modality alignment,
ICRL directly injects adjusted FM representations into LLMs without training, i.e., (1;, y;), bypassing
raw input x. We classify our methods into two injection levels and discuss their design and theoretical
foundations in the following subsections.

2.2.1 Text-Level Injection

PCA. A straightforward approach to integrating FM representations into LLMs is to embed the high-
dimensional vectors directly into the prompt as strings. However, these high-dimensional embeddings



often surpass the context window limitations of most models and make them incompatible with
ICL approaches. To address this challenge, we implement PCA for dimensionality reduction. This
transformation maps the original embeddings to a lower-dimensional space: Dpca € RN *dReduced
where dreduced < dpar. Let Wpoy € RIFMXdReduced | the reduced-dimensional embeddings
Hpeqa = H x Wpea are subsequently converted into PCA strings S,.,, enabling their seamless
integration into the prompt while retaining the most critical features of the original representations.

2.2.2 Embedding-Level Injection

While dimensionality reduction enables the FM representations to fit within the text prompt, the
vector strings still occupy a substantial portion of the prompt and incur information loss, thereby
limiting their effectiveness. To address these limitations and enhance the LLM’s understanding of
these representations, we propose several embedding-level injection methods that directly inject
features into the LLM’s text embedding layer:

Zero-Pad. The simplest approach applies zero padding to FM representations to match the dimen-
sionality of the LLM embedding space, offering a straightforward solution that preserves the original
representation components. Then, we apply a normalization step (as detailed in Appendix G.1) to
adjust the mean and variance of the padded representation to match the average mean and variance of
the LLM’s embeddings before feeding it into the LLM. This prevents the generation of irrelevant or
nonsensical outputs due to input embeddings with out-of-distribution statistics.

Random Projection. We employ a randomly initialized MLM as a projector module to address the
dimension mismatch problem. In contrast to previous studies [29], this projector is untrained and
devoid of activation functions, which is mathematically equivalent to simple matrix multiplication,
making it a lightweight and efficient solution. Then the projected features are directly concatenated
with the embeddings of the rest of the example.

Optimal Transport Alignment. Directly using random projectors may result in a distribution
mismatch between the LLM’s embeddings and the mapped FM representations. As a mathematical
framework designed to align two distributions, optimal transport (OT) provides a viable solution to
resolve this mismatch [53]. In this approach, we extract the tokens corresponding to the original
input x; or the representation string obtained by the PCA model. These token embeddings serve as
the target distribution in OT to adjust the projected results H,,.,; = P(H). The alignment process

is formalized as follows: Let Dy € RN Xdeim gpnd Dy, € RV "xdpnum represent the source and
target distributions, respectively, where N’ denote the number of tokens in the target distribution.
The final objective can be formulated as:

min / c(u, v) 0y(u,v), )
YEIL(1sv) J Do X Diar

where v € II(u, v) is the transport plan that defines how to map the points in the source distribution
to the target one, p and v are the marginal distributions over Dy,.; and Dy,,, respectively. c¢(u, v) is
the function that measures the cost of moving an element u from Dp,.,; to v in Dy,

For practical implementation, we align the mean and variance of each dimension of D,,.,; to match
the corresponding dimension of Dy, i.e., for each dimension j, we have:

shift; =v;—u; and scalej = %, 3)
p.J
where u;, v;, 0p ; and oy ; represent the means and standard deviations of the j-th dimension of
Dproj and Dy, respectively. The final aligned embeddings Hy;igneq are obtained by applying the
following transformation:

OT (Dproj, Diar) = scale - Hy,j + shift. %)
Given the differing target distributions, we propose two OT-based alignment methods:
OT - Embed. To enhance the interpretability of the representation for the LLM, a suitable alignment
target is the LLM embedding of input text features (e.g., SMILES). Specifically, for each input x;,

the target embedding 1. (z;) is computed as the mean of its token-level embeddings. The adjusted
embeddings can then be represented as: Hajigned = OT (Hpro, ¥ (X)).

OT - PCA. Another OT variant uses the embeddings of the stringified, dimensionally reduced
FM representations Spca as the target distribution, as this approach more closely captures the



token embeddings associated with FM representations. This can be expressed as: Hgjignea =
OT (Hproj, e(Spca)). Note that the computation of OT shi ft and scale parameters needs to be
performed only once and takes negligible time, the subsequent use only requires quick adjustments.
We describe the OT method in more detail in Alg. 5.

Random Noise. To verify whether the model is learning from the FM representation, we conduct an
ablation study by replacing informative FM features with random noise.

Theoretical support for linear projector. In designing the projector, we initially experimented
with a commonly used two-layer MLP. However, the mapped representations show greater similarity,
suggesting a noticeable loss of information [31]. Here, we conduct a theoretical analysis to examine
how nonlinear activations in the projector layers can affect the original embedding geometry.

Following [31], given a linear layer with random initialization. Let W € R?*“ be a random square
weight matrix such that each entry Wy, ; is an i.i.d. Gaussian random variable, i.e., Wy, ; ~ ./\/(O, é)
We consider affine transformations of the form Wx + b, where b € R¢ is a random bias vector.
Our objective is to demonstrate that such random linear mappings preserve the norms and angles of
high-dimensional vectors, thereby retaining the underlying variability of the original embeddings.

Theorem 1 (Concentration of Norm Under Random Linear Projector). Let u € R? be a fixed vector;
and that W € R? has i.i.d. entries Wy, ~ N(0,1/d), independent of a bias vector b € RY. Then

forany 6, € (0,1), with probability at least 1 — §1, there exists e; = O(y/log(1/d1)/d) such that:

[Wat B2 = (]2 + llu]2)| < ex (1B + [ll]?)- )

Proof Sketch. Each coordinate (Wu + b)y, is a sum of Gaussian variables with variance on the order
of |[u||?/d, shifted by by. By applying classical concentration inequalities (e.g., Chebyshev’s), the
squared norm |[Wu + b||? concentrates around its mean ||b||? + |lu/|2. We provide the full derivation
and proof for all theorems in Appendix E.1 and E.2. O

Theorem 2 (Preservation of Cosine Similarity). Let u,v € R? be any two fixed vectors, and
W € R4 have i.i.d. entries Wy, ~ N(0,1/d). Then for any 55 € (0,1), there exists a small

€2 = O(y/log(1/02)/d) such that with high probability at least 1 — do, we have:

‘cos(Wu, Wv) — cos(u,v)| < e (6)

Remark. We set the bias term b = 0 in our theoretical analysis and subsequent experiments. This
choice enables exact matching between pre- and post-projection cosine similarities, as any non-zero
bias would introduce additional terms that obscure this relationship.

Corollary 1. Nonlinear activations may distort vector angles and inflate similarities. Formally, let
o () be a nonlinear activation (e.g., ReLU, sigmoid). Then with high probability:

|cos(a(Wu), 0(Wv)) — cos(u, v)| > |cos(Wu, Wv) — cos(u,v)|. 7

This effect arises because both norms and dot products tend to concentrate under random linear
mappings x — Wx, thus preserving the geometric distinctions (i.e., angles) among points in high-
dimensional space [31]. In contrast, nonlinear activations with range constraints or sparsity-inducing
properties (e.g., ReLU, sigmoid) may suppress variation and exaggerate alignment, leading to inflated
cosine similarities even for originally dissimilar inputs. Empirical evidence and theoretical proof
supporting this corollary are presented in Sec. 4 and Appendix E.3.

3 Experimental Results

In addition to constructing examples from representations, i.e. (r;, y;), ICRL can also utilize both the
original textual input and its corresponding FM features to form examples like (x;, 7;, y;). Extensive
experiments show that adding representations can further enhance ICL performance.

3.1 Experiments Setup

Datasets. We evaluate our ICRL method on five molecular datasets: ESOL [1 1], Caco_wang [54],
AqSolDB [52], LD50_Zhu [70], and AstraZeneca [58]. For larger datasets, following [2], we



Table 1: RMSE () Comparison of ICRL Across Datasets. Bold/ Underline: best/second-best value
among the Embedding Injection methods. Ran-Noi and Ran-Pro denote the Random Noise and
Random Projection methods, respectively.

Dataset Text Injection Embedding Injection
ICL PCA Zero-Pad Ran-Noi Ran-Pro OT-Embed OT-PCA
ESOL 1.16 £19e2  1.11 223e4 | 1.73 2452 1.41 £35¢3  1.69 244e2  1.19 2183 1.24 +4.0e-3

Caco2_Wang | 0.83 s84e4  0.95 224e3 | 1.04 241e3  1.03 244e3  1.03 213e3  0.89 24e3  0.88 21.5¢-3
AqSolDB 1.92 s39e-4 291 215e2 | 4.01 +53e2  3.95 +48e-3  4.02 :80e2  4.06 £13e-1  3.25 +59¢2
LD50_Zhu 0.99 +1.7¢4  1.06 25¢-4 | 1.28 9.0e-4  1.21 £18e3  1.29 213e3  1.18 +12¢3  1.14 £1.3¢4
AstraZeneca | 1.37 z24e-3  1.39s51e5 | 1.55 220e3  1.50 213¢2  1.54 292¢4  1.46 239e-4  1.47 25.4¢-4

Caco2 ESOL Caco2 ESOL

(E)Ran-Pro (E) Ran-Pro (E) Ran-Pro (€) Ran-Pro
(E)oTPCA (E)OT-PCA (E)OT-PCA (€)OT-PCA

Linear RELU GELU Linear RELU GELU Normal  Dirc He Glorot *% Normal  Dirc He Glorot
(a) (b) (© (d

Figure 2: (a) and (b) present the performance with and without activation functions in the projector
across two datasets, evaluated by RMSE ({), demonstrating that linear projectors can achieve superior
results. (c) and (d) depict the impact of different projector initialization strategies, indicating that
these choices have minimal influence on performance.

randomly select 1,000 samples for the test set. Additional experiments and discussions on protein
and drug-target interaction datasets can be found in Appendix F.7.

Implementation & evaluation. Unless stated otherwise, raw text input features are omitted in ICRL.
We use Uni-Mol [68] to generate molecular representations and Llama-3.1-70B-Instruct [18] for
inference. During inference, we set the number of examples (shots), the PCA target dimensionality to
20, and the batch query size to 3. The projector is a two-layer MLM with 64 hidden units per layer.
To ensure result stability, each method is evaluated using ten random seeds, with final results derived
from the top three runs. Details about the dataset and implementation are in Appendices C and G.1.

3.2 Which Injection Method is more effective?

This subsection evaluates various ICRL methods across different scenarios, analyzing their strengths
and limitations °. It is important to note that our aim is not to claim state-of-the-art performance,
but rather as an initial probe into fraining-free approaches for LLMs to leverage FM representations.
Given that PCA and OT processes incur a negligible fraction of computational cost (take less than
two seconds, with only one additional token per sample in the input window) compared to training-
based approaches, we focus on comparing several representation injection strategies under similar
conditions, and include ICL results as a reference. A detailed discussion is provided in Sec. 7.

Comparison of representation injection approaches. As shown in Tables 1, 24 & 25, the text-level
injection approach PCA outperforms other embedding-level methods on most datasets. These results
demonstrate that LLMs can effectively interpret and utilize features injected in this manner, while its
reliance on a large context window limits scalability. In contrast, the OT-based approaches achieve
comparable results with minimal context window usage, i.e., one token per FM representation.
Conversely, the Zero-Pad and Random Projection methods perform poorly, often falling below that of
Random noise, indicating that these simplistic techniques fail to generate suitable representations.

ICRL performance with original text features (SMILES). Incorporating SMILES sequences with
ICRL reveals that most embedding-level injection methods could improve performance over ICL
with only SMILES strings (Table 2, 22 & 23). Notably, on the ESOL dataset, the OT-PCA method

5The conclusions we proposed are consistent across different metrics, i.e., Pearson’s correlation coefficient
(Pearson r) and Root Mean Square Error (RMSE). Additional details can be found in Appendix G.2.1.
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Figure 3: (a) and (b): performance of various methods under different PCA dimensions. (c) and (d):
different methods behave similarly across batch query size settings. (e) - (h): Pearson correlation (1)
with increasing example count, demonstrating enhanced learning via OT-adjusted representations and
feature injection. E and T denote different injection levels.

achieves a significant 16.6% improvement compared to using textual input alone (measured by
Pearson r). Surprisingly, while LLMs exhibit a strong ability to interpret PCA strings and OT-based
representations, their combined benefits with text features are less pronounced compared to simpler
methods. Specifically, the Random Noise method consistently outperforms the baseline across all
datasets when textual input is included, and Zero-Pad delivers superior results in most cases. In
contrast, OT-based methods show inconsistent gains, and the PCA method—despite its prior strong
performance—degrades performances across all datasets. Further analysis is provided in Sec. 5.

