
LETS-C: Leveraging Text Embedding for Time Series Classification

Anonymous ACL submission

Abstract
Recent advancements in language modeling001
have shown promising results when applied to002
time series data. In particular, fine-tuning pre-003
trained large language models (LLMs) for time004
series classification tasks has achieved state-of-005
the-art (SOTA) performance on standard bench-006
marks. However, these LLM-based models007
have a significant drawback due to the large008
model size, with the number of trainable param-009
eters in the millions. In this paper, we propose010
an alternative approach to leveraging the suc-011
cess of language modeling in the time series do-012
main. Instead of fine-tuning LLMs, we utilize a013
text embedding model to embed time series and014
then pair the embeddings with a simple classi-015
fication head composed of convolutional neu-016
ral networks (CNN) and multilayer perceptron017
(MLP). We conducted extensive experiments018
on a well-established time series classification019
benchmark. We demonstrated LETS-C not only020
outperforms the current SOTA in classification021
accuracy but also offers a lightweight solution,022
using only 14.5% of the trainable parameters023
on average compared to the SOTA model. Our024
findings suggest that leveraging text embedding025
models to encode time series data, combined026
with a simple yet effective classification head,027
offers a promising direction for achieving high-028
performance time series classification while029
maintaining a lightweight model architecture.030
The implementation code is available at https:031
//anonymous.4open.science/r/LETS-C.032

1 Introduction033

Time series classification (Bagnall et al., 2017;034

Abanda et al., 2019; Ismail Fawaz et al., 2019)035

has gained attention due to its applications in fi-036

nance (Passalis et al., 2017), healthcare (Lipton037

et al., 2016), and activity recognition (Yang et al.,038

2015). The growing availability of time series039

data has driven demand for efficient and accurate040

classification methods. Advances in natural lan-041

guage processing (NLP) and large language mod-042

els (LLMs) (Achiam et al., 2023) have demon- 043

strated strong promises in modeling sequential 044

data (Achiam et al., 2023). Inspired by this, re- 045

searchers have explored applying LLMs to time 046

series via prompting (Gruver et al., 2024; Liu et al., 047

2024; Merrill et al., 2024; Chu et al., 2024) or 048

fine-tuning (Jin et al., 2023; Zhou et al., 2024), 049

achieving state-of-the-art (SOTA) performance on 050

well-established benchmarks for tasks including 051

classification and forecasting. 052

However, LLMs for time series classification 053

face a major drawback—their large size, often 054

with billions of parameters, making them compu- 055

tationally expensive and impractical in resource- 056

limited settings (Bommasani et al., 2021). Fine- 057

tuning partially frozen pre-trained LLMs still re- 058

quires millions of trainable parameters (Zhou et al., 059

2024). To mitigate this, we propose an alterna- 060

tive approach to leverage the success of language 061

modeling in the time series domain. In particular, 062

we propose a novel approach, LETS-C (Leveraging 063

Text Embeddings for Time Series Classification), 064

which utilizes off-the-shelf text embedding models 065

instead of fine-tuning LLMs for time series classi- 066

fication. To the best of our knowledge, this work is 067

the first to explore the potential of text embeddings 068

in time series analysis, specifically classification, 069

and demonstrate SOTA performance. 070

LETS-C combines text embeddings with a sim- 071

ple yet effective classification head composed of 072

convolutional neural networks (CNNs) and a multi- 073

layer perceptron (MLP). By projecting time series 074

data using text embedding models, we capture the 075

intricate patterns and dependencies present in the 076

temporal data. The embeddings and time series are 077

then fed into the classification head, which learns 078

to discriminate between different classes. Through 079

extensive experiments on a well-established bench- 080

mark containing time series datasets from vari- 081

ous domains, we demonstrated that LETS-C outper- 082

forms 27 baselines including the previous SOTA 083

1

https://anonymous.4open.science/r/LETS-C
https://anonymous.4open.science/r/LETS-C
https://anonymous.4open.science/r/LETS-C

method. Moreover, LETS-C is significantly more084

efficient, using much less trainable parameters than085

the previous SOTA. Our key contributions are:086

• Text Embeddings for Time Series: We introduce087

LETS-C, the first work to leverage text embed-088

dings for time series analysis, specifically for089

classification tasks.090

• State-of-the-Art Performance: LETS-C achieves091

SOTA performance in classification accuracy on092

a well-established benchmark containing time se-093

ries datasets across different domains, surpassing094

27 baseline models.095

• Computationally Lightweight: LETS-C is sig-096

nificantly more efficient, achieving higher accu-097

racy while using much fewer trainable parame-098

ters (14.5%) than the existing SOTA method.099

In addition, we conducted comprehensive analyses100

to showcase the effectiveness of LETS-C:101

• Intrinsic Discriminative Power of Time Series102

Embeddings: We demonstrate the advantage of103

text embeddings for time series, showing that104

embeddings of time series from the same class105

are more similar than those from different classes,106

explaining the boost in classification accuracy.107

• Generalization Across Various Text Embedding108

Models: LETS-C with different text embedding109

models consistently outperforms previous SOTA110

with much fewer trainable parameters, further111

validating the effectiveness of our approach.112

• Optimizing Model Size with Minimal Accuracy113

Loss: LETS-C retains a high percentage of accu-114

racy even as the classification model size shrinks115

considerably, enhancing computational efficiency116

with minimal impact on performance.117

2 Related Work118

We review the related works in three key areas:119

time series classification, the application of lan-120

guage models to time series data, and text embed-121

dings. See Appendix A for an extended review.122

Time Series Classification Time series clas-123

sification has been an active research area for124

decades. Early methods focused on distance-based125

approaches (Abanda et al., 2019), such as Dynamic126

Time Warping (Berndt and Clifford, 1994) and dis-127

tance kernels with Support Vector Machines (Kam-128

pouraki et al., 2008). Others used feature extrac-129

tion with classifiers like eXtreme Gradient Boost-130

ing (XGBoost) (Chen and Guestrin, 2016) and131

LightGBM (Ke et al., 2017). Deep learning-based 132

approaches, including CNNs (Wu et al., 2022a; 133

Zhao et al., 2017), MLPs (Zhang et al., 2022a), 134

and Recurrent Neural Networks (RNNs) like Long 135

Short-Term Memory (LSTM) (Lai et al., 2018), 136

later gained popularity for learning complex pat- 137

terns and handling long sequences. More recently, 138

Transformer-based models (Vaswani et al., 2017) 139

have been adapted from NLP to time series (Nie 140

et al., 2023; Zhou et al., 2022; Zhang et al., 2022b; 141

Eldele et al., 2021; Wu et al., 2021; Zhou et al., 142

2021; Koval et al., 2024), leveraging self-attention 143

for long-range dependencies. Additionally, unsu- 144

pervised representation learning methods pre-train 145

models with masked time series modeling to mini- 146

mize reconstruction error, followed by fine-tuning 147

for downstream tasks like classification (Franceschi 148

et al., 2019; Tonekaboni et al., 2021; Yue et al., 149

2022; Eldele et al., 2021; Zerveas et al., 2021; 150

Goswami et al., 2024). However, these complex 151

models often require larger sizes and higher com- 152

putational costs, particularly for training. 153

Language Models for Time Series The suc- 154

cess of LLMs in NLP has inspired their appli- 155

cation in time series analysis. Surveys (Zhang 156

et al., 2024; Jiang et al., 2024) provide insights into 157

key methodologies, challenges, and future direc- 158

tions. Recent studies explore integrating time series 159

and language, including structured time series-text 160

modeling (Khadanga et al., 2019; Deznabi et al., 161

2021), natural language descriptions of time se- 162

ries (Murakami et al., 2017; Jhamtani and Berg- 163

Kirkpatrick, 2021; Fons et al., 2024), and various 164

applications (Li et al., 2024a; Drinkall et al., 2024; 165

Kawarada et al., 2024). Pre-trained LLMs have 166

been used for time series forecasting via prompt- 167

ing (Gruver et al., 2024; Liu et al., 2024; Cao et al., 168

2023), while (Yu et al., 2023) explored their po- 169

tential for generating explainable financial fore- 170

casts. Time-LLM (Jin et al., 2023) maps time series 171

to the language embedding space, enabling LLM- 172

based forecasting (Yang et al., 2021). More impor- 173

tantly, recent work, OneFitsAll (Zhou et al., 2024) 174

achieved SOTA performance on various time se- 175

ries tasks by fine-tuning LLMs like GPT (Radford 176

et al., 2019). In contrast, we propose leveraging 177

text embeddings instead of directly using LLMs for 178

time series analysis. Our approach establishes new 179

SOTA performance on time series classification 180

tasks with significantly fewer trainable parameters, 181

making it a more efficient alternative. 182

2

Text Embeddings Text embeddings are crucial183

in NLP, mapping words or sentences into dense184

vector spaces to capture semantic and syntactic in-185

formation. Text embedding techniques range from186

word-level embeddings like Word2Vec (Mikolov187

et al., 2013) and GloVe (Pennington et al., 2014)188

to contextualized embeddings from pre-trained189

models like BERT (Devlin et al., 2019) and190

RoBERTa (Liu et al., 2019b). In time series, unsu-191

pervised methods have been proposed for learning192

embeddings (Franceschi et al., 2019; Eldele et al.,193

2021; Zerveas et al., 2021; Yue et al., 2022; Sun194

et al., 2023; Goswami et al., 2024). However, large-195

scale datasets are scarcer in time series than in NLP,196

making it more challenging to learn embeddings197

from scratch. To our knowledge, we are the first to198

leverage well-trained text embeddings from NLP199

for time series classification.200

3 Methodology201

Given a time series classification dataset D =202

{(xi, yi)
N
i=1}, where xi is a multivariate time se-203

ries sample, and yi ∈ {1, 2, . . . , C} is the corre-204

sponding class label, the goal is to learn a classifier205

that accurately predicts the class label ŷi for each206

time series. As illustrated in Figure 1, we propose207

LETS-C framework that harnesses text embeddings208

for time series classification tasks. Specifically,209

we 1) initially preprocess the time series data to210

normalize it, then 2) subsequently generate text em-211

beddings from the normalized time series, 3) fuse212

embeddings with the time series data, and finally213

4) feed the fused representation to a classification214

head that consists of CNNs and MLP. The choice215

of a simple classification head is intentional, we216

aim to test the hypothesis that the text embeddings217

of the time series provide sufficiently powerful rep-218

resentations for effective classification.219

Preprocessing To ensure consistent scales across220

all model inputs, each feature dimension of time221

series xi is min-max normalized to the range [0, 1]222

based on the minimum and maximum feature val-223

ues of each dimension across the training data.224

Text Embedding of Time Series It is crucial225

to carefully format the preprocessed time series226

into strings before using text embeddings, as the227

tokenization of numerical strings can significantly228

affect the embeddings. (Liu and Low, 2023) has229

shown that tokenization impacts a model’s arith-230

metic abilities, with commonly used subword tok-231

enization methods like Byte Pair Encoding (BPE)232

arbitrarily subdividing numbers, causing similar 233

numbers to appear very differently. To mitigate 234

this, we adopted a digit-space tokenization strat- 235

egy, as suggested by (Gruver et al., 2024), where 236

each digit is spaced, commas are added to separate 237

time steps, and decimal points are omitted for fixed 238

precision. For instance, a series to be formatted 239

with a precision of two decimal places, such as 240

0.645, 6.45, 64.5, 645.0, would be converted to "6 241

4 , 6 4 5 , 6 4 5 0 , 6 4 5 0 0" prior to tokenization. 242

This method ensures separate tokenization of each 243

digit, preserving numerical integrity and enhancing 244

pattern recognition in language models. 245

Next, we utilized the 246

text-embedding-3-large model (OpenAI, 247

2024) to embed the formatted time series into the 248

embedding space. It is important to note that we 249

are using only the text embedding model, unlike 250

the LLMs used in previous works (Jin et al., 2023; 251

Zhou et al., 2024; Gruver et al., 2024). This model 252

was selected for several reasons: it is highly ranked 253

on the Massive Text Embedding Benchmark 254

(MTEB) leaderboard (Muennighoff et al., 2022; 255

MTEB, 2024), known for its effectiveness in a 256

variety of downstream tasks such as text search and 257

sentence similarity; it supports a high maximum 258

token length of 8191, accommodating our time 259

series datasets; and it offers a high-dimensional 260

vector space of 3072 dimensions. This large 261

dimensionality captures a broad spectrum of 262

temporal features, additionally the model allows 263

for truncation to reduce dimensions as needed for 264

specific applications without substantial loss of 265

semantic information (Kusupati et al., 2022). This 266

capability to truncate dimensions is particularly 267

advantageous for optimizing efficiency while 268

maintaining robust performance, aligning well 269

with our goal of a lightweight framework. 270

In particular, we generate a text embedding for 271

each dimension of xi, transforming xi ∈ Rd×lx 272

into embeddings ei ∈ Rd×le . Here, d is the num- 273

ber of dimensions in the multivariate time series, lx 274

is the series length, and le is the embedding length. 275

Specifically, each dimension of xi (of length lx) 276

is first converted into a string, resulting in d sep- 277

arate strings. Each string is then independently 278

embedded using an embedding model, as studies 279

(Nie et al., 2023; Zhou et al., 2024; Goswami et al., 280

2024) suggest that channel-wise modeling is an 281

effective strategy for multivariate time series. Our 282

approach differs slightly depending on the type of 283

embedding model used: 1) Proprietary model: For 284

3

Text Embedding
Model

"Sunlight danced on the gentle waves"

Text

-0.021 0.006 -0.594 0.109…

Text as Vector

" 6 1 7 , 6 7 3 , 6 9 8 , … , 8 7 6 , 8 9 0"

Time Series

617, 673, 698, …, 876, 890

Formatting

-0.056 0.106 0.983 -0.719…
Time Series as Vector

Time Series

Embedding

MLP
Head

CNN

Class
 class 1
 class 2

…

Text Embedding Text Embedding for Time Series Classification

Text Embedding
Model

Training

Frozen

Figure 1: Left: Conventional text embedding. Right: Our proposed LETS-C framework normalizes time series
and formats them to tokenize each digit separately. It then embeds the time series, fuses the embeddings with the
original series via element-wise addition, and uses a simple CNN-MLP classification head to perform classification.
Only the lightweight CNN and MLP head are trained. For illustration, we show a single-dimensional time series
xi ∈ Rlx , transformed into an embedding vector ei ∈ Rle .

