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Abstract

This paper argues that inconsistency among Responsible Al
metrics is a feature, not a flaw. Treating divergent metrics
as distinct objectives yields three benefits: normative plural-
ism that reflects diverse stakeholder values; epistemological
completeness that preserves richer information about com-
plex ethical concepts; and implicit regularization that pre-
vents overfitting to any single metric and improves robust-
ness. Forcing consistency by pruning metrics narrows val-
ues, reduces conceptual depth, and can harm performance.
We call for defining acceptable inconsistency and the mecha-
nisms that enable practical, robust alignment.

Introduction

The current practice of Responsible Al is built on metrics.
Fairness audits invoke demographic parity (Feldman et al.
2015), equalized odds (Hardt, Price, and Srebro 2016a),
or counterfactual consistency (Kusner et al. 2017); privacy
claims are based on e-differential privacy (Dwork et al.
2006); robustness tests span distribution shift (Quifionero-
Candela et al. 2009), adversarial risk (Goodfellow, Shlens,
and Szegedy 2015), and calibration error (Guo et al. 2017).
Each metric quantifies an abstract virtue into numbers to en-
able evaluation and optimization. Yet beneath this quantifi-
cation enterprise lies a fundamental puzzle: many of these
metrics are mathematically incompatible. Classical im-
possibility theorems show, for example, that no nontrivial
predictor can simultaneously satisfy three most common
fairness definitions except in degenerate cases of perfect pre-
diction or equal base rates (Kleinberg, Mullainathan, and
Raghavan 2017; Chouldechova 2017; Plecko et al. 2024).
Similar tradeoffs plague accuracy versus privacy (Dwork
et al. 2006; Zhao and Gordon 2022), political neutrality ver-
sus informativeness (Fisher et al. 2025), and interpretability
versus expressive power (Rudin 2019).

Conventional wisdom treats these contradictions as bugs
to be patched: choose a single “right” metric (Dwork et al.
2012; Hardt, Price, and Srebro 2016a) or derive consis-
tency constraints (Agarwal et al. 2018; Zafar et al. 2017).
We take the opposite stance. Drawing on work in moral
philosophy, Human-Computer Interaction (HCI), and multi-
objective optimization, we argue that theoretical inconsis-
tency is a feature, not a flaw. The value of preserving

theoretically inconsistent metrics emerges across three di-
mensions: Normatively, they encode distinct commitments
from diverse social groups, essential for pluralistic align-
ment. Epistemologically, they enable a richer understanding
of complex Responsible Al concepts. Practically, jointly op-
timizing these conflicting objectives acts as an implicit reg-
ularizer, steering learners away from brittle, single-metric
shortcuts and towards solutions that generalize under realis-
tic uncertainty (Neyshabur et al. 2017a; Yu et al. 2020b).
Overall, this paper makes three following contributions:

1. We formalize two kinds of metric inconsistency—intra-
concept inconsistency (variants of the same ideal col-
lide) and inter-concept tradeoff (distinct ideals com-
pete)—and illustrate how each kind could project a com-
plicated picture when applied to reality, with several
canonical examples.

2. We synthesize evidence that inconsistent objectives im-
proves ethical coverage, conceptual understanding, and
out-of-sample performance, linking insights from opti-
mization theory, Pareto-front geometry, Rashomon set
exploration, and Goodhart’s Law.

3. We propose a research agenda that shifts the field from
eradicating inconsistency to characterizing acceptable
inconsistency: defining tolerance bands, documenting
normative provenance, and designing pluralistic evalua-
tion dashboards.

In short, we invite the community to embrace contradic-
tion as the necessary price and the promise of building Re-
sponsible Al systems that serve a pluralistic world. In the re-
mainder of this paper, Section identifies two types of incon-
sistencies to provide a conceptual foundation for our cen-
tral claim: theoretical contradictions between metrics—far
from being flaws—serve practical and normative purposes.
Section presents theoretical and empirical support for this
position from the aforementioned dimensions. Finally, Sec-
tion outlines actionable recommendations for theorists, tool
builders, and regulators in engaging with theoretical contra-
diction.

