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Abstract

Current automated agent design frameworks produce either static workflows that
lack adaptability or per-query optimizers that prevent the accumulation of deep,
agent-level task expertise. We propose a new direction that reconciles these
paradigms: creating stateful teams of specialist agents that accumulate knowl-
edge over time and can be reconfigured for novel tasks entirely without human
intervention. To this end, we introduce ASPEC, a framework that manages this full
agent lifecycle by first autonomously discovering specialist archetypes via evolu-
tionary search and then cultivating their expertise through experience, mirroring
how human experts learn through practice and reflection. We further introduce a
lightweight hierarchical control policy, "retain-then-escalate," which governs when
to leverage the established agent system versus when to adapt its structure. Through
comprehensive experiments, we demonstrate that this approach leads to significant
performance gains on expert-level scientific benchmarks like GPQA while match-
ing the state-of-the-art on broader domain tasks, demonstrating a promising path
toward agent systems that are simultaneously expert, adaptive, and efficient. We
will release the code at https://github.com/myanvoos/ASpec.

1 Introduction

Motivation. The emergence of sophisticated multi-agent systems capable of tackling complex
problems [1–3] has marked a significant advance for autonomous agents. While effective, these
foundational systems were often manually hand-crafted for specific tasks, which limited their scala-
bility. In response, research has shifted towards automating aspects of these systems, starting with
prompt optimization [4–6] or inter-agent communication via graph-based workflow representations
[7–9], and then, to the designs of agent systems themselves. The automation of agent designs has
since largely split into two distinct paradigms: task-level optimization and query-level adaptation.
In the case of (I) Task-Level Architecture Search, prior works optimized for a single, static agent
workflow for a specific task domain. These approaches, which mirror early approaches in AutoML
and Neural Architecture Search (NAS) [10], were pioneered by ADAS [11], which uses Meta Agent
Search to iteratively program new agents in executable code; AFlow [12], which similarly adopts
code representation but utilizes Monte Carlo Tree Search (MCTS) to efficiently navigate the search
space; and AgentSquare [13], which employs module evolution and recombination to discover novel
configurations in a constrained, modular code-based search space. The primary limitation of these
methods is their intrinsic "one-size-fits-all" nature: by searching for a single best design for an entire
task domain, they fundamentally lack the adaptability necessary to dynamically allocate inference
resources or customize the structure for individual user queries.
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To address the rigidity of task-level systems, a recent paradigm shift has focused on generating a
unique workflow for each incoming query, (II) Query-Level Architecture Adaptation. MaAS
[14] introduces the concept of an "agentic supernet", optimizing a probabilistic distribution of agent
architectures during training and sampling a bespoke architecture from said distribution for each
query during inference. This paradigm has been extended by other methods like FlowReasoner
[15], which uses a reasoning-based meta-agent to generate query-specific agent systems; ScoreFlow
[16], which introduces Score-DPO, a method that fine-tunes its per-query workflow generator using
quantitative evaluation scores; MAS-GPT [17], which trains an LLM to treat workflow construction
as a generative task; and MAS-Zero [18], which employs a meta-agent at inference time to iteratively
generate and refine agent configurations based on self-generated feedback. While these approaches
offer superior adaptivity, they are challenged by the lack of long-term state. Because the architecture
is regenerated or resampled for every query, the system incurs a significant "rediscovery" cost, and the
individual components or agents are largely prevented from accumulating deep, persistent expertise
over time.

The prior work demonstrate a critical chasm between monolithic, task-level robustness and adaptive,
per-query regeneration. The former is static at inference, while the latter incurs "rediscovery"
costs by repeatedly invoking meta-agents for architectural search in lieu of leveraging persistent
knowledge, a system-level problem that a modular, agent-level memory addition would fail to
address. Our proposed framework, ASPEC, reconciles these limitations by integrating the specialized
mechanisms of self-evolving agents into a unified lifecycle within agent design automation. This
lifecycle establishes stable, persistent agent archetypes deployed by a "retain-then-escalate" control
policy, allowing the system to default to efficient and effective execution by relying on the persistent
knowledge of its specialist agents.

Contributions. In short, our core contributions are as follows:

• We propose ASPEC, a framework that manages the full lifecycle of expert specialist agents
via an automated two-stage methodology: (I) Discovery, where an LLM autonomously
explores the design space of agent archetypes using evolutionary processes, and (II) Culti-
vation, where selected agents autonomously cultivate their expertise on a training corpus.

• We introduce "retain-then-escalate", a control policy that, instead of being either fully static
or fully dynamic, defaults to retaining a stateful agent team across related queries to leverage
expertise and minimize cost, only escalating to architectural resampling when needed.

Related Work. The mechanisms for autonomous discovery and expertise cultivation as seen in
self-evolving agents have been explored individually across various research efforts. For instance,
parallel to workflow optimization, a distinct stream of research has explored agent specialization via
prompt optimization, starting with role assignment via ExpertPrompting [19], PromptBreeder [20],
and PromptAgent [21]. Multi-agent frameworks like EvoAgent [22], which utilizes evolutionary
algorithms to automatically generate and optimize multiple specialized agents with diverse settings
and roles; MASS [23], which optimizes individual role prompts alongside refining inter-agent
communication; and AgentVerse [24] and AutoAgents [25], which dynamically synthesize and
coordinate teams of expert roles, validate a critical insight: the identity of the agents is as important
as their interaction topology. However, this specialization is often stateless, and the focus remains
on generating an optimal team for a single task. In contrast, ASPEC’s Discovery process generates
persistent specialists whose structures are specifically designed to be retained and cultivated over
time rather than generated for transient collaboration or discarded after a single optimization run.

Another stream of research in self-evolving agents is expertise cultivation, focused on endowing agents
with non-parametric state (memory and experience) that persists beyond a single task interaction.
Such mechanisms are embodied by works like Reflexion [26], which allows agents to record natural-
language critiques of their past actions in episodic memory to guide future behavior and avoid
recurring mistakes, and Self-Refine [27], which employs a continuous iterative refinement loop where
the agent critiques and revises its initial outputs. Furthermore, ExpeL [28] processes past trajectories
to generate insights and rules to guide further interactions, AutoGuide [29] automatically generates
context-aware guidelines from offline experiences, facilitating the provision of relevant knowledge
for active decision-making processes, while Agent Workflow Memory [30] records common subtask
sequences that can be retrieved and reused without re-planning from scratch. These prior works
illustrate how experiential knowledge can be accumulated and generalized into long-term competence.
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While memory systems and reflection mechanisms exist, ASPEC proposes a systematic, two-stage
lifecycle framework where the Cultivation phase is explicitly linked to the output of the Discovery
phase. This linkage ensures that the stateful expertise (memory/reflections) is accumulated within the
designated, persistent specialist archetypes, facilitating the emergence of role-specific expertise.

