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ABSTRACT

We present a self-supervised framework that learns population-level codes for arbi-
trary ensembles of neural recordings at scale. We address key challenges in scaling
models with neural time-series data, namely, sparse and variable electrode distribu-
tion across subjects and datasets. The Population Transformer (PopT) stacks on
top of pretrained representations and enhances downstream decoding by enabling
learned aggregation of multiple spatially-sparse data channels. The pretrained PopT
lowers the amount of data required for downstream decoding experiments, while
increasing accuracy, even on held-out subjects and tasks. Compared to end-to-end
methods, this approach is computationally lightweight, while achieving similar or
better decoding performance. We further show how our framework is generalizable
to multiple time-series embeddings and neural data modalities. Beyond decoding,
we interpret the pretrained PopT and fine-tuned models to show how they can be
used to extract neuroscience insights from massive amounts of data. We release
our code as well as a pretrained PopT to enable off-the-shelf improvements in
multi-channel intracranial data decoding and interpretability.

1 INTRODUCTION

Building effective representations of neural data is an important tool in enabling neuroscience research.
Recordings from the brain such as intracranial (iEEG) and scalp (EEG) electroencepholography,
consist of time series recorded simultaneously from multiple channels. The relationships between
these time series are complex, and governed by the underlying functional connectivity that exists
between brain regions. Our goal is to build an effective model of multi-channel activity. Recently,
improvements have been made in modeling for the single channel setting (Wang et al., 2022; Talukder
et al., 2024; Yue et al., 2022; Ansari et al., 2024). This suggests an approach for learning multi-
channel representations via aggregating single channel embeddings. However, this is not a trivial task.
For brain recordings, particularly iEEG, one must contend with sparse and variable electrode layouts,
which change the semantics of input channels from subject to subject. This forces many Brain
Machine Interface (BMI) approaches to rely on expensive schemes, in which models are retrained
for each new participant, requiring large amounts of data for calibration (Faezi et al., 2021; Herff
et al., 2020; Martin et al., 2018; Metzger et al., 2023; Willett et al., 2023). To this end, we propose a
self-supervised learning framework, Population Transformer (PopT), which is specifically designed
to aggregate single-channel encodings across variable electrode layouts.

Self-supervised pretraining on unannotated data has been shown to be effective for creating generic
representations that are useful for many downstream tasks (Bommasani et al., 2022). Prior work has
shown how to pretrain subject-specific (Le & Shlizerman, 2022) or channel-specific (Wang et al.,
2022) models of iEEG, but such techniques ignore inter-channel relationships or commonalities that
might exist across subjects. Recent end-to-end self-supervised learning approaches downsample
signals heavily to make training across hundreds of channels feasible (Zhang et al., 2024; Yang
et al., 2024; Jiang et al., 2024). This is particularly problematic for high-fidelity iEEG signals, which
capture sub-millisecond changes in neural activity. Our approach leverages existing rich temporal
embeddings to represent signal, freeing the model to focus on learning effective aggregation.

We propose Population Transformer (PopT), a self-supervised pretraining approach that learns subject-
generic representations of arbitrary electrode ensembles. Transformers offer the flexibility to learn
aggregate information across channel configurations, but large amounts of data is needed to train the
attention weights (Devlin et al., 2019). During pretraining, we train on large amounts of unannotated

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

data and simultaneously optimize both a channel-level and ensemble-level objective. This requires
the model to (1) build subject-generic representations of channel ensembles and (2) meaningfully
distinguish temporal relationships between different ensembles of channels.

Our PopT approach is modular, and builds on top of powerful single-channel temporal embeddings,
which provides two key advantages. First, by separating the single-channel embedding and multi-
channel-aggregation into different modules, we make our approach agnostic to the specific type
of temporal embedding used, leaving room for future independent improvements along either the
temporal or spatial dimension (an approach that has been validated in video modeling (Arnab
et al., 2021)). Second, by taking advantage of learned channel embeddings, PopT training is
computationally lightweight compared to their end-to-end counterparts (Appendix B) and baseline
aggregation approaches (Figure 4), allowing for adoption in lower compute resource environments.

Empirically, we find that our pretrained PopT outperforms commonly used aggregation approaches
(Ghosal & Abbasi-Asl, 2021), and is competitive with end-to-end trained methods (Zhang et al.,
2024; Yang et al., 2024; You et al., 2019). Moreover, we find that these benefits hold even for subjects
not seen during pretraining, indicating its usefulness for new subject decoding. We also show that the
pretrained PopT weights themselves reveal interpretable patterns for neuroscientific study. Finally,
we demonstrate that our proposed framework is agnostic to the underlying temporal encoder further
allowing it to adapt to other neural recording modalities.

Our main contributions are:

1. a generic self-supervised learning framework, Population Transformer (PopT), that learns
joint representations of arbitrary channel ensembles across neural datasets,

2. a demonstration that pretraining systematically improves ensemble representations for
downstream decoding even for held-out subjects,

3. a new method for brain region connectivity analysis and functional brain region identification
based on the pretrained and fine-tuned PopT weights,

4. a trained and usable off-the-shelf model that computes population-level representations of
high temporal resolution intracranial neural recordings.

2 RELATED WORK

Self-supervised learning on neural data Channel independent pretrained models are a popular
approach for neural spiking data (Liu et al., 2022), intracranial brain data (Wang et al., 2022; Talukder
& Gkioxari, 2023), and general time-series (Talukder et al., 2024). Additionally, in fixed-channel
neural datasets, approaches exist for EEG (Chien et al., 2022; Kostas et al., 2021; Yi et al., 2023), fMRI
(Thomas et al., 2022; Kan et al., 2022; Ortega Caro et al., 2023), and calcium imaging (Antoniades
et al., 2023) datasets. However, these approaches do not learn population-level interactions across
datasets with different recording layouts, either due to a single-channel focus or the assumption that
the channel layout is fixed. Several works pretrain spatial and temporal dimensions across datasets
with variable inputs (Zhang et al., 2024; Yang et al., 2024; Jiang et al., 2024; Ye et al., 2024; Cai
et al., 2023), but most simultaneously learn the temporal embeddings with the spatial modeling,
which make them challenging to interpret and computationally expensive to train, especially for high
temporal resolution signals. To our knowledge, we are the first to study the problem of building
pretrained channel aggregation models on top of pre-existing temporal embeddings trained across
neural datasets with variable channel layouts, allowing for modeling of high quality neural data.