OpenAI’s text-embedding-3-large, the API di-285

rectly returns an embedding vector of size le for286

each string; 2) Open-weight models: We extract287

the last token’s embedding from the model’s final288

hidden states to represent the entire sequence, ef-289

fectively transforming the dimension from lx to le.290

This approach captures the final contextual repre-291

sentation by condensing the sequence into a single292

embedding derived from the last token. Embed-293

dings for each dimension are then combined into294

a d× le matrix, effectively transforming the input295

from d× lx to d× le. This transformation preserves296

independent contextual representations for each di-297

mension while ensuring a consistent embedding298

structure. Note that the embedding computation299

in LETS-C is a one-time pass, then the computed300

embeddings of the time series can be stored and301

reused for further training, in contrast to the per-302

sistent computational cost caused by fine-tuning303

parts of LLMs. To validate the suitability of off-304

the-shelf text embeddings for time series classifi-305

cation, we compared cosine similarities between306

text embeddings of time series from the same and307

different classes. Intra-class similarity was con-308

sistently higher, demonstrating their effectiveness309

(see Section 5.2).310

Fusing Embedding and Time Series Next, we311

fuse the embedding with the preprocessed time312

series using element-wise addition, applying zero313

padding for dimensional consistency. The time314

series embedding vector serves as a feature repre-315

sentation of temporal patterns present in the entire316

time series, and adding the raw time series inte-317

grates both information sources. This approach is318

well-established, particularly in ResNet (He et al.,319

2016), where raw data is combined with feature 320

representations via shortcut connections. Addition- 321

ally, fusing embeddings from different modalities 322

is widely supported (Manzoor et al., 2023; Guo 323

et al., 2019; Poria et al., 2018; Baltrušaitis et al., 324

2018; Jabri et al., 2016), with element-wise addi- 325

tion being a common and effective method for com- 326

bining multimodal embeddings. This fusion allows 327

both time series and text embeddings to contribute 328

meaningfully to the final representation, improv- 329

ing the model’s overall performance. As shown 330

in Section 5.3, using either the text embedding or 331

the raw time series alone, as well as alternative fu- 332

sion methods to addition, is less effective. While 333

element-wise addition is an empirical design choice 334

in our architecture, our experiments demonstrate 335

that it achieves SOTA performance while maintain- 336

ing minimal model complexity compared to alter- 337

natives such as concatenation, or fusion networks, 338

or cross-attention. 339

Lightweight Classification Head Lastly, we pair 340

the fused time series representation with a simple 341

classification head composed of 1D CNNs and an 342

MLP for time series classification. The output from 343

CNNs are flattened and fed through the final MLP 344

head with a softmax activation, which outputs a vec- 345

tor of the probabilities of each time series class. As 346

detailed in the Appendix I, hyperparameter search 347

determines the number of convolutional blocks in 348

CNN, the number of linear layers in MLP, and 349

the use of batch normalization, dropout, activation, 350

and pooling. With a simple classification head, our 351

model is lightweight and requires much less train- 352

able parameters compared to the existing SOTA 353

built on transformers, as detailed in Section 5.1. 354

4

4 Experimental Protocol and Details355

Datasets and Evaluation Metrics We evaluated356

LETS-C against a well-established benchmark for357

multivariate time series classification, commonly358

adopted for comparison in various studies (Zhou359

et al., 2024; Li et al., 2024b; Wu et al., 2022a;360

Zerveas et al., 2021). This benchmark, selected361

from the UEA Archive (Bagnall et al., 2018), is pur-362

posefully curated to cover challenging and diverse363

domains, including the following datasets: Ethanol-364

Concentration (Large et al., 2018), FaceDetec-365

tion (Rik Henson, 2023), Handwriting (Shokoohi-366

Yekta et al., 2017), Heartbeat (Liu et al., 2016),367

JapaneseVowels (Kudo et al., 1999), PEMS-SF368

(Cuturi, 2011), SelfRegulationSCP1 (Birbaumer369

et al., 1999), SelfRegulationSCP2 (Birbaumer et al.,370

1999), SpokenArabicDigits (Bedda and Hammami,371

2010), and UWaveGestureLibrary (Liu et al., 2009).372

This commonly adopted benchmark offers a com-373

prehensive testing environment, with multivariate374

dimensions ranging from 3 to 963, time series375

lengths up to 1751, and up to 26 classes. See Ap-376

pendix B for details on each dataset.377

To assess the classifiers, we used metrics includ-378

ing classification accuracy and AvgWins. AvgWins379

is defined as the average number of times that a380

method outperforms other methods across bench-381

marked datasets, with ties also being counted to-382

wards this average. Additionally, we analyzed mod-383

els’ computational efficiency in terms of trainable384

model parameters, training, and inference time.385

Baselines We included 27 baseline models to386

ensure a comprehensive comparison. We utilize387

the same supervised learning baselines outlined by388

(Zhou et al., 2024; Wu et al., 2022a), namely: Clas-389

sical methods: 1) Dynamic Time Warping (DTW)390

(Berndt and Clifford, 1994), 2) eXtreme Gradient391

Boosting (XGBoost) (Chen and Guestrin, 2016),392

and 3) RandOm Convolutional KErnel Transform393

(ROCKET) (Dempster et al., 2020); MLP-based394

methods: 4) LightTS (Zhang et al., 2022a), and 5)395

DLinear (Zeng et al., 2023); RNN-based models:396

6) Long Short-Term Memory (LSTM) (Hochreiter397

and Schmidhuber, 1997), 7) Long- and Short-term398

Time-series Network (LSTNet) (Lai et al., 2018),399

and 8) Linear State Space Layer (LSSL) (Gu et al.,400

2021); CNN-based models: 9) Temporal Convo-401

lutional Network (TCN) (Franceschi et al., 2019),402

and 10) TimesNet (Wu et al., 2022a); Transformer-403

based models: 11) Transformer (Vaswani et al.,404

2017), 12) Reformer (Kitaev et al., 2020), 13) In-405

former (Zhou et al., 2021), 14) Pyraformer (Liu 406

et al., 2021), 15) Autoformer (Wu et al., 2021), 407

16) Non-stationary Transformer (Liu et al., 2022), 408

17) FEDformer (Zhou et al., 2022), 18) ETS- 409

former (Woo et al., 2022), 19) Flowformer (Wu 410

et al., 2022b), 20) Patch Time Series Transformer 411

(PatchTST) (Nie et al., 2023); and LLM-based 412

model: 21) OneFitsAll (Zhou et al., 2024). For 413

details, see Appendix C. Note that some of these 414

methods were adapted from forecasting to classifi- 415

cation tasks, without altering the core design of the 416

models (Appendix D). Additionally, we included 417

the unsupervised representation learning baselines 418

outlined by (Goswami et al., 2024), namely: CNN- 419

based methods: 22) T-Loss (Franceschi et al., 420

2019), 23) Temporal Neighborhood Coding (TNC) 421

(Tonekaboni et al., 2021), 24) TS2Vec (Yue et al., 422

2022); Transformer-based models: 25) Time Se- 423

ries representation learning framework via Tem- 424

poral and Contextual Contrasting (TS-TCC) (El- 425

dele et al., 2021), 26) Time Series Transformer 426

(TST) (Zerveas et al., 2021), and 27) MOMENT 427

(Goswami et al., 2024). For details, refer to Appen- 428

dices E (unsupervised baselines) and F (adapting 429

unsupervised models for classification). Reproduc- 430

tion details for baselines and LETS-C implementa- 431

tion details are in Appendices G and H, resp. 432

5 Results and Analysis 433

5.1 Performance and Efficiency 434

Comparison to State-of-the-art Table 1 and Fig- 435

ure 3 present a comparative analysis of LETS-C 436

against 27 baseline models on the benchmark in- 437

troduced above. We observe that LETS-C con- 438

sistently demonstrates robust performance across 439

all datasets, achieving the highest average accu- 440

racy of 76.16% and AvgWins of 40%, compared 441

to 27 benchmark models. This includes the most 442

recent SOTA model OneFitsAll (accuracy: 73.97%, 443

AvgWins: 20%) and an older SOTA TimesNet (ac- 444

curacy: 73.57%, AvgWins: 0%). Notably, LETS-C 445

surpasses OneFitsAll on six out of ten datasets by 446

a significant margin. LETS-C is particularly effec- 447

tive on challenging datasets like PEMS-SF and 448

EthanolConcentration (EC). PEMS-SF is character- 449

ized by exceptionally high dimensionality with 963 450

features, and EC contains an extremely long time 451

series at length of 1751. These results showcase the 452

competitive edge of LETS-C against the previous 453

SOTA methods, thus establishing a new benchmark 454

for time series classification. 455

5

Table 1: Comparison of classification accuracy (%) and AvgWins (%). Red: Best, Blue: Second best. Abbreviations:
EC: Ethanol Concentration, FD: Face Detection, HW: Handwriting, HB: Heartbeat, JV: Japanese Vowels, SCP1:
Self-Regulation SCP1, SCP2: Self-Regulation SCP2, SAD: Spoken Arabic Digits, UW: UWave Gesture Library.

Model/Dataset EC FD HW HB JV PEMS-SF SCP1 SCP2 SAD UW Average ↑ AvgWins % ↑

Supervised Learning Methods

Classical
methods

DTW (Berndt and Clifford, 1994) 32.3 52.9 28.6 71.7 94.9 71.1 77.7 53.9 96.3 90.3 66.97 0%
XGBoost (Chen and Guestrin, 2016) 43.7 63.3 15.8 73.2 86.5 98.3 84.6 48.9 69.6 75.9 65.98 10%
ROCKET (Dempster et al., 2020) 45.2 64.7 58.8 75.6 96.2 75.1 90.8 53.3 71.2 94.4 72.53 20%

MLP
LightTS (Zhang et al., 2022a) 29.7 67.5 26.1 75.1 96.2 88.4 89.8 51.1 100 80.3 70.42 10%
DLinear (Zeng et al., 2023) 32.6 68 27 75.1 96.2 75.1 87.3 50.5 81.4 82.1 67.53 0%

RNN

LSTM (Hochreiter and Schmidhuber, 1997) 32.3 57.7 15.2 72.2 79.7 39.9 68.9 46.6 31.9 41.2 48.56 0%
LSTNet (Lai et al., 2018) 39.9 65.7 25.8 77.1 98.1 86.7 84 52.8 100 87.8 71.79 10%
LSSL (Gu et al., 2021) 31.1 66.7 24.6 72.7 98.4 86.1 90.8 52.2 100 85.9 70.85 10%

CNN
TCN (Franceschi et al., 2019) 28.9 52.8 53.3 75.6 98.9 68.8 84.6 55.6 95.6 88.4 70.25 0%
TimesNet (Wu et al., 2022a) 35.7 68.6 32.1 78 98.4 89.6 91.8 57.2 99 85.3 73.57 0%

Transformer

Transformer (Vaswani et al., 2017) 32.7 67.3 32 76.1 98.7 82.1 92.2 53.9 98.4 85.6 71.9 0%
Reformer (Kitaev et al., 2020) 31.9 68.6 27.4 77.1 97.8 82.7 90.4 56.7 97 85.6 71.52 0%
Informer (Zhou et al., 2021) 31.6 67 32.8 80.5 98.9 81.5 90.1 53.3 100 85.6 72.13 20%
Pyraformer (Liu et al., 2021) 30.8 65.7 29.4 75.6 98.4 83.2 88.1 53.3 99.6 83.4 70.75 0%
Autoformer (Wu et al., 2021) 31.6 68.4 36.7 74.6 96.2 82.7 84 50.6 100 85.9 71.07 10%
Non-stationary Transformer (Liu et al., 2022) 32.7 68 31.6 73.7 99.2 87.3 89.4 57.2 100 87.5 72.66 20%
FEDformer (Zhou et al., 2022) 31.2 66 28 73.7 98.4 80.9 88.7 54.4 100 85.3 70.66 10%
ETSformer (Woo et al., 2022) 28.1 66.3 32.5 71.2 95.9 86 89.6 55 100 85 70.96 10%
Flowformer (Wu et al., 2022b) 33.8 67.6 33.8 77.6 98.9 83.8 92.5 56.1 98.8 86.6 72.95 0%
PatchTST (Nie et al., 2023) 26.2 68.5 25.9 66.8 96.0 87.9 85.7 53.3 97.2 85.0 69.25 0%