4 What Factors affect ICRL Performance?

Model Capability. The effectiveness of ICRL is closely linked to the capacity of the underlying
pre-trained LLM. As shown in Tables 20 and 21, larger models are generally better at leveraging
FM-derived representations and handling in-context prompts. In contrast, smaller models (i.e.,
Llama-3.2-3B-Instruct) exhibit noticeable performance degradation on both ICL and ICRL (see
Appendix E.8). Despite this, ICRL achieves performance comparable to, and in some cases even
surpassing ICL in these smaller models. This suggests that, under capacity constraints, OT-aligned
FM embeddings serve as an informative input representation compared to the baseline SMILES
strings (see Appendix F.9). Consequently, ICRL demonstrates strong potential as a lightweight
and effective approach for enabling small-scale LLMs to leverage foundation model knowledge,
providing a promising alternative to costly supervised learning in resource-constrained settings.

ICRL projector schemes. As our projector is untrained, its structural design—specifically, the
inclusion of activation functions and initialization choices—plays a crucial role. We evaluate the
effects of incorporating ReLU and GELU activation functions between two linear layers and ex-
plore four common initialization methods: Glorot initialization [16], He initialization [20], Dirac
initialization—which structures the weight matrix to approximate an identity matrix, and standard
normal initialization. Results in Figs. 2(a) and 2(b) demonstrate that activation functions consistently
degrade performance, which aligns with our theoretical analysis. Additionally, Figs. 2(c) and 2(d)
suggest that while alternative initialization methods may provide minor improvements, the standard
normal initialization consistently yields the best overall performance. Furthermore, initialization
choices have a relatively minor impact compared to activation function settings.

PCA dimensions. As the dimensionality of PCA affects the length of text-level injected represen-
tations, we conducted an ablation study to further investigate its impact. Interestingly, in scenarios
without text input, the PCA method did not yield better performance with increasing representation
length (Figs. 3(a) and 3(b)). In most cases, performance even declined, suggesting that longer
representations do not necessarily enhance the model’s ability to interpret them. In contrast, when



Table 2: Pearson Correlation (1) Comparison Across Datasets. Bold/ Underline: best/second-best
value compared with ICL.

| Baseline | ICRL (Ours)
Dataset Text Text Embedding
ICL PCA+ICL | Zero-Pad+ICL  Ran-Noi+ICL  Ran-Pro+ICL  OT-Embed+ICL  OT-PCA+ICL
ESOL 0.465 29.2¢-4 | 0.455 £1.2¢-4 0.526 2.1e-4 0.540 +1.6e-3 0.525 26.5¢-5 0.508 +1.7¢-4 0.542 15.4¢-4
Caco2_Wang | 0.411 +13e3 | 0.393 x9.2e4 0.410 +4.6e-6 0.420 +1.1e4 0.405 +1.6e-5 0.429 :1.1e3 0.394 1574
AqSolDB 0.596 25.1e-5 | 0.549 23204 0.606 :6.3c-6 0.597 +1.1e-5 0.600 +2.4e-5 0.569 +5.7¢-4 0.589 +3.9¢-5
LD50_Zhu 0.378 1.2e5 | 0.356 £1.9¢-4 0.393 :8.6c-6 0.379 15.4e-6 0.392 +7.3¢-5 0.361 +1.2¢5 0.362 +7.8¢-5
AstraZeneca | 0.266 2.3e5 | 0.227 3.1e-5 0.272 +4.8¢-5 0.267 22.1e-5 0.269 +1.9¢-5 0.269 22.1e-4 0.271 +6.6e-5
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Figure 4: (a) and (b) illustrate the mean cosine similarity of ICRL representations of different
molecules in different ICRL methods. (c) and (d) present the mean pairwise cosine similarity between
the ICRL representations and their corresponding SMILES text embeddings.

both textual and representational inputs were considered, longer representations contributed to a
deeper understanding of SMILES sequences to some extent. Additionally, for embedding-level injec-
tion methods, the length of the injected item remains fixed, making this parameter only marginally
influential on the target distribution. Detailed results and analyses are provided in Appendix F.10.

Do key ICL parameters affect ICRL similarly? ICL has been shown to benefit from more examples
and batch query processing [23]. This raises a key question: does ICRL exhibit similar behavior? To
investigate, we conduct ablation experiments on these parameters, leading to the following findings:

(1) ICRL benefits from an increased number of examples. As illustrated in Figs. 3(e) and 3(f),

OT-based methods demonstrate a noticeable upward trend with an increasing number of examples,
suggesting that LLMs can effectively interpret injected representations and leverage additional
examples to enhance the performance of downstream tasks. In contrast, unadjusted representations
show limited gains. Since ICRL requires significantly less context space, this finding suggests that
embedding-level injection methods have the potential to achieve comparable performance to standard
ICL by using a larger number of examples.

(2) ICRL behaves similarly to ICL. Figs. 3(e) to 3(h) illustrate the performance trends when
incorporating both textual input and corresponding representations compared to using textual input
alone under varying conditions. Specifically, both approaches demonstrate synchronized performance
changes with increasing batch query sizes, and as the number of examples grows, consistent improve-
ments are observed across all methods. These results indicate that the inclusion of representations
does not alter the overall trends observed in textual-only approaches. Instead, it generally enhances
the LLM’s capability to interpret SMILES sequences within the provided examples.

5 What are the Mechanisms Behind ICRL?

In this section, we further analyze and discuss ICRL’s distinct behaviors based on several observations:

(1) High similarity between ICRL representations degrades performance. Specifically, the FM
features are typically confined to a narrower space [31], leading to highly similar mapped embeddings
(Figs. 4(a) and 4(b)). Thus, the LLM perceives minimal differences between samples, leading to



random predictions based on the example label distribution, as further analyzed in Appendix F.11.
However, representation similarity alone does not fully explain the results. For instance, methods like
Random Noise exhibit poor performance despite their low similarity, whereas OT-based methods,
which demonstrate moderate diversity, achieve superior outcomes. This underscores the importance
of representation-text alignment in effective utilization.

(2) Improved FM features do not necessarily lead to better improvement when text features are
included. Interestingly, although the OT-based method shows the best ICRL performance, it does not
consistently achieve optimal results when integrated with textual features. Instead, simpler methods
often provide more effective enhancements when combined with text input, as demonstrated in
Table 2. An analysis of attention weights (Fig. 5) reveals that the model predominantly focuses on the
SMILES sequences, which are more familiar and occupy a significantly larger portion of the context
window compared to the injected representations. This suggests that the LLM tends to ignore the
injected representations rather than actively learning from them.

The dual operational modes of ICRL representations in different scenarios. When prompts
consist solely of ICRL representations as input features, the demonstrations differ significantly from
the data encountered during pre-training. As a result, the model operates primarily in a fask learning
mode [33], relying heavily on the few-shot ICRL exemplars for prediction of test samples. This mode
poses a challenge when the few-shot examples are insufficient, making both the prediction and the
representation interpretation difficult. As shown in Figs. 3(e) and 3(f), when fewer than ten examples
are provided, most methods yield nearly random predictions. However, as the number of examples
increases, ICRL performance improves significantly, indicating that the model gradually acquires the
ability to interpret and leverage the injected representations when provided with sufficient contextual
samples [1]. In this case, ICRL performance depends on two critical factors: (i) the diversity of
representations, which enables meaningful mappings to labels, and (ii) the alignment of projected
FM representations with the LLM’s embedding distribution. Both conditions are essential for the
model to effectively utilize the injected features and function optimally in the task learning mode.

In contrast, when examples incorporate both representations and text inputs, the model may shift
towards a task retrieval mode [33] due to the presence of SMILES strings in the LLM’s pretraining
data. In this mode, predictions are guided by the interaction between the model’s pre-training priors
and the contextual examples, allowing it to effectively leverage prior knowledge when encountering
familiar information [33]. This explains the inferior performance of the PCA+ICL method: the
injected representations, being textual tokens, interfere with the model’s interpretation of other text
inputs, such as SMILES strings [15]. Conversely, injecting more distinctive embedding-level features,
such as random noise, may function similarly to a pause token, allowing additional “thoughts"
that improve performance [17]. These findings underscore the importance of the uniqueness of
injected representations. By aligning more effectively with the model’s retrieval mechanism, distinct
representations enhance the model’s ability to leverage its prior knowledge and improve performance.

6 Related Work

Representation-based In-context Learning. Recent work shows that LLMs can reorganize internal
representations to capture task semantics purely from in-context examples [40]. Most related to
our work, Vector-ICL [71], designs pre-training and finetuning to train projectors to align external
models’ representations into the LLM embedding space. In contrast, our proposed approach aims to
study training-free methods to derive the projector to avoid costly supervised training.

In-context Learning & Multi-modal LLMs. ICL is a notable emergent property of LLMs [56],
enabling them to perform tasks by conditioning on a few examples without requiring parameter
updates [12]. MLLMs extend LLMs by integrating multiple data modalities [28, 65, 42], allowing
for more comprehensive reasoning. The Appendix B provides more detailed related work.

7 Further Discussions

Performance—Cost Trade-off. To clarify the trade-off between accuracy and efficiency, we compare
ICRL with representative fine-tuning pipelines, including instruction-tuning (I-FT), supervised
pretraining (S-PT) + finetuning, and unsupervised pretraining (PT) + finetuning. While these methods
achieve good performance, they typically require hours to weeks of GPU training. In contrast, ICRL
is training-free and requires only a lightweight CPU alignment step of about 2 seconds.



Table 3: Performance—cost comparison between ICRL and recent fine-tuning pipelines.

Method Type Resource Training Time ESOL (RMSE) Lipo (RMSE) Avg
MolecularGPT [36] I-FT 4xA800-80G <1 day 1.471 1.157 1.314
GIMLET [67] S-PT + FT 2-4 GPUs ~1 day 1.132 1.345 1.239
SELFormer [64] PT 2xA5000 ~2 weeks 1.357 3.192 2.275

PT + FT 2xA5000 ~2 weeks 0.682 1.005 0.844
GPT-MolBERTa [5] PT +FT 2-4 GPUs ~2 weeks 0.477+0.01 0.758+0.01  0.612
OT-PCA (ours) Training-free CPU only ~2 sec 1.14040.01 1.349+0.01 1.245
OT-PCA +ICL (ours)  Training-free CPU only ~2 sec 1.094+0.01 1.277+£0.01  1.186

As shown in Table 3, while large-scale PT+FT methods achieve the lowest RMSE, they require
substantial training cost. In contrast, ICRL runs in only a few seconds on CPU and still matches or
even surpasses some lightweight tuning pipelines. (Detailed setup are provided in Appendix F.1.)

Lightweight Trainable Projectors. We also investigate whether lightweight training can enhance
projector performance by exploring three strategies: caption-based pretraining on LPM24, contrastive
alignment between SMILES and FM embeddings, and a combined multi-task variant. While these
methods can improve captioning quality on the pretraining domain, they fail to transfer effectively
to regression tasks such as ESOL and AqSolDB. In some cases, training even destabilizes the
ICL process, leading to incomplete outputs or degraded accuracy. These findings indicate that,
under limited data and without domain-specific supervision, lightweight trainable projectors are less
reliable than the training-free OT-PCA, underscoring the robustness and practicality of our approach.
(Implementation details and results are given in Appendix F.2.)

Performance under Challenging Tasks. Tasks such as drug—target interaction and protein-related
property prediction are particularly challenging for ICL, where subtle sequence variations critically
determine labels but remain hard for general-purpose LLMs to capture [2, 26], often leading to
near-random performance. ICRL mitigates this limitation by injecting representation-based inputs,
allowing the model to capture informative signals even when textual features are homogeneous.

Our additional experiments on molecular QA and caption generation confirm this trend: ICRL
consistently outperforms ICL under difficult tasks, yet it still falls short of domain-specific expert
models. This highlights ICRL as a practical and lightweight alternative when ICL struggles, while
leaving room for future integration with specialized approaches (Appendix F.3).

Cross-Modality Generalizability. ICRL provides a lightweight framework for enabling LLMs
to process non-text modalities such as vision and audio without requiring paired data or modality-
specific training. Even in the absence of supervision, OT-aligned embeddings from models like
ViT and wav2vec2 support meaningful few-shot predictions (Appendix F.4). While ICRL does
not reach the performance of resource-intensive supervised methods in domains where large-scale
task-specific or multimodal LLMs already exist, it serves as a practical alternative in scenarios where
such models are scarce, costly, or difficult to deploy. Representative examples include molecular
property prediction [59], sensor-based human activity recognition [30], and biomedical applications
such as protein—ligand binding [45], where pretrained multimodal LLMs are not readily available.