Modeling across variable input channels Modeling spatial representations on top of temporal
embeddings has been found to be beneficial for decoding (Faezi et al., 2021; Le & Shlizerman,
2022; Azabou et al., 2024), but prior works use supervised labels, so do not leverage large amounts
of unannotated data. The brain-computer-interface field has studied how to align latent spaces
(Pandarinath et al., 2018; Karpowicz et al., 2022; Degenhart et al., 2020; Jude et al.; Ma et al., 2023)
which either still requires creating an alignment matrix to learn across datasets or only provides
post-training alignment mechanisms rather than learning across datasets. Other approaches impute
missing channels or learn latent spaces robust to missing channels (Talukder et al., 2022; Zhang et al.,
2021; Chau et al., 2024), but these are more suited for the occasional missing channel rather than
largely varying sensor layouts. We directly learn spatial-level representations using self-supervised
learning across datasets to leverage massive amounts of unannotated intracranial data.
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3 POPULATION TRANSFORMER APPROACH

Figure 1: Schematic of our approach. The inputs to our model (a) are the neural activities from
a collection of electrodes in a given time interval (bottom). These are passed to a frozen temporal
embedding model (dotted red outline: BrainBERT (Wang et al., 2022) shown), which produces
a set of time embedding vectors (yellow). The 3D positions of each electrode (red) are summed
with these vectors to produce the model inputs (orange, lower). PopT produces space-contextual
embeddings (orange, top) for each electrode and a [CLS] token (blue, top), which can be fine-tuned
for downstream tasks. In pretraining, PopT learns two objectives simultaneously. In the first, (b)
PopT determines whether two different sets of electrodes (orange vs brown) represent consecutive or
non-consecutive times. In the second objective, (c) PopT must determine whether an input channel
has been replaced with activity at a random other time that is inconsistent with the majority of inputs.

Figure 1 overviews our Population Transformer (PopT) approach. The key ideas are: (1) to learn a
generic representation of neural recordings that can handle arbitrary electrode configurations; and
(2) to employ a modular system design that uses a transformer architecture to aggregate information
from existing per-channel temporal embeddings. To do so, we employ a self-supervised pretraining
approach to learn ensemble and channel level representations. Afterwards, one can fine-tune PopT on
downstream decoding tasks. In addition to offering strong decoding results, including generalization
to new subjects with different electrode configurations than training subjects (see Section 5), the
modular system design is computationally lightweight (see Appendix B), can benefit from improved
temporal representations, and is more readily interpretable (see Section 6).

Architecture A schematic of our Population Transformer (PopT) approach is shown in Figure 1.
We adopt a transformer backbone due to its ability to accommodate variable channel configurations.
Consider a given subject with N channels indexed by C = {1, ..., Nc}, and an arbitrary subset of
channels S ⊆ C. Let xt

i ∈ RT denote a time window of activity from channel i that begins at time t,
where T is the number of time samples in the interval. The PopT takes as input a collection of such
channels activities, Xt = {xt

i|i ∈ S}, as well as a special [CLS] token. Per channel, each interval
of brain activity is passed through a temporal embedding model B, in the figure’s case BrainBERT
(Wang et al., 2022), to obtain a representation of each channel’s temporal context, B(xt

i) ∈ Rd, where
d is the embedding dimension. For BrainBERT, the first step of pre-processing involves obtaining the
STFT for the signal, but preprocessing will differ depending on the embedding model used.

To allow the model to learn a common brain state representation across layouts, each channel’s
embedding is summed with its 3D position, so that the final processed input to the PopT is
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Xt
B = {B(xt

i) + pos(i) +N (0, σ)|xt
i ∈ Xt}. The PopT receives this as an S × d matrix. Spa-

tial location is given by the electrode’s Left, Posterior, and Inferior coordinates for iEEG electrodes
(Wideman, 2024), and XYZ positions for EEG electrodes. We add Gaussian fuzzing to each coor-
dinate location to prevent overfitting to a particular set of coordinates. Membership in a particular
ensemble (see below: ensemble-wise loss) is also encoded. The four encodings are concatenated
together to form the position embedding pos(i) = [eleft; epost.; einf; eensemble], where e is given using
a sinusoidal position encoding that represents a scalar coordinate as a unique combination of sines
(Vaswani et al., 2017).

The core of PopT consists of a transformer encoder stack (see Appendix A: Architectures). The
output of the PopT are spatial-contextual embeddings of the channels Y = {yi} and an embedding of
the CLS token ycls. During pretraining, the PopT additionally is equipped with a linear head for the
[CLS] token output and separate linear heads for all other individual token outputs. These produce
the scalars ỹcls and ỹi respectively, which are used in the pretraining objective (Figure 1b and c).

Self-supervised loss Our loss function has two discriminative components: (1) ensemble-wise —
the model determines if activities from two channel ensembles occurred consecutively, requiring an
effective brain state representation at the ensemble-level, (2) channel-wise — the model identifies
outlier channels that have been swapped with a different timepoint’s activity, requiring sensitivity to
surrounding channel context.

A key aspect of our method is the fact that our objective is discriminative, rather than reconstructive,
as is often the case in self-supervision (Liu et al., 2021; Wang et al., 2022). In practice, the temporal
embeddings often have low effective dimension (see Wang et al. (2022)), and reconstruction rewards
the model for overfitting to “filler” dimensions in the feature vector (Section 5).