LLM OneFitsAll (Zhou et al., 2024) 34.2 69.2 32.7 77.2 98.6 87.9 93.2 59.4 99.2 88.1 73.97 20%

Unsupervised Representation Learning Methods

CNN
T-Loss (Franceschi et al., 2019) 20.5 51.3 45.1 74.1 98.9 67.6 84.3 53.9 90.5 87.5 67.37 0%
TNC (Tonekaboni et al., 2021) 29.7 53.6 24.9 74.6 97.8 69.9 79.9 55.0 93.4 75.9 65.47 0%
TS2Vec (Yue et al., 2022) 30.8 50.1 51.5 68.3 98.4 68.2 81.2 57.8 98.8 90.6 69.57 0%

Transformer
TS-TCC (Eldele et al., 2021) 28.5 54.4 49.8 75.1 93.0 73.4 82.3 53.3 97.0 75.3 68.21 0%
TST (Zerveas et al., 2021) 26.2 53.4 22.5 74.6 97.8 74.0 75.4 55.0 92.3 57.5 62.87 0%
MOMENT (Goswami et al., 2024) 35.7 63.3 30.8 72.2 71.6 89.6 84.0 47.8 98.1 90.9 68.4 0%

LETS-C (Ours) 52.9 68.9 23.8 78 99.2 93.1 93.2 62.8 99.2 90.6 76.17 40%

Table 2: Comparison of trainable parameters (millions) for LETS-C vs. OneFitsAll. The Ratio (%) = 100 ×
of trainable parameters in LETS-C

of trainable parameters in OneFitsAll , quantifying the efficiency of LETS-C relative to OneFitsAll.

Model/Dataset EC FD HW HB JV PEMS-SF SCP1 SCP2 SAD UW Average ↓

Trainable
parameters
(M)

LETS-C (Ours) 0.28 0.003 0.15 0.04 0.14 0.56 0.30 0.33 0.14 0.26 0.22
OneFitsAll 1.42 2.37 1.73 2.03 1.32 10.23 0.98 1.04 1.82 1.0 2.39

Ratio (%) 19.89 0.16 8.89 2.28 11.19 5.51 30.83 32.06 7.77 26.21 14.48

Computational Efficiency Next, we aim to as-456

sess how well LETS-C balances performance with457

computational efficiency, which is crucial for usage458

in resource-constrained environments. Table 2 pro-459

vides a detailed analysis of the trainable parameters460

associated with LETS-C compared to the previous461

SOTA model, OneFitsAll. Our method achieved462

higher performance with only 14.48% of the train-463

able model parameters on average, compared to464

OneFitsAll. Despite the advantage of OneFitsAll465

over other leading models like TimesNet and FED-466

former on its reduced parameter count, OneFitsAll467

still requires much more trainable parameters than468

our approach. Detailed training and inference time469

comparisons are reported in Appendix K. We show470

that LETS-C offers a lightweight approach to time471

series classification while achieving the SOTA ac-472

curacy. It’s important to note that in LETS-C, the473

text embedding computation is a one-time oper- 474

ation, unlike models like OneFitsAll, which con- 475

tinue to incur computational costs while fine-tuning 476

partially frozen LLMs. 477

5.2 Effectiveness of LETS-C 478

Intrinsic Discriminative Power of Text Embed- 479

dings on Time Series To analyze text embed- 480

dings extracted from time series and assess their 481

effectiveness, we compared embeddings of time 482

series from the same and different classes. This 483

study revealed the built-in power of text embed- 484

dings to readily distinguish time series from differ- 485

ent classes. Specifically, we computed the average 486

cosine similarity for time series pairs within the 487

same class and across different classes. We aver- 488

age similarities from multiple channels to handle 489

multivariate time series effectively. This approach 490

6

helps us quantify how closely time series in the em-491

bedding space are related, both within each class492

(intra-class) and across distinct classes (inter-class).493

Figure 2 (left) visualizes these embedding similar-494

ities through heatmaps. The heatmaps are scaled495

using min-max normalization, where warmer col-496

ors in the heatmap represent higher similarities and497

cooler shades indicate lower similarities. Diago-498

nal entries show intra-class similarities, while off-499

diagonal entries reveal inter-class similarities. We500

observe that intra-class similarity consistently ex-501

ceeds inter-class similarity, demonstrating that text502

embeddings effectively retain and convey signifi-503

cant information from the underlying time series.504

Generalization Across Various Text Embedding505

Models To assess the generalization of our506

approach across various text embedding models507

beyond text-embedding-3-large, we evaluate508

LETS-C using three additional embeddings:509

e5-mistral-7b-instruct (Wang et al., 2024),510

gte-large-en-v1.5 (Li et al., 2023), and511

nomic-embed-text-v1 (Nussbaum et al., 2024).512

These models were selected for their high rankings513

in the MTEB overall leaderboard and their varia-514

tions in embedding dimensions, maximum token515

lengths, and model sizes. Details on embedding516

models are in Appendix O. Table 3 presents517

detailed accuracy metrics and trainable parameters518

for these various embedding models in the LETS-C519

framework. We observe that LETS-C consistently520

outperforms current baselines in terms of average521

classification accuracy and AvgWins, while522

utilizing only a fraction of the trainable model523

parameters across all explored text embedding524

models Specifically, text-embedding-3-large525

achieves an average accuracy of526

76.17%, while e5-mistral-7b-instruct,527

gte-large-en-v1.5, & nomic-embed-text-v1528

achieve accuracies of 74.89%, 76.02%, and529

75.12% respectively. These results not only530

surpass the previous SOTA accuracy of 73.97%531

but also require significantly fewer trainable model532

parameters—just 14.48%, 15.62%, 9.24%, and533

5.31% compared to OneFitsAll. Among these534

text embedding variations, higher text embedding535

dimensionality leads to more trainable param-536

eters on average. e5-mistral-7b-instruct537

requires the most trainable parameters (0.25M)538

due to its 4096 dimensions, followed by539

text-embedding-3-large (3072D, 0.22M),540

gte-large-en-v1.5 (1024D, 0.19M), and541

nomic-embed-text-v1 (768D, 0.09M). Conse- 542

quently, our approach generalizes across diverse 543

text embedding models, demonstrates superior 544

performance, with the benefit of being lightweight. 545

Optimizing Model Size with Minimal Accuracy 546

Loss Next, we examine the trade-offs between 547

model accuracy and model size in our approach. 548

To vary model size, we adjust the number of linear 549

and convolution layers in the classification head, 550

ranging from 1 to 5 layers each, creating model 551

variants of different sizes. Across all datasets, we 552

find that significant reductions in model parameters 553

result in only a minimal loss of accuracy. Figure 554

2 (right) illustrates this trade-off, showing accu- 555

racy and parameter retention relative to the optimal 556

performance of LETS-C (see Tables 1 and 2 for ref- 557

erence optimal values). The results highlight the 558

efficiency of LETS-C, demonstrating its ability to 559

maintain high accuracy with significantly fewer pa- 560

rameters across all datasets. While the trade-off be- 561

tween model size and accuracy is data-dependent, 562

in general, substantial parameter reductions lead 563

to only slight accuracy decreases. For detailed re- 564

sults, see Appendix P and Table 10. This analysis 565

confirms that while reducing parameters can lower 566

accuracy, the impact remains manageable, making 567

LETS-C suitable for applications requiring efficient 568

inference. 569

5.3 Additional Analysis 570

Ablation Study To empirically evaluate the ben- 571

efits of fusing text embeddings with time series 572

over variants using only one modality, we conduct 573

an ablation study. As shown in Appendix Q and 574

Table 11, we observe that the combination of both 575

embeddings and time series achieves the highest av- 576

erage accuracy, at 76.17%, and the best number of 577

AvgWins, compared to the ablated versions. These 578

demonstrate the significant performance gains from 579

fusing embeddings with time series data, which are 580

essential for optimal model accuracy. 581

Alternative Methods for Fusing Time Series with 582

Embeddings We explore two additional methods 583

for fusing time series and embeddings beyond sim- 584

ple addition. The first method involves a Fusion 585

network that first processes embeddings and time 586

series data through convolutional and dense layers 587

in two separate branches, then merges the features 588

from both branches into a final dense network. The 589

second method employs Concatenation, where the 590

time series and embeddings are concatenated and 591

7

Figure 2: Left: Heatmaps illustrating within- and between-class cosine similarities of text embeddings derived
from the training time series in JapaneseVowels (far left) with 9 classes and SpokenArabicDigits (middle) with 10
classes. Right: Trade-off between the percentage of accuracy retention and model parameter retention relative to
LETS-C’s optimal values. The optimal LETS-C accuracy (%) and parameters (M) for each dataset are in the legend.

Table 3: Comparison of LETS-C with various embedding models against OneFitsAll. Performances surpassing
OneFitsAll are in bold, with the best in Red. AvgWins scores above 50% indicate consistent superiority, calculated
as 1 for outperforming OneFitsAll and 0 otherwise. Ratio (%) = 100 × # of trainable parameters in LETS-C

of trainable parameters in OneFitsAll measures
computational efficiency relative to OneFitsAll.

Accuracy ↑

Method/Dataset EC FD HW HB JV PEMS-SF SCP1 SCP2 SAD UW Average ↑ AvgWins % ↑

OneFitsAll 34.2 69.2 32.7 77.2 98.6 87.9 93.2 59.4 99.2 88.1 73.97 −

LETS-C

text-embedding-3-large 52.9 68.9 23.8 78 99.2 93.1 93.2 62.8 99.2 90.6 76.17 80%

e5-mistral-7b-instruct 55.5 68.7 23.3 77.6 99.2 84.4 93.9 59.4 98.5 88.4 74.89 60%

gte-large-en-v1.5 57.8 68.8 24.7 77.6 98.4 91.3 94.2 60 99 88.4 76.02 60%

nomic-embed-text-v1 52.9 68 24.8 76.6 99.2 88.4 93.9 59.4 98.6 89.4 75.12 60%

Trainable Parameters (M) ↓

Method/Dataset EC FD HW HB JV PEMS-SF SCP1 SCP2 SAD UW Average ↓

OneFitsAll 1.42 2.37 1.73 2.03 1.32 10.23 0.98 1.04 1.82 1.0 2.39

LETS-C

text-embedding-3-large 0.28 0.003 0.15 0.04 0.14 0.56 0.30 0.33 0.14 0.26 0.22
Ratio % 19.89 0.16 8.89 2.28 11.19 5.51 30.83 32.06 7.77 26.21 14.48

e5-mistral-7b-instruct 0.13 0.40 0.39 0.17 0.16 0.30 0.24 0.24 0.33 0.16 0.25
Ratio % 9.48 16.93 22.78 8.54 12.55 2.97 25.06 23.59 18.39 15.93 15.62

gte-large-en-v1.5 0.18 0.31 0.31 0.12 0.04 0.56 0.03 0.07 0.22 0.09 0.19
Ratio % 12.91 13.44 18.27 6.11 3.36 5.51 3.77 7.65 12.34 9.00 9.24

nomic-embed-text-v1 0.03 0.03 0.36 0.07 0.05 0.19 0.02 0.10 0.06 0.02 0.09
Ratio % 2.21 1.31 20.99 3.58 3.99 1.85 3.02 10.03 3.34 2.78 5.31