Conceptual Framework: Two Forms of Metric
Inconsistency

To make sense of the tension between Responsible Al met-
rics, we define two formal types of inconsistency that under-



lie these conflicts. The first, which we term inconsistency in
the concept, occurs when multiple metrics derived from the
same normative concept (e.g., fairness) conflict with each
other (see Definition ). The second, inter-concept inconsis-
tency, arises when optimizing for one desirable metric (e.g.,
accuracy) degrades performance on another (e.g., privacy or
fairness) due to structural tradeoffs (see Definition ). Below,
for each of these two inconsistencies, we will illustrate with
canonical examples and show how, in each case, the incon-
sistency in theory formed a conversation with empirical re-
sults that more or less suggests a approximated consistency.

Definition : Intra-concept inconsistency

Let H be a hypothesis space (all possible models) and
A={ai,...,a,} where a; : H — {0, 1} are Boolean
metrics that all purport to measure the normative con-
cept same A (e.g. fairness). 0 denotes unsatisfied and 1
denotes satisfied. We say A is inconsistent if

h € H such that Vi : a;(h) =1,

unless a trivial edge case holds (e.g: perfect prediction,
identical base rates).

Interpretation. No single model can make all fairness
metrics “satisfied” at once except in degenerate situa-
tions.

Fairness

Fairness illustrates a classic case of inconsistency be-
tween concepts, where multiple metrics derived from
the single normative concept of algorithmic fairness can-
not be simultaneously satisfied. Kleinberg et al. (Klein-
berg, Mullainathan, and Raghavan 2017) demonstrated that
three commonly used fairness metrics, equalizing calibra-
tion within groups, maintaining balance for the negative
class, and maintaining balance for the positive class, could
not be concurrently satisfied across multiple groups, with
only two exceptions (Kleinberg, Mullainathan, and Ragha-
van 2017). These exceptions occurred: (1) when the algo-
rithm achieved perfect prediction or (2) when there was
no prevalence difference between the groups. Chouldechova
(Chouldechova 2017) formulated a similar impossibility re-
sult, expressing it as a relationship between Predictive Posi-
tive Value (PPV), False Positive Rate (FPR), False Negative

Rate (FNR), and prevalence (p), as shown in Equation 1:
FpR— P L-PPV

1-p PPV
More recently, Bell et al. (Bell et al. 2023) engaged in
this theoretical impossibility: Instead of considering the per-
fectly fair case among multiple metrics, by slightly loosen-
ing the constraint from zero disparity to minimum disparity,
one would find plenty of models that were approximately
fair with respect to these theoretically inconsistent metrics
(Bell et al. 2023). Their empirical studies on 18 real-world
datasets revealed that theoretical impossibility results often

- (1 — FNR) (1)

overstate practical tradeoffs. This perspective gained sup-
port from Wick et al. (Wick, Panda, and Tristan 2019), who
demonstrated that carefully engineered feature representa-
tions could mitigate fairness tradeoffs, and Liu et al. (Liu,
Simchowitz, and Hardt 2019), who argued that impossibil-
ity results often stemmed from implicit assumptions about
data generation processes.

Political Neutrality

Like fairness, political neutrality exemplifies intra-
concept inconsistency, where multiple interpretations de-
rived from this single normative concept cannot be si-
multaneously satisfied. Drawing from political philosophy,
John Rawls argued that procedural, aim and effect neutrality
could not be jointly satisfied (Rawls 1985, 1988). In partic-
ular, the third sense was “undoubtedly impossible” and "fu-
tile trying to counteract”: educational institutions inevitably
tilted the social climate, so we must abandon the neutrality
of effect (Rawls 1988). Joseph Raz made a similar point on
a parallel concept: comprehensive neutrality, being neutral
with respect to the ideals people will adopt in the future,
was also unattainable in practice, given that any serious po-
litical morality unavoidably shaped the comparative fortunes
of conceptions of the good (Raz 1982).