Pretraining In ensemble-wise discrimination (fig. 1b), two different subsets of channels SA, SB ⊂ C
are chosen with the condition that they be disjoint SA ∩ SB = ∅. During pretraining, the model
receives the activities from these channels at separate times Xt

A = {xt
i | i ∈ SA} and Xt′

B = {xt′

i |
i ∈ SB}. The objective of the task is then to determine whether these states Xt

A and Xt′

B have
occurred consecutively in time (|t − t′| = 500ms) or are separated by some further, randomly
selected interval. Given the output of the classification head, the loss function LN is the binary
cross-entropy. We also vary the number of input channels during sampling to ensure the model
handles ensembles of different sizes. Additionally, we select disjoint subsets for ensemble-wise
discrimination to prevent the model from solving tasks through trivial copying.

In channel-wise discrimination (fig. 1c), the model must determine whether a channel’s activity has
been swapped with activity from a random time. Precisely, activity from each channel i is drawn
from a time ti. All channels are drawn from the same time ti = T , and then 10% of the channels
are randomly selected to have their activity replaced with activity from the same channel, but taken
from a random point in time ti ̸= T . Then, given the token outputs of PopT, the channel-wise loss
function LC is the binary cross-entropy. Then, our complete objective function is L = LN + LC . A
detailed formulation of the pretraining objective is given in Appendix A.

Fine-tuning In fine-tuning, given the [CLS] token, which is a d-dimensional vector, the PopT
produces the intermediate representation, ỹcls ∈ Rd, which is passed through a single layer linear
to produce a scalar prediction ŷcls ∈ R; this forms the input to the binary cross entropy loss for our
binary decoding tasks (Section 4).

4 EXPERIMENT SETUP

Data We use two types of neural time-series data: intracranial and scalp electroencepholography
(iEEG and EEG). iEEG probes are surgically implanted within the 3D brain volume and record
local electric signals from the brain at very high temporal resolution and spatial precision. EEG
electrodes lie on the scalp, and record electric signals that are smeared by the skull, which results
in low temporal and spatial resolution. EEG montages typically tile the whole scalp, while iEEG
electrodes are often only inserted in a comparatively smaller number of locations. These cover two
resolution extremes of neural time-series data modalities.

iEEG: We use the publicly available subject data from Wang et al. (2022). Data was collected from
10 subjects (total 1,688 electrodes, with a mean of 167 electrodes per subject) who watched 26
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movies (19 for pretraining, 7 for downstream decoding) while intracranial probes recorded their brain
activity. To test decoding with arbitrary ensemble sizes, we select subsets of electrodes based on their
individual linear task decodability, with the smallest subsets containing the electrodes with highest
decodability. We follow the trialization and data preprocessing practices used in Wang et al. (2022).

EEG: We use the Temple University Hospital EEG and Abnormal datasets, TUEG and TUAB (Obeid
& Picone, 2016), for pretraining and task data respectively. We remove all task subjects from the
pretraining set and follow the data preprocessing practices in Yang et al. (2024); Jiang et al. (2024).

Decoding Tasks We evaluate on 5 different classification tasks: 4 auditory-linguistic tasks used in
the evaluation of Wang et al. (2022) and 1 widely evaluated abnormal EEG detection task from Obeid
& Picone (2016). Of the auditory-linguistic tasks, two of the tasks are audio focused: determining
whether a word is spoken with a high or low pitch and determining whether a word is spoken loudly
or softly. And two of the tasks have a more linguistic focus: determining whether the beginning of a
sentence is occurring or determining whether any speech at all is occurring. The TUAB abnormal
EEG detection task is a binary classification of pathological or normal EEG recording.

Baselines For controlled baselines, we concatenate the single-channel temporal embeddings and train
a linear (Linear) or non-linear (Deep NN) aggregator on the decoding task. These enable us to directly
assess how much PopT improves upon existing aggregation approaches (Ghosal & Abbasi-Asl, 2021).
These approaches cannot be pretrained across subjects due to the changing meaning and quantity of
inputs. To test the effectiveness of pretraining, we also compare against a non-pretrained PopT.

Methods compared For the iEEG experiments, we also compare against Brant (Zhang et al., 2024),
which is an end-to-end iEEG encoder. We take the fully pretrained Brant model, and fine-tune on
our iEEG tasks combining channels with linear aggregation. For the EEG experiments, we compare
against reported BIOT (Yang et al., 2024) and LaBraM (Jiang et al., 2024) results. They also train
both temporal and spatial encoders together in contrast to our modular approach.

Temporal encoders To test the generalizability of our approach, we train with a variety of temporal
encoders: BrainBERT (Wang et al., 2022), which is designed for iEEG data, TOTEM (Talukder et al.,
2024) which learns a tokenization of the input, Chronos (Ansari et al., 2024) which is a large general
time-series encoder, and TS2Vec (Yue et al., 2022) which has a hierarchical convolutional architecture.
Hidden dimensions of these encoders vary from 64 to 768. More details are in Appendix A.

5 RESULTS

Decoding performance We find that using a pretrained PopT significantly benefits downstream
decoding compared to baseline channel aggregation techniques across tasks, data modalities, and

Model Pitch Volume Sent. Onset Speech/Non-speech

BrainBERT:
Linear Agg. 0.59± 0.08 0.66± 0.08 0.70± 0.09 0.71± 0.11
Deep NN Agg. 0.58± 0.08 0.67± 0.08 0.71± 0.10 0.72± 0.10
Non-pretrained PopT 0.53± 0.06 0.61± 0.13 0.74± 0.10 0.70± 0.08
Pretrained PopT 0.69± 0.07∗ 0.84± 0.06∗ 0.86± 0.05∗ 0.89± 0.07∗

TOTEM:
Linear Agg. 0.55± 0.02 0.66± 0.03 0.79± 0.04 0.77± 0.05
Deep NN Agg. 0.57± 0.02 0.67± 0.03 0.78± 0.03 0.75± 0.05
Non-pretrained PopT 0.53± 0.02 0.64± 0.02 0.79± 0.03 0.77± 0.05
Pretrained PopT 0.60± 0.02∗ 0.73± 0.02∗ 0.86± 0.03∗ 0.84± 0.06∗