processed through a lightweight classification head.592

Despite cross-attention being another alternative593

for fusing different modalities, we didn’t include it594

in this study due to the computational complexity595

it adds to the model. Appendix R and Table 12596

present details on classification accuracy and train-597

able model parameters for these variations. We598

observe that the addition approach in the LETS-C599

architecture achieves the highest average classifi-600

cation accuracy (76.11%) compared to the fusion601

network (73.40%) and concatenation (74.22%). It602

also records the best AvgWins at 70%. Further,603

the number of parameters increases with both the604

concatenation and fusion network approaches, re-605

sulting in additional complexity compared to the606

addition method. As our goal was to develop a607

lightweight model, we opted for the addition ap-608

proach due to its simpler parameter structure.609

6 Conclusion 610

We introduced LETS-C, a novel approach that lever- 611

ages text embeddings for time series classification. 612

To our knowledge, this is the first exploration of 613

using off-the-shelf text embeddings in time series 614

analysis, particularly for classification. By pro- 615

jecting time series through text embedding mod- 616

els and employing a simple yet effective classifi- 617

cation head, LETS-C achieves SOTA performance 618

on a well-established benchmark covering various 619

domains, surpassing 27 baselines. Additionally, 620

LETS-C is significantly more lightweight than pre- 621

vious SOTA methods, achieving higher accuracy 622

with fewer trainable parameters, as well as less 623

training and inference time. Our comprehensive 624

analysis highlights LETS-C’s robustness across dif- 625

ferent text embedding models, the advantage of 626

using text embeddings for time series classification, 627

and the trade-off between accuracy and model size. 628

8

7 Limitations and Broader Perspective629

Limitations and future work: Our approach has630

a few key limitations. One is the maximum se-631

quence length constraint of text embedding models,632

which restricts the handling of longer time series633

and may necessitate truncation or downsampling,634

potentially affecting the capture of long-term de-635

pendencies. Additionally, while we adhered to es-636

tablished benchmarks for consistency, we did not637

evaluate our method on a newly constructed or638

strictly held-out dataset to check for potential data639

leakage into the OpenAI embeddings. Testing on640

a novel dataset could further validate our results641

and ensure that the approach’s effectiveness is not642

influenced by pre-existing knowledge. Another643

limitation is the monetary cost associated with us-644

ing OpenAI’s text embeddings, which we discuss645

in more detail in Appendix L.646

Future research could explore alternative time647

series tokenization strategies, as well as extensions648

to other time series tasks. We believe our findings649

will inspire further exploration of text embeddings650

in the time series domain, paving the way for more651

powerful and efficient methods for various time652

series tasks.653

Broader perspective: The embeddings gener-654

ated may lack interpretability, making it difficult655

to understand model decisions in high-stakes appli-656

cations. Additionally, the resources accompanying657

this study will be responsibly released for research658

purposes only.659

Datasets and code: The benchmarks used in this660

study are publicly available from the UEA Archive661

(Bagnall et al., 2018) and were curated by previ-662

ous research. Specifically, they include the follow-663

ing datasets: EthanolConcentration (Large et al.,664

2018), FaceDetection (Rik Henson, 2023), Hand-665

writing (Shokoohi-Yekta et al., 2017), Heartbeat666

(Liu et al., 2016), JapaneseVowels (Kudo et al.,667

1999), PEMS-SF (Cuturi, 2011), SelfRegulation-668

SCP1 (Birbaumer et al., 1999), SelfRegulation-669

SCP2 (Birbaumer et al., 1999), SpokenArabicDig-670

its (Bedda and Hammami, 2010), and UWaveGes-671

tureLibrary (Liu et al., 2009). We abide by their672

terms of use. The implementation code is avail-673

able at https://anonymous.4open.science/r/674

LETS-C. To support reproducibility and facilitate675

future research, we will make the resources associ-676

ated with this study available upon acceptance.677

References 678

Amaia Abanda, Usue Mori, and Jose A Lozano. 2019. 679
A review on distance based time series classification. 680
Data Mining and Knowledge Discovery, 33(2):378– 681
412. 682

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama 683
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, 684
Diogo Almeida, Janko Altenschmidt, Sam Altman, 685
Shyamal Anadkat, et al. 2023. Gpt-4 technical report. 686
arXiv preprint arXiv:2303.08774. 687

Anthony Bagnall, Hoang Anh Dau, Jason Lines, 688
Michael Flynn, James Large, Aaron Bostrom, Paul 689
Southam, and Eamonn Keogh. 2018. The uea multi- 690
variate time series classification archive, 2018. arXiv 691
preprint arXiv:1811.00075. 692

Anthony Bagnall, Jason Lines, Aaron Bostrom, James 693
Large, and Eamonn Keogh. 2017. The great time 694
series classification bake off: a review and exper- 695
imental evaluation of recent algorithmic advances. 696
Data mining and knowledge discovery, 31:606–660. 697

Claus Bahlmann, Bernard Haasdonk, and Hans 698
Burkhardt. 2002. Online handwriting recognition 699
with support vector machines-a kernel approach. In 700
Proceedings eighth international workshop on fron- 701
tiers in handwriting recognition, pages 49–54. IEEE. 702

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2018. 703
An empirical evaluation of generic convolutional and 704
recurrent networks for sequence modeling. arXiv 705
preprint arXiv:1803.01271. 706

Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe 707
Morency. 2018. Multimodal machine learning: A 708
survey and taxonomy. IEEE transactions on pattern 709
analysis and machine intelligence, 41(2):423–443. 710

Mouldi Bedda and Nacereddine Hammami. 2010. Spo- 711
ken Arabic Digit. UCI Machine Learning Repository. 712
DOI: https://doi.org/10.24432/C52C9Q. 713

Donald J Berndt and James Clifford. 1994. Using dy- 714
namic time warping to find patterns in time series. 715
In Proceedings of the 3rd international conference 716
on knowledge discovery and data mining, pages 359– 717
370. 718

Niels Birbaumer, Nimr Ghanayim, Thilo Hinterberger, 719
Iver Iversen, Boris Kotchoubey, Andrea Kübler, 720
Juri Perelmouter, Edward Taub, and Herta Flor. 721
1999. A spelling device for the paralysed. Nature, 722
398(6725):297–298. 723

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, 724
Russ Altman, Simran Arora, Sydney von Arx, 725
Michael S Bernstein, Jeannette Bohg, Antoine Bosse- 726
lut, Emma Brunskill, et al. 2021. On the opportuni- 727
ties and risks of foundation models. arXiv preprint 728
arXiv:2108.07258. 729

Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfis- 730
ter, Yixiang Zheng, Wen Ye, and Yan Liu. 2023. 731

9

https://anonymous.4open.science/r/LETS-C
https://anonymous.4open.science/r/LETS-C
https://anonymous.4open.science/r/LETS-C

Tempo: Prompt-based generative pre-trained trans-732
former for time series forecasting. arXiv preprint733
arXiv:2310.04948.734

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A735
scalable tree boosting system. In Proceedings of736
the 22nd acm sigkdd international conference on737
knowledge discovery and data mining, pages 785–738
794.739

Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang740
Yu, Haotian Wang, Ming Liu, and Bing Qin. 2024.741
TimeBench: A comprehensive evaluation of tempo-742
ral reasoning abilities in large language models. In743
Proceedings of the 62nd Annual Meeting of the Asso-744
ciation for Computational Linguistics (ACL) (Volume745
1: Long Papers), pages 1204–1228, Bangkok, Thai-746
land. Association for Computational Linguistics.747

Marco Cuturi. 2011. Fast global alignment kernels. In748
Proceedings of the 28th international conference on749
machine learning (ICML-11), pages 929–936.750

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and751
Christopher Ré. 2022. Flashattention: Fast and752
memory-efficient exact attention with io-awareness.753
Advances in Neural Information Processing Systems,754
35:16344–16359.755

Angus Dempster, François Petitjean, and Geoffrey I756
Webb. 2020. Rocket: exceptionally fast and accurate757
time series classification using random convolutional758
kernels. Data Mining and Knowledge Discovery,759
34(5):1454–1495.760

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and761
Kristina Toutanova. 2019. BERT: Pre-training of762
deep bidirectional transformers for language under-763
standing. In Proceedings of the 2019 Conference of764
the North American Chapter of the Association for765
Computational Linguistics (NAACL): Human Lan-766
guage Technologies, Volume 1 (Long and Short Pa-767
pers), pages 4171–4186, Minneapolis, Minnesota.768
Association for Computational Linguistics.769

Iman Deznabi, Mohit Iyyer, and Madalina Fiterau. 2021.770
Predicting in-hospital mortality by combining clin-771
ical notes with time-series data. In Findings of772
the association for computational linguistics: ACL-773
IJCNLP 2021, pages 4026–4031.774

Felix Drinkall, Eghbal Rahimikia, Janet Pierrehumbert,775
and Stefan Zohren. 2024. Time machine GPT. In776
Findings of the Association for Computational Lin-777
guistics: NAACL 2024, pages 3281–3292, Mexico778
City, Mexico. Association for Computational Lin-779
guistics.780

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen,781
Min Wu, Chee Keong Kwoh, Xiaoli Li, and Cuntai782
Guan. 2021. Time-series representation learning via783
temporal and contextual contrasting. In Proceedings784
of the Thirtieth International Joint Conference on Ar-785
tificial Intelligence. International Joint Conferences786
on Artificial Intelligence Organization.787

Elizabeth Fons, Rachneet Kaur, Soham Palande, Zhen 788
Zeng, Tucker Balch, Manuela Veloso, and Svitlana 789
Vyetrenko. 2024. Evaluating large language models 790
on time series feature understanding: A comprehen- 791
sive taxonomy and benchmark. In Proceedings of the 792
2024 Conference on Empirical Methods in Natural 793
Language Processing (EMNLP), pages 21598–21634, 794
Miami, Florida, USA. Association for Computational 795
Linguistics. 796

Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin 797
Jaggi. 2019. Unsupervised scalable representation 798
learning for multivariate time series. Advances in 799
neural information processing systems, 32. 800

Jonas Geiping and Tom Goldstein. 2023. Cramming: 801
Training a language model on a single gpu in one day. 802
In International Conference on Machine Learning, 803
pages 11117–11143. PMLR. 804

Aidan N Gomez, Mengye Ren, Raquel Urtasun, and 805
Roger B Grosse. 2017. The reversible residual net- 806
work: Backpropagation without storing activations. 807
Advances in neural information processing systems, 808
30. 809

Mononito Goswami, Konrad Szafer, Arjun Choudhry, 810
Yifu Cai, Shuo Li, and Artur Dubrawski. 2024. Mo- 811
ment: A family of open time-series foundation mod- 812
els. In Forty-first International Conference on Ma- 813
chine Learning. 814

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G 815
Wilson. 2024. Large language models are zero-shot 816
time series forecasters. Advances in Neural Informa- 817
tion Processing Systems, 36. 818

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and 819
Christopher Ré. 2020. Hippo: Recurrent mem- 820
ory with optimal polynomial projections. Advances 821
in neural information processing systems, 33:1474– 822
1487. 823

Albert Gu, Karan Goel, and Christopher Ré. 2021. Effi- 824
ciently modeling long sequences with structured state 825
spaces. arXiv preprint arXiv:2111.00396. 826

Wenzhong Guo, Jianwen Wang, and Shiping Wang. 827
2019. Deep multimodal representation learning: A 828
survey. Ieee Access, 7:63373–63394. 829

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian 830
Sun. 2016. Deep residual learning for image recog- 831
nition. In Proceedings of the IEEE conference on 832
computer vision and pattern recognition, pages 770– 833
778. 834

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long 835
short-term memory. Neural computation, 9(8):1735– 836
1780. 837

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 838
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 839
and Weizhu Chen. 2021. Lora: Low-rank adap- 840
tation of large language models. arXiv preprint 841
arXiv:2106.09685. 842

10

https://doi.org/10.18653/v1/2024.acl-long.66
https://doi.org/10.18653/v1/2024.acl-long.66
https://doi.org/10.18653/v1/2024.acl-long.66
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2024.findings-naacl.208
https://doi.org/10.18653/v1/2024.emnlp-main.1204
https://doi.org/10.18653/v1/2024.emnlp-main.1204
https://doi.org/10.18653/v1/2024.emnlp-main.1204
https://doi.org/10.18653/v1/2024.emnlp-main.1204
https://doi.org/10.18653/v1/2024.emnlp-main.1204

Hassan Ismail Fawaz, Germain Forestier, Jonathan We-843
ber, Lhassane Idoumghar, and Pierre-Alain Muller.844
2019. Deep learning for time series classification:845
a review. Data mining and knowledge discovery,846
33(4):917–963.847

Allan Jabri, Armand Joulin, and Laurens Van848
Der Maaten. 2016. Revisiting visual question answer-849
ing baselines. In European conference on computer850
vision, pages 727–739. Springer.851

Young-Seon Jeong, Myong K Jeong, and Olufemi A852
Omitaomu. 2011. Weighted dynamic time warping853
for time series classification. Pattern recognition,854
44(9):2231–2240.855

Harsh Jhamtani and Taylor Berg-Kirkpatrick. 2021.856
Truth-conditional captions for time series data. In857
Proceedings of the 2021 Conference on Empirical858
Methods in Natural Language Processing (EMNLP),859
pages 719–733, Online and Punta Cana, Dominican860
Republic. Association for Computational Linguistics.861

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-862
sch, Chris Bamford, Devendra Singh Chaplot, Diego863
de las Casas, Florian Bressand, Gianna Lengyel, Guil-864
laume Lample, Lucile Saulnier, et al. 2023. Mistral865
7b. arXiv preprint arXiv:2310.06825.866

Yushan Jiang, Zijie Pan, Xikun Zhang, Sahil Garg, An-867
derson Schneider, Yuriy Nevmyvaka, and Dongjin868
Song. 2024. Empowering time series analysis869
with large language models: A survey. ArXiv,870
abs/2402.03182.871

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu,872
James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yuxuan873
Liang, Yuan-Fang Li, Shirui Pan, et al. 2023. Time-874
llm: Time series forecasting by reprogramming large875
language models. arXiv preprint arXiv:2310.01728.876

Argyro Kampouraki, George Manis, and Christophoros877
Nikou. 2008. Heartbeat time series classification878
with support vector machines. IEEE transactions on879
information technology in biomedicine, 13(4):512–880
518.881