Yet Raz also argued that neutrality “can be a matter
of degree” (Raz 1986). Recent empirical work by Fisher
et al. (Fisher et al. 2025) inherited and operationalized
Raz’s ”degrees of neutrality” idea by proposing eight math-
ematically formalized techniques for approximating polit-
ical neutrality across three levels: output level (refusal,
avoidance, reasonable pluralism, output transparency), sys-
tem level (uniform neutrality, reflective neutrality, system
transparency) and ecosystem level (neutrality through diver-
sity). Their evaluation of 9 LLMs in 7,314 political queries
demonstrated that these approximations could be practi-
cally implemented with measurable tradeoffs between util-
ity, safety, fairness, and user agency. For example, while re-
fusal techniques achieved 100% safety scores, they scored
poorly on utility, while reasonable pluralism maintained
high fairness but risked information overload.

Definition : Inter-concept tradeoff

Let H be a hypothesis space and A, B : H — R>( be
different metrics (e.g. accuracy and demographic parity
or loss of privacy). There is an (A, B) tradeoff if

sup  A(h) < sup A(h) forsome b <sup B(h)
heH:B(h)<b he h

Interpretation. Constraining B (say, requiring loss of
fairness < b or privacy € < b) reduces the maximum
achievable A (say accuracy) below its unconstrained
optimum.

Accuracy-Fairness

An illustrative inter-concept tradeoff involves accuracy and
fairness. From an information theory perspective, Zhao &
Gordon (Zhao and Gordon 2022) derived lower bounds to



show that satisfying independence-based parity notions such
as demographic (statistical) parity would impose extra error
when group base rates differed. Specifically, for binary class
labels Y € {0, 1} and a protected attribute A € {0, 1}, given
Err,(h) denotes the misclassifications rate of hypothesis h
on group A = g, they proved that

Erro(h)+Erry(h) > |Pr(Y = 1| A=0)—Pr(Y = 1| A=1)|.

@)
Thus, when the base-rate gap on the right-hand side was
large, at least one group must incur a proportionally large
error.

The empirical findings paint a more nuanced picture.
Hardt et al.(Hardt, Price, and Srebro 2016b) demonstrated
that, via post-processing optimization, error-rate-matching
criteria—such as equalized odds or equality of opportu-
nity—can be satisfied with negligible loss in overall accu-
racy. Rodolfa et al.(Rodolfa, Lamba, and Ghani 2021) cor-
roborated this across several public-policy tasks and ob-
served virtually no reduction in precision after post-hoc mit-
igation of recall disparity. Furthermore, Li et al.(Li, Wu, and
Su 2022) showed that enforcing their causal-path fairness
constraint can even improve accuracy.

The key insight is that the accuracy—fairness trade-off
is not universal but depends on the particular fairness
metric. Independence-based metrics tend to incur an accu-
racy cost, whereas error-rate-matching criteria, calibration,
or certain causal formulations can often be achieved at lit-
tle or no cost. Analogous debates have arisen over trade-offs
between accuracy—interpretability (Rudin 2019; Bell et al.
2022) and accuracy—privacy (Ziller et al. 2021).

The Value of Inconsistent Metrics

Reviewing three of the aforementioned case studies, one
might naturally ask: given the theoretical inconsistencies of
Responsible Al metrics, does this suggest that the underly-
ing concepts such as “fairness” and “neutrality”” behind these
metrics are ill-defined? Are these concepts such as “fairness”
and “neutrality” remain meaningful and valuable in Respon-
sible AI?