End-to-end:
Brant (Zhang et al., 2024) 0.61± 0.03 0.74± 0.03 0.80± 0.04 0.80± 0.03

Table 1: Pretraining PopT is critical to downstream decoding performance (iEEG data). We
test on a variety of audio-linguistic decoding tasks (see Section 4) with 90 channels as input. The
temporal encoder used for aggregation in sections 1 and 2 are denoted in the section header. We also
evaluate against an end-to-end pretrained iEEG model in section 3. Shown are the ROC-AUC mean
and standard error across subjects. Best per section are bolded. Asterisks ∗ indicate that the bolded
model is significantly better than the second-place model (p < 0.05, Wilcoxon rank-sum).
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Model Balanced Accuracy ROC AUC

Chronos:
Linear Agg. 0.7754± 0.0008 0.8563± 0.0003
Deep NN Agg. 0.7881± 0.0057 0.8678± 0.0049
Non-pretrained PopT 0.7763± 0.0047 0.8631± 0.0016
Pretrained PopT 0.7976± 0.0022∗ 0.8821± 0.0016∗

TS2Vec:
Linear Agg. 0.7649± 0.0005 0.8533± 0.0003
Deep NN Agg. 0.7853± 0.0021 0.8721± 0.0015
Non-pretrained PopT 0.7896± 0.0037 0.8782± 0.0018
Pretrained PopT 0.8063± 0.0010∗ 0.8907± 0.0019∗

End-to-end:
BIOT (Yang et al., 2024) 0.7959± 0.0057 0.8815± 0.0043
LaBraM (Jiang et al., 2024) 0.8258± 0.0011 0.9162± 0.0016

Table 2: Pretraining PopT is critical to downstream decoding performance (EEG data). We
test on a abnormal EEG detection task (TUAB in Obeid & Picone (2016)) with 21 channels as input.
The temporal encoder used for aggregation in sections 1 and 2 are denoted in the section header.
We also evaluate against end-to-end pretrained EEG models in section 3 (values from the original
works). Shown are the ROC-AUC mean and stdev across 5 random seeds. Best per section are
bolded. Asterisks for our experiments ∗ indicate that the bolded model is significantly better than the
second-place model (p < 0.05, Wilcoxon rank-sum).

temporal encoding models (Tables 1 and 2 and Figure 2). To test our method’s ability to handle
multiple types of channel encodings, we applied our framework to 4 different channel encoders: (1)
an iEEG-specific temporal encoder: BrainBERT (Wang et al., 2022), (2) a general tokenization-based
time-series encoder: TOTEM (Talukder et al., 2024), (3) a pretrained general time-series encoder:
Chronos (Ansari et al., 2024), and a general convolution-based time-series encoder: TS2Vec (Yue
et al., 2022). We see significant improvements in performance with the pretrained PopT in all cases
when comparing with baseline aggregation approaches (Figure 2). Additionally, the pretrained PopT
scales well with increasing ensemble sizes (Figure 3), a challenging task for the baseline aggregation
approaches due to limited downstream task data and increasing input size.

We also find that PopT can achieve competitive performance against pretrained end-to-end models,
such as Brant (Zhang et al., 2024) for iEEG, and BIOT (Yang et al., 2024) and LaBraM (Jiang
et al., 2024) for EEG (Tables 1 and 2). For instance, PopT outperforms Brant (Zhang et al., 2024)
in decoding iEEG data with our pretrained PopT + BrainBERT combination, likely due to PopT’s
ability to leverage spatial relationships. Whereas Brant leaves the channel aggregation problem open.
PopT is competitive with recent end-to-end trained EEG models (Yang et al., 2024; Jiang et al., 2024)
on the EEG TUAB abnormal detection task. This is impressive, since models such as LaBraM were
specifically developed for this application, whereas PopT was trained on top of generic time-series

Figure 2: Compared to common aggregation approaches, pretrained PopT consistently yields
better downstream decoding across tasks, data modalities, and temporal embedding types.
NPopT = Non-pretrained PopT. (a) performance on four audio-linguistic iEEG tasks with 90 elec-
trodes. Grey bars denote standard error across subjects. (b) performance on a abnormal detection
EEG task with 21 electrodes. Grey bars denote standard deviation across 5 random seeds.
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Figure 3: Pretrained PopT downstream performance scales better with ensemble size. Increasing
channel ensemble size from 1 to 50 (x-axis), we see pretrained PopT (green) decoding performance
(y-axis) not only beat non-pretrained approaches (orange, purple, grey), but also continually improve
more with increasing channel count. Shaded bands show the standard error across subjects. PopT
achieves the best performance on the Sentence onset and Speech vs. Non-speech tasks, which is
consistent with the findings in the original BrainBERT paper.

Figure 4: Pretrained PopT is more sample efficient when fine-tuning. Varying the number of
samples available to each model at train time (x-axis), we see that the pretrained PopT is highly
sample efficient, requiring only a fraction of samples (fewer than 500 samples out of 5-10k of the full
dataset) to reach the full performance level of baseline aggregation approaches (dashed lines). Bands
show standard error across test subjects. Stars indicate performance with full fine-tuning dataset.

embeddings. We find that PopT can offer an efficient and competitive alternative to large end-to-end
models for these decoding tasks, due to the effectiveness of our pretraining task for learning spatial
and functional relationships between channel input embeddings.

To verify that the weights of the pretrained PopT capture neural processing well even without fine-
tuning, we also train a linear-encoder on top of the frozen PopT [CLS] token and find the same
trends (Figure 18). This point in particular is important in building confidence in the results of
our interpretability studies (Section 6), in which we use the frozen pretrained weights to analyze
connectivity. For the remaining analyses described below, we use a PopT with BrainBERT inputs.