Masayuki Kawarada, Tatsuya Ishigaki, Goran Topić,882
and Hiroya Takamura. 2024. Demonstration selec-883
tion strategies for numerical time series data-to-text.884
In Findings of the Association for Computational885
Linguistics: EMNLP 2024, pages 7378–7392, Mi-886
ami, Florida, USA. Association for Computational887
Linguistics.888

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,889
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.890
2017. Lightgbm: A highly efficient gradient boost-891
ing decision tree. Advances in neural information892
processing systems, 30.893

Swaraj Khadanga, Karan Aggarwal, Shafiq Joty, and894
Jaideep Srivastava. 2019. Using clinical notes with895
time series data for ICU management. In Proceed-896
ings of the 2019 Conference on Empirical Methods897

in Natural Language Processing and the 9th Inter- 898
national Joint Conference on Natural Language Pro- 899
cessing (EMNLP-IJCNLP), pages 6432–6437, Hong 900
Kong, China. Association for Computational Linguis- 901
tics. 902

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok 903
Park, Jang-Ho Choi, and Jaegul Choo. 2021. Re- 904
versible instance normalization for accurate time- 905
series forecasting against distribution shift. In Inter- 906
national Conference on Learning Representations. 907

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. 908
2020. Reformer: The efficient transformer. arXiv 909
preprint arXiv:2001.04451. 910

Ross Koval, Nicholas Andrews, and Xifeng Yan. 2024. 911
Financial forecasting from textual and tabular time 912
series. In Findings of the Association for Computa- 913
tional Linguistics: EMNLP 2024, pages 8289–8300, 914
Miami, Florida, USA. Association for Computational 915
Linguistics. 916

Mineichi Kudo, Jun Toyama, and Masaru Shimbo. 1999. 917
Japanese Vowels. UCI Machine Learning Repository. 918
DOI: https://doi.org/10.24432/C5NS47. 919

Aditya Kusupati, Gantavya Bhatt, Aniket Rege, 920
Matthew Wallingford, Aditya Sinha, Vivek Ramanu- 921
jan, William Howard-Snyder, Kaifeng Chen, Sham 922
Kakade, Prateek Jain, et al. 2022. Matryoshka repre- 923
sentation learning. Advances in Neural Information 924
Processing Systems, 35:30233–30249. 925

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and 926
Hanxiao Liu. 2018. Modeling long-and short-term 927
temporal patterns with deep neural networks. In 928
The 41st international ACM SIGIR conference on re- 929
search & development in information retrieval, pages 930
95–104. 931

James Large, E Kate Kemsley, Nikolaus Wellner, Ian 932
Goodall, and Anthony Bagnall. 2018. Detecting 933
forged alcohol non-invasively through vibrational 934
spectroscopy and machine learning. In Pacific-Asia 935
Conference on Knowledge Discovery and Data Min- 936
ing, pages 298–309. Springer. 937

Mosh Levy, Alon Jacoby, and Yoav Goldberg. 2024. 938
Same task, more tokens: the impact of input length on 939
the reasoning performance of large language models. 940
arXiv preprint arXiv:2402.14848. 941

Nian Li, Chen Gao, Mingyu Li, Yong Li, and Qingmin 942
Liao. 2024a. EconAgent: Large language model- 943
empowered agents for simulating macroeconomic 944
activities. In Proceedings of the 62nd Annual Meet- 945
ing of the Association for Computational Linguistics 946
(ACL) (Volume 1: Long Papers), pages 15523–15536, 947
Bangkok, Thailand. Association for Computational 948
Linguistics. 949

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, 950
Pengjun Xie, and Meishan Zhang. 2023. Towards 951
general text embeddings with multi-stage contrastive 952
learning. arXiv preprint arXiv:2308.03281. 953

11

https://doi.org/10.18653/v1/2021.emnlp-main.55
https://api.semanticscholar.org/CorpusID:267412144
https://api.semanticscholar.org/CorpusID:267412144
https://api.semanticscholar.org/CorpusID:267412144
https://doi.org/10.18653/v1/2024.findings-emnlp.435
https://doi.org/10.18653/v1/2024.findings-emnlp.435
https://doi.org/10.18653/v1/2024.findings-emnlp.435
https://doi.org/10.18653/v1/D19-1678
https://doi.org/10.18653/v1/D19-1678
https://doi.org/10.18653/v1/D19-1678
https://doi.org/10.18653/v1/2024.findings-emnlp.486
https://doi.org/10.18653/v1/2024.findings-emnlp.486
https://doi.org/10.18653/v1/2024.findings-emnlp.486
https://doi.org/10.18653/v1/2024.acl-long.829
https://doi.org/10.18653/v1/2024.acl-long.829
https://doi.org/10.18653/v1/2024.acl-long.829
https://doi.org/10.18653/v1/2024.acl-long.829
https://doi.org/10.18653/v1/2024.acl-long.829

Zekun Li, Shiyang Li, and Xifeng Yan. 2024b. Time954
series as images: Vision transformer for irregularly955
sampled time series. Advances in Neural Information956
Processing Systems, 36.957

Zachary C Lipton, David Kale, and Randall Wetzel.958
2016. Directly modeling missing data in sequences959
with rnns: Improved classification of clinical time se-960
ries. In Machine learning for healthcare conference,961
pages 253–270. PMLR.962

Chengyu Liu, David Springer, Qiao Li, Benjamin963
Moody, Ricardo Abad Juan, Francisco J Chorro,964
Francisco Castells, José Millet Roig, Ikaro Silva,965
Alistair EW Johnson, et al. 2016. An open access966
database for the evaluation of heart sound algorithms.967
Physiological measurement, 37(12):2181.968

Haoxin Liu, Zhiyuan Zhao, Jindong Wang, Harshavard-969
han Kamarthi, and B. Aditya Prakash. 2024. LST-970
Prompt: Large language models as zero-shot time971
series forecasters by long-short-term prompting. In972
Findings of the Association for Computational Lin-973
guistics: ACL 2024, pages 7832–7840, Bangkok,974
Thailand. Association for Computational Linguistics.975

Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and976
Venu Vasudevan. 2009. uwave: Accelerometer-based977
personalized gesture recognition and its applications.978
Pervasive and Mobile Computing, 5(6):657–675.979

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu980
Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han.981
2019a. On the variance of the adaptive learning rate982
and beyond. arXiv preprint arXiv:1908.03265.983

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao984
Lin, Alex X Liu, and Schahram Dustdar. 2021.985
Pyraformer: Low-complexity pyramidal attention for986
long-range time series modeling and forecasting. In987
International conference on learning representations.988

Tiedong Liu and Bryan Kian Hsiang Low. 2023. Goat:989
Fine-tuned llama outperforms gpt-4 on arithmetic990
tasks. arXiv preprint arXiv:2305.14201.991

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-992
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,993
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.994
Roberta: A robustly optimized bert pretraining ap-995
proach. arXiv preprint arXiv:1907.11692.996

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng997
Long. 2022. Non-stationary transformers: Exploring998
the stationarity in time series forecasting. Advances999
in Neural Information Processing Systems, 35:9881–1000
9893.1001

Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and1002
Jimmy Lin. 2024. Fine-tuning llama for multi-stage1003
text retrieval. In Proceedings of the 47th Inter-1004
national ACM SIGIR Conference on Research and1005
Development in Information Retrieval, pages 2421–1006
2425.1007

Muhammad Arslan Manzoor, Sarah Albarri, Ziting 1008
Xian, Zaiqiao Meng, Preslav Nakov, and Shangsong 1009
Liang. 2023. Multimodality representation learning: 1010
A survey on evolution, pretraining and its applica- 1011
tions. ACM Transactions on Multimedia Computing, 1012
Communications and Applications, 20(3):1–34. 1013

Mike A Merrill, Mingtian Tan, Vinayak Gupta, Thomas 1014
Hartvigsen, and Tim Althoff. 2024. Language mod- 1015
els still struggle to zero-shot reason about time series. 1016
In Findings of the Association for Computational 1017
Linguistics: EMNLP 2024, pages 3512–3533, Mi- 1018
ami, Florida, USA. Association for Computational 1019
Linguistics. 1020

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor- 1021
rado, and Jeff Dean. 2013. Distributed representa- 1022
tions of words and phrases and their compositionality. 1023
Advances in neural information processing systems, 1024
26. 1025

MTEB. 2024. Massive Text Embedding Benchmark 1026
(MTEB) Leaderboard. https://huggingface.co/ 1027
spaces/mteb/leaderboard. Accessed: 2024-05- 1028
13. 1029

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and 1030
Nils Reimers. 2022. Mteb: Massive text embedding 1031
benchmark. arXiv preprint arXiv:2210.07316. 1032

Soichiro Murakami, Akihiko Watanabe, Akira 1033
Miyazawa, Keiichi Goshima, Toshihiko Yanase, Hi- 1034
roya Takamura, and Yusuke Miyao. 2017. Learning 1035
to generate market comments from stock prices. 1036
In Proceedings of the 55th Annual Meeting of the 1037
Association for Computational Linguistics (ACL) 1038
(Volume 1: Long Papers), pages 1374–1384. 1039

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and 1040
Jayant Kalagnanam. 2023. A time series is worth 64 1041
words: Long-term forecasting with transformers. In 1042
The Eleventh International Conference on Learning 1043
Representations. 1044

Zach Nussbaum, John X. Morris, Brandon Duderstadt, 1045
and Andriy Mulyar. 2024. Nomic embed: Training a 1046
reproducible long context text embedder. Preprint, 1047
arXiv:2402.01613. 1048

OpenAI. 2024. OpenAI Embedding Models. 1049
https://platform.openai.com/docs/guides/ 1050
embeddings, https://openai.com/index/ 1051
new-embedding-models-and-api-updates/. 1052
Accessed: 2024-05-13. 1053

Victor Pan. 2017. Fast approximate computations with 1054
cauchy matrices and polynomials. Mathematics of 1055
Computation, 86(308):2799–2826. 1056

Victor Y Pan. 2012. Structured matrices and polynomi- 1057
als: unified superfast algorithms. Springer Science 1058
& Business Media. 1059

Nikolaos Passalis, Avraam Tsantekidis, Anastasios 1060
Tefas, Juho Kanniainen, Moncef Gabbouj, and 1061

12

https://doi.org/10.18653/v1/2024.findings-acl.466
https://doi.org/10.18653/v1/2024.findings-acl.466
https://doi.org/10.18653/v1/2024.findings-acl.466
https://doi.org/10.18653/v1/2024.findings-acl.466
https://doi.org/10.18653/v1/2024.findings-acl.466
https://doi.org/10.18653/v1/2024.findings-emnlp.201
https://doi.org/10.18653/v1/2024.findings-emnlp.201
https://doi.org/10.18653/v1/2024.findings-emnlp.201
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://doi.org/10.48550/ARXIV.2210.07316
https://doi.org/10.48550/ARXIV.2210.07316
https://doi.org/10.48550/ARXIV.2210.07316
https://arxiv.org/abs/2402.01613
https://arxiv.org/abs/2402.01613
https://arxiv.org/abs/2402.01613
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/

Alexandros Iosifidis. 2017. Time-series classifica-1062
tion using neural bag-of-features. In 2017 25th Eu-1063
ropean Signal Processing Conference (EUSIPCO),1064
pages 301–305. IEEE.1065

Jeffrey Pennington, Richard Socher, and Christopher D1066
Manning. 2014. Glove: Global vectors for word rep-1067
resentation. In Proceedings of the 2014 conference1068
on empirical methods in natural language processing1069
(EMNLP), pages 1532–1543.1070

Soujanya Poria, Navonil Majumder, Devamanyu Haz-1071
arika, Erik Cambria, Alexander Gelbukh, and Amir1072
Hussain. 2018. Multimodal sentiment analysis: Ad-1073
dressing key issues and setting up the baselines.1074
IEEE Intelligent Systems, 33(6):17–25.1075

Jacob Portes, Alexander Trott, Sam Havens, Daniel1076
King, Abhinav Venigalla, Moin Nadeem, Nikhil Sar-1077
dana, Daya Khudia, and Jonathan Frankle. 2024. Mo-1078
saicbert: a bidirectional encoder optimized for fast1079
pretraining. Advances in Neural Information Pro-1080
cessing Systems, 36.1081

Ofir Press, Noah A Smith, and Mike Lewis. 2020. Short-1082
former: Better language modeling using shorter in-1083
puts. arXiv preprint arXiv:2012.15832.1084

Alec Radford, Jeff Wu, Rewon Child, David Luan,1085
Dario Amodei, and Ilya Sutskever. 2019. Language1086
models are unsupervised multitask learners.1087

UEA Rik Henson. 2023. DecMeg2014 - Decod-1088
ing the Human Brain. https://www.kaggle.com/1089
c/decoding-the-human-brain/data. Accessed:1090
2024-04-15.1091

Tim Salimans and Durk P Kingma. 2016. Weight nor-1092
malization: A simple reparameterization to accelerate1093
training of deep neural networks. Advances in neural1094
information processing systems, 29.1095

Noam Shazeer. 2020. Glu variants improve transformer.1096
arXiv preprint arXiv:2002.05202.1097