2 Preliminaries
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Figure 1: The three main components of ASPEC.

ASPEC can be framed as a Hierarchical Reinforcement Learning (HRL) methodology consisting of a
low-level generative process for architectural redesign and agentic operator pool evolution, as well as
a lightweight, high-level policy that learns when to invoke this process efficiently. We formally define
these components below, starting with the modular units they operate upon: agentic operators.

Definition (Agentic Operator). Following MaAS [14], we define an agentic operator O as a tuple
O = (M,P, {Ti}ni=1) whereM∈M denotes the LLM backbone, P ∈ P denotes the prompt, and
{Ti} ⊆ T denotes the available tools. A multi-agent system is then represented as a directed acyclic
graph G = {V,E} where each vertex v ∈ V represents an instance of an agentic operator and each
edge e ∈ E defines the connection between two operators.

To facilitate the evolutionary process at the heart of our methodology, we structure the operator pool
Ot into two functionally distinct sets. First, the base operators (Obase), a static set of foundational,
stateless operators consisting of extensible single-/multi-agent systems, for instance Chain-of-Thought
[31] or LLM-Debate [32]. Second, the specialist operators (Ospec), a dynamic set of operators derived
from base operators.

A specialist OS
i ∈ Ospec extends a base operator Oi ∈ Obase with a learned identity and a persistent

memory while inheriting its foundational reasoning structure (e.g., "think step-by-step"). It is a
tuple OS

i = (Oi,Ps,M) where Ps is a specialized prompt and M is a persistent, experience-driven
memory module. We decompose Ps into an identity, which is a rich descriptor of who the agent is
[19], and a set of directives, which are methodological principles for the agent’s thought process,
allowing for a rich and diverse "genetic" space of reasoning approaches [33].

Definition (Architect). The architect is the low-level generative component responsible for evolving
the operator pool and redesigning the multi-agent architecture, implemented as an in-context learning
LLM that operates via a multi-turn iterative reasoning process. We provide the prompt in Appendix
G.1 and give an example of its reasoning in Appendix A.2. Functionally, given a query qt, the
Architect is a process fA that maps a rich contextual input to a new system configuration

fA(qt,Ht−m:t−1,Ot−1,Gt−1)→ (Gt,Ot) (1)

whereHt−m:t−1 is a sliding window of the past m experiences including the executed architectures
and performance outcomes; Ot−1 is the previous operator pool; and Gt−1 is the current architecture.
Its objective is to find an architecture that maximizes the immediate cost-aware utility while being
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Figure 2: The online adaptation loop of ASPEC.

general enough to be potentially retained for future tasks. We define this value in terms of the utility
with respect to the oracle at, Ut = U(Gt; qt, at), and the total costs of all API LLM calls, Ct(Gt).

G∗t = argmax
Gi∈G

E [Ut − λCt(Gt) + Vπθ
(st+1)] (2)

where Vπθ
(st+1) is the expected future value given the next state, formally defined in Equation 3.

While this generative process enables adaptation, by continuously rebuilding the architecture, the
system potentially forgoes the chance for the active specialists to deepen their expertise on the novel
task. Additionally, and perhaps even more importantly, the Architect’s invocation is computationally
expensive and poses a practical challenge at scale. To address the trade-off between adaptability,
experiential learning, and cost-efficiency, we propose the meta-controller, a lightweight gating module
that decides when to escalate to the Architect during deployment.

Definition (Meta-Controller). The meta-controller is a neural policy πθ(at|st) that makes a single
high-level decision: retain the current agent architecture, or resample a new one for a given query.
Its action space is discrete, that is, A = {aRETAIN, aRESAMPLE}. We formulate the training of the
meta-controller as a Markov Decision Process (MDP), where the action taken at step t− 1 determines
the architecture Gt−1 available in the subsequent state st. The state st at timestep t is therefore:

st = (eq(qt), eg(Gt−1)) (3)

where eq(·) and eg(·) are fixed-length query and textual graph embeddings, embedded with MiniLM
[34]. While previous work [9] has used Graph Neural Networks (GNNs) to encode architectural
topology, we opt for a simpler, query-aware semantic representation. Our ’bag-of-operators’ approach
represents an architecture as an attention-weighted average of the embeddings of its constituent
operators. The attention weights are computed based on the similarity between each operator and
the input query embedding eq(qt). This method, inspired by Vaswani et al. [35], yields a dynamic,
query-contextual state representation that captures what an architecture can do for a specific query
without the significant training overhead of a dedicated GNN.

The explicit objective for the meta-controller is to maximize the expected discounted sum of future
rewards over a stream of queries:

π∗
θ = argmax

πθ

E

[
t=T∑
t=0

γt ·Rt(st, at)

]
, γ ∈ [0, 1) (4)
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3 Methodology
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Figure 3: The offline automated specialist discovery and cultivation process.

Our framework’s methodology is twofold. First, an end-to-end offline process discovers stateful
specialists and trains the meta-controller (Figure 3 and Algorithm 2). These components are then
deployed in an online adaptation loop to handle unseen queries, with the operator pool fixed (Figure 2
and Algorithm 1). To explore the space of possible specialists and identify a set of specialist operators
Ospec such that the resulting operator pool is (1) high-performing, (2) diverse, and (3) specialized
to the problem task domain without human intervention, we split the learning objectives into two
distinct phases: an initial exploratory specialist discovery phase to address (1) and (2), and a focused,
experience-gathering cultivation phase to address (3), mirroring how a human expert might first learn
broad concepts and then deepen their knowledge through practice.

3.1 Specialist Discovery

Depicted as stages I and II in Figure 3, during the specialist discovery phase, the Architect iteratively
evolves a pool of specialists using its full action space (detailed in Appendix G.1). We formalize the
action space using the notions of creation and crossover.