We note that this question can be generalized as: if a
goal is contradictory (here making the machine learning
model political neutral), should one pursue it (to optimize
the model for it)? In other words, one only pursue different
goals that are consistent with each other? Our position is
that we should embrace this inconsistency.

In this section, we emphasize the value of preserving the-
oretically inconsistent metrics by ensuring that these incon-
sistencies serve three key purposes: 1) Normatively, they up-
hold value pluralism: each metric captures a distinct moral
stance, ensuring that diverse stakeholder perspectives re-
main visible. 2) Epistemologically, these inconsistent met-
rics better preserves information of the underlying concept.
3) Practically, conflicting metrics act as regularizers, guiding
models toward more robust and generalizable behavior un-
der real-world complexity. Rather than impeding progress,
inconsistency enables both ethical inclusivity and technical
resilience.

Value of Inconsistent Metrics
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Figure 1: An Overview of The Values in Theoretical Incon-
sistency

Inconsistent metrics encodes the (unfortunately)
inconsistent human values required in pluralistic
alignment.

In AI Alignment, pluralistic alignment is an approach that
acknowledges and embraces the diversity of human values,
perspectives, and preferences rather than attempting to align
Al systems with a single, universal set of values (Leike et al.
2018; Ji et al. 2024; Sorensen et al. 2024a). The core premise
of pluralistic alignment is that there isn’t one “correct” set of
human values that Al systems should adopt. Instead, it rec-
ognizes that different cultures, communities, and individu-
als have varying and sometimes conflicting values, and that
Al systems should be designed to accommodate this diver-
sity, rather than propagating bias and systematic injustice
(Sorensen et al. 2024b; Alamdari et al. 2024; Gabriel et al.
2024; Mehrabi et al. 2021; Crawford et al. 2019).

From the famous proverb, ”There are a thousand Hamlets
in a thousand people’s eyes”, it is natural for a concept to be
understood differently among people, social groups, and cul-
ture. There is no exception for core concepts in Responsible
Al such as “fairness”, "privacy”, and “’political neutrality”.
Each metric of each of the concept exactly represents one
way of understanding the concept by an individual or a so-
cial group. In turn, people from different social group may
have divergent conception of a single concept. For example,
psychology literature showed that people from individualist
cultures tend to favor the rule of equity and the distributive
principle of equity, while people from collectivist cultures
emphasize equality and need rules, especially with members
of the group (Morris and Leung 2000; Bond, Leung, and
Schwartz 1992; Tyler et al. 1997). This might suggest that if
a model is intended to be applied to a society where people
from divergent social backgrounds blend, to ensure plural-
istic alignment, multiple fairness metrics including demo-
graphic parity and individual fairness or equal opportunity
are needed.

On the other hand, diversified human values are always
inconsistent with each other. Isaiah Berlin argued that fun-
damental human values are inherently pluralistic and some-
times cannot be reconciled theoretically (Berlin 1998). As
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Figure 2: Represented as clusters in different colors, differ-
ent groups have different ideas about what fairness” means
and formalized them into divergent metrics. By the Impos-
sibility Theorem of Fairness, no models, as represented by
black dots, can satisfy all of the three formalized metrics of
fairness.

Berlin argued, the incompatibility of values does not make
them less valid - it is a natural condition of human life that
we must navigate. Value pluralism offers an alternative to
both moral relativism (all values are equally valid) and moral
absolutism (only one set of values is true)(Fisher et al. 2025).
In this view, the lack of theoretical consistency between Re-
sponsible Al metrics isn’t a flaw but reflects the genuine plu-
rality of human values. Thus, if one finds several metrics of a
single Responsible Al concept inconsistent (i.e: facing intra-
concept inconsistency as defined in ), this suggests that the
diversified understandings of that concept are inconsistent.
Therefore, if one manages to fix the inconsistency by sim-
ply considering a subset of the set of all metrics around the
concept, it would harm the goal of pluralistic alignment, as
it made some of the respective understanding of the concept
behind the deleted metric underrepresented in the evaluation
and optimization. For instance, in the case of fairness, if one
focuses on solely optimizing for Predictive Positive Value
and False Negative Rate, the idea of fairness as understood
by people who proposed False Positive Rate is underrepre-
sented. Therefore, optimizing machine learning models with
respect to these inconsistent metrics preserves the plural hu-
man values, thus helping the agenda of pluralistic alignment.

