
Under review as submission to TMLR

Generative Model for Change Point Detection
in Dynamic Graphs

Anonymous authors
Paper under double-blind review

Abstract

This paper proposes a generative model to detect change points in time series of graphs.1

The proposed framework consists of learnable prior distributions for low-dimensional graph2

representations and of a decoder that can generate graphs from the latent representations.3

The prior distributions of the latent spaces are learned from the observed data as empirical4

Bayes and generative model is employed to assist multiple change point detection. Specifi-5

cally, the model parameters are learned via maximum approximate likelihood, with a Group6

Fused Lasso regularization on the prior parameters. The optimization problem is then solved7

via Alternating Direction Method of Multipliers and Langevin Dynamics are recruited for8

posterior inference. Simulation studies show good performance of the generative model in9

supporting change point detection, and real data experiments yield change points that align10

with significant events.11

1 Introduction12

Networks are often used to represent relational phenomena in numerous domains (Dwivedi et al., 2021; He13

et al., 2023; Han et al., 2023) and relational phenomena by nature progress in time. In recent decades, a14

plethora of network models has been proposed to analyze the interaction between objects or people over15

time, including Temporal Exponential-family Random Graph Model (Hanneke et al., 2010; Krivitsky &16

Handcock, 2014), Stochastic Actor-Oriented Model (Snijders, 2001; Snijders et al., 2010), and Relational17

Event Model (Butts, 2008; Butts et al., 2023). Although these models incorporate the temporal aspect for18

network analysis, network evolution is usually time-heterogeneous. Without taking the structural changes19

across dynamic networks into consideration, learning from the time series may lead to ambiguity. Hence, it20

is practical for researchers to localize the change points before studying the evolving networks.21

More recently, various methodologies have been proposed to detect change points in dynamic networks.22

Chen et al. (2020) and Shen et al. (2023) employed embedding methods to detect both anomalous graphs23

and vertices in time series of networks. Park & Sohn (2020) combined the multi-linear tensor regression24

model with a hidden Markov model, detecting changes based on the transition between the hidden states.25

Sulem et al. (2023) learned a graph similarity function using a Siamese graph neural network to differentiate26

the graphs before and after a change point. Zhao et al. (2019) developed a screening algorithm that is27

based on an initial graphon estimation to detect change points. Huang et al. (2020) utilized the singular28

values of the Laplacian matrices as graph embedding to detect the differences across time. Chen & Zhang29

(2015), Chu & Chen (2019), and Song & Chen (2022a) proposed a non-parametric approach to delineate30

the distributional differences over time, and Garreau & Arlot (2018) and Song & Chen (2022b) exploited31

the patterns in high dimensions via a kernel-based method. Zhang et al. (2024) jointly trained a Variational32

Graph Auto-Encoder and Gaussian Mixture Model to detect the change points.33

Inherently, network structures are complex due to highly dyadic dependency. Acquiring a low dimensional34

representation of a graph can summarize the enormous amount of individual relations to promote downstream35

analysis (Gallagher et al., 2021). In particular, Sharifnia & Saghaei (2022) and Kei et al. (2023) proposed to36

detect the structural changes using an Exponential-family Random Graph Model. Yet they relied on user-37

specified network statistics, which are usually not known to the modeler a priori. Moreover, Larroca et al.38

1

Under review as submission to TMLR

(2021), Marenco et al. (2022), and Gong et al. (2023) developed different latent space models for dynamic39

graphs to detect changes, but they focused on node level representation, which may not be powerful enough40

to capture the information of the entire graph. Consequently, we aim to infer the graph level representations41

that induce the structural changes to facilitate the detection.42

On the other hand, generative models recently showed promising results in myriad applications, such as43

text generation with Large Language Model (Devlin et al., 2018; Lewis et al., 2019) and image generation44

with Diffusion Model (Ho et al., 2020; Rombach et al., 2022). Similarly, we aim to explore how generative45

models can assist change point detection in dynamic graphs. In particular, Simonovsky & Komodakis (2018)46

proposed a Graph Variational Auto-Encoder (VAE) for graph generation, with a zero-mean Gaussian prior47

to regularize the latent space of the graph level representation. In the VAE framework (Kingma, 2013; Kipf48

& Welling, 2016), regularization via Kullback Leibler divergence arises from the Evidence Lower Bound49

for the marginal likelihood, encouraging the approximate posterior to be close to the zero-mean Gaussian50

prior. In contrast, we focus on learning the mean of the Gaussian prior at each time point and we apply51

Group Fused Lasso regularization to promote sparsity in the sequential differences of the prior parameters,52

effectively smoothing out minor fluctuations and highlighting significant change points.53

To tackle the challenges in dynamic graphs and to employ recent advances in generative models, we make54

the following contributions in this manuscript:55

• We learn graph level representations of network structures to facilitate change point detection. We56

impose a prior distribution to the representation at each time point and a multivariate total variation57

regularization to the sequential differences of the prior parameters. The prior distributions and a58

graph decoder are jointly learned via maximum approximate likelihood.59

• We derive an Alternating Direction Method of Multipliers (ADMM) procedure to solve the op-60

timization problem. Without using an encoder, the prior distributions and the graph decoder are61

learned by inferring from the posterior distribution via Langevin Dynamics. Experiments show good62

performance of the generative model in supporting change point detection.63

The rest of the manuscript is organized as follows. Section 2 specifies the proposed framework. Section 364

presents the objective function with Group Fused Lasso regularization and the ADMM procedure to solve65

the optimization problem. Section 4 discusses change points localization and model selection. Section 566

illustrates the proposed method on simulated and real data. Section 6 concludes the work with a discussion67

and potential future developments.68

2 Generative Model for Change Point Detection69

2.1 Model Specification70

For a node set N = {1, 2, · · · , n}, we use an adjacency matrix y ∈ {0, 1}n×n to represent a graph. We denote71

the set of all possible node pairs as Y = N ×N . In the adjacency matrix, yij = 1 indicates an edge between72

nodes i and j, while yij = 0 indicates no edge. The relations can be either directed or undirected. The73

undirected variant has yij = yji for all (i, j) ∈ Y.74

Denote yt as a network at a discrete time point t. The observed data is a sequence of networks y1, . . . , yT .
For each network yt, we assume there is a latent variable zt ∈ Rd such that the network yt can be generated
from the latent variable with the following graph decoder:

yt ∼ P (yt|zt) =
∏

(i,j)∈Y

Bernoulli(yt
ij ; rij(zt))

where rij(zt) = P (yt
ij = 1|zt) is the Bernoulli parameter for dyad (i, j) and it is elaborated in Section 2.2.75

Conditioning on the latent variable zt, we assume the network yt is dyadic independent.76

We also impose a learnable prior distribution to the latent variable as

zt ∼ P (zt) = N (zt; µt, Id)

2

Under review as submission to TMLR

where µt ∈ Rd and Id is an identity matrix. With the graph decoder P (yt|zt), we consider zt ∈ Rd as a77

graph level representation for yt ∈ {0, 1}n×n.78

2.2 Graph Decoder79

The graph decoder P (yt|zt) is formulated with a Bernoulli parameter for dyad (i, j) as

rij(zt) = P (yt
ij = 1|zt) = gij

(
h(zt)

)
.

The function h(·) is parameterized by neural networks with h : Rd → Rn×n. The function g(·) is the80

element-wise sigmoid function with g : Rn×n → [0, 1]n×n.81

In particular, we use multi-layer perceptrons, transferring the latent variable zt ∈ Rd to U t ∈ Rn×k and
V t ∈ Rn×k, respectively. We let the latent dimension d and k be smaller than the number of nodes n, and

h(zt) =
{

U tV t⊤ ∈ Rn×n, for directed network,

U tU t⊤ ∈ Rn×n, for undirected network.

The graph decoder via matrix multiplication is common in the literature (Kipf & Welling, 2016; Hamilton82

et al., 2017; Pan et al., 2018). Comparing to a decoder that directly outputs the graph yt ∈ {0, 1}n×n, the83

decoder via matrix multiplication reduces the number of parameters in the neural networks and helps avoid84

over-parameterization, which is crucial for graphs that are sparse.85

Figure 1 gives an overview of the proposed framework. Implicitly, the graph level representation zt progresses86

to node level representations U t and V t as an intermediate step, before the generation of network yt. The87

graph decoder Pϕ(yt|zt) with neural network parameter ϕ is shared across t = 1, . . . , T . It is worth pointing88

out the simplicity of our framework, without the need of encoders.89

z1

U1, V 1

y1

N (µ1, Id)

z2

U2, V 2

y2

N (µ2, Id)

zT

UT , V T

yT

N (µT , Id)

Pϕ(y1|z1) Pϕ(y2|z2) Pϕ(yT |zT)

. . .