In these settings, the lack of modality-specific pretrained models, limited labeled data, and domain
complexity often make end-to-end fine-tuning infeasible. By directly injecting representation-level
features, ICRL enables LLMs to exploit modality-specific information with no additional supervision
or architectural modification. Importantly, our findings across molecular and protein datasets confirm
that the link between representation diversity and downstream performance is modality-agnostic,
underscoring ICRL’s potential as a general approach for extending LLMs beyond text (Appendix F.7).

8 Conclusion
We propose ICRL to explore whether LLMs can leverage modality-specific FM features without
supervised training. Results show its feasibility and potential for generalizable multimodal reasoning.

Limitations and Future Work. Despite its efficiency and generalizability, ICRL underperforms
compared to supervised methods due to the lack of task-specific training. In future work, we plan to
explore lightweight training strategies to improve its performance while preserving efficiency.
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B Detailed Related work

In-Context Learning (ICL): ICL is a remarkable emergent property of LLMs, enabling them to
perform various tasks by conditioning on a few input-output examples, without requiring parameter
updates or fine-tuning [7, 55]. It has been explored extensively in terms of studying factors that
influence the performance of ICL such as prompting strategies, amount and order of few-shot
exemplars[50, 23, 19, 12]. However, it remains unknown how we can apply in-context learning to
integrate high-dimensional representations from external non-LLM models. Our work is pioneering
in its focus on enabling LLMs to directly learn from and utilize representations derived from diverse
modalities beyond text from external models. This novel approach has the potential to radically
expand the utility of LLMs in domains requiring the integration of multiple modalities and knowledge,
thus opening new avenues for the application of LLMs. In a recent work [60], it has been shown
that LL.Ms can shift from their original semantic representations to new ones that aligned with the
graph’s structure given as few-shot learning examples in the text prompt, suggesting that scaling
context can enable LLMs to reorganize their knowledge to accommodate novel contexts and tasks. In
contrast, our work here focuses on the potential to integrate representations from external models
during inference time through few-shot exemplars.

Foundation Models (FMs): Foundation Models are large-scale, pre-trained deep learning models
designed to generalize across diverse tasks by learning from massive datasets using self-supervised
learning techniques. These models, such as GPT3 [43, 7], leverage billions of parameters to develop
general-purpose representations that can be fine-tuned for specific tasks or domains, revolutionizing
fields like natural language processing, computer vision, and biomedical research [7]. For molecular
and protein analysis, structure-based FMs, such as GearNet [66], Uni-Mol [69], and ESMFold [32]
extend this paradigm by incorporating domain-specific 2D/3D molecular representations. Although
user-friendly, LLMs typically lack specialized training in areas like protein sequences or chemical
structures. Such specialized domains FMs offers a way to enable LLMs to efficiently acquire and
apply specialized knowledge. Our work use ICL to integrate domain-specific expertise from FMs
pre-trained on specialized datasets, enhancing both usability and computational efficiency.

Tool Use in LLMs: Current research on tool use with LLMs, such as the implementation of APIs
for external functionalities in applications like Chemcrow, demonstrates the capacity of LLMs to
interface with external tools to perform specific tasks [6, 62, 41]. However, in the current approaches,
LLMs utilize only the final outputs of external models as the external tool. There is currently no
work looking into using the richer, underlying representations from these external models for more
sophisticated LLM inference. Our work aims to bridge this gap by enabling LLMs to access and
leverage deep learning model representations, enhancing their inferential capabilities to address
specialized tasks beyond what the LLMs are trained on.

Multi-modal Large Language Models (MLLMs): Multi-modal Large Language Models are
designed to process and integrate multiple data types, including images, text, audio, and more
[63, 43]. Existing research in the realm of MLLMs, such as Vision-Language Models (VLM) [3]and
Tx-LLM[8], has significantly advanced our understanding of how MLLMs can process and integrate
information across different input modalities. However, these models typically require extensive
supervised training for both the LLM and their projection layers to handle multi-modal tasks [27]. This
process not only demands substantial computational resources but also necessitates expertise in Al,
making it less accessible to researchers without a background in machine learning. The requirement
for multi-task training means the entire model must be retrained with both old and new data to avoid
catastrophic forgetting—a significant limitation when only new data is introduced[39]. Our work
addresses these limitations by proposing a novel in-context representation learning framework that
simplifies the integration of multi-modal data, thereby reducing the need for extensive computational
resources and specialized Al knowledge.

C Datasets Details

C.1 Molecular Dataset Description

Molecular Domain: In the molecular domain, we evaluate the performance of our ICRL framework
on seven key molecular property prediction regression tasks. These tasks are taken from Therapeutic
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Data Commons (TDC) Absorption, Distribution, Metabolism, and Excretion (ADME) property
prediction benchmarks and the Toxicity property prediction benchmarks.

TDC is a platform consisting of Al-based datasets, benchmarks, and processing tools for therapeutic
machine learning [21]. The ADME tasks are a set of single-instance prediction tasks in the molecular
domain that examine the ADME properties of small-molecule drug chemicals. The Toxicity property
prediction tasks aim to predict drug toxicity properties. All molecular datasets are as follows.

* ESOL [11]: ESOL is made up of water solubility data (log solubility in mols per litre) for
common organic small molecules. Input a chemical compounds SMILES string, predict the
solubility of chemical compounds.

* Caco-2 [54]: The human colon epithelial cancer cell line, Caco-2, is used as an in vitro
model to simulate human intestinal tissue. Experimental measurements of the rate at which
drugs pass through Caco-2 cells can approximate the rate of drug permeation through human
intestinal tissue. Input a drug SMILES string, predict the Caco-2 cell effective permeability.

* AqSolDB [52]: Aqueous solubility measures a drug’s ability to dissolve in water. Poor water
solubility can lead to slow drug absorption, inadequate bioavailability, and even toxicity.
More than 40% of new chemical entities are poorly soluble. Input a drug SMILES string,
predict the activity of solubility.

* LD50Zhu [70]: Acute toxicity LD50 measures the most conservative dose that can lead to
lethal adverse effects. The higher the dose, the more lethal of a drug. Input a drug SMILES
string, predict its acute toxicity.

» AstraZeneca [58]: Lipophilicity measures a drug’s ability to dissolve in a lipid environment
(e.g., fats, oils). High lipophilicity is often associated with a high rate of metabolism, poor
solubility, rapid turnover, and low absorption. Input a drug SMILES string, predict the
activity of lipophilicity.

C.2 Protein Dataset Description

Protein Domain: In the protein domain, we evaluate the performance of the ICRL framework on
four key protein property prediction regression tasks. These tasks are taken from two key protein
representation learning benchmarks: TAPE (Tasks Assessing Protein Embeddings) and PEER (Protein
Sequence Understanding).

The TAPE benchmark consists of five tasks spanning different domains of protein biology [44].
We focused on the Fluorescence and Stability tasks because they are whole protein-sequence-level
regression tasks, in contrast to amino acid-level regression, pairwise amino acid regression, or
classification. The Fluorescence dataset and Stability dataset descriptions are as follows:

* Fluorescence: The Fluorescence task is a regression-based task that predicts the log-
fluorescence intensity of an input protein [47]. The train set consists of a small neighborhood
of the GFP protein, and the test set has distant GFP proteins.

* Stability: The Stability task is a regression task that measures the most extreme circum-
stances in which a protein maintains its folded state above a concentration threshold, consid-
ered a proxy for stability [46]. The train set comprises a broad set of proteins, and the test
set comprises one-mutation neighborhoods of sampled proteins.

Drug-Target Interaction Domain:

In the Drug-Target Interaction (DTI) domain, we evaluate the performance of our framework on
two key molecular-protein cross-domain property prediction regression tasks. These tasks are taken
from the TDC Multi-Instance Prediction Problem. The drug-target interaction (DTI) prediction task
evaluates the interaction activity of small-molecule drug compounds.

BindingDB[35, 22] is a collection of various assays which is a part of the DTI prediction task, which
takes in a target amino acid sequence and SMILES string and then predicts the binding affinity. Since
different assays use different metrics, two separate BindingDB datasets in Ki and IC50 units were
used.

* BindingDB_Ki is a database containing experimental data on the binding affinity (Ki values)
of small molecules to protein targets.
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* BindingDB_IC50 is a publicly available database containing experimental data on the
binding affinities of small molecules to proteins, specifically in terms of IC50 values. IC50
measures the concentration of a substance required to inhibit 50% of a biological target.

D Algorithmic descriptions

In this section, we provide a detailed description of the overall pipeline and all representation injection
algorithms.

Algorithm 1 ICRL Framework

1: Imput: Training and test dataset Qqin and Qiest, FM ¢, LLM )¢, batch query size b, injection
strategy M, ;, number of examples k, empty example set I/

2: Stage 1: Construct demonstration set

3: Extract representations from FM: H = ¢(Q¢rqin)

4: if M;,; requires additional parameters then

5:  Derive parameters from {z;}?" | C Q¢rqin and H

6

7

8

. end if
: Sample {(z;,y;) 1 from Qirain
: for each sampled (x;, y;, h;) do
9:  Apply injection strategy: r; = M;y;(h;)
10:  Add example (r;,y;) to E
11: end for
12: Stage 2: Batch Inference

13: for each test batch B; = {(xgt), y](»t))}i’:1 C Qtest do
14:  Initialize empty batch queries @)
15:  for each sample ¢t = 1to b do

16: Extract representation: h;t) = gb(x?)

17: Apply injection strategy: rj(-t) = Minj(h;-t))

18: Add query (rét)) to Q;

19:  end for A

20:  Generate predictions: Y, = {gj(.t)}g:l =¢(F,Q,)
21: end for

22: Qutput: Predictions Y.

Algorithm 2 PCA method

1: Input: Extracted representations H, PCA model W p¢ 4 fitted by Q¢rqi and string conversion
function S

2: Compute reduced-dimensional embeddings: H,.q = H X Wpcoy

3: Convert reduced embeddings into text strings: Spcq = S(Hpea)

4: Output: S,

Algorithm 3 Zero-Pad

1: Input: Extracted representations H, LLM embedding space dimension d 1 s

: Compute padding size: pad_size = drpp — dpys

: for each h; in H do
Apply zero padding to H to match the LLM embedding dimension: hj,qqgeq
Pad(h;, pad_size)

end for

: Output: H,,q4eq

W

aw
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Algorithm 4 Random Noise

1: Input: Training and test dataset Q¢,q;n, LLM 1., LLM embedding dimension dy 1 as

2: for each z; in Qyyqin do

3:  Compute a random hash seed using z;: h;, ., = Hash(z;)

4 Generate a unique random vector for each input based on the hash seed: h; =
Random(h;...,,dLoa)

end for

: Output: H,,,;c

AN

Algorithm 5 Optimal Transport Alignment

1: Input: Extracted and projected representations H and H,,.;, input texts Q¢rqin, LLM em-
bedding function 1), alignment mode mode, PCA model W p¢ 4 fitted by Q4rqir and string
conversion function .S

2: Stage 1: Get the OT parameters

3: if mode = “embed” then

4:  Compute input embeddings: Hyyr = Ve (Qtrain)

5: else if mode = “pca” then

6:  Get PCA strings: Spcq = S(H X Wpca)

7:  Compute PCA embeddings: Hiqr = e (Spea)

8: end if

9: Initialize empty vectors shift, scale € R4rLm

10: for each dimension j do

11: u; = mean(Hpo;[:, jl), v; = mean(Hia, [1, j])

12: oy = std(Hyroj(:, j)), 0v,j = stdMHyar[:, j])

13: shift[j| = v; — uy, scalelj] = o1 ;/0p,;

14: end for

15: Stage 2: Implement alignment

16: Hojigned = scale - Hp,oj + shift

17: return H;gneq, shift, scale

20



E Detailed Proofs

In this section, we provide a complete derivation of the concentration result stated in Theorem 1 and
Theorem 2. For convenience, we restate the theorem and then present the step-by-step analysis.

E.1 Proof of Theorem 1

theorem: Given a fixed vector u € R%, suppose W € R%*9 has i.i.d. entries Wy, ; ~ N(0,1/d), and

b € R? is a bias vector (fixed or random and independent of W). Then there exist small constants
€1,01 > 0 such that, with probability at least 1 — 1,

[Wa b2 — (]2 + [[u)%)| < e (Ib)* + [ul]?)- ®)

E.1.1 Step 1: Coordinate-wise Distribution

Consider the affine transformation x — Wx —+ b. For each coordinate k € {1,2,...,d},
d
(Wu+b), = ZWMW + bg. ©)]
(=1

Because Wy, o ~ N (0,1/d) are i.i.d., the sum Z‘Z:l W0 uy is Gaussian with mean 0 and variance

2
—”“d“ . Hence each coordinate (Wu + b)y, is distributed as

Yy i= (Wu ) ~ M(by, 145). (10)
E.1.2 Step 2: Expectation and First Moments of the Squared Norm

Let Z = [Wu+b|2 = 3¢, Y2, since Yi ~ N(by, ”"d”z), for each k, we have E[Y;] =

2
bi + %, summation over k yields:

d
[[u]®
Blz] = Y (bR +-5-) = IBl* + [ul?. (an
k=1
Denote this sum by
M = [|b]|* + [ju]??, (12)

our task is to show that Z remains close to M with high probability as d grows.