Inconsistent metrics better preserves information
of the underlying concept.

Besides the ethical dimension of inconsistent metrics, we
further argue that epistemologically, preserving inconsistent
metrics around a concept is to best preserve the information
contained within that concept.

Wittgenstein’s analysis of ’family resemblance’ terms
shows that many everyday and moral concepts such as
’game’, ’fair’, ‘neutral’ do not have one set of necessary and
sufficient conditions. There is no one property (or fixed list
of properties) that every “game” has and that only games
have. Some games are competitive, some are cooperative;
some require skill, others chance; some have rules, others
only conventions. Instead, different games share different
combinations of features. Chess and soccer both have rules,
but chess and tag both involve winning—losing. Each pair

overlaps on some trait, but there’s no single trait common to
all (Wittgenstein 1953).

A formal metric of a concept selects one cluster of it and
thereby projects only part of the resemblance network. Any
projection as such might be useful, but inevitably left to be
a ’'rational reconstruction’ that sacrifices some of the origi-
nal content (Carnap 1950). For instance, to capture human
“intelligence”, psychologists proposed several metrics, such
as the genuine Intelligence Quotient (IQ) (Wechsler 1958),
Emotional Quotient (EQ) that captures social and emotional
understanding (Salovey and Mayer 1990; Goleman 1995),
Gardner’s Multiple Intelligences that capture linguistic, spa-
tial, musical, and other domains (Gardner 1983), and Prac-
tical Intelligence that captures real-world problem solving
(Sternberg 1985; Sternberg and Wagner 1986). Each of these
tests captures a limited cluster of what we mean by “intelli-
gent.” Similarly, for concepts in responsible Al such as po-
litical neutrality, each of the breakdown dimension such as
“refusal”, “avoidance”, or “reflective neutrality” as specified
in (Fisher et al. 2025) captures a limited cluster of ”political
neutrality”.

Hence, the best attempt to capture a concept is to in-
corporate all the possible metrics (which are potentially
inconsistent) into evaluation, so that all the possible clus-
ters are getting involved, and therefore the original content
is best preserved. One would have a better understanding
of their “intelligence” by considering their performance on
all of the possible tests; one would have their best captur-
ing of the degree of political neutrality of an Al model if its
performance on all the possible dimensions of neutrality is
considered. Conversely, if one manages to fix the inconsis-
tency by simply considering a subset of the set of all metrics
around the concept, it will inevitably lead to the loss of some
information contained in the concept.

Metric Inconsistency Has Potential Practical
Values

Furthermore, we emphasize the potential practical value of
metric inconsistency. The conventional wisdom that one
metric suffices is often fragile in optimization practice: once
a single score becomes the sole optimization target, models
exploit idiosyncrasies of the training distribution—a phe-
nomenon formalized by Goodhart’s Law (Goodhart 1975).
Here, we show that maintaining and jointly optimizing sev-
eral conflicting objectives counteracts such specification
overfitting. It acts as an endogenous regularizer that en-
hances out-of-sample accuracy and robustness. Three
complementary mechanisms are identified and supported by
theory and evidence.