Sample and compute efficiency Our PopT learns spatial relationships between channels, in a
way that makes downstream supervised learning more data and compute efficient (Figure 4 and
Figure 5). Compared to the non-pretrained baseline models, fine-tuning the pretrained PopT can
achieve the same decoding performance as other aggregation techniques with an order of magnitude
fewer samples. The pretrained PopT surpasses the performance achieved by all other aggregation
techniques by 500 samples out of the full dataset (roughly 5-10k examples depending on subject and
task) (Figure 4). The pretrained PopT also converges at a low number of steps. This greatly contrasts
with the non-pretrained PopT. The Linear and Deep NN baselines can be similarly compute efficient,
but occasionally may require 2k or more steps (Figure 5), as in the case of Speech vs. Non-speech.

Generalizability To test if our pretrained weights will be useful for subjects not seen during training,
we conduct a hold-one-out analysis. We pretrain a model using all subjects except for one, and then
fine-tune and evaluate on the model downstream. We find that missing a subject from pretraining
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Figure 5: Pretrained PopT is consistently compute efficient when fine-tuning. Number of steps
required for each model to reach final performance during fine-tuning (dashed lines). The pretrained
PopT consistently requires fewer than 750 steps (each step is an update on a batch size of 256) to
converge, in contrast to the 2k steps required for the non-pretrained PopT. Bands show standard error
across subjects. Stars indicate fully trained performance.

Figure 6: Gains in decoding performance are available to new subjects. A minimal decrease in
downstream decoding performance is found if the subject is held-out from pretraining (Held-out vs
All). Results are cross-validated across all test subjects. For BrainBERT, we report performance on
the channel with the best linearly-decodability. Markers show mean and standard error.

does not significantly affect the downstream results (Figure 6). This raises our confidence that the
pretrained weights will be useful for unseen subjects and for researchers using new data.

Scaling with amount of pretraining data To investigate the effect of scaling pretraining data on
our model, we pretrain versions of PopT using only 25%, 50%, and 75% of our data. Evaluation is
performed on all test-subjects. We find a general improvement in downstream decoding when we
increase the amount of pretraining data available across all our downstream decoding tasks (Figure 7),
suggesting the potential for our framework to continue scaling with more data.

Ablation of loss components and position information An ablation study confirms that both the
ensemble-wise and channel-wise component of the pretraining objective contribute to the downstream
performance (Table 3). Furthermore, including the 3D position information for each channel is critical
for decoding. Additionally, we find that the discriminative nature of our loss is necessary for decoding.
Attempting to only use an L1 reconstruction term for our pretraining objective results in poorer
performance. Our discriminative loss requires the model to understand the embeddings in terms of
how they can be distinguished from one another, which leads the model to extract representations
that are more beneficial for decoding.

6 INTERPRETING LEARNED WEIGHTS

Connectivity Traditional neuroscience analyses typically use cross-correlation as a measure of
region connectivity (Wang et al., 2021). Our PopT allows for an alternative method of determining
connectivity, based on the degree to which channels are sensitive to each other’s context. In this
method, each channel is masked in turn, and then model performance on the pretraining channel-wise
objective for the remaining unmasked channels is measured. We use the degradation in performance
as a measure of connectivity. We can construct plots (Figure 8) that recapitulate the strongest
connectivity of the cross-correlation maps. Note that while some approaches for modelling brain
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Figure 7: Pretraining with more data leads to better downstream performance. We pretrain
PopT with different percentages of our full pretraining dataset (colors) and test on our decoding tasks
(x-axis). Bars show mean and standard error of performance across test subjects.

Pitch Volume Sent. Onset Speech/Non-speech

PopT 0.69± 0.07 0.84± 0.06 0.86± 0.05 0.89± 0.07
PopT w/o ensemble-wise loss 0.66± 0.07 0.83± 0.06 0.84± 0.04 0.88± 0.08
PopT w/o channel-wise loss loss 0.67± 0.06 0.81± 0.08 0.84± 0.06 0.87± 0.09
PopT w/o position encoding 0.59± 0.07∨ 0.67± 0.10∨ 0.75± 0.08∨ 0.79± 0.08
PopT w/o Gaussian fuzzing 0.66± 0.08 0.83± 0.06 0.85± 0.05 0.88± 0.08
PopT reconstruction loss only 0.56± 0.04∨ 0.65± 0.08∨ 0.73± 0.10∨ 0.74± 0.10∨

Table 3: PopT ablation study. We individually ablate our losses and positional encodings during
pretraining then decode on the resulting models. Shown are ROC-AUC mean and standard error
across subjects evaluated at 90 electrodes. The best performing model across all decoding tasks
uses all of our proposed components, showing that they are all necessary. Removing our positional
encoding during pretraining and fine-tuning drops the performance the most, indicating that position
encoding is highly important for achieving good decoding. Additionally, we attempt only using
a reconstruction loss, but find that this leads to poorer performance (last row). Here, ∨ denotes
ablations which are significantly worse than the full model (p < 0.05, Dunnett’s test).

activity explicitly build this into their architecture (Cai et al., 2023), we recover these connections
purely as a result of our self-supervised learning. Additional method details available in Appendix G.

Candidate functional brain regions from attention weights After fine-tuning our weights on a
decoding task, we can examine the attention weights of the [CLS] output for candidate functional
brain regions. We obtain a normalized Scaled Attention Weight metric across all subjects to analyze
candidate functional brain regions across sparsely sampled subject datasets (Figure 9). The Scaled
Attention Weight is computed from raw attention weights at the [CLS] token passed through the
attention rollout algorithm (Abnar & Zuidema, 2020). The resulting weights from each channel
are then grouped by brain region according to the Destrieux atlas (Destrieux et al., 2010). A full
description of the method is available in Appendix G.

The resulting weights reveal expected functional brain regions related to the tasks decoded (Figure 9),
with low-level auditory tasks highlighting primary auditory cortex and higher-level language distinc-
tion tasks highlighting language-specific areas. Given the massive pretraining PopT undergoes, these
scaled attention weights provide a valuable new tool for discovering candidate functional regions.