E.1.3 Step 3: Concentration of the Squared Norm (Refined Analysis)
We now give a more precise argument about the variance of Z and how it influences the bound from
Chebyshev’s inequality.

3.1. Exact Variance Computation. Since Z = 22:1 Y} and each Y}, is independent across k:
Var(Z) = Y¢_, Var(Y3). For Yj, ~ N (u, 02) with p = by, and 0% = |[u]|2/d, one has

Var(Y2) = E[Y}] — (E[YZ])? = 20* + 442 0% (13)
Substituting y11, = by, and 02 = ||u||?/d, we get
2\ 2 2
Var(v]) = 2(15)" + 4 (145) o). (14)

Summing over k from 1 to d,
d

[[uf* [al? 5 2ull* 4l |b]?
Var(Z) = (27 4—b> - . 15
Thus we have:
2 lall* + 4 [|ul|? ||b]|2
Var(zy = 2IEF AT s — g + o). (16)
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3.2. Ratio of Variance to Square of the Mean. To apply Chebyshev precisely, we look at

Var(Z) _ 2 u]* + 4 ju]® [b]* (17)
(E[Z])? d (|luf[? + [[b][2)

Provided ||u|| and ||b|| do not scale with d, this ratio shrinks on the order of 1/d. Thus, the relative

standard deviation /Var(Z)/E[Z] behaves like 1/+/d. Hence, as d — oo, Z concentrates around its
mean M.

3.3. Chebyshev’s Inequality for ¢;,6;. From Chebyshev’s inequality:
Var(Z)

Pr(|Z-E[Z]] > o) < PO (18)
Set a = €1 (|lul|? + ||b]|?) = 1 M. Then
Var(z) _ 2]uf*+4[u?|b]* _ Cie
Pr(Z—M > elM) < - — Zwb (19)
| | et M> d (||ul|> + [[b]|?)? €} de
where
2 ||uf|* + 4 jul* |[b]?
Cup = (20)
([l + [[b]|%)?
Hence, for any fixed €1, the failure probability §; satisfies
Cu b
5 = Pr(\z M| >« M) < b Q1)
dey
As d increases, 47 — 0. This establishes a high-probability guarantee of the form
Pr(|[Wa -+ b2~ (Jjul* + [B?)] < e (Jul + b)) > 14, 22)

with explicit constants that depend on ||u]|, ||b||, and d.

3.4. Uniform Dependence on ||u|| and ||b||. If |ju] or ||b|| grows with d, the coefficient C,, ;, might
also grow, thus weakening the rate at which §; decays. However, if |ju|| and ||b|| remain bounded
independently of d, then C,, 4 is constant, and the probability of failure vanishes on the order of 1/d.
This completes our proof of Theorem |

Remarks.

* The key structural property is that IE[WTW] = Iy, similar statements hold under any
isotropic, sub-Gaussian distribution for W. This also explains why the normal initialization
achieves the best performance, since it is the one that best fits the theoretical assumptions.

e If b is itself random and independent of W, conditioning on one and integrating out the
other yields a nearly identical analysis; the main requirement is that b not be too large or
adversarially correlated with W, e.g., in practice, we avoid this problem by setting b directly
to 0.

E.2 Proof of Theorem 2

theorem: Let u,v € R be any two fixed vectors, and let W € R*? have i.i.d. entries Wj,; ~
N(0,1/d). Definenw’ = Wu, Vv’ = Wv. Then there exist constants €3, d2 > 0 such that, with
probability at least 1 — do,

|cos(w’, v’) — cos(u, V)| < e. (23)

Equivalently,
cos(Wu, Wv) =~ cos(u, v) with high probability. 24
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E.2.1 Step 1: Concentration of norms.
By Theorem 1, for each of the vectors u and v, their images under x — Wx satisfy

Wul* ~ Jul?,  [Wv]* = []v]*. (25)
More precisely, there exist €1, ; > 0 such that with probability at least 1 — J1,

IWall* — [jufl?| < exllull?, {[Wy]Z = [Iv]*] < eflv]*. (26)

Taking square roots and using standard bounds yields

o]l = [[Wul| ~ [juf|, [V’ = [[Wv] =~ []v]. 27)

E.2.2 Step 2: Concentration of the dot product.
Consider (Wu)T(Wv) = w’Tv’, we have:

vy = (Wu)T(Wy). (28)
Since W has mean-zero i.i.d. Gaussian entries, we have:

E[(Wua)"(Wv)] = u'v. (29)

By concentration inequalities for sums of Gaussians, there exist €5, 5 > 0 such that with probability
at least 1 — &5,

| (Wu)T(Wv) — uTv| < € luf |v]. (30)
E.2.3 Step 3: Combining the bounds to preserve cosine similarity.

For u’ and v’, we have cos(u’,v’) = % From (27) and (30), with high probability, we have:

w'v xaly, |~ uf, V] = v (31)
Thus we have: .
w'vy u'v
cos(u’,v’) = A = cos(u, V). (32)
[’ (all{|v]l
Therefore,
|cos(Wu, Wv) — cos(u,v)| < e (33)

for some €5 > 0, with probability at least 1 — d2, where d2 := 01 + 05, thus we complete the proof.

E.3 Proof of Corollary 1

Below, we present a more formulaic argument showing that a random Gaussian linear map x — Wx
followed by a standard nonlinear activation 0 : R — R (e.g., ReLU, leaky ReL.U, sigmoid, etc.)
leads to larger angle distortion than the purely linear case. In other words, with high probability, the
angle distortion €3 , for nonlinearly transformed embeddings is larger than the purely linear case
€2 lin-

Coordinate-Level Analysis. Consider a single coordinate, z; = (Wu), 22 = (W) The original
product is z; z2, whereas after applying o we have o(z1) o(22). If o compresses negative values
more strongly than positive ones (e.g., ReLU, sigmoid), or otherwise saturates different portions of
the real line, then o(z1) o(22) can deviate significantly from 27 zs.

Taking ReLU as an example, the z1 29 and o(21) o(22) will differ by
Ay = max{z1,0} max{z2,0} — 2z 2o. (34)

If z; and 29 have opposite signs, Ay > 0; this pushes the new vectors into the positive orthant and
tends to align them more.

Closed-Form for Correlated Gaussians. Due to the properties of random Gaussian matrices, for any
coordinate k, (21, 22) follows a bivariate normal with correlation p > 0, i.e. (Z1, Z3) ~ N(0,%),
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where ¥ = (; f) and 0 < p < 1. Taking ReLU as an example, we can define Z;; =

max{Z1, 0} and Z3; = max{Z,, 0}, thus we have:
E[Z14 Za4]

COI‘I’(Zl+,ZQ+) = . (35)
VEZ2,] E[Z3,]
A standard integral shows E[Z3] = %, so we can simplify the definition as: Corr(Z4, Zoy) =

2E[Z11 Z5,]. When p = 0, symmetry implies E[Z;, Z>,] = 1, giving a correlation of 1. As
p — 1, E[Z14Z24] — 3, so the correlation approaches 1. For 0 < p < 1, as E[Z14 Z> ] increases
with p, staying above % and thus making: Corr(Z;, Za) > p. As correlation in R? directly relates
to cosine similarity, we conclude that

cos(maX{Zl, 0}, max{Zs, O}) > cos(Z1, Zs), (36)

i.e. ReLU pushes already-aligned (positively correlated) coordinates even closer together, leading to
“angle inflation.”

Summary and Conclusion (for General o). Because generic activations o (e.g. ReLU, leaky
ReL.U, sigmoid, tanh) discard or shrink certain parts of the real line (often negative values), they
systematically inflate pairwise similarities in a high-dimensional random setting. Therefore, we have

‘cos(a(Wu), c(Wv)) — cos(u,v)’ > ’cos(VVu7 Wv) — cos(u,v)|, 37

meaning the angle distortion €3 ,, for such non-linearities exceeds the purely linear case €3 ji,.

F More Experiments

F.1 Performance-Efficiency Trade-offs in ICRL

A key motivation behind ICRL is to explore the feasibility of enabling LLMs to understand non-text
modalities (e.g., molecular, vision, audio) in a training-free manner. This contrasts with prior methods
such as Vector-ICL [71], Florence-VL [9], and ICL-Reps [61], which rely on supervised training or
projection tuning. In this section, we provide a comprehensive analysis of the trade-offs between
performance and efficiency across model scale, input modalities, and computational cost.

Comparison with Similar Methods. As shown in Table 4, ICRL is unique in being both training-free
and capable of accepting non-text inputs. In contrast, MLLMs (Florence-VL) and Vector-ICL require
large-scale supervised training or projection tuning. These approaches also consume substantially
more resources in terms of data and time.

Table 4: Comparative overview of multimodal adaptation methods.

Method | Non-text Input | Supervised Training | Data Requirements | Time Cost
MLLM [9] v v High High
Vector-ICL [71] v v High High
ICL-Reps [61] v v High High
DA-ICL [37] X v High High
ICL (text only) X X Low Low
ICRL (Ours) v X Low Low

Cost-Performance Comparison with Fine-Tuning Pipelines. We compare ICRL against recent
molecular property prediction pipelines, including instruction-tuning via Q-LoRA (I-FT) [36], super-
vised pretraining followed by finetuning (S-PT + FT) [67], and unsupervised pretraining followed
by finetuning (PT + FT) [64, 5]. Evaluation is conducted on ESOL and Lipophilicity datasets, with
RMSE as the metric. To ensure fairness, we implement ICRL using the LLaMA-3.1-8B-Instruct
model—comparable in inference cost to those used in prior work and feasible on a single GPU.
Evaluation is based on RMSE. Notably, ICRL achieves even better performance with larger models;
e.g., on ESOL, it reaches 0.839 RMSE using LLaMA-3.1-70B. Cost information for baselines is
extracted from original papers when available.
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Analysis. As shown in Table 3, under comparable inference cost, ICRL achieves performance
comparable to or even superior to lightweight tuning, while requiring no training and only ~2
seconds of CPU computation. Although large-scale PT+FT pipelines (e.g., GPT-MolBERTa) still
achieve the lowest RMSE, their training requires weeks on multiple GPUs, in sharp contrast to
the negligible overhead of ICRL. This result highlights ICRL’s practicality for low-resource and
rapid-deployment scenarios, where retraining is prohibitive.

Improved understanding of small molecules does not necessarily translate to better performance on
downstream tasks. In analogy to LLM pretraining, the pretraining in baseline methods is primarily
intended to enhance molecular understanding. However, as shown in [64], the standalone pretrained
model performs significantly worse than ICRL on downstream prediction, suggesting that pretraining
alone mainly serves as a warm-up for subsequent supervised tuning.

Context Window Usage. One of the primary advantages of ICRL is its low context window usage.
As summarized in Table 5, standard ICL methods require dozens to hundreds of tokens to represent
non-text samples such as SMILES strings, amino acid sequences, images, or audio. In contrast, all
variants of representation-level ICRL compress the input into a single embedding vector, which is
injected as a single token—dramatically reducing input length and improving inference efficiency.

Table 5: Approximate per-sample context window usage across methods and modalities.

Method | SMILES (ICL)  AA Sequence (ICL) ~ Vision (MLLM) ~ Audio (MLLM) | ICRL (Ours)
Tokens | 6-21 103-214 29-576 75-1500 | 1

Inference Overhead. Although ICRL includes additional steps such as PCA and OT alignment,
these operations are lightweight. Table 6 shows that the PCA and OT steps collectively take about
2 seconds on CPU—faster than a single forward pass. Importantly, OT alignment only needs to be
computed once per domain and reused thereafter via a simple matrix multiplication during inference.

Table 6: Comparison of computational cost across adaptation strategies.

Method | Pre-training  Fine-tuning PCA Step  OT Step
Time Cost Days—Weeks Hours-Days ~1.2sec  ~0.9 sec
GPU Requirement High Medium None None

Conclusion. While ICRL may not achieve state-of-the-art performance in all tasks, it provides a
promising direction for enabling lightweight, training-free multimodal reasoning. By drastically
reducing context window usage and inference cost, it offers an efficient alternative to conventional
multimodal systems, especially under low-resource constraints.

F.2 Lightweight Learnable Projectors

To further examine whether lightweight training can improve projector performance, we conduct
all projector training on the LPM24 dataset [ 14]. We design three loss variants: (1) caption-based
pretraining, where the projector is optimized to generate molecular descriptions from FM embeddings;
(2) contrastive learning, inspired by CLIP [43], which minimizes the distance between LLM hidden
states when receiving molecular inputs in SMILES form versus projected FM embeddings; and (3) a
combined loss that integrates both caption and contrastive objectives. This setup ensures that the LLM
learns to treat projected embeddings as semantically consistent with textual SMILES representations,
while also testing whether multi-task training enhances generalization.