Mechanism I: Gradient Conflict as Semantic Regu-
larization In multi-objective learning, when optimizing
L(x;0) = >, \iLi(z; 6), objectives are said to conflict
when the angle between their gradients exceeds 90°(Yu et al.
2020b). This misalignment bounds the effective gradient
norm via the parallelogram law and prevents any one loss
from dominating updates(Boyd and Vandenberghe 2004).
Crucially, these conflicting gradients introduce semantic
regularization: unlike stochastic methods such as dropout,



this regularization arises from meaningful tension between
goals and narrows the train—validation gap (Yu et al. 2020b;
Liu et al. 2021a). Algorithms like PCGrad (Yu et al. 2020a)
and CAGrad (Liu et al. 2021b) leverage this structure to pro-
mote task-agnostic feature learning. For example, in NYUv2
semantic-depth co-training, PCGrad improves mean IoU by
2.3 pp while also reducing depth RMSE by 0.04m (Yu et al.
2020a). Theoretically, when the L; are L-Lipschitz and of
VC-dimension d, the generalization bound under joint opti-
mization degrades only by O(v/k)—a modest price for in-
creased robustness (Neyshabur et al. 2017b).

Mechanism II: The Existence of Pareto Fronts and the
Rashomon Set Since conflicting objectives rarely admit
a unique minimizer, they may induce a Pareto front with a
e-optimal region R. = {6 | 360" : L;(0) < L;(0")+e, Vi}.
This coincides with the notion of Rashomon set, defined as
a set of near-optimal models with some 0 << € << 1
accuracy loss (Fisher, Rudin, and Dominici 2019; Semen-
ova, Rudin, and Parr 2022; Rudin et al. 2024). Here, a larger
Re yields two tangible benefits that can now be computed.
First, it allows practitioners to swap models to satisfy down-
stream constraints such as fairness, interpretability, or en-
ergy budgets, without retraining or sacrificing accuracy. This
flexibility is enabled by recent algorithmic advances, such
as TreeFARMS and the GAM Rashomon Set algorithm,
which make it feasible to enumerate near-optimal models
across the Pareto front in minutes (Xin et al. 2022; Zhong
et al. 2023). Second, the functional diversity within Re en-
hances the ensemble and majority vote strategies, improv-
ing the robustness to adversarial perturbations and distribu-
tional shifts(Durrant and Kaban 2020). These practical ben-
efits are supported by both classical methods like NSGA-
IT (Deb 2001) and modern enumeration techniques for de-
cision trees (Bell et al. 2022), which show that Pareto-style
search can reliably uncover diverse, near-optimal hypothe-
ses—transforming ambiguity in model selection into a pow-
erful tool for structured flexibility.

Mechanism III: Complementary Metrics Block Shortcut
Features Requiring simultaneous performance on incon-
sistent metrics forces the model to abandon brittle short-
cut features. For instance, in medical imaging, injecting a
differential-privacy (DP) loss caps memorization, thereby
improving external-hospital AUC by 5% despite a 2% de-
cline on the internal test set (Ziller et al. 2021). In text
classification, optimizing both sentiment accuracy and gen-
der independence removes name-related artifacts, raising
cross-domain F; (Hardt, Price, and Srebro 2016b). Empir-
ically, errors on one metric often flag spurious correlations
exploited by the other, creating a form of cross-metric de-
bugging unavailable in single-objective training.

From the above three mechanisms, inconsistent met-
rics are not an impediment but a safeguard: Especially
in high-stakes domains—health, finance, criminal jus-
tice—joint optimization delivers a principled trade between
slightly lower headline scores and substantially higher relia-
bility.

Recommendations and Future Directions

Advancing Practice-Driven Theories on Responsible Al
A question yet to discussed from Section is the gap between
the inconsistencies in theory and the more complicated em-
pirical results: Given that in practice, one can solve the in-
consistency by loosing constraints, do the theoretical results
really matter? How should we build theories on Responsible
Al topics?