Creation. Let O(1)
spec be the pool of specialist operators during the specialist discovery phase and

O(2)
spec be the pool of specialist operators during the cultivation phase. For a query qt, the Architect

can propose a specialist OS
i ∈ O(1)

spec derived from a base operator Oi by instantiating its prompt
with a structured identity-directive pair. The creation process employs multi-variant synthesis with
LLM adjudication. In practice, we overgenerate S = 3 candidate identity-directive variants with
diverse pairs, then judge variants via LLM-guided evaluation process that considers the reasoning
methodology and domain coverage. We provide the prompts for the Judge in Appendix G.3.

Crossover. Given parent specialist operators OS
1 and OS

2 , the Architect can synthesize a child
specialist OS

c , similarly by using variant generation. This similarly triggers a multi-variant synthesis
process with LLM adjudication that combines both parents’ specialist identities and directives,
preserving their expertise. We provide the prompts used to perform this synthesis in G.2.

Selection. At the end of the specialist discovery phase, we select the top-k specialists for cultivation
by solving a multi-objective optimization problem that balances performance and diversity:

5



- Problem pattern: Expectation value of
an operator (e.g., ) given a non-

normalized wavefunction.
- Approach summary: Normalize

wavefunction, apply the operator, and
integrate.

- Failure mode: Forgetting to normalize
the wavefunction before calculating the

expectation value.
- General rule: ALWAYS normalize the

wavefunction before calculating
expectation values in quantum

mechanics.

Memory ( )

Environmental
Feedback

Crossover

You are an expert physicist tackling
complex scientific problems. You have

deep expertise in physics, including
electromagnetism, thermodynamics, wave
optics, linear algebra, wave phenomena,

kinetics, and statistical mechanics [...]

Think step by step...

- [...] Analyze wave phenomena using
Huygens' principle, superposition, and

interference. Relate wave properties such as
wavelength, frequency, and amplitude to the

energy and momentum of the wave.

 - [...] Apply the laws of thermodynamics and
statistical mechanics to analyze systems

involving heat, energy, and entropy.

Prompt ( )

Base: CoT

Thought Thought

Specialist Lineage

Figure 4: Case study of a physics specialist discovered on GPQA. The crossover action allows us to
trace back the agent’s "lineage" and identify aspects of its prompt that have been inherited from its
ancestors. The full final prompt and more examples of its memory entries are in Appendix A.3.

O(2)
spec = arg max

|Ospec|≤k


∑

OS
i ∈O(1)

spec

p(OS
i ) + Diversity(Ospec)


Diversity(O(2)

spec) =

k∑
j=1

max
OS

i ∈Cj∩Ospec

p(OS
i )

(5)

where p(OS
i ) represents the average performance of specialist OS

i and Cj is the j-th cluster in
embedding space obtained via K-means clustering on specialist operator embeddings.

3.2 Specialist Cultivation

Depicted as stage III of Figure 3, during the specialist cultivation phase, the selected top-k discovered
specialists deepen their domain expertise through post-execution reflection on a training corpus.
The cultivation process is applied independently to each specialist, resulting in distinct, specialized
memories, as can be seen in Figure 4. For each specialist OS

i with accumulated memory Mi, we
implement a semantic retrieval mechanism [36] to inject relevant experience during tasks. Given a
query qt, we partition the memory into structured chunks, then inject the most relevant chunks for
injection as contextual knowledge during specialist execution.

4 Results

Benchmarks & Baselines. We evaluate ASPEC on five public benchmarks across three domains:
math reasoning with MATH [37], question answering with MMLU [37] and GPQA [38], code
generation with HumanEval [39] and SciCode [40]. In particular, GPQA and SciCode are expert-
level QA and coding benchmarks respectively. Further details on the dataset statistics are in Appendix
F. We select 13 representative baselines across (1) hand-designed single agents, in particular
Chain-of-Thought [31], Self-Refine [27], Self-Consistency [41], Reflexion [26]; (2) hand-designed
multi-agents, in particular LLM-Debate [32], DyLAN [8]; (3) automated agent specialisation
methods with Role Assignment [19], AutoAgents [25], EvoAgent [22]; and (4) autonomous agent
design frameworks, including query-level MaAS [14], and task-level AFlow [12] and ADAS [11].
Details for the baseline setups are in Appendix E.

Implementation. We select Gemini 2.0 Flash to be the standard execution model across all methods,
alongside GPT-4o-mini and Llama 3.3 70B Instruct in Figure 4. We set the size of the sliding window
in Equation 1 to be m = 10 and the maximum number of specialists in Equation 5 to be k = 5.

Performance Analysis. The results from Table 1 demonstrate that ASPEC can consistently match
or outperform existing hand-crafted or automated agentic systems across mathematical reasoning,
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Table 1: Performance comparison across methods. We use Gemini 2.0 Flash with a temperature of
T = 0.3 consistently across all methods. Best results are in bold, second-best are underlined

Method MATH HumanEval MMLU GPQA SciCode (SP) Average

Vanilla 73.2 87.8 86.0 56.3 24.0 65.3

CoT [31] 74.5 90.4 88.2 58.2 24.3 65.5
CoT-SC [41] 75.1 91.2 88.8 57.1 25.2 67.5
Self-Refine [27] 74.8 91.3 88.5 57.4 24.6 67.3
Reflexion [26] 73.5 86.8 88.5 57.1 25.1 66.2

LLM-Debate [32] 74.4 85.5 87.1 59.7 24.0 66.1
DyLAN [8] 75.4 89.3 88.9 61.3 25.2 68.0

Role Assignment [19] 72.4 91.2 89.5 57.4 23.5 67.6
AutoAgents [25] 73.4 88.0 85.3 56.8 24.8 65.7
EvoAgent [22] 75.9 90.2 88.3 61.5 24.8 68.1

ADAS [11] 74.5 82.9 90.0 58.2 24.8 66.2
AFlow [12] 76.5 89.3 90.5 61.3 24.3 68.4
MaAS [14] 74.4 91.6 87.3 57.8 25.6 67.4

ASPEC 77.3 91.4 90.0 62.8 26.6 69.6

question answering, and coding. Its benefits are most pronounced on GPQA, where it achieves a score
of 62.8%. This represents a substantial 6.5% improvement over the vanilla Gemini 2.0 Flash model.
Furthermore, ASPEC surpasses the leading hand-designed agent (LLM-Debate) by 3.1%, the top
autonomous agent framework (AFlow) by 1.5%, and the best automated agent specialisation method
(EvoAgent) by 1.3%. ASPEC also leads on SciCode, a benchmark composed of realistic scientific
research problems that are decomposed into sequential subproblems. We note that the "retain-then-
escalate" structure allows retained specialists to build upon context and learned knowledge from
previous steps, which is crucial for success in multi-part scientific coding.