Figure 1: An overview of prior distributions and graph decoder.

2.3 Change Points90

Anchored on the proposed framework, we can now specify the change points to be detected, in terms of the
prior parameters µt ∈ Rd for t = 1, . . . , T . Let {Ck}K+1

k=0 ⊂ {1, 2, . . . , T} be a collection of ordered change
points with 1 = C0 < C1 < · · · < CK < CK+1 = T such that

µCk = µCk+1 = · · · = µCk+1−1, k = 0, . . . , K,

µCk ̸= µCk+1 , k = 0, . . . , K − 1, and µCK+1 = µCK .

The associated multiple change point detection problem comprises recovering the collection {Ck}K
k=1 from a91

sequence of observed networks {yt}T
t=1, where the number of change points K is also unknown.92

3

Under review as submission to TMLR

To facilitate change point detection for {yt}T
t=1 in the data space, we turn to learn the prior parameters93

{µt}T
t=1 in the latent space. Intuitively, the consecutive prior parameters are similar when no change occurs,94

but they are different when a change emerges. For notational simplicity, we denote µ ∈ RT ×d as a matrix95

where the t-th row corresponds to µt ∈ Rd with t = 1, . . . , T .96

3 Learning and Inference97

3.1 Learning Priors from Dynamic Graphs98

Inspired by Vert & Bleakley (2010) and Bleakley & Vert (2011), we formulate the change point detection99

problem as a Group Fused Lasso problem (Alaíz et al., 2013). Denote the log-likelihood of the distribution100

for y1, . . . , yT as l(ϕ, µ). We want to solve101

ϕ̂, µ̂ = arg min
ϕ,µ

−l(ϕ, µ) + λ

T −1∑
t=1
∥µt+1 − µt∥2 (1)

where λ > 0 is a tuning parameter for the Group Fused Lasso penalty term.102

The Group Fused Lasso penalty is useful for change point detection because it enforces piecewise constant103

patterns in the learned parameters by minimizing the total variation. Specifically, the regularization term,104

expressed as the sum of the ℓ2 norms, encourages sparsity of the differences µt+1 − µt ∈ Rd, while allowing105

multiple coordinates across the d dimensional differences to change at the same time t. The latter is often106

referred as a grouping effect that could not be achieved with the ℓ1 penalty of the differences. Furthermore,107

since the regularization is imposed on the prior parameters that relate to the likelihood of the data, the108

learned priors incorporate the structural changes from the observed graphs into the latent space. In summary,109

by penalizing the sum of sequential differences, the proposed framework focuses on capturing meaningful110

structural changes and smoothing out minor variations.111

To solve the optimization problem in (1) that involves latent variables, we need to manipulate the objective112

function accordingly. We first introduce a slack variable ν ∈ RT ×d where νt ∈ Rd denotes the t-th row of113

matrix ν, and we can rewrite the original problem as a constrained optimization problem:114

ϕ̂, µ̂ = arg min
ϕ,µ

−l(ϕ, µ) + λ

T −1∑
t=1
∥νt+1 − νt∥2

subject to µ = ν.

(2)

Then the augmented Lagrangian can be defined as

L(ϕ, µ, ν, ρ) = −l(ϕ, µ) + λ

T −1∑
t=1
∥νt+1 − νt∥2 + tr[ρ⊤(µ− ν)] + κ

2 ∥µ− ν∥2
F

where ρ ∈ RT ×d is the Lagrange multipliers and κ > 0 is the penalty parameter for the augmentation term.115

Let w = κ−1ρ ∈ RT ×d be the scaled dual variable, the augmented Lagrangian can be updated to116

L(ϕ, µ, ν, w) = −l(ϕ, µ) + λ

T −1∑
t=1
∥νt+1 − νt∥2 + κ

2 ∥µ− ν + w∥2
F −

κ

2 ∥w∥
2
F . (3)

In practice, gradient descent may not work well for an objective function with Group Fused Lasso penalty.
We further introduce two variables (γ, β) ∈ R1×d ×R(T −1)×d to ease the optimization, by converting it into
a Group Lasso problem (Yuan & Lin, 2006). They are defined as

γ = ν1 and βt,· = νt+1 − νt ∀ t = 1, . . . , T − 1.

4

Under review as submission to TMLR

Reversely, the slack variable ν ∈ RT ×d can be reconstructed as ν = 1T,1γ + Xβ, where X is a T × (T − 1)
design matrix with Xij = 1 for i > j and 0 otherwise. Substituting the ν in (3) with (γ, β), we have

L(ϕ, µ, γ, β, w) = −l(ϕ, µ) + λ

T −1∑
t=1
∥βt,·∥2 + κ

2 ∥µ− 1T,1γ −Xβ + w∥2
F −

κ

2 ∥w∥
2
F .

Thus, we can derive the following Alternating Direction Method of Multipliers (ADMM) procedure (Boyd
et al., 2011; Wang et al., 2019) to solve the constrained optimization problem in (2):

ϕ(a+1), µ(a+1) = arg min
ϕ,µ

−l(ϕ, µ) + κ

2 ∥µ− ν(a) + w(a)∥2
F , (4)

γ(a+1), β(a+1) = arg min
γ,β

λ

T −1∑
t=1
∥βt,·∥2 + κ

2 ∥µ(a+1) − 1T,1γ −Xβ + w(a)∥2
F , (5)

w(a+1) = µ(a+1) − ν(a+1) + w(a), (6)

where subscript a denotes the current ADMM iteration. We recursively implement the three updates until117

a convergence criterion is satisfied. Throughout the paper, details about the implementation are provided118

in Appendix 7.4.119

3.2 Parameters Update120

3.2.1 Updating µ and ϕ121

In this section, we derive the updates for the prior and graph decoder parameters. Denote the objective122

function in (4) as L(ϕ, µ). Setting the gradients of L(ϕ, µ) with respect to the prior parameter µt ∈ Rd to123

zeros, we have the following:124

Proposition 1. The solution for µt at an iteration of our proposed ADMM algorithm is a weighted sum:125

µt = 1
1 + κ

EP (zt|yt)(zt) + κ

1 + κ
(νt −wt) (7)

between the conditional expectation of the latent variable under the posterior distribution P (zt|yt) and the126

difference between the slack and the scaled dual variables. The term wt ∈ Rd denotes the t-th row of the127

scaled dual variable w ∈ RT ×d. The derivation is provided in Appendix 7.1.128

Moreover, the gradient of L(ϕ, µ) with respect to the graph decoder parameter ϕ is calculated as129

∇ϕ L(ϕ, µ) = −
T∑

t=1
EP (zt|yt)

(
∇ϕ log P (yt|zt)

)
. (8)

The parameter ϕ can be updated efficiently through back-propagation.130

Notably, calculating the solution in (7) and the gradient in (8) requires evaluating the conditional expectation
under the posterior distribution P (zt|yt) ∝ P (yt|zt) × P (zt). We employ Langevin Dynamics to sample
from the posterior distribution, approximating the conditional expectations (Xie et al., 2017; 2018; Nijkamp
et al., 2020; Pang et al., 2020). In particular, let subscript τ be the time step of the Langevin Dynamics and
let δ be a small step size. Moving toward the gradient of the posterior with respect to the latent variable,
the Langevin Dynamics to draw samples from the posterior distribution is achieved by iterating:

zt
τ+1 = zt

τ + δ
[
∇zt log P (zt|yt)

]
+
√

2δϵ

= zt
τ + δ

[
∇zt log Pϕ(yt|zt)− (zt

τ − µt)
]

+
√

2δϵ (9)

where ϵ ∼ N (0, Id) is a random perturbation to the process. The derivation is provided in Appendix 7.2.131

5

Under review as submission to TMLR

3.2.2 Updating γ and β132

In this section, we derive the update in (5), which is equivalent to solving a Group Lasso problem. In133

particular, we decompose the slack variable ν to work with γ and β. With ADMM, the updates on γ and134

β do not require the observed network data {yt}T
t=1.135

By adapting the derivation in Bleakley & Vert (2011), we have the following for our proposed ADMM:136

Proposition 2. [Bleakley & Vert, 2011] The Group Lasso problem to update β ∈ R(T −1)×d is solved in137

a block coordinate descent manner, by iteratively applying the following equation to each row t:138

βt,· ←
1

κX⊤
·,tX·,t

(
1− λ

∥bt∥2

)
+

bt (10)

where (·)+ = max(·, 0) and

bt = κX⊤
·,t(µ(a+1) + w(a) − 1T,1γ −X·,−tβ−t,·).