7 DISCUSSION

We presented a self-supervised scheme for learning effective joint representations of neural activity
from temporal embeddings. Our approach improves decoding and reduces the samples required to
learn downstream tasks, which is especially critical for neural data modalities given patient constraints.
A key aspect of our approach is the fact that we focus on spatial aggregation of existing channel
embeddings, rather than training a large end-to-end model. By decoupling temporal and spatial
feature extraction, we are able to leverage existing temporal embeddings to learn spatiotemporal
representations efficiently and with a smaller number of parameters. This makes our model available
for use in low compute-resource settings. Furthermore, this separation of considerations opens up the
possibility for future independent improvement in temporal modeling, whether that be from a domain
specific model or a more general time-series encoder. The generality of this approach allowed us to

9
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Figure 8: Probing the pretrained model for inter-channel connectivity Traditionally, connectivity
analysis between regions is done by computing the coherence between electrode activity (left). We
propose an alternative analysis purely based on the contextual sensitivity learned during pretraining.
Briefly, we select an electrode, mask out its activity, and then measure the degradation in the channel-
wise objective function for the remaining electrodes. Plotting the values of this delta (right) recovers
the main points of connectivity. Plots for all test subjects can be seen in Appendix H: Connectivity.

Figure 9: Attention weights from a fine-tuned PopT identify candidate functional brain regions
Candidate functional maps can be read from attention weights of a PopT fine-tuned on our decoding
tasks. For the Volume and Pitch tasks, note the weight placed on the primary auditory cortex (black
arrows), but not in Wernicke’s area. For the Speech vs Non-speech and Sentence onset tasks, note the
weight placed on regions near Wernicke’s area (black arrows). Center brain figure highlight regions
related to auditory-linguistic processing; figure credit: (aph, 2017)).

train on two very different neural modalities: scalp EEG and invasive iEEG. Our success in these
domains suggest that this approach could even be extended to settings outside of neuroscience that
also contend with sparsely and variably distributed time-series data channels, as is often the case with
geophysical or climate data.

Limitations and Future Work We proposed a strategy for aggregating signals, provided that
meaningful spatial coordinates are available, but it remains to be seen how to extend this approach to
settings without such coordinates. Individual brains are highly variable, so it is important that some
notion of positional encoding be given. Future work could experiment with automatic functional
identification for each channel, such as that explored in neural spiking data (Azabou et al., 2024), but
it is currently unclear how to do so with neural recordings that have lower SNR.

8 CONCLUSION

We introduced a pretraining method for learning representations of arbitrary ensembles of intracranial
electrodes. We showed that our pretraining produced considerable improvements in downstream
decoding and efficiency, that would not have been possible without the knowledge of spatial rela-
tionships learned during the self-supervised pretraining stage. These benefits were found across data
modalities, decoding tasks, and temporal encoders used, speaking to the generality of our approach.
We further showed that this scheme produces interpretable weights from which connectivity maps
and candidate functional brain regions can be read. Finally, we release the pretrained weights for our
PopT with BrainBERT inputs as well as our code for pretraining with any temporal embedding.
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A ARCHITECTURES AND TRAINING

Pretrained PopT The core Population Transformer consists of a transformer encoder stack with
6 layers, 8 heads. All layers (N = 6) in the encoder stack are set with the following parameters:
dh = 512, H = 8, and pdropout = 0.1. We pretrain the PopT model with the LAMB optimizer (You
et al., 2019) (lr = 1e − 4), with a batch size of nbatch = 256, and train/val/test split of 0.98, 0.01,
0.01 of the data. We pretrain for 500,000 steps, and record the validation performance every 1,000
steps. Downstream evaluation takes place on the weights with the best validation performance. We
use the intermediate representation at the [CLS] token dh = 512 and put a linear layer that outputs
to dout = 1 for fine-tuning on downstream tasks. These parameters for pretraining were the same for
any PopT that needed to be pretrained (hold-one-out subject, subject subsets, ablation studies).

Pretraining task: Ensemble-wise pretraining Two different subsets of channels SA, SB ⊂ C are
chosen with the condition that they be disjoint SA ∩ SB = ∅. During pretraining, the model receives
the activities from these channels at separate times XA = {xt

i | i ∈ SA} and XB = {xt′

i | i ∈ SB}.
The sets XA and XB can be written as an SA × d matrix and SB × d matrix respectively. The PopT
receives these matrices as input, along with the token [CLS]. The objective of the task is then to
determine whether these states XA and XB have occurred consecutively in time or are separated
by some further, randomly selected interval. The PopT produces outputs for all inputs, including
the classification head, ỹcls ∈ Rd. Then, ỹcls passes through a linear layer to produce a scalar
ŷcls ∈ R. The objective function is the binary cross entropy between this prediction and the label
y∗cls: LN = y∗cls log(p(ŷcls)) + (1− y∗cls) log(p(ŷcls)), where y∗cls = 1(|t− t′| < 500ms)

Pretraining task: Channel-wise pretraining The token level objective is to determine whether
a channels activity has been swapped with activity from a random time. Precisely, activity from
each channel i is drawn from a time ti. All channels are drawn from the same time ti = T , and
then 10% of the channels are randomly selected to have their activity replaced with activity from
the same channel, but taken from a random point in time ti ̸= T . Then, the channel-wise outputs,
ỹi ∈ Rd, of the Population Transformer are passed through a linear layer to obtain scalar predictions
ŷi. The objective function is the binary cross entropy between these predictions and the labels y∗i :
LC = 1

|SA|+|SB |
∑

i y
∗
i log(p(ŷ))+(1−y∗i ) log(p(ŷi)) where y∗i = 1(ti ̸= t). Then, the pretraining

objective is L = LC + LN

Non-pretrained PopT The architecture for the non-pretrained PopT is the same as the pretrained
PopT (above). However, no pretraining is done, and the weights are randomly initialized with the
default initializations.