This naturally leads to the question of whether specialists trained on specific domains can be trans-
ferred to other domains. To this end, Figure 4 confirms that the performance gains from the ASPEC
methodology are robustly transferable across different models and benchmarks.

Efficiency Analysis. Table 2 demonstrates that ASPEC is cost-efficient across both training and
inference. In particular, running the offline training process on GPQA incurred only a total cost of
1.38 USD. We find that once a strong specialist pool has been found, the Architect often prefers lean
architectures utilizing those specialists. As shown in Table 6, removing specialists causes costs to
increase significantly – the Architect becomes under-confident in its generalist pool and samples
highly complex, but redundant multi-agent architectures in an attempt to compensate.

Table 2: Efficiency comparison across methods on the GPQA benchmark.

Training Inference

Method Total
tokens

Total costs
(USD)

Wall clock
(min)

Total
tokens

Total costs
(USD)

Wall clock
(min)

Accuracy
(%)

CoT-SC [41] – – – 3,757,527 0.85 58 57.1
LLM-Debate [32] – – – 4,081,114 0.94 50 59.7
EvoAgent [22] – – – 7,080,338 1.45 75 61.8

AFlow [12] 102,012,408 20.14 257 9,997,154 1.58 45 61.3
MaAS [14] 11,600,690 3.43 139 11,015,542 2.07 93 57.8

ASPEC 2,395,636 1.38 53 3,204,549 0.88 63 62.8

5 Discussion

5.1 Ablations of System Components and Control Policies

We perform an ablation study on five key components: (I) without specialist operators, with the
operator pool restricted to O = Obase for all qt; (II) without base operators, with O = Ospec for all
qt; (III) without meta-controller, which is akin to always resampling; and (IV) without architect,
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Figure 5: Cross-model (left) and cross-benchmark (right) transferability results. We evaluate both the
full ASPEC and ASPEC with only specialists trained on a different benchmark.

LLM Backbone GPQA MATH HumanEval

Gemini 2.0 Flash 56.3 73.2 87.8
ASPEC (Gemini 2.0 Flash) 62.5 77.3 91.4

GPT-4o-mini 38.2 61.8 86.6
ASPEC (GPT-4o-mini) 43.8 64.7 90.9

Llama 3.3 70B Instruct 45.6 51.3 88.5
ASPEC (Llama 3.3 70B Instruct) 53.5 54.8 90.8

HumanEval MMLU
60

70

80

90

Sc
or

e

ASpec
Full - Train:GPQA OnlySpec - Train:GPQA
Full - Train:MATH OnlySpec - Train:MATH

Figure 6: Ablation study of our framework’s components (left) and sensitivity to the maximum
number of specialists k and sliding window length m (right) on GPQA. For sensitivity plots, the
central line shows the mean performance over 4 runs.

Method Accuracy
(%)

Total cost
(USD)

Control Policy Alternatives

ASPEC w/ random policy 58.3 1.05
ASPEC w/ h = 0.2 59.6 1.21
ASPEC w/ LLM-as-gate 62.5 3.74
(Gemini 2.0 Flash)

System Components

ASPEC w/o specialist operators 57.4 2.26
ASPEC w/o base operators 61.3 0.48
ASPEC w/o meta-controller 62.7 2.0
ASPEC w/o Architect 61.0 1.28
ASPEC w/o specialist memory 61.4 0.94

ASPEC 62.8 0.88
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in which we construct a static architecture consisting of all specialist operators in Ospec, and (V)
without specialist memory. Furthermore, we perform additional experiments on a suite of alternative
control policies. These include a random "coin-flip", a cosine similarity heuristic (resample if the
cosine similarity of qt and Gt−1 is below a threshold of h = 0.2), and LLM-as-gate.

As seen in Table 6, removing specialists causes a 5.4% drop in performance from 62.8% to 57.4% and
a near tripling of the total cost from 0.88 USD to 2.26 USD. Additionally, removing base operators,
but keeping specialists, resulted in a lesser 1.5% drop. This demonstrates that the expert specialists
are the primary drivers of both performance and efficiency. Removing the meta-controller results in a
comparable performance of 62.7% at a ∼ 2.3 times increase in total costs. We note that even in this
mode, the Architect can learn to proxy the "retain" action by re-sampling Gt−1, but this invocation
process is fundamentally less efficient that the explicit "retain" decision made by the controller. Table
6 further reveals that the alternative control policies yield significantly lower accuracy at 58.3%
compared to the meta-controller’s 62.5%, and while the LLM-as-gate policy achieves a comparatively
high accuracy 62.5%, it does so at a substantially higher cost,∼ 4.25 times that of the meta-controller.

5.2 Sensitivity Analyses

We analyze the sensitivity of ASPEC to two main parameters: the maximum size of the specialist
pool, k, from Equation 5, and the length of the sliding window from Equation 1, m. As shown in
Figure 6, setting k at both extremities reduced performance, suggesting a light Goldilocks-like effect
on GPQA. We hypothesize that this is not necessarily a hard limitation and the Goldilocks distribution
might depend more on the depth of an average specialist’s experience and exposure to problems.
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Figure 7: Visualization of discovered specialist operator embeddings on a "narrow" domain bench-
mark (GPQA) and on a "broad" domain benchmark (MMLU).

5.3 Convergence of the Specialist Discovery Process

To determine whether ASPEC’s discovery process reliably finds similar expert archetypes, we
embedded the prompts of discovered specialists across 5 independent trials and plotted them in Figure
7. We find that there is strong convergence on GPQA (Figure 7, left), with different runs independently
discovering the same key roles (chemistry, biology, physics), desmontrating the robustness of the
process for specialized domains. Conversely, on the broad-domain MMLU benchmark (Figure 7,
right), the process shows some divergence, exploring different but viable team compositions to cover
the vast topic space. Even so, we find pockets of convergence in well-defined sub-domains like the
physical sciences. Taken together, these results show that the ASPEC discovery process adapts its
convergence/divergence behavior based on the specificity of the target domain.