Hiroshi Shimodaira, Ken-ichi Noma, Mitsuru Nakai,1098
and Shigeki Sagayama. 2001. Dynamic time-1099
alignment kernel in support vector machine. Ad-1100
vances in neural information processing systems, 14.1101

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,1102
Patrick LeGresley, Jared Casper, and Bryan Catan-1103
zaro. 2019. Megatron-lm: Training multi-billion1104
parameter language models using model parallelism.1105
arXiv preprint arXiv:1909.08053.1106

Mohammad Shokoohi-Yekta, Bing Hu, Hongxia Jin,1107
Jun Wang, and Eamonn Keogh. 2017. Generalizing1108
dtw to the multi-dimensional case requires an adap-1109
tive approach. Data mining and knowledge discovery,1110
31:1–31.1111

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,1112
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-1113
hanced transformer with rotary position embedding.1114
Neurocomputing, 568:127063.1115

Chenxi Sun, Yaliang Li, Hongyan Li, and Shenda Hong. 1116
2023. Test: Text prototype aligned embedding to 1117
activate llm’s ability for time series. arXiv preprint 1118
arXiv:2308.08241. 1119

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser- 1120
manet, Scott Reed, Dragomir Anguelov, Dumitru 1121
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 1122
2015. Going deeper with convolutions. In Proceed- 1123
ings of the IEEE conference on computer vision and 1124
pattern recognition, pages 1–9. 1125

Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. 1126
2021. Unsupervised representation learning for time 1127
series with temporal neighborhood coding. In In- 1128
ternational Conference on Learning Representations 1129
(ICLR). 1130

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 1131
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 1132
Kaiser, and Illia Polosukhin. 2017. Attention is all 1133
you need. Advances in neural information processing 1134
systems, 30. 1135

Aaron Voelker, Ivana Kajić, and Chris Eliasmith. 2019. 1136
Legendre memory units: Continuous-time representa- 1137
tion in recurrent neural networks. Advances in neural 1138
information processing systems, 32. 1139

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, 1140
Rangan Majumder, and Furu Wei. 2024. Improv- 1141
ing text embeddings with large language models. In 1142
Proceedings of the 62nd Annual Meeting of the As- 1143
sociation for Computational Linguistics (ACL) (Vol- 1144
ume 1: Long Papers), pages 11897–11916, Bangkok, 1145
Thailand. Association for Computational Linguistics. 1146

Xiaoyue Wang, Abdullah Mueen, Hui Ding, Goce Tra- 1147
jcevski, Peter Scheuermann, and Eamonn Keogh. 1148
2013. Experimental comparison of representation 1149
methods and distance measures for time series data. 1150
Data Mining and Knowledge Discovery, 26:275–309. 1151

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Ku- 1152
mar, and Steven Hoi. 2022. Etsformer: Exponential 1153
smoothing transformers for time-series forecasting. 1154
arXiv preprint arXiv:2202.01381. 1155

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin 1156
Wang, and Mingsheng Long. 2022a. Timesnet: Tem- 1157
poral 2d-variation modeling for general time series 1158
analysis. In The eleventh international conference on 1159
learning representations. 1160

Haixu Wu, Jialong Wu, Jiehui Xu, Jianmin Wang, and 1161
Mingsheng Long. 2022b. Flowformer: Linearizing 1162
transformers with conservation flows. arXiv preprint 1163
arXiv:2202.06258. 1164

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng 1165
Long. 2021. Autoformer: Decomposition transform- 1166
ers with auto-correlation for long-term series fore- 1167
casting. Advances in neural information processing 1168
systems, 34:22419–22430. 1169

13

https://www.kaggle.com/c/decoding-the-human-brain/data
https://www.kaggle.com/c/decoding-the-human-brain/data
https://www.kaggle.com/c/decoding-the-human-brain/data
https://doi.org/10.18653/v1/2024.acl-long.642
https://doi.org/10.18653/v1/2024.acl-long.642
https://doi.org/10.18653/v1/2024.acl-long.642

Chao-Han Huck Yang, Yun-Yun Tsai, and Pin-Yu Chen.1170
2021. Voice2series: Reprogramming acoustic mod-1171
els for time series classification. In International1172
conference on machine learning, pages 11808–11819.1173
PMLR.1174

Jianbo Yang, Minh Nhut Nguyen, Phyo Phyo San, Xi-1175
aoli Li, and Shonali Krishnaswamy. 2015. Deep1176
convolutional neural networks on multichannel time1177
series for human activity recognition. In Ijcai, vol-1178
ume 15, pages 3995–4001. Buenos Aires, Argentina.1179

Xinli Yu, Zheng Chen, and Yanbin Lu. 2023. Harness-1180
ing LLMs for temporal data - a study on explainable1181
financial time series forecasting. In Proceedings of1182
the 2023 Conference on Empirical Methods in Natu-1183
ral Language Processing (EMNLP): Industry Track,1184
pages 739–753, Singapore. Association for Compu-1185
tational Linguistics.1186

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng1187
Yang, Congrui Huang, Yunhai Tong, and Bixiong Xu.1188
2022. Ts2vec: Towards universal representation of1189
time series. In Proceedings of the AAAI Conference1190
on Artificial Intelligence, volume 36, pages 8980–1191
8987.1192

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu.1193
2023. Are transformers effective for time series fore-1194
casting? In Proceedings of the AAAI conference1195
on artificial intelligence, volume 37, pages 11121–1196
11128.1197

George Zerveas, Srideepika Jayaraman, Dhaval Patel,1198
Anuradha Bhamidipaty, and Carsten Eickhoff. 2021.1199
A transformer-based framework for multivariate time1200
series representation learning. In Proceedings of1201
the 27th ACM SIGKDD conference on knowledge1202
discovery & data mining, pages 2114–2124.1203

Tianping Zhang, Yizhuo Zhang, Wei Cao, Jiang Bian,1204
Xiaohan Yi, Shun Zheng, and Jian Li. 2022a. Less1205
is more: Fast multivariate time series forecasting1206
with light sampling-oriented mlp structures. arXiv1207
preprint arXiv:2207.01186.1208

Xiang Zhang, Ziyuan Zhao, Theodoros Tsiligkaridis,1209
and Marinka Zitnik. 2022b. Self-supervised1210
contrastive pre-training for time series via time-1211
frequency consistency. Advances in Neural Infor-1212
mation Processing Systems, 35:3988–4003.1213

Xiyuan Zhang, Ranak Roy Chowdhury, Rajesh K.1214
Gupta, and Jingbo Shang. 2024. Large language mod-1215
els for time series: A survey. ArXiv, abs/2402.01801.1216

Bendong Zhao, Huanzhang Lu, Shangfeng Chen, Jun-1217
liang Liu, and Dongya Wu. 2017. Convolutional neu-1218
ral networks for time series classification. Journal1219
of Systems Engineering and Electronics, 28(1):162–1220
169.1221

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai1222
Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.1223
2021. Informer: Beyond efficient transformer for1224

long sequence time-series forecasting. In Proceed- 1225
ings of the AAAI conference on artificial intelligence, 1226
volume 35, pages 11106–11115. 1227

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, 1228
Liang Sun, and Rong Jin. 2022. Fedformer: Fre- 1229
quency enhanced decomposed transformer for long- 1230
term series forecasting. In International conference 1231
on machine learning, pages 27268–27286. PMLR. 1232

Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. 1233
2024. One fits all: Power general time series analysis 1234
by pretrained lm. Advances in neural information 1235
processing systems, 36. 1236

Appendix 1237

Table of Contents 1238

A Related Works 15 1239

B Datasets 15 1240

C Comparison Baselines: Supervised 1241

Learning Methods 17 1242

D Adapting Supervised Forecasting Base- 1243

line Models for Classification 25 1244

E Comparison Baselines: Unsupervised 1245

Representation Learning Methods 25 1246

F Adapting Unsupervised Representation 1247

Learning Models for Classification 27 1248

G Reproduction Details for Baselines 27 1249

H Implementation Details for LETS-C 27 1250

I Hyperparameter Settings for LETS-C 27 1251

J Model Performance 28 1252

K Computational Cost Analysis 28 1253

L Monetary Costs Analysis 28 1254

M Assessing Text Embeddings with Cosine 1255

Similarity 29 1256

N Numerical Precision for Tokenization 30 1257

O Generalization Across Various Text Em- 1258

bedding Models 30 1259

P Trade-offs: Model Accuracy vs. Parame- 1260

ter Complexity 32 1261

14

https://doi.org/10.18653/v1/2023.emnlp-industry.69
https://doi.org/10.18653/v1/2023.emnlp-industry.69
https://doi.org/10.18653/v1/2023.emnlp-industry.69
https://doi.org/10.18653/v1/2023.emnlp-industry.69
https://doi.org/10.18653/v1/2023.emnlp-industry.69
https://api.semanticscholar.org/CorpusID:267411923
https://api.semanticscholar.org/CorpusID:267411923
https://api.semanticscholar.org/CorpusID:267411923

Q Ablation Study 341262

R Alternative Methods for Fusing Time Se-1263

ries with Embeddings 341264

A Related Works1265

Time series classification has been an active re-1266

search area for decades. Early approaches inves-1267

tigated distance-based approaches (Abanda et al.,1268

2019) for time series classification. Some built1269

nearest neighbor classifiers based on explicit time1270

series distance measures such as Dynamic Time1271

Warping (DTW) (Wang et al., 2013; Jeong et al.,1272

2011; Berndt and Clifford, 1994). Others have used1273

distance kernels instead and learned Support Vec-1274

tor Machines (SVMs) (Kampouraki et al., 2008;1275

Bahlmann et al., 2002; Shimodaira et al., 2001),1276

or extracted features and learned linear (Dempster1277

et al., 2020) or tree-based classifiers such as eX-1278

treme Gradient Boosting (XGBoost) (Chen and1279

Guestrin, 2016).1280

Later, deep learning-based approaches are1281

widely adopted because of their ability to learn1282

complex patterns. Convolutional Neural Networks1283

(CNNs) have proven to be successful in learning1284

local patterns in time series data (Wu et al., 2022a;1285

Franceschi et al., 2019; Zhao et al., 2017). Sim-1286

ilarly, Multilayer Perceptron (MLP) can provide1287

simple but effective time series classifiers (Zhang1288

et al., 2022a). Recurrent Neural Networks (RNNs),1289

such as Long Short-Term Memory (LSTM) effec-1290

tively handle long sequence modeling (Gu et al.,1291

2021; Lai et al., 2018; Hochreiter and Schmidhuber,1292

1997).1293

More recently, transformer-based mod-1294

els (Vaswani et al., 2017) have revolutionized1295

the NLP domain, and these models have been1296

adapted to the time series domain (Zhou et al.,1297

2022; Wu et al., 2021; Zhou et al., 2021). The1298

self-attention mechanism in transformers is known1299

for modeling long-range dependencies in sequence1300

data. However, the increasing complexity of these1301

models often comes with larger model sizes and1302

higher computational costs, especially for training.1303

B Datasets1304

We benchmark our model using the following 101305

multivariate datasets from the UEA Time Series1306

Classification Archive Bagnall et al. (2018). See1307

Table 4 for their data characteristics.1308

B.1 EthanolConcentration 1309

EthanolConcentration (Large et al., 2018) com- 1310

prises raw spectra from water-and-ethanol solu- 1311

tions contained within 44 unique, real whisky bot- 1312

tles, featuring ethanol concentrations of 35%, 38%, 1313

40%, and 45%. Scotch Whisky regulations require 1314

a minimum alcohol content of 40%, a standard 1315

that producers adhere to in order to comply with 1316

labeling specifications. The dataset presents a clas- 1317

sification task to identify the ethanol concentration 1318

from spectral readings of any given bottle. Each 1319

record includes three spectral readings from the 1320

same bottle and batch, obtained by positioning the 1321

bottle between a light source and a spectroscope. 1322

These spectral readings, which cover wavelengths 1323

from 226nm to 1101.5nm at a 0.5nm resolution, 1324

were recorded over a one-second integration time 1325

using a StellarNet BLACKComet-SR spectrome- 1326

ter. The methodology deliberately avoids optimiz- 1327

ing for clarity or consistency in the spectral path, 1328

aiming to simulate the varied conditions typical 1329

of rapid screening tests that may be performed on 1330

batches of spirits for quality assurance. 1331

B.2 FaceDetection 1332

The FaceDetection dataset originates from a 2014 1333

Kaggle competition (Rik Henson, 2023). The chal- 1334

lenge involves identifying whether a subject is 1335

viewing a picture of a face or a scrambled image 1336

using magnetoencephalography (MEG) data, in- 1337

dependent of the individual subject. This dataset 1338

specifically includes only the training portion from 1339

the competition, organized by patient. It comprises 1340

data from 10 training subjects (subject01 to sub- 1341

ject10) and 6 testing subjects (subject11 to sub- 1342

ject16). Each subject has approximately 580 to 590 1343

trials, resulting in a total of 5,890 training trials 1344

and 3,524 test trials. Each trial features 1.5 sec- 1345

onds of MEG data, initiated 0.5 seconds before the 1346

stimulus is presented, and is associated with a class 1347

label—Face (class 1) or Scramble (class 0). The 1348

data were down-sampled to 250Hz and subjected to 1349

a high-pass filter at 1Hz, producing 62 observations 1350

per channel. 1351

B.3 Handwriting 1352

The Handwriting dataset (Shokoohi-Yekta et al., 1353

2017) consists of motion data captured from a 1354

smartwatch while subjects wrote the 26 letters of 1355

the alphabet. Developed at the University of Cali- 1356

fornia, Riverside (UCR), this dataset includes 150 1357

15

Table 4: Dataset Characteristics. Abbreviations: EC: EthanolConcentration, FD: FaceDetection, HW: Handwriting,
HB: Heartbeat, JV: JapaneseVowels, PEMS: PEMS-SF, SCP1: SelfRegulationSCP1, SCP2: SelfRegulationSCP2,
SAD: SpokenArabicDigits, UW: UWaveGestureLibrary