Linear The linear baseline consists of a single linear layer that outputs to dout = 1. The inputs are
flattened and concatenated BrainBERT embeddings demb = 756, TOTEM embeddings demb = 64,
Chronos embeddings demb = 512, or TS2Vec embeddings demb = 320 from a subset of channels
S ⊂ C. Thus, the full input dimension is dinput = demb ∗ |S|.
Deep NN The inputs are the same as above, but the decoding network now consists of 5 stacked
linear layers, each with dh = 512 and a GeLU activation.

Downstream Training For both PopT models, we train with these parameters: AdamW optimizer
(Loshchilov & Hutter, 2017), lr = 5e−4 where transformer weights are scaled down by a factor of 10
(lrt = 5e−5), nbatch = 256, a Ramp Up scheduler (ildoonet, 2024) with warmup 0.025 and Step LR
gamma 0.99, reducing 100 times within the 2000 total steps that we train for. For Linear and DeepNN
models, we train with these parameters: AdamW optimizer (Loshchilov & Hutter, 2017), lr = 5e−4,
nbatch = 256, a Ramp Up scheduler (ildoonet, 2024) with warmup 0.025 and Step LR gamma 0.95,
reducing 25 times within the 17,000 total steps we train for. For all downstream decoding, we use a
fixed train/val/test split of 0.8, 0.1, 0.1 of the data.

Compute Resources To run all our experiments (data processing, pretraining, evaluations, inter-
pretability), one only needs 1 NVIDIA Titan RTXs (24GB GPU Ram). Pretraining PopT takes 2
days on 1 GPU. Our downstream evaluations take a few minutes to run each. For the purposes of
data processing and gathering all the results in the paper, we parallelized the experiments on 8 GPUs.
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B MODEL AND COMPUTE REQUIREMENTS

e5 e50 e90

PopT 20M
Deep NN 3M 20M 36M
Linear 3.8k 38k 69k
Brant (Zhang et al., 2024) 500M
LaBraM (Jiang et al., 2024) 350M

Table 4: Parameter counts. Since PopT takes existing temporal embeddings as input, the number of
parameters that must be trained is an order of magnitude less than recent end-to-end approaches.

# GPUs GPU type Time to train TFLOPS

PopT 1 NVIDIA TITAN RTX (24GB) 2 days 2.1M
Brant (Zhang et al., 2024) 4 NVIDIA Tesla A100 (80G) 2.8 days 18.8M

LaBraM (Jiang et al., 2024) 8 NVIDIA Tesla A800 (40G) – –

Table 5: Pretraining compute requirements Based on published train times (none were given for
LaBraM) it is evident that PopT has smaller hardware and shorter training time requirements.

C DECODING TASKS

We follow the same task specification as in Wang et al. (2022), with the modification that the pitch
and volume examples are determined by percentile (see below) rather than standard deviation in order
to obtain balanced classes.

Pitch The PopT receives an interval of activity and must determine if it corresponds with a high or
low pitch word being spoken. For the duration of a given word, pitch was extracted using Librosa’s
piptrack function over a Mel-spectrogram (sampling rate 48,000 Hz, FFT window length of 2048,
hop length of 512, and 128 mel filters). For this task, for a given session, positive examples consist of
words in the top-quartile of mean pitch and negative examples are the words in the bottom quartiles.

Volume The volume of a given word was computed as the average intensity of root-mean-square
(RMS) (rms function, frame and hop lengths 2048 and 512 respectively). As before, positive
examples are the words in the top-quartile of volume and negative examples are those in the bottom
quartiles.

Sentence onset Negative examples are intervals of activity from 1s periods during which no speech is
occurring in the movie. Positive examples are intervals of brain activity that correspond with hearing
the first word of a sentence.

Speech vs. Non-speech Negative examples are as before. Positive examples are intervals of brain
activity that correspond with dialogue being spoken in the stimuli movie.
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D RANDOM ELECTRODE ENSEMBLE PERFORMANCE

Figure 10: Downstream decoding performance on random electrode subsets. To check if our
original channel ensemble ordering inflated performance, we perform downstream decoding on 3
randomly generated electrode ensembles. The random electrode ensembles perform roughly similar
to our reported values, with the exception of a few low-electrode count ensembles for Sentence Onset.
These exceptions may be due to strong decodability of Sentence Onset at specific electrodes. Each
random subsampling was done across all test subjects. Shaded bands show the standard error across
subjects.

E HOLD OUT SUBJECT PRETRAINING GENERALIZABILITY

Figure 11: Gains in decoding performance are available to new subjects even on TOTEM
pretrained PopT. Same experiment as Figure 6 but with TOTEM embedding.
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F DATA

Subj. Age (yrs.) # Elec-
trodes

Movie Recording
time (hrs)

Held-
out

1
19 91 Thor: Ragnarok 1.83

Fantastic Mr. Fox 1.75
The Martian 0.5 x

2

12 100 Venom 2.42
Spider-Man: Homecoming 2.42
Guardians of the Galaxy 2.5
Guardians of the Galaxy 2 3
Avengers: Infinity War 4.33
Black Panther 1.75
Aquaman 3.42 x

3
18 91 Cars 2 1.92 x

Lord of the Rings 1 2.67
Lord of the Rings 2 (extended
edition)

3.92

4 9 135 Megamind 2.58
Toy Story 1.33
Coraline 1.83 x

5 11 205 Cars 2 1.75 x
Megamind 1.77

6
12 152 Incredibles 1.15

Shrek 3 1.68 x
Megamind 2.43

7 6 109 Fantastic Mr. Fox 1.5

8 4.5 72 Sesame Street Episode 1.28

9 16 102 Ant Man 2.28

10 12 173 Cars 2 1.58 x
Spider-Man: Far from Home 2.17

Table 6: Subject statistics Subjects used in PopT training, and held-out downstream evaluation. Table
taken from Wang et al. (2022). The second column shows the number of uncorrupted, electrodes that
can be Laplacian re-referenced. The average amount of recording data per subject is 4.3 (hrs).