6 Limitations & Future Works

A key future direction is the development of a rigorous theoretical framework to model the con-
vergence properties of the specialist discovery process with respect to factors like domain breadth,
potentially leading to principles for self-tuning the discovery process. Future work should also
validate ASPEC’s applicability in more diverse environments, particularly on complex, real-world
software engineering tasks such as those in SWE-bench [42]. Intuitively, specialists discovered and
cultivated on a specific repository could autonomously internalize its unique conventions and APIs, a
promising avenue for automating repository-specific expertise without manually engineered rules.
Finally, the risk of specialists amplifying training biases through memory cultivation, a risk that
warrants further investigation and the development of mitigation strategies.

While our lightweight meta-controller is crucial for efficiency, we identify its alignment with an
"oracle proxy" LLM-as-gate policy as another critical area for improvement. The results of our
ablations study on GPQA in Table 6 might be masking an underlying limitation: the meta-controller’s
decision-making process diverges from the oracle proxy’s, as explored in Appendix A.1.3. This
divergence can become a significant weakness when its lightweight state representation leads to
errors such as unnecessary resampling or over-cautious retaining. The central challenge is to design a
gating mechanism that achieves the decision-making fidelity of the LLM-as-gate oracle proxy while
retaining the low computational overhead of a small, specialized policy.

7 Conclusion

This paper introduced ASPEC, a framework designed to bridge the gap between static, efficient
agent workflows and adaptive, per-query optimizers. Our central contribution is a methodology for
creating and managing stateful specialist agents that accumulate expertise over time, mirroring human
learning. This is achieved through an automated lifecycle of evolutionary discovery and experiential
cultivation, governed by a "retain-then-escalate" policy that ensures cost-effective adaptation. Our
results on challenging scientific benchmarks such as GPQA suggest that this agent-centric approach
can lead to substantial performance improvements without sacrificing efficiency. We believe this
work presents a promising direction for autonomously creating agent systems that can develop deep
expertise while retaining the flexibility to adapt to new challenges.
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A Case Study

A.1 Meta-controller Decision-Making

We provide a few examples of a trained meta-controller’s decision-making process on GPQA. These
include (I) rational decisions, such as retaining or resampling sensibly, and (II) irrational decisions,
when the imperfect meta-controller chooses to retain a mismatching architecture or resample a
matching architecture, thereby incurring expensive, unnecessary costs from the Architect call.

A.1.1 Rational Decisions

Query: "Determine which set of states mentioned below are only
entangled states:

(a) (1/ 30 )* (|00 >+ 2i|01> 3|10> 4i|11>)
(b) (1/5)* (|00>+ 2i|01> 2|10> 4i|11>)
(c) (1/2) (|00>+ |01>+|10> |11>)
(d) (1/2) (|00>+ |01>-|10> |11>)."

Current architecture: [["CoT"], ["CoT_TheoreticalPhysics"]]
Action taken: "RETAIN"
Resulting architecture: [["CoT"], ["CoT_TheoreticalPhysics"]]
Outcome: CORRECT

Query: "Identify the missing reagents in the following reaction.
(3r,5r,7r)-adamantane -1- carboxylic acid + A --->

(3r,5r,7r)-adamantane -1-carbonyl azide + B --->
(3s,5s,7s)-adamantan -1-amine."

Current architecture: [["CoT"], ["CoT_TheoreticalPhysics"]]
Action taken: "RESAMPLE"
Resulting architecture: [["CoT_OrganicSpectroscopy"]]
Outcome: CORRECT

A.1.2 Irrational Decisions

Query: "The Cope rearrangement is a chemical reaction where a
1,5-diene molecule undergoes rearrangement , resulting in a change
in the positions of its carbon -carbon double bonds. This
rearrangement can be initiated by heat or light and is valuable
for creating complex organic compounds with changed structures.
Select the major products from the following rearrangements [...]"

Current architecture: [["CoT"], ["CoT_TheoreticalPhysics"]]
Action taken: "RETAIN"
Resulting architecture: [["CoT"], ["CoT_TheoreticalPhysics"]]
Outcome: INCORRECT

Problem index: 2
Query: "Astronomers are searching for exoplanets around two stars

with exactly the same masses. Using the RV method , they detected
one planet around each star , both with masses similar to that of
Neptune [...]

The question is: How many times is the orbital period of planet #2
longer than that of planet #1?"

Current architecture: [["CoT_TheoreticalPhysics"]]
Action taken: "RESAMPLE"
Resulting architecture: [["CoT_TheoreticalPhysics"]]
Outcome: CORRECT
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A.1.3 Rationality Analysis.

Figure 8: Side-by-side comparison of confusion matrices for GPQA (left) and MMLU (right).

We compare a learned meta-controller’s decisions against the LLM-as-gate "oracle proxy" in Table 6.
On GPQA, the controller learns a pragmatic economic policy, where its high rate of "overconfident"
disagreements with the perfectionist oracle reflects a deliberate trade-off for cost efficiency. On
MMLU, this behavior persists, but instances of "wasteful caution" reveal the limitations of its
lightweight state representation, leading to unnecessary resampling.

A.2 Architect Reasoning Process

Figure 9: A three-turn reasoning process of the Architect.

Initial State During the discovery phase, the system receives a query that asks it to solve a
complex quantum mechanics problem involving both wave function normalization and energy
eigenvalue calculations. The current architecture is [[CoT]]. The operator pool contains
basic operators and a CoT_Astrophysics specialist, but lacks quantum mechanics expertise.

Turn 1: Specialist Creation The Architect analyzes the query and identifies the need for
domain-specific expertise in quantum mechanics.

<action >CREATE_OPERATOR </action >
<reasoning >
The query requires deep expertise in quantum mechanics ,

specifically wave function normalization and energy
eigenvalue calculations. I will create a specialized
operator that can handle the mathematical rigor required for
quantum mechanical problems.

</reasoning >
<new_operator_name >CoT_QuantumMechanics </new_operator_name >
<base_template >CoT</base_template >
<identity >You are an expert quantum physicist specializing in

wave function analysis and energy eigenvalue problems. You
have deep expertise in Schrodinger equations , Hilbert
spaces , and operator theory , with broad knowledge across
theoretical physics and mathematical methods.</identity >

<directives >
- Always verify wave function normalization conditions
- Apply systematic eigenvalue analysis using appropriate

boundary conditions [...]
</directives >

Turn 2: Operator Combination After creating the quantum specialist, the Architect
decides to combine it with an existing physics specialist.