The derivation is provided in Appendix 7.3.139

The convergence of the procedure can be monitored by the Karush-Kuhn-Tucker conditions: for all βt,· ̸= 0,

λ
βt,·

∥βt,·∥2
− κX⊤

·,t(µ(a+1) + w(a) − 1T,1γ −Xβ) = 0,

and for all βt,· = 0,
∥−κX⊤

·,t(µ(a+1) + w(a) − 1T,1γ −Xβ)∥2 ≤ λ.

Lastly, for any β, the minimum in γ ∈ R1×d is achieved at

γ = (1/T)11,T · (µ(a+1) + w(a) −Xβ).

In summary, the procedure to solve the problem in (2) via ADMM is presented in Algorithm 1. The steps to140

transform between ν and (γ, β) within an ADMM iteration are omitted for succinctness. The complexity of141

the proposed algorithm is at least of order O
(
A(Tsl + BT + D(T − 1))

)
with additional gradient calculation142

for neural networks in the sub-routines. Specifically, for each of the A iterations of ADMM, we update the143

prior parameters µt for all T time points, and each update involves l steps of MCMC for s samples. Then we144

calculate the gradients for neural networks over the T time points and run B iterations of Adam optimizer.145

Lastly, we run D iterations of block coordinate descent for the T − 1 sequential differences.146

4 Change Point Localization and Model Selection147

4.1 Change Point Localization148

In this section, we provide two effective methods to localize the change points after parameter learning, and
they can be used for different purposes. For the first approach, we can resort to the prior distribution where
zt ∼ N (µt, Id). When no change occurs or µt − µt−1 = 0, we have zt − zt−1 ∼ N (0, 2Id) and

ut := 1
2(zt − zt−1)⊤(zt − zt−1) ∼ χ2

d.

Furthermore, the mean of ut over m samples follows a Gamma distribution:

ūt ∼ Γ(θ = 2
m

, ξ = md

2)

where θ and ξ are the respective scale and shape parameters.149

6

Under review as submission to TMLR

Algorithm 1 Latent Space Group Fused Lasso
1: Input: learning iterations A, B, D, tuning parameter λ, penalty parameter κ, learning rates η, observed

data {yt}T
t=1, initialization {ϕ(1), µ(1), γ(1), β(1), w(1)}

2: for a = 1, · · · , A do
3: for t = 1, · · · , T do
4: draw s samples zt

1, . . . , zt
s from P (zt|yt) according to (9)

5: µt
(a+1) = 1

1+κ (s−1 ∑s
i=1 zt

i) + κ
1+κ (νt −wt)

6: end for
7: for b = 1, . . . , B do
8: ϕ(b+1) = ϕ(b) − η ×∇ϕ L(ϕ, µ)
9: end for

10: Set γ̃(1) = γ(a) and β̃(1) = β(a)
11: for d = 1, . . . , D do
12: for t = 1, . . . , T − 1 do
13: Let β̃

(d+1)
t,· be updated according to (10)

14: end for
15: γ̃(d+1) = (1/T)11,T · (µ(a+1) + w(a) −Xβ̃(d+1))
16: end for
17: Set γ(a+1) = γ̃(d+1) and β(a+1) = β̃(d+1)

18: w(a+1) = µ(a+1) − ν(a+1) + w(a)
19: end for
20: µ̂← µ(a+1)
21: Output: learned prior parameters µ̂

As we capture the structural changes in the latent space, we can draw samples from the learned priors to
reflect the sequential changes. In particular, for a time point t, we sample ẑt− ẑt−1 from N (µ̂t− µ̂t−1, 2Id),
and we perform the same transformation:

vt := 1
2(ẑt − ẑt−1)⊤(ẑt − ẑt−1).

Then we compare the mean of vt over m samples with a quantile:150

P (v̄t > qthr) = 1− α

T − 1 (11)

where qthr is the 1 − α/(T − 1) quantile of the Gamma distribution for ūt when no change occurs. We151

consider the time point t with v̄t > qthr as the detected change point.152

For the second approach, we can utilize the localizing method from Kei et al. (2023), which is more robust
in practice, as compared in the simulation study of Section 5.1. First, we calculate the differences between
consecutive time points in µ̂ ∈ RT ×d as

∆µ̂t = ∥µt − µt−1∥2 ∀ t ∈ [2, T].

Then we standardize the differences as153

∆ζ̂t = ∆µ̂t −median(∆µ̂)
std(∆µ̂) ∀ t ∈ [2, T] (12)

and construct a data-driven threshold defined as154

Tthr := mean(∆ζ̂) + Zq × std(∆ζ̂) (13)

where Zq is the q% quantile of standard Normal distribution. Finally, we declare a change point Ck when155

∆ζ̂Ck > Tthr.156

7

Under review as submission to TMLR

The data-driven threshold in (13) is intuitive, as the standardized differences ∆ζ̂ between two consecutive157

change points are close to zeros, while the differences that are at the change points are substantially greater158

than zeros. When traced in a plot over time t, the ∆ζ̂ can exhibit the magnitude of structural changes, and159

the threshold that deviates from the mean provides a reasonable cut-off value for the standardized differences,160

as demonstrated in Figures 5 and 6. In summary, the localizing method derived from the prior distribution161

has a statistical justification, while the localizing method with the data-driven threshold is more robust for162

different types of network data in practice.163

4.2 Model Selection164

The optimization problem in (2) involves a tuning parameter that can yield different sets of detected change165

points when it is varied. In this work, we use Cross-Validation to select λ. In particular, we split the original166

time series of graphs into training and testing sets: the training set consists of graphs at odd indexed time167

points and the testing set consists of graphs at even indexed time points. Fixed on a specific λ value, we168

learn the model parameters with the training set, and we evaluate the learned model with the testing set.169

For a list of λ values, we choose the λ giving the maximal log-likelihood on the testing set. Note that the
log-likelihood is approximated by Monte Carlo samples {zt

u}s
u=1 drawn from the prior distribution P (zt) as

T∑
t=1

log P (yt) ≈
T∑

t=1
log

[1
s

s∑
u=1

[∏
(i,j)∈Y

Pϕ(yt
ij |zt

u)
]]

.

Further computational details are discussed in Appendix 7.4. Anchored on the selected λ value, we learn170

the model parameters again with the full data, resulting the final set of detected change points.171

5 Simulated and Real Data Experiments172

In this section, we implement the proposed method on simulated and real data. To evaluate the performance
for simulated data, we use three standard metrics in the literature that focus on the number of change points,
the time gap between the true and detected change points, and the coverage between the segmented time
intervals. The first metric is the absolute error |K̂ − K|, where K̂ and K are the respective numbers of
the detected and true change points. The second metric described in Madrid Padilla et al. (2021) is the
one-sided Hausdorff distance, which is defined as

d(Ĉ|C) = max
c∈C

min
ĉ∈Ĉ
|ĉ− c|

where Ĉ and C are the respective sets of detected and true change points. Also, we report the reversed
one-sided Hausdorff distance d(C|Ĉ). By convention, when Ĉ = ∅, we let d(Ĉ|C) = ∞ and d(C|Ĉ) = −∞.
The last metric described in van den Burg & Williams (2020) is the coverage of a partition G by another
partition G′, which is defined as

C(G,G′) = 1
T

∑
A∈G
|A| · max

A′∈G′

|A ∩ A′|
|A ∪ A′|

with A,A′ ⊆ [1, T]. The G and G′ are collections of intervals between consecutive change points for the173

respective true and detected change points.174

5.1 Simulation Study175

We simulate dynamic graphs from three scenarios to compare the performance of the proposed and competing176

methods: Separable Temporal Exponential Random Graph Model, Stochastic Block Model, and Recurrent177

Neural Network. For each scenario with different numbers of nodes n ∈ {50, 100}, we simulate 10 Monte178