Characteristic EC FD HW HB JV PEMS-SF SCP1 SCP2 SAD UW

Train Size 261 5890 150 204 270 267 268 200 6599 120
Test Size 263 3524 850 205 370 173 293 180 2199 320
Number of Dimensions 3 144 3 61 12 963 6 7 13 3
Series Length 1751 62 152 405 29 144 896 1152 93 315
Number of Classes 4 2 26 2 9 7 2 2 10 8
Type Spectro EEG Motion/Human

Activity
Recognition

Audio Audio Occupancy rate EEG EEG Speech EEG

training cases and 850 test cases. It features six di-1358

mensions, comprising three accelerometer readings1359

and three gyroscope readings.1360

B.4 Heartbeat1361

The Heartbeat dataset originates from the Phys-1362

ioNet/CinC Challenge 2016 Liu et al. (2016) and1363

consists of cardiac sound recordings from a diverse1364

pool of participants, both healthy individuals and1365

patients with cardiac conditions. Recordings were1366

made in various settings, clinical and non-clinical,1367

and captured from multiple body locations includ-1368

ing the aortic, pulmonic, tricuspid, and mitral ar-1369

eas, among up to nine potential sites. The dataset1370

categorizes these sounds into two primary classes:1371

normal and abnormal. Normal heart sounds were1372

obtained from healthy subjects, while abnormal1373

sounds were recorded from patients diagnosed with1374

cardiac ailments, predominantly heart valve defects1375

such as mitral valve prolapse, mitral regurgitation,1376

aortic stenosis, and post-valvular surgery condi-1377

tions, as well as coronary artery disease.1378

The audio recordings, inclusive of contributions1379

from both children and adults, were uniformly trun-1380

cated to five seconds. Spectrograms of each trun-1381

cated audio were generated using a window size1382

of 0.061 seconds with a 70% overlap. This multi-1383

variate dataset is structured with each dimension1384

representing a frequency band derived from the1385

spectrogram. There are 113 instances in the normal1386

class and 296 in the abnormal class.1387

B.5 JapaneseVowels1388

The Japanese Vowels dataset Kudo et al. (1999),1389

sourced from the UCI Machine Learning Reposi-1390

tory, comprises recordings from nine male speakers1391

who pronounced the Japanese vowels ‘a’ and ‘e’.1392

Each utterance was analyzed using a 12-degree1393

linear prediction to extract a 12-dimensional time-1394

series representation, with lengths varying origi- 1395

nally from 7 to 29. For consistency, all instances 1396

in the dataset have been padded to the maximum 1397

length of 29. The objective of the classification task 1398

is to identify the speaker; hence each 12-by-29 in- 1399

stance matrix is associated with a single class label, 1400

ranging from 1 to 9. This dataset serves as a bench- 1401

mark for assessing the efficacy of time-series clas- 1402

sification models in distinguishing speakers based 1403

on LPC cepstrum coefficients obtained from their 1404

speech patterns. 1405

The dataset includes a total of 640 time-series 1406

instances. A training set consists of 30 utterances 1407

per speaker, totaling 270 instances. The test set, 1408

however, comprises 370 instances and varies in 1409

distribution—ranging from 24 to 88 instances per 1410

speaker—owing to external factors such as timing 1411

and availability during the experimental setup. 1412

B.6 PEMS-SF 1413

The PEMS-SF dataset Cuturi (2011) contains 15 1414

months of daily data sourced from the California 1415

Department of Transportation. This dataset details 1416

the occupancy rates, ranging from 0 to 1, across var- 1417

ious car lanes on the freeways of the San Francisco 1418

Bay Area. The data spans from January 1, 2008, to 1419

March 30, 2009, with measurements taken every 10 1420

minutes. Each day is treated as an individual time 1421

series with a dimension of 963, corresponding to 1422

the number of sensors that consistently functioned 1423

throughout the observation period. The length of 1424

each time series is 144 data points (6 per hour x 24 1425

hours). The dataset excludes public holidays and 1426

two anomalous days (March 8, 2009, and March 1427

9, 2008) when sensors recorded no data between 1428

2:00 and 3:00 AM, resulting in a total of 440 valid 1429

time series. The classification task involves identi- 1430

fying the day of the week for each series, labeling 1431

them with integers from 1 (Monday) to 7 (Sun- 1432

16

day). Each attribute within a record reflects the1433

occupancy rate recorded by a sensor at a specific1434

timestamp throughout the day.1435

B.7 SelfRegulationSCP11436

The SelfRegulationSCP1 dataset, sourced from Bir-1437

baumer et al. (1999), involves recordings from a1438

healthy subject who was instructed to control a cur-1439

sor on a screen using cortical potentials. This pro-1440

cess was facilitated by tracking the subject’s slow1441

cortical potentials (Cz-Mastoids), where cortical1442

positivity resulted in downward cursor movements1443

and cortical negativity caused it to move upward.1444

Each trial, lasting six seconds, was designed to cap-1445

ture these dynamics, with visual feedback provided1446

between the second 2 and 5.5 of the trial. During1447

each trial, a goal was visually indicated at either the1448

top or bottom of the screen starting from 0.5 sec-1449

onds to the end of the trial, guiding the subject to1450

generate negative or positive potentials correspond-1451

ingly. The usable data for each trial, however, spans1452

only 3.5 seconds—from the second 2 to 5.5—cor-1453

responding to 896 samples per channel given the1454

sampling rate of 256 Hz.1455

Data capture involved a PsyLab EEG8 amplifier1456

and a PCIM-DAS1602/16 A/D converter, recording1457

over channels positioned according to the 10/201458

system. The dataset includes a training set of 2681459

trials—168 from the first day and 100 from the1460

second, mixed randomly—and 293 test instances,1461

with class labels indicating positivity or negativity.1462

B.8 SelfRegulationSCP21463

The SelfRegulationSCP2 dataset Birbaumer et al.1464

(1999) includes data from an artificially respirated1465

ALS patient who was tasked with controlling a cur-1466

sor on a computer screen using cortical potentials.1467

Auditory and visual cues were used to guide the pa-1468

tient, with slow cortical potentials measured at the1469

Cz-Mastoids. A positive potential moved the cursor1470

downward, whereas a negative potential moved it1471

upward. Each trial lasted 8 seconds, with the cursor1472

movement direction (up for negativity, down for1473

positivity) indicated both visually and auditorily1474

from the 0.5 to 7.5 second marks. Auditory instruc-1475

tions were given precisely at the 0.5-second mark,1476

and visual feedback was available from seconds 21477

to 6.5. Only the data from this 4.5-second feedback1478

period, translating to 1152 samples per channel at1479

a 256 Hz sampling rate, are used for training and1480

testing.1481

EEG data were collected from several sites ac- 1482

cording to the 10/20 system and included channels 1483

for detecting vertical eye movements (vEOG). The 1484

EEG signals were not corrected for EOG artifacts, 1485

providing a raw view of the cortical activity. The 1486

dataset comprises 200 trials for training, evenly 1487

split between two classes, and an additional 180 1488

trials for testing, recorded on the same day but af- 1489

ter the training session data. Each trial spans 7 1490

dimensions and a series length of 1152. 1491

B.9 Spoken Arabic Digits 1492

The Spoken Arabic Digits dataset Bedda and Ham- 1493

mami (2010) consists of 8,800 time series data en- 1494

tries derived from the vocal utterances of 88 native 1495

Arabic speakers (44 males and 44 females, aged 1496

between 18 and 40). Each dataset entry represents 1497

one of ten Arabic digits, spoken ten times by each 1498

speaker. The dataset captures 13 Mel Frequency 1499

Cepstral Coefficients (MFCCs) for each sound snip- 1500

pet, which are extracted under the following audio 1501

processing conditions: 1502

• Sampling rate: 11025 Hz 1503

• Bit depth: 16 bits 1504

• Window function: Hamming 1505

• Pre-emphasis filter: 1− 0.97Z−1 1506

Each line in the database corresponds to one 1507

frame of analysis, listing the 13 MFCCs separated 1508

by spaces. These coefficients effectively capture 1509

the spectral properties essential for recognizing 1510

spoken digits. This structured approach facilitates 1511

robust time-series analysis for speech recognition 1512

tasks involving Arabic numerals. 1513

B.10 UWaveGestureLibrary 1514

The UWaveGestureLibrary Liu et al. (2009) com- 1515

prises a set of eight simple gestures, each generated 1516

from accelerometer data. The dataset records the 1517

X, Y, and Z coordinates corresponding to each ges- 1518

ture’s motion. Every time series within this dataset 1519

consists of 315 data points. 1520

C Comparison Baselines: Supervised 1521

Learning Methods 1522

To provide a thorough comparison, we evaluate our 1523

approach against 21 supervised baseline models for 1524

time series classification. These baselines can be 1525

categorized into Classical methods, models based 1526

17

on MLPs, RNNs, CNNs, transformers, and LLMs.1527

The details of which are provided below.1528

C.1 Classical methods1529

1) Dynamic Time Warping (DTW) Berndt and1530

Clifford (1994) is a method for measuring1531

similarity between two time series, X =1532

(x1, x2, . . . , xM) and Y = (y1, y2, . . . , yN),1533

which may differ in length and are sampled at1534

equidistant points in time. DTW identifies the1535

best alignment between these series by mini-1536

mizing the effects of distortion and shifting in1537

time, allowing for the comparison of similar1538

shapes across different phases.1539

The core of DTW is the construction of a1540

local cost matrix, C ∈ RM×N , with en-1541

tries ci,j = ∥xi − yj∥ for i ∈ [1,M] and1542

j ∈ [1, N], which represents the pairwise1543

distances between points in the two series.1544

The objective is to find a warping path p =1545

(p1, p2, . . . , pL) where each pl = (pi, pj)1546

lies within [1,M] × [1, N]. This path aligns1547

the series by following the route that mini-1548

mizes cumulative distance, adhering to sev-1549

eral constraints: it must start and end at1550

p1 = (1, 1) and pL = (M,N) (boundary1551

condition), maintain the temporal ordering of1552

points m1 ≤ m2 ≤ . . . ≤ mL and n1 ≤1553

n2 ≤ . . . ≤ nL (monotonicity condition), and1554

prevent large temporal jumps (step size condi-1555

tion). The optimal warping path is identified1556

through a recursive process aimed at minimiz-1557

ing the total cost associated with p, calculated1558

as cp(X,Y) =
∑L

l=1 c(xml
, ynl

). This path,1559

P ∗, where cP ∗ = minp∈P cp(X,Y), defines1560

the DTW distance, quantifying the similarity1561

between the series. However, the computa-1562

tional cost of this process is O(MN), where1563

M and N are the lengths of the two series,1564

rendering it computationally demanding for1565

large datasets.1566

For classifying time series, the DTW dis-1567

tance is integrated with the k-nearest neigh-1568

bors (k-NN) algorithm. This approach com-1569

putes the DTW distance of a target series to all1570

other series in a training dataset and assigns1571

a classification based on the most common1572

class among the k-nearest neighbors. Thus,1573

DTW effectively accommodates series with1574

time shifts, providing a robust, distance-based1575

method for classifying time series.1576

2) eXtreme Gradient Boosting (XGBoost) 1577

(Chen and Guestrin, 2016) is a state-of-the- 1578

art machine learning algorithm that primarily 1579

uses decision trees as base learners to con- 1580

struct a robust ensemble model. XGBoost 1581

sequentially builds a series of weak learn- 1582

ers—typically decision trees—and enhances 1583

each successive tree by correcting errors made 1584

by its predecessors, a technique known as 1585

boosting. This process involves an additive 1586

model where each new decision tree is im- 1587

proved by leveraging the cumulative knowl- 1588

edge of the trees that came before it, optimiz- 1589

ing for maximum information gain at each 1590

split using a greedy algorithm. To prevent 1591

overfitting, XGBoost incorporates regulariza- 1592

tion directly into its loss function and employs 1593

shrinkage to moderate the learning rate. Ad- 1594

ditionally, the optimization method, which 1595

is gradient-based, minimizes a cost function 1596

by iteratively adjusting the model’s parame- 1597

ters in response to the gradients of the errors. 1598

XGBoost also refines the decision tree con- 1599

struction process by using a Similarity Score 1600

and Gain to determine the most effective node 1601

splits, further improving the model’s accuracy 1602

and efficiency. 1603

3) RandOm Convolutional KErnel Transform 1604

(ROCKET) (Dempster et al., 2020) is a 1605

method for time series classification that em- 1606

ploys random convolutional kernels to trans- 1607

form series data, which is then used to train 1608

a linear classifier. Unlike traditional convo- 1609

lutional neural networks (CNNs) that rely on 1610

learned kernels, ROCKET utilizes a broad ar- 1611

ray of random kernels. Each kernel is uniquely 1612

characterized by random properties such as 1613

length, weights, biases, dilation, and padding. 1614

This configuration forms a single-layer con- 1615

volutional neural network, where the random- 1616

ized kernel weights contribute to generating 1617

input for a softmax layer, thus optimizing the 1618

feature extraction process. ROCKET also ef- 1619