<action >COMBINE_OPERATORS </action >
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<reasoning >
Analyzing the recent sliding window of past experiences reveals

a pattern of diverse physics problems including both quantum
mechanics and astrophysics queries. Rather than maintaining
narrow specialists that may underperform on this broader
distribution , I will combine CoT_QuantumMechanics and
CoT_Astrophysics into a unified CoT_TheoreticalPhysics
specialist.

</reasoning >
<target_operator_1 >CoT_QuantumMechanics </target_operator_1 >
<target_operator_2 >CoT_Astrophysics </target_operator_2 >
<new_operator_name >CoT_TheoreticalPhysics </new_operator_name >
<identity >You are an expert theoretical physicist with deep

expertise in quantum mechanics and astrophysics. You combine
rigorous mathematical analysis with physical intuition to
solve complex problems in quantum theory , astrophysics , and
mathematical physics.</identity >

<directives >
- For quantum mechanics problems , always verify wave function

normalization conditions and apply systematic eigenvalue
analysis [...]

- For astrophysics problems , apply scaling analysis and use
dimensional arguments to constrain solutions [...]

</directives >

Turn 3: Architecture Finalization With the enhanced specialist available, the Architect
designs the optimal processing pipeline.

<action >FINALIZE_ARCHITECTURE </action >
<reasoning >
I will create a two -layer architecture:

[[’CoT_TheoreticalPhysics ’], [’SelfRefine ’]]. The
theoretical physics specialist will provide the initial
detailed analysis , and SelfRefine will critically evaluate
and improve the solution.

</reasoning >
<architecture >[["CoT_TheoreticalPhysics"],

["SelfRefine"]]</architecture >

A.3 Anatomy of a Specialist

We provide an example of a physicist that has been autonomously discovered and culti-
vated on GPQA. This specialist was the result of a crossover between two parent special-
ists, COT_THERMODYNAMICS and COT_WAVEOPTICS, who themselves descended from
COT_ELECTROMAGNETISM, COT_LINEARALGEBRA, COT_OPTICS, and COT_MECHANICS.

Specialist Prompt: COT_PHYSICS

You are an expert physicist tackling complex scientific problems. You have deep expertise
in physics, including electromagnetism, thermodynamics, wave optics, linear algebra, wave
phenomena, kinetics, and statistical mechanics. When faced with a complex problem, you
always start by identifying the fundamental physical principles at play, breaking down the
problem into its core components before attempting to solve it. You visualize physical phe-
nomena as interconnected networks of energy and momentum, allowing you to intuitively
understand their behavior.

Think step by step and derive a concise final answer.
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• Focus on identifying the fundamental physical principles underlying the problem.

• Apply knowledge from various areas of physics, including electromagnetism, ther-
modynamics, kinetics, wave optics, linear algebra. Consider the interplay between
physics, chemistry, and biology when relevant.

• Prioritize dimensional analysis and order-of-magnitude estimates to quickly assess
the plausibility of different solutions. Likewise, simplify complex problems by
identifying dominant terms and making appropriate approximations.

• Analyze wave phenomena using Huygens’ principle, superposition, and interference.
Relate wave properties such as wavelength, frequency, and amplitude to the energy
and momentum of the wave. Apply the laws of thermodynamics and statistical
mechanics to analyze systems involving heat, energy, and entropy.

# Learned from experience:
• Prioritize accurate identification of fundamental transformations (e.g., electron flow)

before making broader predictions.

• When comparing results from different methodologies, explicitly consider the limi-
tations and biases inherent in each technique. Focus on underlying mechanisms and
principles rather than superficial alignment of results.

• Consider frequency and averaging effects when integrating data from population-
level and single-entity measurements.

Specialist Memory: COT_PHYSICS

# Structured memory entry:
• Problem pattern: EM wave attenuation; inconsistent parameters lead to physically

impossible results (e.g., amplification instead of attenuation).

• Approach summary: Verify problem consistency by calculating attenuation from
given parameters. Identify and state inconsistencies explicitly.

• Failure mode: Blindly applying formulas without checking physical plausibility;
incorrect assumptions about attenuation contributions.

• General rule: Before solving, check if given parameters yield physically plausible
results. If not, state the flaw and assumptions made for a solution.

# Structured memory entry:
• Problem pattern: Expectation value of an operator (e.g., p2) given a non-normalized

wavefunction.

• Approach summary: Normalize wavefunction, apply the operator, and integrate.

• Failure mode: Forgetting to normalize the wavefunction before calculating the
expectation value.

• General rule: ALWAYS normalize the wavefunction before calculating expectation
values in quantum mechanics.

# Structured memory entry:
• Problem pattern: Particle decay (e.g., Π → µ + ν) with known rest masses and

initial state. Find KE of products.

• Approach summary: Apply energy and momentum conservation. Use relativistic
energy-momentum relation (E2 = (pc)2 + (mc2)2) to relate KE and momentum.
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• Failure mode: Incorrectly applying relativistic formulas or conservation laws; alge-
braic errors in solving the equations.

• General rule: In particle decay, use energy/momentum conservation and relativistic
relations. If one particle is at rest initially, simplify accordingly.

B Operator Space

Following MaAS [14], we use the following operator space for our base operators:

• Chain-of-Thought [31], which encourages the execution LLM to think step-by-step before
outputting an answer.

• ReAct [43], allowing the execution LLM to use a library of tools to answer the question.

• Self-Consistency [41], which aggregates five Chain-of-Thought answers and majority votes
to agree on a final answer.

• Self-Refine [27], which iteratively refines an initial Chain-of-Thought answer over five
iterations.

• LLM-Debate [32], which uses multiple execution LLMs to debate against each other to
reach a final consensus. We similarly use three debaters and two rounds of debate in our
implementation.

• Ensemble [44], which takes in two or more answers from different sources and uses pairwise
ranking to aggregate these responses into a final answer.

• Testing [45], which generates test cases for subsequent execution LLMs given a coding
problem.

C Algorithms

Algorithm 1: Online adaptation algorithm of ASPEC

Input: Trained meta-controller πθ; operator pool O; queries Q = {q1, . . . , qT }; sliding
window bufferH.