Carlo trials of directed dynamic graphs with time span T = 100. The true change points are located at179

t = 26, 51, 76, so the number of change points K = 3. Moreover, the K + 1 = 4 intervals in the partition G180

8

Under review as submission to TMLR

are A1 = [1, . . . , 25], A2 = [26, . . . , 50], A3 = [51, . . . , 75], and A4 = [76, . . . , 100]. In each specification, we181

report the means and standard deviations over 10 Monte Carlo trials for the evaluation metrics. CPDlatentN182

denotes our proposed approach with the data-driven threshold in (13), using 90% quantile from standard183

Normal distribution. We let the latent dimensions d = 10 and k = 5 for the graph decoder. CPDlatentG184

denotes our proposed approach with the localizing method in (11), using α = 0.01 from Gamma distribution.185

We let the latent dimensions k = 10 and d = n/10 for the graph decoder. The number of samples drawn186

from the Gamma distribution is m = 500 when d = 10 and m = 1000 when d = 5.187

Three competitors, gSeg (Chen & Zhang, 2015), kerSeg (Song & Chen, 2022b), and CPDstergm (Kei et al.,188

2023), are provided for comparison. The gSeg utilizes graph-based scan statistics and kerSeg employs a kernel-189

based framework to test the partition before and after a change point. The CPDstergm fits a STERGM with190

user-specified network statistics to detect change points based on the model parameters. For CPDstergm,191

we first use two network statistics, edge count and mutuality, in both formation and dissolution models to let192

p = 4. We then add one more network statistic, number of triangles, to let p = 6 as another specification. For193

gSeg, we use the minimum spanning tree to construct the similarity graph, with the approximated p-value194

of the original edge-count scan statistic, and we set α = 0.05. For kerSeg, we use the approximated p-value195

of the fGKCP1, and we set α = 0.001. Moreover, we use networks (nets.) and network statistics (stats.) as196

two types of input data to gSeg and kerSeg. Throughout, we choose these settings because they produce197

good performance on average for the competitors. Changing the settings can enhance their performance on198

some specifications, while severely jeopardizing their performance on other specifications.199

Scenario 1: Separable Temporal Exponential Random Graph Model200

In this scenario, we apply time-homogeneous Separable Temporal Exponential Random Graph Model
(STERGM) between change points to generate sequences of dynamic networks (Krivitsky & Handcock,
2014). We use three network statistics, edge count, mutuality, and number of triangles, in both formation
(F) and dissolution (D) models. The p = 6 parameters for each time point t are

θt
F , θt

D =
{
−2, 2, −2, −1, 2, 1, t ∈ A1 ∪ A3 \ 1,

−1.5, 1, −1, 2, 1, 1.5, t ∈ A2 ∪ A4.

Figure 2 exhibits examples of generated networks. Visually, STERGM produces adjacency matrices that are201

sparse, which is often the case in real world social networks.202

Table 1 displays the means and standard deviations of the evaluation metrics for comparison. Since the203

networks are directly sampled from STERGM, the CPDstergm method with correctly specified network204

statistics (p = 6) achieves the best result, in terms of greater converge of the intervals. However, when205

the network statistics are mis-specified (p = 4), the performance of CPDstergm is worsened, with greater206

gaps between the true and detected change points. Also, using either networks (nets.) or network statistics207

(stats.) cannot improve the performance of gSeg and kerSeg methods: the binary search approach tend to208

detect excessive number of change points. Our CPDlatent method, without the need of specifying network209

statistics, can achieve relatively good performance on average.210

Scenario 2: Stochastic Block Model211

In this scenario, we use Stochastic Block Model (SBM) to generate sequences of dynamic networks, and
we impose a time-dependent mechanism in the generation process as in Madrid Padilla et al. (2022). Two
probability matrices P , Q ∈ [0, 1]n×n are constructed and they are defined as

Pij =
{

0.5, i, j ∈ Bl, l ∈ [3],
0.3, otherwise,

and Qij =
{

0.45, i, j ∈ Bl, l ∈ [3],
0.2, otherwise,

where B1,B2,B3 are evenly sized clusters that form a partition of {1, . . . , n}. Then a sequence of matrices
Et ∈ [0, 1]n×n are arranged for t = 1, . . . , T such that

Et
ij =

{
Pij , t ∈ A1 ∪ A3,

Qij , t ∈ A2 ∪ A4.

9

Under review as submission to TMLR

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

Figure 2: Examples of networks generated from STERGM with n = 100. In the first row, from left to right,
each plot corresponds to the network at t = 25, 50, 75 respectively. In the second row, from left to right,
each plot corresponds to the network at t = 26, 51, 76 respectively (the change points).

Table 1: Means (standard deviations) of evaluation metrics for dynamic graphs simulated from STERGM.
The best coverage metric is bolded.

n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

50

CPDlatentN 0.1 (0.3) 4.3 (5.7) 2.6 (1.3) 90.87%
CPDlatentG 0.4 (0.6) 4.2 (6.9) 3.4 (3.4) 90.97%
CPDstergmp=4 1.5 (0.8) 11.7 (7.5) 10.5 (2.3) 67.68%
CPDstergmp=6 0.2 (0.4) 1.6 (1.2) 3 (3.5) 91.54%
gSeg (nets.) 12.3 (0.5) 0 (0) 19 (0) 27.90%
gSeg (stats.) 15.8 (0.7) 1.5 (0.5) 20.1 (0.3) 24.55%
kerSeg (nets.) 9.7 (0.9) 1.4 (0.9) 17.9 (1.2) 37.62%
kerSeg (stats.) 9.4 (0.7) 3.9 (1.3) 18 (1.8) 35.86%

100

CPDlatentN 0 (0) 3.9 (1.3) 3.9 (1.3) 91.33%
CPDlatentG 0.7 (1.3) 3.1 (1.3) 6.0 (4.0) 88.55%
CPDstergmp=4 0.7 (0.6) 21.9 (10.3) 7.6 (4.3) 67.21%
CPDstergmp=6 0 (0) 1.1 (0.3) 1.1 (0.3) 94.01%
gSeg (nets.) 12 (0) 0 (0) 19 (0) 28.00%
gSeg (stats.) 14.5 (2.3) 3.3 (3.6) 20.2 (0.4) 26.13%
kerSeg (nets.) 9.3 (0.8) 1 (0) 17.7 (0.6) 37.62%
kerSeg (stats.) 8.5 (0.8) 4.5 (1.4) 17.3 (1.7) 36.92%

Lastly, the networks are generated with ρ = 0.5 as a time-dependent mechanism. For t = 1, . . . , T − 1, we
let y1

ij ∼ Bernoulli(E1
ij) and

yt+1
ij ∼

{
Bernoulli

(
ρ(1−Et+1

ij) + Et+1
ij

)
, yt

ij = 1,

Bernoulli
(
(1− ρ)Et+1

ij

)
, yt

ij = 0.

10

Under review as submission to TMLR

With ρ > 0, the probability to form an edge for i, j becomes greater at time t + 1 when there exists an edge212

at time t, and the probability becomes smaller when there does not exist an edge at time t. Figure 3 exhibits213

examples of generated networks. Visually, SBM produces adjacency matrices with block structures, where214

mutuality serves as an important pattern for the homophily within groups.215

1 34 67 100

1
3
4

6
7

1
0
0

1 34 67 100

1
3
4

6
7

1
0
0

1 34 67 100

1
3
4

6
7

1
0
0

1 34 67 100

1
3
4

6
7

1
0
0

1 34 67 100

1
3
4

6
7

1
0
0

1 34 67 100

1
3
4

6
7

1
0
0

Figure 3: Examples of networks generated from SBM with n = 100. In the first row, from left to right, each
plot corresponds to the network at t = 25, 50, 75 respectively. In the second row, from left to right, each plot
corresponds to the network at t = 26, 51, 76 respectively (the change points).

Table 2 displays the means and standard deviations of the evaluation metrics for comparison. As expected,216

both CPDstergm methods with p = 4 and p = 6 that utilize the mutuality as a network statistic for the217

detection can achieve good results, in terms of greater converge of the intervals. Furthermore, using network218

statistics (stats.) for both gSeg and kerSeg methods can improve their performance, comparing to using219

networks (nets.) as input data. Lastly, our CPDlatent method, which infers the features in latent space that220

induce the structural changes, achieves the best result for networks with block structures.221

Scenario 3: Recurrent Neural Networks222

In this scenario, we use Recurrent Neural Networks (RNN) to generate sequences of dynamic networks.
Specifically, we sample latent variables from pre-defined priors, and we initialize the RNN with uniform
weights. The graphs are then generated by the matrix multiplication defined in Section 2.2, using the output
of RNN. The parameters for the pre-defined priors are

zt ∼

{
N (−1, 0.1Id), t ∈ A1 ∪ A3,

N (5, 0.1Id), t ∈ A2 ∪ A4.