We highlight that the gap between theoretical inconsisten-
cies and practical consistencies of Responsible Al metrics
does not suggest that any theories on Responsible Al are
not needed. Instead, it pushes researchers to build theories
that fit to everyday Responsible AI practices. While cur-
rent theoretical formulations such as the Impossibility The-
orem of Fairness often focus on optimality, the models that
work well in practice are frequently sub-optimal, approxi-
mate, and constrained. What Responsible Al currently lacks
a theoretical framework that adequately explains everyday
cases of Responsible Al Practices. We should develop re-
sponsible Al theories that fit the problem context, rather than
demanding universal consistency.

One of the very recent theoretical developments alongside
this agenda is the theories on the Rashomon set, which theo-
rizes properties of models with near-optimal performance, a
practically feasible setting. In a recent work by Dai et al.(Dai
et al. 2025), researchers explored several theoretical proper-
ties of the Rashomon set. In particular, they derived that the
asymptotic size of the Rashomon Set (and thus the possibil-
ity of finding the desired models) grows exponentially with
/€. This entails that in practice, a company searching for
fairer models within the Rashomon set should use the largest
error tolerance acceptable to their business. We argue that in
the field of Responsible Al, practice-driven theories such as
this should be the direction of future theoretical work.

Defining Acceptable Inconsistency Thresholds. Instead
of pursuing the unattainable goal of perfect alignment for
all fairness metrics, we recommend specifying explicit tol-
erance ranges. These ranges serve as normative guardrails,
defining acceptable divergence levels among metrics before
ethical concerns arise (Ruf and Detyniecki 2021). This ap-
proach preserves pluralism, provided that no single objec-
tive can override or weaken the legitimate claims of oth-
ers. Crucially, determining an acceptable inconsistency is a
highly contextual process; it encompasses not only the mag-
nitude of the divergence but also its nature. Suitable thresh-
olds will be dependent on empirical risk, stakeholder pri-
orities, legal norms, and furthermore the specifics of each
deployment scenario (Holstein et al. 2019). Therefore, a key
challenge is providing guidance to evaluate whether particu-
lar inconsistencies are beneficial, such as by enhancing gen-
eralization, or detrimental, such as by leading to failures in
essential model operation. Through this approach, we can
preserve the benefits of pluralism, accommodating diverse
values alongside perspectives, without descending into arbi-
trary or unchecked tradeoffs.

Documenting Normative Assumptions Explicitly. As
we discussed in Section , each metric represents a diversi-
fied interpretation behind it. We recommend that all Respon-



sible Al evaluations should capture the normative assump-
tions embedded in each metric. This proposal builds on the
success of Model Cards (Mitchell et al. 2019), which aimed
to foster transparency in model reporting by detailing in-
tended use cases, evaluation conditions, and ethical consid-
erations. Similarly, Data Statements (Bender and Friedman
2018) provided schema for documenting data set creation
rationale, demographic coverage, and limitations, helping
practitioners understand what system behavior can (and can-
not) be trusted to generalize. We suggest adapting these prin-
ciples into a “Metric Provenance Sheet”, a structured docu-
mentation explaining what each metric measures, its limita-
tions and which stakeholder values it reflects or omits. We
expect that this explicit normative tracking will improve in-
terpretability when models excel in one metric but falter in
another, promoting stakeholder trust through transparency
and accountability (Chmielinski et al. 2024).

Testing Human—Metric Interaction Empirically. To
validate the practical relevance of theoretical inconsistency,
we call for empirical studies involving stakeholders such as
users, domain experts, and regulators in the negotiation and
selection of metrics. Previous work in HCI and Responsible
Al has shown that participatory methods effectively capture
diverse notions of fairness and stakeholder-specific priori-
ties. For example, Cheng et al.(Cheng et al. 2021) involved
child-welfare practitioners in defining fairness criteria, re-
vealing substantial variation in ethical interpretations.Future
studies should examine how people interact with pluralistic
evaluation tools, make tradeoffs between conflicting objec-
tives, and interpret explanations of inconsistency. Such in-
sights will inform the design of more intuitive interfaces, in-
clusive optimization strategies, and accountable Al policies.