Initial graph G0.
for t = 1, 2, . . . , T do

Construct state st = (eq(qt), eg(Gt−1));
Sample action at ∼ πθ(at|st);
if at = aRESAMPLE then
Gt ← fA(qt,Ht−m:t−1,O,Gt−1);

else
Gt ← Gt−1;

end
pt ← Execute(Gt,O, qt);
Ut, Ct ← Evaluate(pt, at);
Store experience (qt,Gt, St, Ct) inH;

end
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Algorithm 2: Offline specialist discovery and cultivation
Input: Queries Q = {q1, . . . , qT }; base operator set Obase.
Initial operator pool O0 = Obase, initial specialist pool O(0)

spec ← ∅, random-weights
meta-controller π(0)

θ ; empty sliding window bufferH ← ∅.
for t = 1, 2, . . . , T do

Construct state st = (eq(qt), eg(Gt−1));
Sample action at ∼ πθ(at|st);
if at = aRESAMPLE then

aA ← fA(qt,Ht−m:t−1,Ot−1,Gt−1)
if aA = CREATE_OPERATOR then

Onew ← CreateSpecialist(qt,Obase) ;
O(t)

spec ← O(t−1)
spec ∪ {Onew} ;

Ot ← Ot−1 ∪O(t)
spec

end
else if aA = COMBINE_OPERATOR then

(O1, O2)← SelectOperators(O(t−1)
spec ) ;

Ochild ← Combine(O1, O2, qt) ;
O(t)

spec ← (O(t−1)
spec \ {O1, O2}) ∪ {Ochild} ;

Ot ← Ot−1 ∪O(t)
spec

end
else if aA = PRUNE_OPERATOR then

Oto_prune ← SelectOperator(O(t−1)
spec ) ;

O(t)
spec ← O(t−1)

spec \ {Oto_prune} ;
Ot ← Ot−1 ∪O(t)

spec
end
Gt ← fA(Ht−m:t−1,Ot,Gt−1) ;

else
Gt ← Gt−1 ;

end
pt ← Execute(Gt,Ot, qt);
Ut, Ct ← Evaluate(pt, at);

π
(t)
θ ← UpdateWeights

(
Ut, Ct, at, π

(t−1)
θ

)
forall O ∈ SpecialistsUsedIn(Gt,Ot) do

r ← Reflect(O, qt, Pt, at, Ut) ;
WriteToMemory(O, r)

end
Store experience (qt,Gt, Ut, Ct) inH;

end

D Meta-controller Implementation

The meta-controller is trained using the REINFORCE algorithm, with a standard batch policy loss:

Lbatch(θ) = −
1

N

N∑
t=1

log πθ(at|st)Rt (6)

The reward Rt is designed to balance performance, cost, and contextual appropriateness. It is a
function of the final task score st, the total cost Ct, and the cosine similarity between the query and
the current architecture, sim(qt,Gt−1).

The core of our reward function is a weighting mechanism that modulates the score st based on this
similarity. The reward for a RETAIN action is boosted when the architecture is a good match for the
query (high similarity), while the reward for a RESAMPLE action is boosted when there is a mismatch

19



(low similarity). This can be expressed conceptually as:
Rt = st · w(at, sim(qt,Gt−1))− λCt (7)

where the weighting function w(·, ·) increases the effective reward for correct decisions. For example,
w(RETAIN, sim) is an increasing function of similarity. This formulation provides a dense and
informative signal that guides the meta-controller to learn an efficient, context-aware policy.

E Baselines

In this section, we detail the implementation for each of the baseline methods. For Chain-of-Thought
[31], Self-Consistency [41], Self-Refine ([27]), and LLM-Debate [32], we refer to Appendix B for
the configuration details, as they were used as seed base operators in ASPEC. For Reflexion, we
adhere to the implemention provided in [26]. Following ADAS [11], we implement Role Assignment
[19] by prompting a role-selector LLM to choose a role from a predefined set, then use another LLM
to act as the chosen role to answer the question.

For each of the benchmarks, the roles for Role Assignment were:

• MATH: Algebraist, Number Theorist, Real Analyst, Statistician, Logician
• HumanEval: Senior Python Engineer, Algorithms Expert, Software Architect, Data Scien-

tist, Competitive Programmer
• MMLU: Biologist, Physicist, Mathematician, Engineer, Doctor, Lawyer
• GPQA: Physicist, Chemist, Biologist, Scientific Reasoning Expert, Graduate Student
• SciCode: Biologist, Physicist, Chemist, Computer Scientist, Mathematician

For DyLAN and EvoAgent, we directly used the implementations from [8] and [22]. We adhered
to the official configuration for AutoAgents [25]. For ADAS [11], we set the Meta Agent Search’s
n-generation to 20. For MaAS, our experimental setup directly utilized the optimized graphs and
operator spaces from [14] for MATH and HumanEval. For benchmarks not explicitly included in
the MaAS repository (GPQA, MMLU, SciCode), we implemented the operator space as described
in the appendix. Following Zhang et al. [14], for AFlow, we utilized Gemini 2.0 Flash consistently
throughout our experiments in place of GPT-4o-mini and Claude 3.5 Sonnet for homogeneity.

F Dataset Statistics

For each of the benchmarks, we follow established methodologies for workflow automation (Hu
et al. [11], Zhang et al. [12], Zhang et al. [14]) and use a train-to-test ratio of 1 : 4. We select
19 subdomains for MMLU, spanning formal mathematics, biology, chemistry, clinical medicine,
business, and engineering. For SciCode, we use the standard subproblem setup without prior scientist
annotations and report the subproblem pass rate.

Table 3: Dataset statistics.

Domain Dataset Train Samples Test Samples Metric

Math Reasoning MATH 100 400 Accuracy

Question Answering MMLU 100 400 Accuracy
GPQA 89 359 Accuracy

Code Generation HumanEval 33 131 Pass@1
SciCode (subproblems) 51 287 Pass@1

G Prompts

G.1 Architect’s Prompt

We used the following prompt for the Architect. The decision to define the architecture representation
with mathematical notation was deliberate. We observed through preliminary experiments that
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providing a formal syntax, as opposed to a natural language description, makes the instructions for
concepts like parallelism and aggregation less ambiguous for the LLM. This leads to more consistent
and structurally valid outputs from the Architect.