Similar to the previous two scenarios, the simulation using RNN also imposes a time-dependent mechanism223

across dynamic networks. Figure 4 exhibits examples of generated networks. Visually, RNN produces224

adjacency matrices that are dense, and no discernible pattern can be noticed.225

Table 3 displays the means and standard deviations of the evaluation metrics for comparison. Because no226

structural pattern or suitable network statistics can be determined a priori, neither CPDstergm method with227

p = 4 nor with p = 6 can detect the change points accurately. Likewise, both gSeg and kerSeg methods that228

utilize the mis-specified network statistics (stats.) cannot produce satisfactory performance. Notably, the229

kerSeg method that exploits the features in high dimension with networks (nets.) instead of user-specified230

11

Under review as submission to TMLR

Table 2: Means (stds.) of evaluation metrics for dynamic networks simulated from SBM. The best coverage
metric is bolded.

n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

50

CPDlatentN 0 (0) 0.1 (0.3) 0.1 (0.3) 99.80%
CPDlatentG 0.3 (0.6) 0.1 (0.3) 3.1 (6.2) 96.70%
CPDstergmp=4 0.1 (0.3) 1 (0) 2.4 (4.2) 97.04%
CPDstergmp=6 0.3 (0.5) 1 (0) 4.6 (5.6) 94.74%
gSeg (nets.) 12.9 (1.8) 0 (0) 19.4 (0.8) 27.20%
gSeg (stats.) 2.2 (0.7) Inf (na) −Inf (na) 49.21%
kerSeg (nets.) 6.4 (1.4) 0 (0) 16.6 (2.0) 45.50%
kerSeg (stats.) 0.9 (1.2) 0 (0) 5.6 (6.8) 93.50%

100

CPDlatentN 0.1 (0.3) 0.1 (0.3) 1.3 (3.6) 98.60%
CPDlatentG 0.5 (0.7) 0.2 (0.4) 5.1 (6.1) 94.81%
CPDstergmp=4 0 (0) 1 (0) 1 (0) 98.04%
CPDstergmp=6 0 (0) 1 (0) 1 (0) 98.04%
gSeg (nets.) 12.3 (0.9) 0 (0) 19 (0) 27.80%
gSeg (stats.) 2 (0.4) Inf (na) −Inf (na) 55.75%
kerSeg (nets.) 6 (0.8) 0 (0) 15.2 (2.0) 47.00%
kerSeg (stats.) 0.9 (0.7) 0 (0) 9.6 (7.6) 93.40%

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

Figure 4: Examples of networks generated from RNN with n = 100. In the first row, from left to right, each
plot corresponds to the network at t = 25, 50, 75 respectively. In the second row, from left to right, each plot
corresponds to the network at t = 26, 51, 76 respectively (the change points).

network statistics (stats.) can deliver a good result. Lastly, our CPDlatent method that first infers the231

graph level representations from the complex network structures and then utilize them to detect the change232

points yields the best result.233

12

Under review as submission to TMLR

Table 3: Means (stds.) of evaluation metrics for dynamic networks simulated from RNN. The best coverage
metric is bolded.

n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

50

CPDlatentN 0 (0) 1.8 (0.7) 1.8 (0.7) 94.77%
CPDlatentG 0.3 (0.6) 1.7 (0.6) 3.2 (3.0) 93.04%
CPDstergmp=4 2.0 (1.7) 6.0 (7.7) 15.2 (4.9) 72.10%
CPDstergmp=6 1.0 (0.4) 18.5 (9.4) 14.3 (2.9) 60.25%
gSeg (nets.) 2.3 (0.6) Inf (na) −Inf (na) 29.42%
gSeg (stats.) 2.9 (0.3) Inf (na) −Inf (na) 2.47%
kerSeg (nets.) 1.5 (0.9) 1.4 (0.7) 5.3 (3.3) 89.25%
kerSeg (stats.) 2.8 (0.4) Inf (na) −Inf (na) 9.89%

100

CPDlatentN 0 (0) 2.5 (0.7) 2.5 (0.7) 91.96%
CPDlatentG 0.2 (0.6) 2.1 (0.7) 2.8 (1.8) 92.34%
CPDstergmp=4 2.0 (1.4) 10.6 (8.0) 14.1 (3.1) 60.37%
CPDstergmp=6 1.2 (1.3) 20.6 (12.6) 15.2 (5.9) 53.21%
gSeg (nets.) 3 (0) Inf (na) −Inf (na) 0%
gSeg (stats.) 2.9 (0.3) Inf (na) −Inf (na) 4.27%
kerSeg (nets.) 1.4 (0.7) 1.9 (0.7) 5.4 (1.9) 88.95%
kerSeg (stats.) 3 (0) Inf (na) −Inf (na) 0%

5.2 MIT Cellphone Data234

The Massachusetts Institute of Technology (MIT) cellphone data (Eagle & Pentland, 2006) depicts human235

interactions via phone call activities among n = 96 participants spanning T = 232 days. An edge yt
ij = 1 in236

the constructed networks indicates that participant i and participant j had made phone calls on day t, and237

yt
ij = 0 otherwise. The data ranges from 2004-09-15 to 2005-05-04, covering the winter break in the MIT238

academic calendar.239

We detect the change points with our proposed method using the data-driven threshold from standard240

Normal distribution, and we use network statistics as input data to the competitor methods. Specifically,241

we use the number of edges, isolates, and triangles to capture the frequency of connections, the sparsity242

of social interaction, and the transitive association among friends, respectively. Figure 5 displays ∆ζ̂ of243

Equation (12), and the detected change points from our method and competitor methods. Furthermore,244

Table 4 provides a list of potential events, aligning with the detected change points from our method.245

Without specifying the structural changes to search for, our method can punctually detect the beginning246

of the winter break, which is the major event that alters the interaction among participants. Similar to247

the competitors, we have detected a spike on 2004-10-23, corresponding to the annual sponsor meeting that248

occurred on 2004-10-21. More than two-thirds of the participants have attended the meeting, focusing on249

achieving project goals throughout the week (Eagle & Pentland, 2006). Moreover, we have detected other250

change points related to national holidays and spring break.251

5.3 Enron Email Data252

The Enron email data, analyzed by Priebe et al. (2005), Park et al. (2012), and Peel & Clauset (2015), por-253

trays communication among employees before the collapse of a giant energy company. The dynamic network254

data consists of T = 100 weekly networks, ranging from 2000-06-05 to 2002-05-06 for n = 100 employees. We255

detect the change points with our proposed method using the data-driven threshold from standard Normal256

distribution, and we use the same network statistics described in Section 5.2 to the competitor methods.257

13

Under review as submission to TMLR

2004−10−23 2004−12−17 2005−01−18 2005−02−22 2005−04−02

Detected Change Points

M
ag

ni
tu

de

0

2

4

6

8

CPDstergm

kerSeg

gSeg

Figure 5: Detected change points from the proposed and competitor (blue) methods on the MIT Cellphone
Data. The threshold (red horizontal line) is calculated by (13) with Z0.9.

Table 4: Potential nearby events aligned with the detected change points from our proposed method on the
MIT cellphone data.