All experiments use LLaMA-3.1-8B-Instruct as the base model, with a single-layer linear projector of
hidden size 4096, consistent with [71]. Performance is evaluated on two tasks: molecular captioning
on the LPM24 test set using BLEU-4, ROUGE-1, and ROUGE-L; and molecular property prediction
on ESOL and Solubility_AqSolDB using RMSE. Other hyperparameters and evaluation protocols
follow the main paper to ensure comparability.

Analysis. All three projector-training strategies perform worse than the training-free OT-PCA
baseline. In regression tasks, they yield higher RMSE, and in some cases also harm ICL behavior
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Table 7: Molecular captioning results with learnable projectors.

Method BLEU-4 ROUGE-1 ROUGE-L
Caption-only 35.29 0.551 0.373
Contrastive-only 21.42 0.320 0.237
Caption + Contrastive 37.31 0.592 0.369

Table 8: Regression results with learnable projectors.

Method ESOL (RMSE) AqSolDB (RMSE)
Caption-only 1.256 3.030
Contrastive-only 1.372 2915
Caption + Contrastive 1.213 3.805
OT-PCA (ours) 1.140 2411
OT-PCA + ICL (ours) 1.094 2.385

(e.g., incomplete outputs, overfitting). Even when captioning quality improves, this does not transfer to
downstream prediction. These results indicate that, under limited data and lack of domain knowledge,
lightweight training is unstable and cannot match the robustness of training-free alignment.

F.3 Cross-Tasks Generalizability of ICRL

To examine whether ICRL generalizes beyond regression tasks, we extend evaluation to two additional
task types: molecular QA and captioning. For QA, we adopt the MoleculeQA benchmark [38], which
contains four categories (Structure, Source, Property, Application), and report accuracy in each as
well as the average score. For captioning, we use the ChEBI-20 dataset [13], where performance is
measured with BLEU-4, ROUGE-1, and ROUGE-L. All experiments are conducted with LLaMA-3.1-
8B-Instruct as the base model, baseline results in the table are taken from [38] and [13], respectively.

Table 9: Molecular QA results on MoleculeQA benchmark.

Method Structure  Source Property Application  Avg
Llama-2-7B-chat (L-FT) 28.75 39.84 31.33 27.71 31.54
ICL 35.03 27.04 24.62 28.69 28.85
OT-PCA (ours) 51.32 37.66 33.71 31.02 38.43
OT-PCA + ICL (ours) 50.60 43.52 23.47 29.97 36.89
MolT5-base (FT) 58.01 65.85 45.14 42.24 55.39

Analysis. On the QA benchmark, ICRL significantly outperforms both standard ICL and fine-tuned
general-purpose LLMs, showing that OT-aligned embeddings can be directly interpreted and utilized
by a text-based LLM. Notably, embedding-only injection sometimes surpasses the combination
with textual features, suggesting that the injected representations can provide a clearer and more
informative signal than raw SMILES strings for molecular reasoning.

On the captioning task, ICRL also improves over ICL by enhancing the model’s ability to generate
semantically relevant outputs, despite the base LLM lacking molecular grounding. However, the
performance gap with expert models such as MolT5 remains, indicating that while ICRL extends
to generative tasks, domain-specific pretraining is still advantageous in settings requiring highly
specialized knowledge.

F.4 Cross-Modal Generalizability of ICRL

To further examine the generalizability of ICRL beyond molecular and protein datasets, we conducted
experiments on vision and audio datasets, which are more distant from the natural language domain.
These modalities do not natively conform to sequence-based formats, making ICL particularly
challenging.
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Table 10: Molecular captioning results on ChEBI-20 dataset.

Method BLEU-4 ROUGE-1 ROUGE-L
ICL 0.133 0.393 0.310
OT-PCA (ours) 0.147 0.353 0.274
OT-PCA + ICL (ours) 0.196 0.407 0.353
MolT5-base (FT) 0.457 0.634 0.578

We evaluated ICRL on four datasets: ImageNet and CIFAR-100 (vision), ESC-50 and VGGSound
(audio). Representations were extracted using ViT-B/16 for vision and wav2vec2-base-960h for audio.
Due to computational constraints, we randomly selected 50 classes per dataset and followed the
default settings described in the main paper. Because LLaMA-3-70B-Instruct does not support direct
image/audio input, standard ICL is not applicable. Hence, we use random guessing as a baseline for
comparison. All experiments were repeated 10 times with different random seeds, and we report the
top-3 classification accuracy averaged across runs.

As shown in Table 11, naive strategies such as random noise or zero padding performed worse than
random guessing, suggesting that LLMs cannot interpret these representations. In contrast, OT-
based embeddings consistently outperformed random guessing, demonstrating that such embeddings
preserve enough structure to be understood by LLMs in a training-free manner.

Table 11: Top-3 classification accuracy (%) on vision and audio datasets using LLaMA-based ICRL.
OT-based embeddings clearly outperform baselines such as random noise or zero padding, indicating
effective cross-modal generalization.

Dataset | Random Guess Random Noise ZeroPad OT-Embed OT-PCA
ImageNet 2.00 1.01 0.32 14.21 17.21
CIFAR-100 2.00 0.63 0.91 13.73 15.62
ESC-50 2.00 1.39 1.26 17.65 16.75
VGGSound 2.00 0.76 1.44 12.39 18.23

F.5 Visualization of attentional weights

Figs. 5a and 5b present attention-weight heatmaps for the Ran-Pro+ICL and ICL methods, using the
20th attention head of the final layer as an example. The results show that the model’s attention is
predominantly concentrated on the SMILES string, suggesting that the injected representations are
not the primary focus of the model’s learning process. We set the shot count to 5 and batch query size
to 1 in this experiment.

ssssssssssssssss

a b
Figure 5: (a) and (b) are tlge)attention—weight heatmaps for the Ran—Pro+(I&L and ICL methods on the
ESOL dataset, respectively.
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F.6 Feature extraction for different layers of FM

In this study, we primarily utilize CLS features derived from the FM. However, previous research
has shown that using CLS features may not be the optimal choice for improving downstream task
performance [51]. As shown in Table 12, under the OT-PCA method, most representations from other
layers are difficult to interpret, possibly due to their higher similarity. Even the OT method struggles
to effectively adjust these representations. However, when combined with ICL, using features from
shallower layers typically yields better performance, suggesting that these features exhibit lower
similarity to textual embeddings and can serve as more effective identity tokens.

In the ablation study of PCA, we observed that increasing the length of injected representations
significantly impacts the performance of ICRL. Therefore, we further explored the effect of this
factor on non-CLS features. As shown in Table 13, increasing the length did not lead to significant
performance improvements. This indicates that representation length is not a critical factor for
embedding-level injection methods. Moreover, longer representations may weaken their role as
identity tokens, leading to performance degradation when combined with ICL.

Table 12: OT-PCA and OT-PCA+ICL across different layers (one layer) on ESOL. Bold = best value
(highest for Pearson/Spearman, lowest for RMSE); Underline = second-best.

Method Layer Pearson Spearman RMSE
0 -0.017 £ 1.6e-2  0.010+2.1e-2 1432+ 1.2¢e-2
1 0.051 £4.0e-4 0.102+6.2e-3  1.350 £ 1.9e-2

OT-PCA 5 0.078 £3.2e-4 0.148 +£3.7e-4 1.235+4.le-4
10 0.052 +4.0e-3  0.101 £5.9e-3 1.336 £2.1e-2
-1 0.078 + 8.6e-4  0.122 +2.8e-3  1.220 £ 5.7e-3
cls 0.227 +7.3e-4  0.235+1.5e-4 1.243 +4.0e-3
0 0.609 £ 1.0e-3 0.595 +2.4e-3 0.889 = 1.3e-3
1 0.586 +3.7e-3  0.588 £4.7e-3 0.901 £ 1.1e-3

OT-PCA+ICL 5 0.607 + 1.3e-3  0.663 £3.9e-3 0.901 + 1.5¢-3
10 0.602 + 1.4e-3  0.581 £3.3e-3  0.898 + 2.8e-5
-1 0.606 +3.4e-3  0.588 +£1.2e-3  0.898 + 6.8e-3
cls 0.542 +54e-4 0552 +1.6e-3 1.135+2.8e-3

Table 13: OT-PCA and OT-PCA+ICL across different layers (1 layer 3 repeat) on ESOL. Bold =
best value (highest for Pearson/Spearman, lowest for RMSE); Underline = second-best.

Method Layer Pearson Spearman RMSE
0 0.075+£2.3e-3 0.117+4.4e-3 1321 £2.5¢e-2
1 0.053 +£5.7e-3  0.088 +1.1e-2 1.331 £2.2e-2

OT-PCA 10 0.029 £9.6e-3  0.081 +1.3e-2 1.336+2.1e-2
-1 0.114 + 4.4e-4 0.177+6.7e-4 1268 +2.4e-2
cls 0.223 +3.1e-4 0.232 + 8.4e-4 1.210 + 6.0e-4
0 0.602 £ 1.8e-3 0.595+4.4e-3 0.894 + 6.6¢e-4
1 0.579 +4.0e-3  0.582+6.0e-3 0.920 +£2.1e-3

OT-PCA+ICL 10 0.600 + 1.9¢-3  0.608 + 2.2e-3  0.898 + 1.3e-3
-1 0.598 + 1.3e-3  0.603 +1.9e-3  0.892 +3.9¢-3
cls 0493 +3.8e-3  0.527+1.5e-3  0.898 +2.8e-5

F.7 Experiments on the protein task and the DTI task

We also conducted experiments on drug-target interaction (DTI) and protein-related tasks. However,
due to the poor performance of standard ICL on these datasets, with Pearson correlation coefficients
below 0.2 [2]. Specifically, when evaluating the models on a test set consisting of 1,000 samples, we
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observed that all methods performed close to random guessing. Regardless of whether representations
or protein sequences were used, the models failed to learn the corresponding tasks. This can be
attributed to the fact that such datasets typically focus on protein sequences within a fixed domain,
resulting in high similarity between sequences and their FM-derived representations, with similarity
scores approaching 0.99. To further investigate the performance of ICRL on such datasets, we
conducted experiments using a randomly sampled test set of 90 samples for reference purposes.

For the DTI task, due to the limitations of the context window, the number of shots was set to 10,
while the other experimental settings remained consistent with those described in the main text.
When using Pearson r as the evaluation metric, we observed that ICRL still demonstrates relatively
strong performance across most datasets, as shown in Tables 14 to 17, sometimes even surpassing
ICL. Additionally, we provide results based on other evaluation metrics for reference. However, it is
important to note that these findings are based on small-sample experiments. In larger datasets, the
performance of all methods tends to converge and show minimal differences.

V2 for protein. To address the issue of protein sequence similarity, we conducted a simple method
by extracting tokens preceding the CLS token from the ESM model. These tokens, which contain
specific information about the protein sequences, were used as input features for ICRL. This approach
demonstrated some improvement in small-sample datasets, as shown in Tables 16 and 17. Unfortu-
nately, we found that it fails to resolve the fundamental issue of random guessing when applied to
larger test sets.

Effect of different FMs. We also compared different protein FMs with varying levels of repre-
sentation similarity. Using ESM2, which produces highly similar embeddings (average similarity
~0.98), both ICL and ICRL performed poorly and often degenerated to random guessing. In contrast,
ProtBert generates more diverse embeddings (average similarity ~0.92), leading to consistently
better results on stability and fluorescence prediction (see Tables 18 and 19). These results highlight
that the diversity of FM-derived representations is a critical factor for ICRL effectiveness: when
embeddings are overly homogeneous, the benefit of representation-based inputs diminishes, whereas
more distinguishable embeddings allow ICRL to extract useful signals and surpass standard ICL.
Importantly, this observation is consistent with our analyses on small-molecule datasets, indicating
that the conclusion is modality-agnostic.

Table 14: Pearson comparison 1 on the different DTI datasets without ICL. Bold/ Underline:
best/second-best value among the Embedding Injection methods. *: 1000 test samples.

String Injection Embedding Injection

Dataset
ICL PCA Random Rep Embed+OT PCA+OT

BindingDB_IC50 | 0.149 x6.9¢2 0.009 +5.4e-4 0.092 s3.6e4  0.051 21.6e3  0.177 +2.4e-3 0.023 +1.5¢-4
BindingDB_Ki 0.172 +8.5e-4 0.195 +8.2e4 0.170 +46e4  0.182 133¢4  0.113 +6.1e4 0.184 +7.8¢4
BindingDB_Ki* | 0.045 £2.10e-3  -0.004 +38-4 | 0.084 £12e3 0.010 2.1e3  -0.006 z4.6e-4  0.037 244

Table 15: Pearson 1 comparison on DTI task datasets. Bold/ Underline: best/second-best value
compared with ICL.(highest for Ser_cor?), *: 1000 test samples.