G INTERPRETATION METHODS

Connectivity analysis We start with a pretrained PopT. To test a particular channel’s contribution to
connectivity, we omit it from the input. Then, we consider the remaining unmasked channels and ask:
how does this change the pretraining channel-wise loss? Recall that this objective is to determine
whether or not a channel has had its inputs swapped with random activity. If the change in loss is
large, we infer that the masked channel provided important context. Using the magnitude of this delta
as a measure for connectivity, we then average across the Desikan-Killiany regions (Alexander et al.,
2019) and produce a plot using mne-connectivity (Gramfort et al., 2013).

Scaled Attention Weight First, we obtain an attention weight matrix across all trials which includes
weights between all tokens. Then, we perform attention rollout (Abnar & Zuidema, 2020) across
layers to obtain the contributions of each input channel by the last layer. We take the resulting last
layer of rollout weights for all channels, where the target is the [CLS] token, normalize within
subject, and scale by ROC AUC to obtain the Scaled Attention Weight per channel. Finally, we plot
the 0.75 percentile weight per region, as mapped by the Destrieux atlas (Destrieux et al., 2010) using
Nilearn (contributors).
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H CONNECTIVITY

Figure 12: Schematic of connectivity analysis To determine the influence of some channel, i,
on another channel j, we first measure the baseline performance of the pretrained PopT on the
replace-only objective. Then, we omit i from the input, and measure how the performance on the
channel-wise objective is perturbed on j. See also Algorithm 1.

Algorithm 1 Connectivity measurement between channels i and j

Require: j < i, x ∈ RNC×d ▷ NC is the number of channels, d is the embedding dimension.
ŷbaseline ← P (x) ▷ P is a pretrained PopT, ŷbaseline ∈ RNC

while n ≤ Nsamples do
xomitted ← Concat(x[: i], x[i+ 1 :]) ▷ Remove the ith channel from the input
ŷperturbed ← P (xomitted)
Influence = |ŷbaseline − ŷperturbed| ▷ How much did the prediction change?
AvgConnectivity← AvgConnectivity + Influence[j]/n

end while

Figure 13: Electrode level connectivity. Connectivity between all channels for the same subject
shown in Figure 8. Outliers at the 2-percentile are snapped to color map floor and ceiling.
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Figure 14: Region connectivity for test subjects. Continued from Figure 8; this figures shows
the rest of the test subjects. We compare between traditional connectivity analaysis performed via
coherence (top row in each section) and the analysis based on our PopT pretrained weights (bottom
row in each section). We note that our analysis usually recovers the strongest points of connectivity
fromt the traditional analysis. Coherence was computed using scikit-learn’s (Pedregosa et al., 2011)
signal.coherence.
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Figure 15: Electrode connectivity for test subjects. Continued from Appendix H; this figures shows
the rest of the test subjects. Order is given as in Figure 14.
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Subject Correlation
Subject 1 0.42
Subject 2 0.66
Subject 3 0.54
Subject 4 0.55
Subject 6 0.44
Subject 7 0.44

Subject 10 0.50

Table 7: Pearson’s r correlation coefficients between connectivity matrices for test subjects shown in
Table 7 and Figure 15.

I FUNCTIONAL BRAIN REGION COMPARISON

Figure 16: Scaled Attention Weight vs Fraction of Significant Electrodes per Desikan Killiany
region for the Speech vs. Non-speech task. Fraction of word-onset significant electrodes from
Wang et al. (2024). Across regions, the Pearson’s r correlation coefficient is 0.4 between the scores
delivered by both analyses.

Figure 17: Qualitative comparison of functional maps as identified by our method vs traditional
measures. (a) Our method: Scaled Attention Weights for Speech vs. Non-speech. (b) Traditional
method: Fraction of Word-Onset Significant Electrodes. General functional maps are similar between
the two techniques, with more brain regions identified to be involved using our attention weight
technique. Left Hemisphere is shown for both methods.
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J FROZEN SCALING

Figure 18: Pretraining is critical to frozen PopT performance that scales with the number of
channels. As in Figure 3, we see that pretraining results in better downstream decoding and better
scaling with the number of added channels. However, unlike in Figure 3, the PopT weights are frozen
during fine-tuning, and only the linear classification head is updated. Bands show standard error
across subjects. Results are shown for a frozen PopT with BrainBERT inputs.

K FROZEN ABLATION

Sentence onset Speech/Non-speech Pitch Volume

Frozen PopT 0.73± 0.06 0.72± 0.08 0.59± 0.06 0.63± 0.07
w/o cls 0.67± 0.08 0.68± 0.07 0.58± 0.04 0.60± 0.07
w/o replace loss 0.69± 0.07 0.69± 0.09 0.59± 0.06 0.62± 0.06
w/o position encoding 0.70± 0.07 0.69± 0.07 0.56± 0.08 0.61± 0.06
w/o Gaussian fuzzing 0.71± 0.08 0.72± 0.08 0.55± 0.07 0.61± 0.07

Table 8: An ablation study of the components of our approach for the frozen PopT. During pretraining,
we alternate using either only the CLS or token contrastive component of the loss. We fine-tune these
weights on all subjects. We find that both components contribute to the full model’s performance.
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L INDIVIDUAL SUBJECT PRETRAIN SCALING

Scaling with number of pretraining subjects

We find a consistent improvement in downstream decoding when we increase the number of pretrain-
ing subjects available across all our downstream decoding tasks Figure 19.

Figure 19: Pretraining with more subjects leads to better downstream performance. We pretrain
PopT with different number of subjects (colors) and test on our decoding tasks (x-axis). Bars indicate
mean and standard error of performance across channel ensembles 5-30 on a held out test subject.
Pretraining with one subject gives a considerable benefit compared to no pretraining (red to yellow),
but the addition of more subjects to pretraining consistently improves performance (yellow→ green).
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