Detected change points Potential nearby events

2004-10-23 2004-10-21 Sponsor meeting
2004-12-17 2004-12-18 to 2005-01-02 Winter break
2005-01-18 2005-01-17 Martin Luther King Day
2005-02-22 2005-02-21 Presidents Day
2005-04-02 2005-03-21 to 2005-03-25 Spring break

Figure 6 displays ∆ζ̂ of Equation (12), and the detected change points from our method and competitor258

methods. Furthermore, Table 5 provides a list of potential events, aligning with the detected change points259

from our method.260

In 2001, Enron underwent a multitude of major and overlapping incidents, making it difficult to associate261

the detected change points with specific real world events. Yet, as our proposed method detects the results262

over the two-year time frame, four crucial change points are detected for interpretation. Throughout 2000,263

Enron orchestrated rolling blackouts, causing staggering surges in electricity prices that peaked at twenty264

times the standard rate. The situation worsened when the Federal Energy Regulatory Commission (FERC)265

exonerated Enron of wrongdoing by the end of 2000. During a public appearance in June 2001, the CEO is266

physically confronted by an activist in protest against Enron’s role in the energy crisis. Amid the turmoil,267

an employee meeting took place in September 2001, where the CEO reassured employees that Enron’s stock268

was a good buy and the company’s accounting methods were legal and appropriate. Following the employee269

meeting, the stock saw a brief surge before continuing its sharp decline. Three months later, pressured by270

Wall Street analysts and the revelation of the scandals, Enron filed for bankruptcy and the largest energy271

company in the U.S. fell apart.272

14

Under review as submission to TMLR

2000−10−16 2001−06−11 2001−09−24 2001−12−03

Detected Change Points

M
ag

ni
tu

de

0

2

4

6

8

CPDstergm

kerSeg

gSeg

Figure 6: Detected change points from the proposed and competitor (blue) methods on the Enron email
data. The threshold (red horizontal line) is calculated by (13) with Z0.9.

Table 5: Potential nearby events aligned with the detected change points from our proposed method on the
Enron email data.

Detected change points Potential nearby events

2000-10-16 2000-11-01 FERC exonerated Enron
2001-06-11 2001-06-21 CEO publicly confronted
2001-09-24 2001-09-26 Employee meeting
2001-12-03 2001-12-02 Enron filed for bankruptcy

6 Discussion273

This paper proposes a generative model to detect change points in dynamic graphs. Intrinsically, dynamic274

networks are complex due to dyadic and temporal dependencies. Learning low dimensional graph represen-275

tations can extract useful features to facilitate change point detection in dynamic graphs. We impose prior276

distributions to the graph representations, and the priors for the latent space are learned from the data277

as empirical Bayes. The optimization problem with Group Fused Lasso penalty is solved via ADMM, and278

generative model is demonstrated to be useful for change point detection.279

Several extensions to our proposed framework are possible for future development. Besides binary networks,280

relations by nature have degree of strength, which are denoted by generic values. Also, nodal and dyadic281

attributes are important components in network data. Hence, models that can generate weighted edges, as282

well as nodal and dyadic attributes, can capture more information about the network dynamics (Fellows &283

Handcock, 2012; Krivitsky, 2012; Simonovsky & Komodakis, 2018). Furthermore, the number of nodes and284

their attributes are subjected to change over time. Extending the framework to allow the network size to285

change and to detect vertex level anomalies can provide granular insights in addition to graph level changes286

(Simonovsky & Komodakis, 2018; Shen et al., 2023). Similarly, improving the scalability and computational287

efficiency for representation learning is also crucial (Killick et al., 2012; Gallagher et al., 2021), especially288

for handling large and weighted graphs. While our framework demonstrates the ability in change point289

detection, the development of more sophisticated architectures can enhance the model’s capacity on other290

meaningful tasks (Handcock et al., 2007; Kolar et al., 2010; Yu et al., 2021; Madrid Padilla et al., 2023).291

15

Under review as submission to TMLR

References292

Carlos M Alaíz, Alvaro Barbero, and José R Dorronsoro. Group fused lasso. In Artificial Neural Networks293

and Machine Learning–ICANN 2013: 23rd International Conference on Artificial Neural Networks Sofia,294

Bulgaria, September 10-13, 2013. Proceedings 23, pp. 66–73. Springer, 2013.295

Kevin Bleakley and Jean-Philippe Vert. The group fused lasso for multiple change-point detection. arXiv296

preprint arXiv:1106.4199, 2011.297

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimization298

and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in299

Machine Learning, 3(1):1–122, 2011.300

Carter T Butts. A relational event framework for social action. Sociological Methodology, 38(1):155–200,301

2008.302

Carter T Butts, Alessandro Lomi, Tom AB Snijders, and Christoph Stadtfeld. Relational event models in303

network science. Network Science, 11(2):175–183, 2023.304

Guodong Chen, Jesús Arroyo, Avanti Athreya, Joshua Cape, Joshua T Vogelstein, Youngser Park, Chris305

White, Jonathan Larson, Weiwei Yang, and Carey E Priebe. Multiple network embedding for anomaly306

detection in time series of graphs. arXiv preprint arXiv:2008.10055, 2020.307

Hao Chen and Nancy Zhang. Graph-based change-point detection. The Annals of Statistics, 43(1):139–176,308

2015.309

Lynna Chu and Hao Chen. Asymptotic distribution-free change-point detection for multivariate and non-310

euclidean data. The Annals of Statistics, 47(1):382–414, 2019.311

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional312

transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.313

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Graph neural314

networks with learnable structural and positional representations. arXiv preprint arXiv:2110.07875, 2021.315

Nathan Eagle and Alex (Sandy) Pentland. Reality mining: sensing complex social systems. Personal and316

Ubiquitous Computing, 10(4):255–268, 2006.317

Ian Fellows and Mark S. Handcock. Exponential-family random network models, 2012.318

Ian Gallagher, Andrew Jones, and Patrick Rubin-Delanchy. Spectral embedding for dynamic networks with319

stability guarantees. Advances in Neural Information Processing Systems, 34:10158–10170, 2021.320

Damien Garreau and Sylvain Arlot. Consistent change-point detection with kernels. Electronic Journal of321

Statistics, 12(2):4440 – 4486, 2018.322

Yongshun Gong, Xue Dong, Jian Zhang, and Meng Chen. Latent evolution model for change point detection323

in time-varying networks. Information Sciences, 646:119376, 2023.324

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Advances325

in neural information processing systems, 30, 2017.326

Mingqi Han, Eric A Bushong, Mayuko Segawa, Alexandre Tiard, Alex Wong, Morgan R Brady, Milica327

Momcilovic, Dane M Wolf, Ralph Zhang, Anton Petcherski, et al. Spatial mapping of mitochondrial328

networks and bioenergetics in lung cancer. Nature, 615(7953):712–719, 2023.329

Mark S Handcock, Adrian E Raftery, and Jeremy M Tantrum. Model-based clustering for social networks.330

Journal of the Royal Statistical Society: Series A (Statistics in Society), 170(2):301–354, 2007.331

Steve Hanneke, Wenjie Fu, and Eric P Xing. Discrete temporal models of social networks. Electronic Journal332

of Statistics, 4:585–605, 2010.333

16

Under review as submission to TMLR

Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A generalization334

of vit/mlp-mixer to graphs. In International Conference on Machine Learning, pp. 12724–12745. PMLR,335

2023.336

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural337

information processing systems, 33:6840–6851, 2020.338

Shenyang Huang, Yasmeen Hitti, Guillaume Rabusseau, and Reihaneh Rabbany. Laplacian change point339

detection for dynamic graphs. In Proceedings of the 26th ACM SIGKDD International Conference on340

Knowledge Discovery & Data Mining, pp. 349–358, 2020.341

Yik Lun Kei, Hangjian Li, Yanzhen Chen, and Oscar Hernan Madrid Padilla. Change point detection on a342

separable model for dynamic networks. arXiv preprint arXiv:2303.17642, 2023.343

Rebecca Killick, Paul Fearnhead, and Idris A Eckley. Optimal detection of changepoints with a linear344

computational cost. Journal of the American Statistical Association, 107(500):1590–1598, 2012.345

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.346

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308, 2016.347

Mladen Kolar, Le Song, Amr Ahmed, and Eric P Xing. Estimating time-varying networks. The Annals of348

Applied Statistics, pp. 94–123, 2010.349

Pavel N Krivitsky. Exponential-family random graph models for valued networks. Electronic journal of350

statistics, 6:1100, 2012.351

Pavel N Krivitsky and Mark S Handcock. A separable model for dynamic networks. Journal of the Royal352

Statistical Society. Series B, Statistical Methodology, 76(1):29, 2014.353

Federico Larroca, Paola Bermolen, Marcelo Fiori, and Gonzalo Mateos. Change point detection in weighted354

and directed random dot product graphs. In 2021 29th European Signal Processing Conference (EU-355

SIPCO), pp. 1810–1814. IEEE, 2021.356

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves357

Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for natural language358

generation, translation, and comprehension. arXiv preprint arXiv:1910.13461, 2019.359