\ Baseline \ ICRL (Ours)
Dataset ‘ Text ‘ Text ‘ Embedding
ICL PCA+ICL | Ran-Noi+ICL Ran-Pro+ICL  OT-Embed+ICL  OT-PCA+ICL
BindingDB_IC50 | 0.149 :69¢-4 | 0.124 +2.38¢-3 0.148 16.5¢-3 0.081 +4.5¢-3 0.164 +5.7¢-3 0.163 +2.8¢-3
BindingDB_Ki 0.172 £8.5¢-4 | 0.241 1.1e:3 0.303 +7.5¢-4 0.268 +1.3¢-3 0.263 +1.1e-3 0.333 +8.9¢-4
BindingDB_Ki* | 0.045 2.1e-3 | 0.039 9.8¢-4 0.084 +1.2¢-3 0.088 +3.1¢-3 0.078 £7.9¢-3 0.074 £3.9¢-7

F.8 Experiments with Llama-3.2-3B-Instruct

To further investigate the reasons behind the failure of the DTT task, we conducted experiments using
smaller models, i.e. Llama-3.2-3B-Instruct. As shown in Table 20, when employing smaller models,
even on simpler tasks such as solubility prediction in the ESOL dataset, the standard ICL approach
performs poorly. Notably, under these conditions, ICRL outperforms ICL, suggesting that the poor
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Table 16: Pearson comparison 1 on the different ESM task datasets without ICL. Bold/ Underline:
best/second-best value among the Embedding Injection methods. OOM: out of memory.

String Injection Embedding Injection
ICL PCA Random Rep Embed+OT  PCA+OT

Dataset

Fluorescence | 0.237 x1.9e5  0.098 5.1e-4 | 0.114 +8.4e-5  0.078 +2.6e-4  0.051 247¢5  0.154 29.4¢-5
Stability 0.130 +73e-4  0.057 #87¢-4 | 0.127 212e-4 0172 275¢4  0.097 £2.9e4  0.143 +4.9¢-4
Stability_v2 | 0.130 s4.1e6 OoOM 0.187 29.1e:7 0212 +7.2¢-6  0.173 25.6e-6  0.180 27.3¢-6

Table 17: Pearson 1 comparison on ESM task datasets. Bold/ Underline: best/second-best value
compared with ICL. *: 1000 test samples. OOM: out of memory.

| Baseline | ICRL (Ours)
Dataset Text Text Embedding
ICL PCA+ICL | Ran-Noi+ICL Ran-Pro+ICL  OT-Embed+ICL  OT-PCA+ICL
Fluorescence | 0.237 +1.9¢-5 | 0.164 22.1¢-4 0.159 +7.5¢-5 0.129 24.5¢-5 0.083 +5.9¢-5 0.151 #2.4e-5
Stability 0.130 +73e-4 | 0.133 £5.2¢3 0.131 4.4e-4 0.138 +3.7e-4 0.141 +23e-4 0.094 +7.8e-5
Stability_v2 | 0.130 z4.1e-6 OOM 0.111 £1.7¢-4 0.217 +4.6-4 0.177 £1.4e-3 0.194 +2.9¢-5

Table 18: Protein results using ESM2 as FM encoder (high similarity).

ESM2 (sim ~0.98) ICL OT-Embed OT-PCA OT-Embed+ICL OT-PCA+ICL

Stability 0.720 0.712 0.703 0.827 0.642
Fluorescence 0.995 1.322 1.222 0.997 0.987

Table 19: Protein results using ProtBert as FM encoder (more diverse embeddings).

ProtBert (sim ~0.92) ICL OT-Embed OT-PCA OT-Embed+ICL.  OT-PCA+ICL

Stability 0.720 0.631 (Jo.0s1) 0.644 (10.059) 0.673 (10.154) 0.577 (10.065)
Fluorescence 0.995 1.230 (10.092) 1.044 (10.178) 0.984 (10.013) 0.949 (10.038)

performance of ICRL in the DTI task stems from the model’s unfamiliarity with the task, primarily
due to insufficient pre-training knowledge.

Table 20: Pearson, Spearman, and RMSE results under the Llama 3B model. The symbol * indicates
that no normalization was applied. The results demonstrate a clear advantage of ICRL.

| ICL PCA+OT  PCA+OT_ICL Rep* Rep+ICL*

Pearson 0.048 9.9¢-5  0.100 +9.4e-4 0.133 +2.0e3 0.077 £1.4e3  0.140 £6.2¢3
Spearman | 0.045 s5.6e-4  0.092 +4.6e-4 0.117 +6.9¢-3 0.070 +33e3  0.126 x43e-3
RMSE 1.317 +22¢3  1.398 +5.5¢3 1.341 2.1e2 1.303 +63e3  1.244 1583

F.9 Generalization Across LLMs

To further analyze the generalizability of ICRL across different language model capacities, we
evaluated three LLaMA models of varying sizes: 3B, 8B, and 70B, on two molecular property
prediction datasets—ESOL and Caco2. Each experiment was repeated 10 times with different
random seeds, and we report the average of the top 3 runs for robustness.

As shown in Table 21, across both datasets and all model sizes, OT-based embeddings were con-
sistently better interpreted and leveraged by the models, particularly by smaller models (e.g., 3B).
This may be attributed to their more limited pretraining capacity, which makes external structured
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representations more useful. Notably, ICRL even surpasses ICL in some scenarios, reinforcing its
effectiveness and the dual-mode framework discussed in Sec. 5.

Table 21: RMSE(|) results across three LLaMA models on the ESOL and Caco?2 datasets. OT-based
methods shows consistent improvements over baseline methods, especially in smaller models.

Model Si ESOL Caco2
0deISIZE | JcL  Ran-Noi Zero-Pad OT-Embed OTPCA | ICL Ran-Noi Zero-Pad OT-Embed OT-PCA
3B 1313 1817 2.013 1.299 1315 | 1.027  1.207 1.193 0.971 0.965
8B 1179 1764 1.837 1.186 1177 | 0.892  1.103 1.098 0.903 0.902
70B 1158 1412 1.727 1.199 1243 | 0832  1.026 1.037 0.899 0.898

These additional results confirm that OT-adjusted representations can be effectively interpreted and
utilized across a spectrum of LLMs, thereby reinforcing the general utility of our method.

(T) PCA (E) OT-PCA (T+T) PCA+ICL (E+T) OT-PCA+ICL -==- (T)ICL
Caco2 ESOL

Q4| W= g 0.5

c c 0.4
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0.1

5 10 20 30 40 50 5 10 20 30 40 50
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Figure 6: (a) and (b) presélr)lt the performance of various methods under different PCA parameter
settings, measured using Pearson correlation (higher is better).

F.10 More Analysis about PCA Ablation.

The experimental results in Figs. 6, demonstrate that the performance of the text-level injection
method is significantly affected by this parameter, particularly in non-ICL scenarios. In contrast,
the embedding-level injection methods exhibit apparent stability, regardless of whether they are
combined with ICL.

This phenomenon arises because, in text-level injection methods, modifying the PCA dimension
directly alters the length of the injected strings, which can substantially impact the final inference
results. On the other hand, in embedding-level injection methods, this change only introduces minor
variations to the target distribution. Consequently, the OT-PCA method remains insensitive to this
parameter.

F.11 More Analysis about Representation Similarity.

In our experiments, we observed that when representation similarity is excessively high, the decoded
representations exhibit nearly identical character compositions. Consequently, the model’s output
values are also highly similar, differing primarily in sequence and minor variations in decimal places
due to the specific representation values. As illustrated in Figs. 10 and11, which present examples
of the Random Projection method, the model’s responses to different queries show only sequential
differences. The high degree of similarity in the representations can be attributed, in part, to the
inherent characteristics of FM representations in chemical datasets. More about the visualization
results of the similarity analysis in Sec. 5 are shown in Figs. 7 and 8.

This issue is particularly prominent in protein and drug-target interaction datasets, where the similarity
values tend to cluster closely together, often reaching cosine similarity levels as high as 0.99.
G More Details

Due to the page limitation, we present more details about settings, results, and analysis here.
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Figure 7: Internal similarity across datasets
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Figure 8: Similarity to text embedding

G.1 Experimental Setup

Normalization. First, we compute the overall average mean and variance from the non-zero elements
of the embedding matrix of the LLM, ensuring that the statistics are representative of meaningful data.
Specifically, we calculate the mean and variance for each embedding vector, then take the average
across all embeddings to obtain a single reference mean and variance. Next, we normalize the input
embeddings by adjusting their mean and variance to align with the target values derived from the
LLM’s embeddings. This is done by: (1) Calculate the mean and variance of the input embeddings.
(2) Shift the embeddings by subtracting their mean and scaling them to match the target variance. (3)
Finally, add the target mean to the scaled embeddings to ensure statistical consistency with the LLM’s
embeddings.. This normalization step ensures that the input embeddings are statistically aligned
with the LLM’s internal representations, improving compatibility and potentially enhancing model
performance.

In our experiments, we observed that applying normalization to representations obtained through
random methods occasionally resulted in NaN or Inf values. To simplify the process, we opted to
disable normalization across all datasets. For the AqSolDB and LD50 Zhu datasets, a similar issue
was observed with the OT-Embed method. However, given its relatively low occurrence—appearing in
only 2-3 out of 10 random seeds—we conducted non-normalized experiments only for the OT-Embed
method on these two datasets.

It is noteworthy that while normalization was consistently disabled across our experiments, in non-
ICL scenarios, omitting normalization generally led to improved performance, particularly for the
OT+PCA method. In such cases, the Pearson correlation coefficient improved by approximately
0.1 to 0.2, likely because normalization disrupts the distribution adjustments made by the OT
method. Conversely, in ICL-inclusive settings, normalization proved beneficial in mitigating noise in
representations, thereby enhancing retrieval performance.

System prompt. In all experiments presented in the main text, we consistently utilize a simple
system prompt: You are a drug expert. The answer should be different from the examples; DO NOT
COPY ANY FLOAT VALUE. For illustration, Fig. 9 provides an example of a decoded prompt for the
OT+PCA+ICL approach.

G.2 In-Context Example Sampling

For all regression and classification tasks, we adopt a stratified sampling strategy to select in-context
examples from the training set. Specifically, for a given number of examples k, the training data are
partitioned into k equal-sized bins according to the label distribution, and one example is randomly
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drawn from each bin. This ensures that the selected demonstrations cover a diverse range of labels
and avoids over-representing particular regions of the label space. For question answering and
caption generation tasks, we randomly sample k examples uniformly from the training split at each
run, following the original benchmark protocols. Beyond these default strategies, we also explored
more informed selection methods. For example, using Tanimoto similarity to choose in-context
examples that are closer to the test instance in the molecular embedding space can further improve
ICRL performance. As discussed in Sec. 4, many techniques that enhance ICL quality—such as
similarity-based sampling—also benefit ICRL in a consistent manner.

Considering the computational cost of running inference with 10 repeated trials, we further adopt
the following rule for constructing candidate pools: 1. when the training dataset contains fewer
than 1000 samples, we directly use the entire training set as the candidate pool; 2. when the dataset
contains more than 1000 samples, we uniformly down-sample to 1000 candidates before applying
the sampling procedure. This ensures a consistent and tractable evaluation budget across datasets of
different sizes.

G.2.1 Differences in different assessment indicators.

We employed three evaluation metrics: RMSE, Spearman correlation coefficient, and Pearson
correlation coefficient. Among these, RMSE is the most sensitive metric, whereas improving the
Pearson coefficient poses the greatest challenge. For instance, PCA may achieve a lower RMSE than
ICL, yet its Pearson coefficient is lower, indicating that PCA should not be considered superior to
ICL. Therefore, we primarily use RMSE to accurately assess performance differences in ICRL, while
Pearson correlation is employed to demonstrate ICRL’s contribution to enhancing ICL performance.
The complete evaluation results are provided in Tables 22-25 for reference.