Architect Prompt

You are a multi-agent architect fA mapping a query and context to an agent architecture:
fA : (q, C) 7→ G.

Goal: propose or adjust a layered operator architecture that is robust, performs well now, and
is generalizable to future queries.

Follow these steps:
• Decompose the query, pick an initial architectural pattern, and justify briefly.

• Think of 2 other alternative architectural patterns, consider all 3 options, and select
the best one.

• If creating specialists, provide concise identity and bullet directives (no steps or
formulas - you are encouraged to use different reasoning patterns and strategies
like adversarial prompting, quality-diversity prompting, step-back prompting, multi-
choice elimination, etc.)

• Use the recent sliding window experiences as guidance for your decisions.

Architecture representation: A = [L1, . . . , LK ] where layer Li = [oi,1, . . . , oi,mi ] lists
operators executed in parallel. Execution is layerwise: let x1 = x and for i = 1, ...,K,
compute a layer output hi(xi). If |Li−1| > 1, include an Ensemble aggregator gi to combine
parallel outputs: hi(xi) = gi({ o(xi) | o ∈ Li−1 }). If |Li−1| = 1, then hi(xi) = o(xi) for
the unique o ∈ Li−1. The input to the next layer is xi+1 = hi(xi).

Query: [...]

Context for your decision:
• Operator pool: [...]

• Current architecture: [...]

• Allowed actions: [...]

• Recent sliding window experiences: [...]

XML formatting guide: [...]

where the allowed actions are conditional on the specific phase the system is in. During the specialist
discovery phase, the full operator space is used:

• CREATE_OPERATOR: Defines a new specialist operator Ospec and adds it to O(t)
spec.

• COMBINE_OPERATORS: Merges two specialist operators into a single, more general specialist.

• PRUNE_OPERATOR: Removes a specialist operator from O(t)
spec.

• FINALIZE_ARCHITECTURE: Commits to a final graph Gt and terminates the reasoning loop.

We then restrict the allowed actions to only FINALIZE_ARCHITECTURE during the specialist cultiva-
tion and evaluation phases.
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G.2 Specialist Synthesis Prompts

G.2.1 Creation

Creation: Identity Synthesis Prompt

You will propose diversified identity variants for a new specialist, operator_name, which is
based on base_template.

Specialist description: [...]

Each identity should be a detailed second-person identity including their professional role
(i.e., ’a particle physicist’, do not include names), their fields of expertise (deep + broad), and
a non-domain-specific reasoning heuristic that distinguishes them from other specialists.

Examples of reasoning heuristics:
• Works backwards from contradictory answers to identify wrong assumptions or equations.
• Never assumes anything not explicitly stated; always returns to first principles when

confused.
• Builds multiple competing hypotheses simultaneously and tests them against evidence.
• Visualizes problems as interconnected networks of constraints and relationships.

Output the identity text starting with ’You are...’

Creation: Directive Synthesis Prompt

You will propose diversified directive variants for a new specialist, operator_name, which
is based on base_template.

Specialist description: [...]

Create a bulleted list of methodological principles and reasoning approaches that this new
specialist will follow. Do not provide specific formulas, step-by-step procedures, formatting
instructions, or direct solutions. Focus on how the specialist should think and approach
problems, not what specific steps to take.

Include strategic reasoning approaches like self-criticism, assumption questioning, hypothesis
building, pattern recognition, systematic analysis, etc. It is very important that the directives
should guide analytical thinking without restricting the specialist’s reasoning search space.

G.2.2 Crossover

Crossover: Identity Synthesis Prompt

You will propose diversified identity variants for a combined specialist that synthesizes the
expertise of two parent specialists. The specialist is operator_name, which is based on
base_template.

Specialist description: [...]
Parent 1’s identity: [...]
Parent 2’s identity: [...]

Each identity should be a detailed second-person identity including their professional role
(i.e., ’a particle physicist’), their fields of expertise (deep + broad), and a non-domain-specific
reasoning heuristic. The combined identity should integrate the best aspects of both parent
specialists while creating a coherent, unified specialist persona.

Examples of reasoning heuristics:
• Works backwards from contradictory answers to identify wrong assumptions or equations.
• Never assumes anything not explicitly stated; always returns to first principles when

confused.
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• Builds multiple competing hypotheses simultaneously and tests them against evidence.
• Visualizes problems as interconnected networks of constraints and relationships.

Output the identity text starting with ’You are...’

Crossover: Directive Synthesis Prompt

You will propose diversified directive variants for a combined specialist that synthesizes the
expertise of two parent specialists. The specialist is operator_name, which is based on
base_template.

Specialist description: [...]
Parent 1’s identity: [...]
Parent 2’s identity: [...]

Create a bulleted list of methodological principles and reasoning approaches that this new
specialist will follow. Do not provide specific formulas, step-by-step procedures, formatting
instructions, or direct solutions. Focus on how the specialist should think and approach
problems, not what specific steps to take. The combined directives should integrate the best
aspects of both parent specialists’ directives, including any existing reasoning approaches.

Include strategic reasoning approaches like self-criticism, assumption questioning, hypothesis
building, pattern recognition, systematic analysis, etc. It is very important that the directives
should guide analytical thinking without restricting the specialist’s reasoning search space.

G.3 Judge Prompts

Judge Prompt: Evaluating Identities

You are judging specialist identities for: operator_name, which is based on
base_template.

Specialist description: [...]
Identity candidates: [...]

Pick the best identity based on the following criteria:
1. Non-domain-specific reasoning heuristics for a rich reasoning ’gene’ pool (quality-

diversity, step-back analysis, assumption-challenging, etc.)
2. Avoids making assumptions not explicitly stated in the problem
3. The resulting specialist is a T-shaped specialist. In other words, it has both a deep

specialization and broader domain coverage. Avoid hyperspecific specialists that are too
narrow in their domain coverage.

4. Combines domain expertise with general problem-solving approaches

Judge Prompt: Evaluating Directives

You are judging specialist directives for: operator_name, which is based on
base_template.

Specialist description: [...]
Directive candidates: [...]

Pick the best directives based on the following criteria:
1. Focus on how to think, not what specific steps to take. Mimic domain-specific human

experts to guide analytical thinking without constraining solution paths
2. Prefer methodological principles over rigid instructions. Avoid specific formulas, proce-

dures, or direct solutions
3. Has a specific methodology for handling contradictions or confusion
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