Carlos Misael Madrid Padilla, Haotian Xu, Daren Wang, Oscar Hernan Madrid Padilla, and Yi Yu. Change360

point detection and inference in multivariable nonparametric models under mixing conditions. arXiv361

preprint arXiv:2301.11491, 2023.362

Oscar Hernan Madrid Padilla, Yi Yu, Daren Wang, and Alessandro Rinaldo. Optimal nonparametric multi-363

variate change point detection and localization. IEEE Transactions on Information Theory, 68(3):1922–364

1944, 2021.365

Oscar Hernan Madrid Padilla, Yi Yu, and Carey E Priebe. Change point localization in dependent dynamic366

nonparametric random dot product graphs. The Journal of Machine Learning Research, 23(1):10661–367

10719, 2022.368

Bernardo Marenco, Paola Bermolen, Marcelo Fiori, Federico Larroca, and Gonzalo Mateos. Online change369

point detection for weighted and directed random dot product graphs. IEEE Transactions on Signal and370

Information Processing over Networks, 8:144–159, 2022.371

Erik Nijkamp, Mitch Hill, Tian Han, Song-Chun Zhu, and Ying Nian Wu. On the anatomy of mcmc-based372

maximum likelihood learning of energy-based models. In Proceedings of the AAAI Conference on Artificial373

Intelligence, volume 34, pp. 5272–5280, 2020.374

Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. Adversarially regularized375

graph autoencoder for graph embedding. arXiv preprint arXiv:1802.04407, 2018.376

17

Under review as submission to TMLR

Bo Pang, Tian Han, Erik Nijkamp, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based377

prior model. Advances in Neural Information Processing Systems, 33:21994–22008, 2020.378

Jong Hee Park and Yunkyu Sohn. Detecting Structural Changes in Longitudinal Network Data. Bayesian379

Analysis, 15(1):133 – 157, 2020.380

Youngser Park, Carey E Priebe, and Abdou Youssef. Anomaly detection in time series of graphs using fusion381

of graph invariants. IEEE journal of selected topics in signal processing, 7(1):67–75, 2012.382

Leto Peel and Aaron Clauset. Detecting change points in the large-scale structure of evolving networks. In383

Proceedings of the AAAI Conference on Artificial Intelligence, volume 29, 2015.384

Carey E Priebe, John M Conroy, David J Marchette, and Youngser Park. Scan statistics on enron graphs.385

Computational & Mathematical Organization Theory, 11:229–247, 2005.386

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution387

image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer388

vision and pattern recognition, pp. 10684–10695, 2022.389

S Golshid Sharifnia and Abbas Saghaei. A statistical approach for social network change detection: an ergm390

based framework. Communications in Statistics-Theory and Methods, 51(7):2259–2280, 2022.391

Cencheng Shen, Jonathan Larson, Ha Trinh, Xihan Qin, Youngser Park, and Carey E Priebe. Discover-392

ing communication pattern shifts in large-scale labeled networks using encoder embedding and vertex393

dynamics. IEEE Transactions on Network Science and Engineering, 2023.394

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using variational395

autoencoders. In Artificial Neural Networks and Machine Learning–ICANN 2018: 27th International396

Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part I 27, pp.397

412–422. Springer, 2018.398

Tom AB Snijders. The statistical evaluation of social network dynamics. Sociological methodology, 31(1):399

361–395, 2001.400

Tom AB Snijders, Gerhard G Van de Bunt, and Christian EG Steglich. Introduction to stochastic actor-based401

models for network dynamics. Social networks, 32(1):44–60, 2010.402

Hoseung Song and Hao Chen. Asymptotic distribution-free changepoint detection for data with repeated403

observations. Biometrika, 109(3):783–798, 2022a.404

Hoseung Song and Hao Chen. New kernel-based change-point detection. arXiv preprint arXiv:2206.01853,405

2022b.406

Deborah Sulem, Henry Kenlay, Mihai Cucuringu, and Xiaowen Dong. Graph similarity learning for change-407

point detection in dynamic networks. Machine Learning, pp. 1–44, 2023.408

Gerrit JJ van den Burg and Christopher KI Williams. An evaluation of change point detection algorithms.409

arXiv preprint arXiv:2003.06222, 2020.410

Jean-Philippe Vert and Kevin Bleakley. Fast detection of multiple change-points shared by many signals411

using group lars. Advances in Neural Information Processing Systems, 23, 2010.412

Yu Wang, Wotao Yin, and Jinshan Zeng. Global convergence of admm in nonconvex nonsmooth optimization.413

Journal of Scientific Computing, 78:29–63, 2019.414

Jianwen Xie, Song-Chun Zhu, and Ying Nian Wu. Synthesizing dynamic patterns by spatial-temporal415

generative convnet. In Proceedings of the ieee conference on computer vision and pattern recognition, pp.416

7093–7101, 2017.417

18

Under review as submission to TMLR

Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu, and Ying Nian Wu. Cooperative training of descriptor418

and generator networks. IEEE transactions on pattern analysis and machine intelligence, 42(1):27–45,419

2018.420

Yi Yu, Oscar Hernan Madrid Padilla, Daren Wang, and Alessandro Rinaldo. Optimal network online change421

point localisation. arXiv preprint arXiv:2101.05477, 2021.422

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal of the423

Royal Statistical Society Series B: Statistical Methodology, 68(1):49–67, 2006.424

Xinxun Zhang, Pengfei Jiao, Mengzhou Gao, Tianpeng Li, Yiming Wu, Huaming Wu, and Zhidong Zhao.425

Vggm: Variational graph gaussian mixture model for unsupervised change point detection in dynamic426

networks. IEEE Transactions on Information Forensics and Security, 2024.427

Zifeng Zhao, Li Chen, and Lizhen Lin. Change-point detection in dynamic networks via graphon estimation.428

arXiv preprint arXiv:1908.01823, 2019.429

19

Under review as submission to TMLR

7 Appendix430

7.1 Updating µ and ϕ431

In this section, we derive the updates for prior parameter µ ∈ RT ×d and graph decoder parameter ϕ. Denote
the objective function in Equation (4) as L(ϕ, µ) and denote the set of parameters {ϕ, µ} as θ. We first
calculate the gradient of the log-likelihood l(θ) in L(ϕ, µ) with respect to θ:

∇θ l(θ) = ∇θ

T∑
t=1

log P (yt)

=
T∑

t=1

1
P (yt)∇θP (yt)

=
T∑

t=1

1
P (yt)∇θ

∫
P (yt, zt)dzt

=
T∑

t=1

1
P (yt)

∫
P (yt, zt)

[
∇θ log P (yt, zt)

]
dzt

=
T∑

t=1

∫
P (yt, zt)

P (yt)

[
∇θ log P (yt, zt)

]
dzt

=
T∑

t=1

∫
P (zt|yt)

[
∇θ log P (yt, zt)

]
dzt

=
T∑

t=1
EP (zt|yt)

(
∇θ log

[
P (yt|zt)P (zt)

])
=

T∑
t=1

EP (zt|yt)

(
∇θ log P (yt|zt)

)
+

T∑
t=1

EP (zt|yt)

(
∇θ log P (zt)

)
.

Note that the expectation in the gradient is now with respect to the posterior distribution P (zt|yt) ∝
P (yt|zt) × P (zt). Furthermore, the gradient of L(ϕ, µ) with respect to the prior parameter µt ∈ Rd at a
specific time point t is

∇µt L(ϕ, µ) = −EP (zt|yt)

(
∇µt log P (zt)

)
+ κ(µt − νt + wt)

= −EP (zt|yt)(zt − µt) + κ(µt − νt + wt).

Setting the gradient ∇µt L(ϕ, µ) to zeros and solve for µt, we have

0 = −EP (zt|yt)(zt) + (1 + κ)µt − κ(νt −wt)
(1 + κ)µt = EP (zt|yt)(zt) + κ(νt −wt)

µt = 1
1 + κ

EP (zt|yt)(zt) + κ

1 + κ
(νt −wt).

Evidently, the gradient of L(ϕ, µ) with respect to the graph decoder parameter ϕ is

∇ϕ L(ϕ, µ) = −
T∑

t=1
EP (zt|yt)

(
∇ϕ log P (yt|zt)

)
.