Table 22: Spearman 1 comparison on the different datasets. Bold/ Underline: best/second-best value
compared with ICL.

| Baseline | ICRL (Ours)
Dataset ‘ Text ‘ Text ‘ Embedding
ICL PCA+ICL | Zero-Pad+ICL  Ran-Noi+ICL  Ran-Pro+ICL  OT-Embed+ICL  OT-PCA+ICL

ESOL 0.464 22503 | 0.460 +7.4c-4 0.554 +5.2¢-4 0.562 +5.0e-4 0.526 +1.4e-4 0.522 +8.7¢-4 0.552 +1.6¢-3
Caco2_Wang | 0.416 x23e3 | 0.387 +1.8¢-4 0.407 +38¢-4 0.426 +3.5¢-4 0.410 £13e-5 0.409 £33¢-3 0.401 £1.4e3
AqSolDB 0.610 +7.5¢5 | 0.551 5.0e-4 0.612 +2.5¢-5 0.594 13.6¢-5 0.599 s1.1e-4 0.586 +1.0e-4 0.592 +9.4e-5
LD50_Zhu 0.395 283e5 | 0.382 25.0e-4 0.411 223¢-5 0.399 233¢-6 0.408 +1.2¢-4 0.382 +23¢-5 0.380 21.4e-4
AstraZeneca | 0.233 223e-4 | 0.189 +1.4e-5 0.239 28¢5 0.235 26.6e-6 0.234 +1.6e-5 0.250 +2.8¢-4 0.244 +1.9¢-4

Table 23: RMSE | comparison on the different datasets. Bold/ Underline: best/second-best value
compared with ICL (lowest for RMSE]).

| Baseline | ICRL (Ours)
Dataset ‘ Text Text ‘ Embedding
ICL PCA+ICL | Zero-Pad+ICL  Ran-Noi+ICL  Ran-Pro+ICL  OT-Embed+ICL  OT-PCA+ICL

ESOL 1.158 x1.9¢2 | 1.135 +28¢-3 1.085 +4.9¢3 1.152 +6.5¢-3 1.037 +4.5¢-3 1.154 £5.7¢-3 1.135 22.8¢-3
Caco2_Wang | 0.832 x84c4 | 0.842 113 0.830 8.8¢-4 0.841 +7.5¢4 0.839 +13e-3 0.815 +1.1e-3 0.888 +8.9¢-4
AqSolDB 1.917 13904 | 2.029 £33e-3 1.910 25204 1.944 sa.104 1.941 +3.0e4 1.963 +1.8¢3 1.986 +1.1e4
LD50_Zhu 0.986 +1.7¢-4 | 0.998 12.8¢-4 0.966 +2.0c-4 0.984 +1.6e-4 0.995 +7.7¢-4 1.002 +4.6e-4 1.004 £1.7e-4
AstraZeneca | 1.366 x24e-3 | 1.319 29.2¢-4 1.353 +22e4 1.399 :1.1e3 1.372 +23¢-3 1.372 +1.2¢:3 1.395 +4.2¢3
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Table 24: Pearson comparison 1" on the different datasets without ICL. Bold/ Underline: best/second-
best value among the Embedding Injection methods.

Dataset Text Injection Embedding Injection
ICL PCA Zero-Pad Ran-Noi Ran-Pro OT-Embed OT-PCA
ESOL 0.465 292e4  0.291 2113 | 0.155 237e3  0.123 s26e4  0.125 213¢:3  0.270 £82¢-3  0.227 +73e-4
Caco2_Wang | 0411 z13e3  0.163 s15e4 | 0.122 x12e3  0.114 £13e4  0.113 22604  0.226 213e3  0.245 +4.8¢4
AqgSolDB 0.596 s52e-5  0.075 236e-3 | 0.027 £32e4  -0.026 18.0e4  0.035 254¢4  0.115 s6.4e-3  0.215 +22¢-3
LD50_Zhu 0.378 +12e5  0.128 £1.6e4 | 0.047 290e5  0.029 2124  0.026 £13e5  0.064 +56e4 0079 29.9¢-5
AstraZeneca | 0.266 +23e-5  0.027 24.9¢4 | 0.041 228e5  0.046 267¢-5  0.049 233¢-5  0.018 #8.4e-5  0.043 1.6¢-4

Table 25: Spearman comparison 1 on the different datasets without ICL. Bold/ Underline: best/second-
best value among the Embedding Injection methods.

Dataset String Injection Embedding Injection
ICL PCA Zero-Pad Ran-Noi Ran-Pro OT-Embed OT-PCA
ESOL 0.464 25e3  0.299 284c4 | 0.177 188¢3  0.127 s36e4  0.151 21.3¢:3  0.231 46.0e-3  0.235 +1.5¢-4
Caco2_Wang | 0416 223e3  0.175 282¢7 | 0.124 214e3  0.113 226e4  0.107 23.8e-4  0.245 26.0e4  0.240 +2.8¢-4
AqSolDB 0.610 275e5  0.056 +38¢-3 | 0.025 232e4  -0.026 +1.6e3  0.045 232¢-4  0.116 #4.9e-3  0.203 +1.3¢-3
LD50_Zhu 0.395 :83e5  0.165 25¢4 | 0.054 299e6  0.039 2184  0.027 2265 0.090 21.6e-4  0.091 21.4c-4
AstraZeneca | 0.233 s23e4  0.028 188¢4 | 0.035 £32¢4  0.041 £27¢4  0.040 220e5  0.015 755 0.040 +1.8¢-4

Table 26: Spearman comparison 1 on the different DTI datasets without ICL. Bold/ Underline:
best/second-best value among the Embedding Injection methods. *: 1000 test samples.

String Injection Embedding Injection

Dataset
ICL PCA Random Rep Embed+OT  PCA+OT
BindingDB_IC50 | 0.156 +14e2  0.001 +53¢-4 | 0.080 x1.5¢4  0.035 6.6e-3  0.156 213 0.035 x1.5¢-4
BindingDB_Ki 0.152 +3.5¢-4 0.185 +8.2¢-4 0.184 s1.1e4  0.157 +17e4  0.104 £2.0e4  0.172 +1.9¢-4
BindingDB_Ki* | 0.030 +1.7¢-3  -0.004 z2.8¢4 | 0.064 12¢3  0.007 £1.7¢3  0.002 £1.6e-4  0.031 +3.2¢-4

Table 27: RMSE comparison | on the different DTI datasets without ICL. Bold/ Underline:
best/second-best value among the Embedding Injection methods.*: 1000 test samples.

String Injection Embedding Injection

Dataset
atase ICL PCA Random Rep Embed+OT  PCA+OT
BindingDB_IC50 | 1.740 z17¢3  1.659 5.6e-4 | 1.767 +85e4  1.754 1243 1.726 z4.5¢-4  1.743 +4.4e4
BindingDB_Ki 1.575 £33¢3  1.555 +72¢3 | 1.665 +42c4  1.578 +13e4  1.678 223c4  1.655 +4.9¢-4
BindingDB_Ki* | 1.631 2213 1.646 +28:4 | 1.612 292¢3  1.683 £72e3  1.716 250e-4  1.675 +3.8:-4

Table 28: Spearman 1 comparison on DTI task datasets. Bold/ Underline: best/second-best value
compared with ICL, *: 1000 test samples.

| Baseline | ICRL (Ours)
Dataset ‘ Text ‘ Text ‘ Embedding
ICL PCA+ICL | Ran-Noi+ICL  Ran-Pro+ICL.  OT-Embed+ICL  OT-PCA+ICL
BindingDB_IC50 | 0.156 +1.4e-4 | 0.120 +2.8¢-4 0.133 +4.5¢-5 0.057 +4.7¢-4 0.158 +4.9¢-4 0.163 +2.8¢-5
BindingDB_Ki 0.152 +35¢5 | 0.200 21.3e-3 0.267 +8.5¢-4 0.223 +1.7¢-4 0.229 £2.9¢-4 0.310 +2.8¢-5
BindingDB_Ki* 0.030 £1.7¢-3 | 0.017 25.6e-4 0.070 +8.8¢-4 0.069 28.2¢-5 0.064 +4.6¢-5 0.055 £4.2¢-5
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Table 29: RMSE | comparison on DTI task datasets. Bold/ Underline: best/second-best value
compared with ICL, *: 1000 test samples.

| Baseline | ICRL (Ours)
Dataset ‘ Text ‘ Text ‘ Embedding
ICL PCA+ICL | Ran-Noi+ICL Ran-Pro+ICL  OT-Embed+ICL  OT-PCA+ICL
BindingDB_IC50 | 1.740 +1.7¢-3 | 1.739 2284 1.630 45¢-5 1.637 +4.7c-4 1.615 +4.9¢-4 1.748 +2.8¢-5
BindingDB_Ki 1.575 £33e3 | 1.572 £1.3e:3 1.486 8.5¢-4 1.544 £17¢-4 1.524 £2.9¢-4 1.465 28¢5
BindingDB_Ki* 1.631 22.1e-3 | 1.679 223¢3 1.645 s1.6e-3 1.617 s4.6c4 1.659 +1.5¢-3 1.675 +2.5¢-5

Table 30: Spearman 1 comparison on the different ESM datasets without ICL. Bold/ Underline:
best/second-best value among the Embedding Injection methods. OOM: out of memory.

String Injection Embedding Injection

Dataset
atase ICL PCA Random Rep Embed+OT  PCA+OT

Fluorescence | 0.204 +17e-4  0.046 +5.4e-3 | 0.132 +87¢4  0.083 s4.1e4  0.096 277¢3  0.159 29.5¢-4
Stability 0.133 +77¢3  0.056 +47e-4 | 0.170 x1.3e-3  0.199 84e-4  0.095:28:3  0.149 +7.9¢-4
Stability_v2 | 0.133 4.2¢5 OOM 0.163 282¢6  0.187 £77¢6  0.170 +4.6e6  0.166 +6.3e-6

Table 31: RMSE comparison| on the different ESM datasets without ICL. Bold/ Underline:
best/second-best value among the Embedding Injection methods. OOM: out of memory.

String Injection Embedding Injection

Dataset
atase ICL PCA Random Rep Embed+OT  PCA+OT

Fluorescence | 1.213 227e-4  0.046 +7.4e-3 | 1.429 s8.1e4  1.575 164  1.613 232¢3  1.523 26.7¢4
Stability 0.735 +79¢3  0.649 227¢-4 | 1.009 z1.6e-3 0973 188e-4  0.894 x6.5¢3  0.952 +4.1e4
Stability_v2 | 0.735 +7.2¢5 OOM 0.894 +77¢6  0.878 +77¢6  0.898 +49¢6  0.862 +5.8¢-6

Table 32: Spearman 1 comparison on ESM task datasets. Bold/ Underline: best/second-best value
compared with ICL. *: 1000 test samples. OOM: out of memory.

| Baseline | ICRL (Ours)
Dataset Text Text Embedding
ICL PCA+ICL | Ran-Noi+ICL Ran-Pro+ICL  OT-Embed+ICL OT-PCA+ICL
Fluorescence | 0.204 +1.7¢4 | 0.137 +4.1e-4 0.129 27.0e-5 0.061 26.5¢-5 0.110 27.4e-5 0.138 13.7¢-5
Stability 0.133 +7.9¢-3 | 0.146 +5.7¢-5 0.125 4.1e4 0.153 +6.7¢-4 0.142 2.1e4 0.086 +7.7¢e-5
Stability_v2 | 0.133 +4.2¢-5 OOM 0.111 +1.9e-4 0.192 +4.1e4 0.172 +4.4e3 0.184 +8.9e-5

Table 33: RMSE comparison | on the different ESM datasets without ICL. Bold/ Underline:
best/second-best value compared with ICL. OOM: out of memory

‘ Baseline ‘ ICRL (Ours)
Dataset Text Text Embedding
ICL PCA+ICL | Ran-Noi+ICL Ran-Pro+ICL  OT-Embed+ICL OT-PCA+ICL
Fluorescence | 1.213 27¢4 | 1.462 +7.1e:3 1.407 +7.0e-3 1.467 +55¢-4 1.479 +7.9¢-4 1.370 +6.7¢-4
Stability 0.735 +7.9e-5 | 0.848 +7.7¢-5 0.770 +4.8¢-6 0.780 +6.1¢e-4 0.716 +23¢-4 0.848 +7.9¢-4
Stability_v2 | 0.735 +7.2¢-5 OOM 0.719 28¢5 0.720 +5.1¢-5 0.738 +4.7¢-5 0.780 +8.4e-5
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Prompt

<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are a drug expert. The answer should be different from the examples; DO NOT COPY ANY FLOAT VALUE.
<|eot_id|><|start_header_id|>user<|end_header_id|>

Drug SMILES: < ON=C1CCCCC1 >

Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.
Question: Whatis the Solubility of the drug molecule above?

Molecular vector representation: [REP]771[/REP]

Answer: -0.85

Drug SMILES: < O=clcc[nH]c(=O)[nH]1 >

Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.
Question: Whatis the Solubility of the drug molecule above?

Molecular vector representation: [REP]727[/REP]

Answer: -1.48

Drug SMILES: < CCOC(=0)C1=C(COCCN2C(=0)c3cccec3C2=0)NC(C)=C(C(=0)0C)ClclcceecC >

Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.
Question: Whatis the Solubility of the drug molecule above?