Response to Alternative View

This plan sounds great, but practically speaking, con-
flicting metrics will confuse end-users and regulators!
Response: One may argue that in practice, regulatory and
deployment environments require single and clear standards
and that conflicting metrics complicate this picture. A single
metric that represents all Responsible Al concepts and di-
verse perspectives is indeed an appealing ideal, but this ideal
is often impractical. To truly represent plural perspectives,
multiple metrics are often needed, and using them also helps
incorporate complete information. Although this approach is
more complex than a single score, it accurately reflects the
multifaceted nature of Responsible Al. Multi-metric eval-
uation can lead to inconsistencies; however, regulators and
deployment teams can address these using the approach sug-
gested by Bell et al. (Bell et al. 2023). This method avoids
strictly satisfying one specific metric. Instead, it incorporates
several different metrics, allowing each to be *approximately
satisfied’ within a small, defined tolerance. This enables reg-
ulators to define clear standards based on acceptable pro-
files across key metrics, rather than relying on a single, po-
tentially oversimplified one. Empirical results in the litera-
ture support this approach (Bell et al. 2023; Dai et al. 2025;
Laufer, Raghavan, and Barocas 2025), as research shows,
this tolerance allows for a great variety of models that sat-

isfy established constraints. Therefore, such a multi-metric
evaluation framework is not only practically feasible but also
essential for robust and responsible Al governance in real-
world deployment.

Be careful here! It is the diversity of metrics, not
the inconsistency of metrics, that helps pluralistic align-
ments.

Response: We acknowledge that it is not a logical neces-
sity that inconsistency entails plurality. And with no doubts,
we wish all the metrics to be consistent with each other while
not harming plurality: all concepts do not suffer from any
internal consistencies so that we can possibly achieve zero
loss for all the metrics, and there will be no tradeoffs among
any pair of concepts central in Responsible Al. However, it
is believed that inconsistent perspectives and incommensu-
rable values are ubiquitous among real social interactions,
as we established earlier in Section . In practice, a multi-
tude of metrics will almost inevitably exhibit inconsisten-
cies. Therefore, attempts to enforce consistency by reducing
the number of metrics inherently sacrifice valuable diversity
and plural representation. Hence, the viable approach to pre-
serve plurality is to preserve inconsistent metric.

I see your point on the value of inconsistent metrics,
but instead of considering all these metrics, shouldn’t
one pick a metric that works best for the application
tasks, which does not involve inconsistency?

Response: We indeed admit that one should choose the
metric that works best for their related application tasks.
However, as we illustrated in Section there are always cases
in which the targeted population shares conflicting perspec-
tives, which requires the best fit” evaluation method to be
itself incorporating plural perspectives. This means that mul-
tiple theoretically inconsistent metrics are still needed.

Besides, even for tasks that do not assume to represent
plural perspective, inter-concept tradeoff as defined in re-
mains present. For example, Differential Privacy is legally
mandated (U.S. Department of Health and Human Services
2024) and ethically required to protect patient identity, yet
it is exactly the privacy metric that has a tradeoff with task
precision (ROC-AUC) (Ziller et al. 2021).

Furthermore, the effectiveness of each metric in evaluat-
ing the respective domain is not static. Some metric might
be good for the application at the beginning, but, by Good-
hart’s law, when a good metric became a target to explicitly
optimize for, it ceased to be a good one. Yet, if multiple (in-
consistent) metrics are present in evaluation and optimiza-
tion, as we established earlier in Section , the model will
have less chance of suffering from the negative impacts of
Goodhart’s law.

Conclusion

Metric inconsistencies are essential, not defects. They pre-
serve diverse values, capture ethical complexity, and regular-
ize models for better generalization. Empirical results show
that impossibilities become workable tradeoffs when we al-
low near-optimal, approximate satisfaction. The field should
define acceptable inconsistency thresholds and build tools
that navigate value tensions rather than erase them.
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