7.2 Langevin Dynamics432

Calculating the solution in (7) and the gradient in (8) requires evaluating the conditional expectations under
the posterior distribution P (zt|yt) ∝ P (yt|zt) × P (zt). In this section, we discuss the Langevin Dynamics

20

Under review as submission to TMLR

to sample zt ∈ Rd from the posterior distribution P (zt|yt) that is conditional on the observed network
yt ∈ {0, 1}n×n. The Langevin Dynamics, a short run MCMC, is achieved by iterating the following:

zt
τ+1 = zt

τ + δ
[
∇zt log P (zt|yt)

]
+
√

2δϵ

= zt
τ + δ

[
∇zt log P (yt|zt) +∇zt log P (zt)−∇zt log P (yt)

]
+
√

2δϵ

= zt
τ + δ

[
∇zt log P (yt|zt)− (zt

τ − µt)
]

+
√

2δϵ

where τ is the time step and δ is the step size of the Langevin Dynamics. The error term ϵ ∼ N (0, Id) serves433

as a random perturbation to the sampling process. The gradient of the graph decoder P (yt|zt) with respect434

to the latent variable zt can be calculated efficiently through back-propagation. Essentially, we use MCMC435

samples to approximate the conditional expectation EP (zt|yt)(·) in the solution (7) and the gradient (8).436

7.3 Group Lasso for Updating β437

In this section, we present the derivation to update β in Proposition 2, which is equivalent to solving a
Group Lasso problem Yuan & Lin (2006). We adapt the derivation from Bleakley & Vert (2011) for our
proposed ADMM algorithm. Denote the objective function in (5) as L(γ, β). When βt,· ̸= 0, the gradient
of L(γ, β) with respect to βt,· is

∇βt,·L(γ, β) = λ
βt,·

∥βt,·∥2
− κX⊤

·,t(µ(a+1) + w(a) − 1T,1γ −X·,tβt,· −X·,−tβ−t,·)

where X·,t ∈ RT ×1 is the t-th column of matrix X ∈ RT ×(T −1) and βt,· ∈ R1×d is the t-th row of matrix438

β ∈ R(T −1)×d. Moreover, we denote β−t,· ∈ R(T −1)×p as the matrix obtained by replacing the t-th row of439

matrix β with a zero vector, and X·,−t ∈ RT ×(T −1) is denoted similarly.440

Setting the above gradient to zeros, we have441

βt,· = (κX⊤
·,tX·,t + λ

∥βt,·∥ 2
)−1bt (14)

where
bt = κX⊤

·,t(µ(a+1) + w(a) − 1T,1γ −X·,−tβ−t,·) ∈ R1×d.

Calculating the Euclidean norm of (14) on both sides and rearrange the terms, we have

∥βt,·∥2 = (κX⊤
·,tX·,t)−1(∥bt∥2 − λ).

Plugging ∥βt,·∥2 into (14) for substitution, the solution of βt,· is arrived at

βt,· = 1
κX⊤

·,tX·,t
(1− λ

∥bt∥2
)bt.

Moreover, when βt,· = 0, the subgradient v of ∥βt,·∥2 needs to satisfy that ∥v∥2 ≤ 1. Because

0 ∈ λv − κX⊤
·,t(µ(a+1) + w(a) − 1T,1γ −X·,−tβ−t,·),

we obtain the condition that βt,· becomes 0 when ∥bt∥2 ≤ λ. Therefore, we can iteratively apply the
following to update βt,· for each block t = 1, . . . , T − 1:

βt,· ←
1

κX⊤
·,tX·,t

(
1− λ

∥bt∥2

)
+

bt

where (·)+ = max(·, 0).442

21

Under review as submission to TMLR

7.4 Practical Guidelines443

7.4.1 ADMM Implementation444

In this section, we provide practical guidelines for the proposed framework and the Alternating Direction445

Method of Multipliers (ADMM) algorithm. For Langevin Dynamic sampling, we set δ = 0.5, and we draw446

s = 200 samples for each time point t. To detect change points using the data-driven threshold in (13), we447

let the tuning parameter λ = {10, 20, 50, 100}. To detect change points using the localizing method with448

Gamma distribution in (11), we let the tuning parameter λ = {5, 10, 20, 50}. For each λ, we run A = 50449

iterations of ADMM. Within each ADMM iteration, we run B = 20 iterations of gradient descent with Adam450

optimizer for the graph decoder and D = 20 iterations of block coordinate descent for Group Lasso.451

Since the proposed generative model is a probability distribution for the observed network data, in this work452

we stop ADMM learning with the following stopping criteria:453 ∣∣∣∣ l(ϕ(a+1), µ(a+1))− l(ϕ(a), µ(a))
l(ϕ(a), µ(a))

∣∣∣∣ ≤ ϵtol. (15)

The log-likelihood l(ϕ, µ) is approximated by sampling from the prior distribution p(zt), as described in454

Section 4.2. Hence, we stop the ADMM procedure until the above criteria is satisfied for a′ consecutive455

iterations. In Section 5, we set ϵtol = 10−5 and a′ = 5.456

Here we briefly elaborate on the computational aspect of the approximation of the log-likelihood. To calculate
the product of edge probabilities for the conditional distribution P (yt|zt), we have the following:

T∑
t=1

log P (yt) =
T∑

t=1
log

∫
P (yt|zt)P (zt)dzt

=
T∑

t=1
logEP (zt)[

∏
(i,j)∈Y

P (yt
ij |zt)]

≈
T∑

t=1
log

[1
s

s∑
u=1

[
∏

(i,j)∈Y

P (yt
ij |zt

u)]
]

=
T∑

t=1
log

[1
s

s∑
u=1

exp{
∑

(i,j)∈Y

log[P (yt
ij |zt

u)]}
]

=
T∑

t=1

{
− log s + log

[
exp Ct

s∑
u=1

exp{
∑

(i,j)∈Y

log[P (yt
ij |zt

u)]− Ct}
]}

=
T∑

t=1

{
Ct + log

[s∑
u=1

exp{
∑

(i,j)∈Y

log[P (yt
ij |zt

u)]− Ct}
]}
− T log s

where Ct ∈ R is the maximum value of
∑

(i,j)∈Y log[P (yt
ij |zt

u)] over m samples but within a time point t.457

We also update the penalty parameter κ to improve convergence and to reduce reliance on its initialization.
In particular, after the a-th ADMM iteration, we calculate the respective primal and dual residuals:

r
(a)
primal =

√√√√ 1
T × d

T∑
t=1
∥µt

(a) − νt
(a)∥

2
2 and r

(a)
dual =

√√√√ 1
T × d

T∑
t=1
∥νt

(a) − νt
(a−1)∥

2
2.

Throughout, we initialize the penalty parameter κ = 10. We jointly update the penalty parameter κ and
the scaled dual variable w as in Boyd et al. (2011) with the following conditions:

κ(a+1) = 2κ(a), w(a+1) = 1
2w(a), if r

(a)
primal > 10× r

(a)
dual,

κ(a+1) = 1
2κ(a), w(a+1) = 2w(a), if r

(a)
dual > 10× r

(a)
primal.

22

Under review as submission to TMLR

7.4.2 Post-Processing458

Since neural networks may be over-fitted for a statistical model in change point detection, we track the
following Coefficient of Variation as a signal-to-noise ratio when we learn the model parameter with the full
data:

Coefficient of Variation = mean(∆µ̂)
sd(∆µ̂) .

We choose the learned parameter µ̂ with the largest Coefficient of Variation as final output.459

By convention, we also implement two post-processing steps to finalize the detected change points. When460

the gap between two consecutive change points is small or Ĉk−Ĉk−1 < ϵspc, we preserve the detected change461

point with greater ∆ζ̂ value to prevent clusters of nearby change points. Moreover, as the endpoints of a462

time span are usually not of interest, we remove the Ĉk smaller than a threshold ϵend and the Ĉk greater463

than T − ϵend. In Section 5, we set ϵspc = 5 and ϵend = 5.464

23

	Introduction
	Generative Model for Change Point Detection
	Model Specification
	Graph Decoder
	Change Points

	Learning and Inference
	Learning Priors from Dynamic Graphs
	Parameters Update
	Updating TEXT and TEXT
	Updating TEXT and TEXT

	Change Point Localization and Model Selection
	Change Point Localization
	Model Selection

	Simulated and Real Data Experiments
	Simulation Study
	MIT Cellphone Data
	Enron Email Data

	Discussion
	Appendix
	Updating TEXT and TEXT
	Langevin Dynamics
	Group Lasso for Updating TEXT
	Practical Guidelines
	ADMM Implementation
	Post-Processing