Molecular vector representation: [REP]738[/REP]

Answer: -4.5

Drug SMILES: < CCOC(=0)c1nc(C(Cl)(Cl)Cl)n(-c2ccc(Clicc2Cl)nl >

Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.
Question: Whatis the Solubility of the drug molecule above?

Molecular vector representation: [REP]742[/REP]

Answer: -5.65

Drug SMILES: < Clc1ccec(Cl)cl >

Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.
Question: Whatis the Solubility of the drug molecule above?

Molecular vector representation: [REP]453[/REP]

Answer: -3.07

Drug SMILES: < CN(C)C(=O)Nclcee(Cl)c(Cl)cl >

Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.
Question 1: What is the Solubility of the drug molecule above?

Molecular vector representation: [REP]649[/REP]

Please respond with the following format for each question:

--BEGIN FORMAT TEMPLATE FOR QUESTION 1-—-

Answer 1: [Your Answer Here for Question 1]

-—END FORMAT TEMPLATE FOR QUESTION 1-—-

Drug SMILES: < CC1(N)CN(c2c(F)cc3c(=0)c(C(=0)O)cn(C4CC4)c3c2CNCL >

Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.
Question 2: What is the Solubility of the drug molecule above?

Molecular vector representation: [REP]742[/REP]

Please respond with the following format for each question:

--BEGIN FORMAT TEMPLATE FOR QUESTION 2-—

Answer 2: [Your Answer Here for Question 2]

-~END FORMAT TEMPLATE FOR QUESTION 2--

Drug SMILES: < CC(=0)Oclcce(-c2ccecc2)ccl >

Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.
Question 3: What is the Solubility of the drug molecule above?

Molecular vector representation: [REP]673[/REP]

Please respond with the following format for each question:

-—BEGIN FORMAT TEMPLATE FOR QUESTION 3-—

Answer 3: [Your Answer Here for Question 3]

-—END FORMAT TEMPLATE FOR QUESTION 3--<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Output

-—-BEGIN FORMAT TEMPLATE FOR QUESTION 1-—
Answer 1. -2.93
-—-END FORMAT TEMPLATE FOR QUESTION 1--

--BEGIN FORMAT TEMPLATE FOR QUESTION 2-—
Answer 2. -2.14

-—END FORMAT TEMPLATE FOR QUESTION 2-—-
-—-BEGIN FORMAT TEMPLATE FOR QUESTION 3-—

Answer 3: -1.21
-—END FORMAT TEMPLATE FOR QUESTION 3-—-

Figure 9: Decoded prompt example and output for ESOL task.
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Prompt
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are a drug expert. The answer should be different from the examples; DO NOT COPY ANY FLOAT VALUE.
<|eot_id|><|start_header_id|>user<|end_header_id|>

Drug SMILES: < O=clc(-c2ccc(O)cc2)coc2cc(OC30C(CO)C(O)C(O)C30)cecl2 >

Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.
Question: Whatis the permeation rate through Caco-2 cells of the drug molecule above?

Molecular vector representation: [REP]-des[/REP]

Answer: -6.36

Drug SMILES: < COC(=0)clcccce1-cle2cec(=N)cc-20c2cc(N)cee12 >
Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.
Question: Whatis the permeation rate through Caco-2 cells of the drug molecule above?

Molecular vector representation: [REP]-des[/REP]

Answer: -5.94

Drug SMILES: < Cclcce(N2CCN(C(=0)[C@H](C)Ce3cce(Cl)ec3C)CC2)c([C@@H](NC(=0)CCN(C)C)C(C)C)cl >
Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.
Question: Whatis the permeation rate through Caco-2 cells of the drug molecule above?

Molecular vector representation: [REP]BBBB[/REP]

Answer: -4.8

Drug SMILES: < C[C@@H]10[C@ @H](O[C@@H]2C(=0)c3c(0)cc(0)cc30[C@HRc2cec(0)c(0)c2) [C@H](O)C@HI(0)[C@HIL0 >
Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.

Question: Whatis the permeation rate through Caco-2 cells of the drug molecule above?

Molecular vector representation: [REP]-des[/REP]

Answer: -6.82

Drug SMILES: < CN(C)CCCN1c2ccccc2Sc2cccce2l >

Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.
Question: Whatis the permeation rate through Caco-2 cells of the drug molecule above?

Molecular vector representation: [REP]-des[/REP]

Answer: -4.38

Drug SMILES: < COc1lcc(OC)c2c(=0)cc(-c3ccece3)oc2el >

Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.
Question: Whatis the permeation rate through Caco-2 cells of the drug molecule above?

Molecular vector representation: [REP]-des[/REP]

Answer: -4.63

Drug SMILES: < CCN(CC)CCCC(C)Nclcenc2ec(Cl)ceel2 >

Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.
Question 1: What is the permeation rate through Caco-2 cells of the drug molecule above?

Molecular vector representation: [REP]BBBB[/REP]

Please respond with the following format for each question:

--BEGIN FORMAT TEMPLATE FOR QUESTION 1-—

Answer 1: [Your Answer Here for Question 1]

-—END FORMAT TEMPLATE FOR QUESTION 1-—

Drug SMILES: < Clclccc2c(c1)CCclecenclC2=C1CCNCC1 >

Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.
Question 2: What is the permeation rate through Caco-2 cells of the drug molecule above?

Molecular vector representation: [REP]-des[/REP]

Please respond with the following format for each question:

--BEGIN FORMAT TEMPLATE FOR QUESTION 2-—

Answer 2: [Your Answer Here for Question 2]

-—END FORMAT TEMPLATE FOR QUESTION 2-—

Drug SMILES: < COC(=0)Nc1nc2ccc(C(=0)c3cccee3)cc2[nH]1 >

Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.
Question 3: What is the permeation rate through Caco-2 cells of the drug molecule above?

Molecular vector representation: [REP]-des[/REP]

Please respond with the following format for each question:

--BEGIN FORMAT TEMPLATE FOR QUESTION 3-—

Answer 3: [Your Answer Here for Question 3]

-~END FORMAT TEMPLATE FOR QUESTION 3--<|eot_id|><|start_header_id|>assistant<|end_header_id>

Output

--BEGIN FORMAT TEMPLATE FOR QUESTION 1-—-
Answer 1 -5.68
-—-END FORMAT TEMPLATE FOR QUESTION 1--

-—-BEGIN FORMAT TEMPLATE FOR QUESTION 2--
Answer 2: -6.51

-—-END FORMAT TEMPLATE FOR QUESTION 2--
--BEGIN FORMAT TEMPLATE FOR QUESTION 3--

Answer 3: -5.69
-—-END FORMAT TEMPLATE FOR QUESTION 3--

Figure 10: Decoded prompt example and output for Caco?2 task.
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Prompt
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are a drug expert. The answer should be different from the examples; DO NOT COPY ANY FLOAT VALUE.
<|eot_id|><|start_header_id|>user<|end_header_id|>

Drug SMILES: < O=clc(-c2cce(0)cc2)coc2ec(OC30C(CO)C(0)C(0)C30)cccl2 >

Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.
Question: Whatis the permeation rate through Caco-2 cells of the drug molecule above?

Molecular vector representation: [REP]-des[/REP]

Answer: -6.36

Drug SMILES: < COC(=0)clcccec-cle2cee(=N)ce-20c2cc(N)ceel2 >
Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.
Question: Whatis the permeation rate through Caco-2 cells of the drug molecule above?

Molecular vector representation: [REP]-des[/REP]

Answer: -5.94

Drug SMILES: < Cclccc(N2CCN(C(=0)[C@H](C)Ce3cec(Cl)ee3C)CC2)e([C@@H](NC(=0)CCN(C)C)C(C)C)cl >
Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.
Question: Whatis the permeation rate through Caco-2 cells of the drug molecule above?

Molecular vector representation: [REP]BBBB[/REP]

Answer: -4.8

Drug SMILES: < C[C@@H]10[C@ @H](O[C@ @H]2C(=0)c3c(0)cc(0)cc30[C@HRc2cce (0)c(0)c2) [C@H](O)C@H](O)[C@H]10 >
Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.

Question: Whatis the permeation rate through Caco-2 cells of the drug molecule above?

Molecular vector representation: [REP]-des[/REP]

Answer: -6.82

Drug SMILES: < CN(C)CCCN1c2cccec2Sc2ccecc2l >

Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.
Question: Whatis the permeation rate through Caco-2 cells of the drug molecule above?

Molecular vector representation: [REP]-des[/REP]

Answer: -4.38

Drug SMILES: < COclcc(OC)c2¢(=0)cc(-c3ccecce3)oc2cl >

Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.
Question: Whatis the permeation rate through Caco-2 cells of the drug molecule above?

Molecular vector representation: [REP]-des[/REP]

Answer: -4.63

Drug SMILES: < CSCC[C@H](NC(=0)[C@H](Cclcceec1)NC(=0)CNC(=0)[C@@H](C)NC(=0)[C@@H](N)Cclccc(O)cc1)C(=0)0 >
Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.

Question 1: What is the permeation rate through Caco-2 cells of the drug molecule above?

Molecular vector representation: [REP]|BBBB[/REP]

Please respond with the following format for each question:

-—BEGIN FORMAT TEMPLATE FOR QUESTION 1-—

Answer 1: [Your Answer Here for Question 1]

-—END FORMAT TEMPLATE FOR QUESTION 1--

Drug SMILES: < CC[C@]1(0)C[C@@H]2CN(CCe3c([nH]c4ccecc34)[C@@](C(=0)OC)(c3ec4c(cc30 C)N(C)C@HI[C@@)(0) (C(
=0)0C)[C@H](0C(C)=0)[C@]5(CC)C=CCN6CCIC@]43[C@@H]65)C2)C1 >

Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.

Question 2: What is the permeation rate through Caco-2 cells of the drug molecule above?

Molecular vector representation: [REP]-des[/REP]

Please respond with the following format for each question:

--BEGIN FORMAT TEMPLATE FOR QUESTION 2-—

Answer 2 [Your Answer Here for Question 2]

-—END FORMAT TEMPLATE FOR QUESTION 2-—

Drug SMILES: < C[C@H](N[C@H](CCclccece1)C(=0)0)C(=0)NICCCC@@H|1C(=0)0 >

Given the SMILES sequence of the drug molecule above, answer the following question using the specified format.
Question 3: What is the permeation rate through Caco-2 cells of the drug molecule above?

Molecular vector representation: [REP]-des[/REP]

Please respond with the following format for each question:

--BEGIN FORMAT TEMPLATE FOR QUESTION 3-—

Answer 3: [Your Answer Here for Question 3]

-—-END FORMAT TEMPLATE FOR QUESTION 3--<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Output

-—-BEGIN FORMAT TEMPLATE FOR QUESTION 1-—-
Answer 1. -5.68
-—END FORMAT TEMPLATE FOR QUESTION 1-—

-—BEGIN FORMAT TEMPLATE FOR QUESTION 2-—
Answer 2 -6.51

-—END FORMAT TEMPLATE FOR QUESTION 2--
--BEGIN FORMAT TEMPLATE FOR QUESTION 3--

Answer 3: -5.69
-—END FORMAT TEMPLATE FOR QUESTION 3-—

Figure 11: Decoded prompt example and output for Caco?2 task.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope. They provide a clear overview of what the paper aims
to achieve and the methodologies used, aligning well with the detailed findings presented in
the subsequent sections.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, the paper does discuss the limitations of the work performed by the
authors. It helps set the stage for future work and encourages ongoing dialogue in the field.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper clearly states all necessary assumptions prior to each theoretical
result. Each theorem or proposition is accompanied by a complete and logically sound proof,
either in the main text or in the appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, the paper fully discloses all the necessary information needed to reproduce
the main experimental results. The authors have been meticulous in detailing the methodol-
ogy, settings, and parameters used in their experiments, ensuring that other researchers can
replicate the study accurately and validate the findings.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The code and data are not released at submission time to preserve anonymity.
However, the authors state that all necessary code, data, and instructions will be made
publicly available upon paper acceptance and publication.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

¢ The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, the paper specifies all the training and test details, including data splits,
hyperparameters, the rationale behind their selection, and the type of optimizer used.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, the paper reports appropriate information about the statistical significance
of the experiments.
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10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:[Yes]

Justification: Yes, for each experiment, the paper provides sufficient information on the
computer resources required.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in the paper conforms in every respect with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]

Justification: Yes, the paper discusses both potential positive and negative societal impacts
of the work performed.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Yes, the paper describes safeguards that have been put in place for the respon-
sible release of data or models that have a high risk of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, the creators or original owners of assets used in the paper are properly
credited.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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14.

15.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, new assets introduced in the paper are well documented, and the docu-
mentation is provided alongside the assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any crowdsourcing experiments or research with
human subjects. All results are derived from computational experiments using publicly
available datasets and models.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]

Justification: This work does not involve human subjects or any form of user study. All
experiments are conducted using machine-generated data or publicly available datasets, and
therefore do not require IRB approval.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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