ficiently scales for large datasets due to its 1620

linear complexity relative to the length of the 1621

time series and the number of training samples. 1622

The key advantages of ROCKET include: 1623

– Number of Kernels: ROCKET utilizes a 1624

substantial number of kernels in a single 1625

layer. The non-learned nature of these 1626

kernels reduces computational costs sig- 1627

18

nificantly, enabling the use of numerous1628

kernels without substantial overhead.1629

– Variety of Kernels: Unlike typical CNNs,1630

where kernels might share characteris-1631

tics, each ROCKET kernel is distinct in1632

its attributes, enhancing the diversity and1633

the ability to detect various patterns.1634

– Kernel Dilation: Dilation in ROCKET is1635

randomly assigned to each kernel, differ-1636

ing from the exponential increase with1637

depth seen in traditional CNNs. This ran-1638

domness is vital for identifying patterns1639

across different scales and frequencies.1640

– Feature Extraction: Beyond employing1641

global max pooling techniques through1642

the maximum value of feature maps,1643

ROCKET utilizes a novel metric—the1644

proportion of positive values. This met-1645

ric allows classifiers to assess the preva-1646

lence of patterns more accurately within1647

the time series.1648

C.2 MLP-based methods1649

4) LightTS (Zhang et al., 2022a) is an MLP-1650

based time series forecasting model that em-1651

ploys simple MLP structures to manage both1652

short-term and long-term temporal dependen-1653

cies. This model includes two downsampling1654

strategies: interval sampling, which targets1655

long-term dependencies, and continuous sam-1656

pling, which focuses on short-term local pat-1657

terns. These strategies are based on the princi-1658

ple that downsampling typically preserves the1659

majority of a time series’ crucial information,1660

thus maintaining model efficiency. LightTS1661

utilizes an MLP-based framework on top of1662

these downsampling techniques, enabling ef-1663

fective information exchange among different1664

down-sampled subsequences and time steps.1665

This configuration allows LightTS to adap-1666

tively select relevant information for forecast-1667

ing and to efficiently handle very long input1668

sequences by processing only a fraction of the1669

data after downsampling.1670

5) DLinear (Zeng et al., 2023) is a recent non-1671

transformer model developed in response to1672

the difficulty transformer-based models face1673

in capturing ordering information within time1674

series. DLinear integrates a decomposition1675

scheme similar to those used in Autoformer1676

and FEDformer but relies on linear layers for1677

processing. Initially, it decomposes a raw data 1678

input into a trend component using a mov- 1679

ing average kernel and a remainder (seasonal) 1680

component. Subsequently, two single-layer 1681

linear layers are applied independently to each 1682

component. The outputs from these layers are 1683

then summed to produce the final prediction. 1684

This approach allows DLinear to enhance per- 1685

formance over a standard linear model by ex- 1686

plicitly handling trends within the data. 1687

C.3 RNN-based models 1688

6) Long Short-Term Memory (LSTM) Hochre- 1689

iter and Schmidhuber (1997) addresses the 1690

vanishing gradient problem that plagues 1691

vanilla RNNs in processing longer sequences. 1692

This issue arises as the network propagates 1693

forward, and the small weight values in the 1694

hidden layers are multiplied repeatedly, caus- 1695

ing the gradients to diminish rapidly. As a 1696

result, the weights in the initial layers become 1697

increasingly difficult to train, which impacts 1698

the training of subsequent weights, making 1699

RNNs challenging to train overall. LSTM mit- 1700

igates this problem by incorporating a mem- 1701

ory cell equipped with various gates that reg- 1702

ulate the flow of information into and out 1703

of the cell, enabling it to handle long-short 1704

term dependencies effectively. An LSTM unit 1705

utilizes a cell state and three gates—input, 1706

forget, and output—to manage information. 1707

Each gate includes a sigmoid layer σ that 1708

outputs values between 0 and 1, represent- 1709

ing the proportion of information allowed 1710

through the gate, and a point-wise multipli- 1711

cation operation. Specifically, the forget gate 1712

ft = σ(Wf ·[ht−1, xt]+bf) determines which 1713

information to discard from the previous cell 1714

state ct−1 by analyzing the current input xt 1715

and the previous hidden state ht−1. The input 1716

gate it = σ(Wi·[ht−1, xt]+bi) decides which 1717

new information to update, and the update to 1718

the cell state c̃t = tanh(Wc · [ht−1, xt] + bc) 1719

is computed. The cell state is then updated to 1720

ct = ft · ct−1 + it · c̃t. Finally, the output gate 1721

ot = σ(Wo · [ht−1, xt]+ bo) determines what 1722

portion of the cell state to output, with the out- 1723

put hidden state given by ht = ot · tanh(ct). 1724

7) Long- and Short-term Time-series Network 1725

(LSTNet) (Lai et al., 2018) incorporates both 1726

CNN and RNN components to perform com- 1727

19

prehensive time series analysis. The CNN1728

extracts short-term local dependency patterns1729

from multi-dimensional input variables, while1730

the RNN is tasked with capturing complex1731

long-term dependencies in time series trends.1732

To address the issue of scale insensitivity1733

commonly found in neural network models,1734

LSTNet integrates a traditional autoregres-1735

sive model. Additionally, LSTNet features1736

a Recurrent-skip structure designed to ef-1737

fectively capture very long-term dependence1738

patterns and to facilitate easier optimization,1739

leveraging the periodic properties of the input1740

time series signals. Further enhancing its ro-1741

bustness, LSTNet also employs a traditional1742

autoregressive linear model in parallel with its1743

nonlinear neural network components. This1744

dual approach makes the network particularly1745

adept at managing time series that exhibit sig-1746

nificant scale variations.1747

8) Linear State Space Layer (LSSL) (Gu et al.,1748

2021), which is part of the structured state1749

space sequence model, introduces a parame-1750

terization for state space models (SSM) de-1751

signed to enhance computational efficiency.1752

LSSL modifies the structured state matrices1753

by decomposing them into a low-rank and a1754

normal term (Gu et al., 2020; Voelker et al.,1755

2019). This modification facilitates the com-1756

putation of the truncated generating function1757

in frequency space, rather than expanding the1758

standard SSM in coefficient space. Further-1759

more, LSSL employs the Woodbury identity1760

to adjust the low-rank term, and the normal1761

term is stably diagonalized. This approach1762

simplifies the computations by involving pro-1763

cesses associated with a Cauchy kernel (Pan,1764

2012, 2017), known for its stability in theoreti-1765

cal contexts. These modifications allow LSSL1766

to efficiently manage both computational and1767

memory resources.1768

C.4 CNN-based models1769

9) Temporal Convolutional Network (TCN)1770

(Bai et al., 2018; Franceschi et al., 2019) is a1771

CNN-based architecture designed to capture1772

extended historical data with long memory ca-1773

pabilities and requires minimal tuning in prac-1774

tice. TCNs utilize dilated causal convolutions1775

to ensure that predictions do not prematurely1776

incorporate future data. The dilations signif-1777

icantly expand the network’s receptive field, 1778

enabling it to cover a broader range of his- 1779

torical context. Furthermore, TCNs integrate 1780

residual connections to facilitate the effective 1781

training of deeper models. 1782

A TCN model comprises a series of n TCN 1783

residual blocks, where n is a hyperparame- 1784

ter. Each block contains two dilated causal 1785

convolutional layers, which are fully convolu- 1786

tional to ensure that the output size is consis- 1787

tent with the input size. These causal convo- 1788

lutions guarantee that the output at any given 1789

time t depends only on inputs from time t 1790

and earlier. The convolutional layers are ap- 1791

plied with a stride of 1, and padding adjust- 1792

ments maintain the convolutional nature of 1793

the network. Each convolutional layer applies 1794

a dilation factor d, typically set as d = 2i 1795

for the i-th block, to exponentially increase 1796

the receptive field as the network deepens. 1797

Mathematically, a convolution with dilation 1798

factor d on an element x of a 1D input g 1799

with a filter f of length k is computed as 1800

(g ∗d f)(x) =
∑k−1

j=0 f(j) · g(x− d · j). 1801

Following the convolutional layers, the se- 1802

quence of operations includes weight normal- 1803

ization (Salimans and Kingma, 2016), ReLU 1804

activation, and a dropout layer. Weight nor- 1805

malization improves gradient conditioning 1806

and accelerates convergence by reparameteriz- 1807

ing each weight vector w as w = g
||v||v, where 1808

v has a fixed norm and g is a scalar. This pro- 1809

cess decouples the magnitude of the weight 1810

vector from its direction, enhancing network 1811

optimizability. Each block concludes with an 1812

element-wise addition of the block’s input and 1813

the estimated residual mapping, followed by 1814

a ReLU activation. Dimension alignment for 1815

this addition is achieved with a 1× 1 convolu- 1816

tion. 1817

10) TimesNet (Wu et al., 2022a) is a method 1818

that overcomes the limitations of traditional 1819

1D time series representation by transforming 1820

these series into 2D tensors organized across 1821

multiple periods. It captures short-term in- 1822

traperiod variations and long-term interperiod 1823

trends by embedding them into the columns 1824

and rows of the 2D tensors, respectively. This 1825

transformation allows for more efficient mod- 1826

eling of temporal variations using 2D convolu- 1827

20

tional kernels, thereby extending the analysis1828

into a more comprehensive 2D space. Times-1829

Net ensures simultaneous representation of1830

both intraperiod and interperiod variations,1831

with modules specifically tailored to empha-1832

size the unique temporal patterns of each pe-1833

riod.1834

The central component of TimesNet, the1835

TimesBlock, is a versatile and adaptive struc-1836

ture designed to detect multiperiodicity and1837

extract complex temporal patterns from these1838

2D tensors. Its parameter-efficient Inception-1839

block (Szegedy et al., 2015) based architec-1840

ture boosts the model’s analytical capabilities,1841

facilitating a detailed examination of distinct1842

temporal variations associated with different1843

periods. This approach allows TimesNet to1844

transcend the constraints of 1D representa-1845

tions, enabling a unified and thorough analysis1846

of temporal variations.1847

C.5 Transformer-based models1848

11) Transformer (Vaswani et al., 2017) com-1849

prises a dual-component architecture with1850

both an encoder and a decoder, each contain-1851

ing stacked self-attention and point-wise, fully1852

connected layers. Each component consists of1853

six identical layers. In the encoder, each layer1854

includes a multi-head self-attention mecha-1855

nism and a position-wise fully connected feed-1856

forward network, complemented by a residual1857

connection and layer normalization. The de-1858

coder replicates this configuration but adds1859

a third sub-layer for multi-head attention on1860

the encoder’s output. It also modifies its1861

self-attention mechanism to prevent forward-1862

looking attention, thus preserving the model’s1863

auto-regressive properties for sequential gen-1864

eration.1865

The Transformer utilizes multi-head atten-1866

tion to enable nuanced interactions between1867

its encoder and decoder and to facilitate de-1868

tailed processing across different positions1869

in the sequence. This attention mechanism1870

projects queries, keys, and values through mul-1871

tiple linear transformations, enabling diverse1872

representation and integration of information1873

across subspaces. It is applied in three dis-1874

tinct forms: encoder-decoder attention allows1875

decoder queries to attend to all positions in1876

the encoder output; self-attention within the1877

encoder lets each position process informa- 1878

tion from all preceding positions; and self- 1879

attention within the decoder restricts atten- 1880

tion to prevent future positions from influenc- 1881

ing the sequence, maintaining sequential in- 1882

tegrity. This structured approach helps the 1883

Transformer effectively manage and process 1884

long sequence dependencies, making it adapt- 1885

able for a broad range of sequence-based ap- 1886

plications. 1887

12) Reformer (Kitaev et al., 2020) enhances the 1888

efficiency of the transformer model with two 1889

significant modifications, making it more suit- 1890

able for processing long sequences. Firstly, it 1891

replaces the traditional dot-product attention 1892

with a locality-sensitive hashing mechanism. 1893

This change reduces the computational com- 1894

plexity from O(L2) to O(L logL), where L 1895

is the sequence length. Secondly, Reformer 1896

employs reversible residual layers, which re- 1897

generate the activations of any layer from the 1898

subsequent layer’s activations using only the 1899

model parameters. This approach eliminates 1900

the need for storing multiple copies of acti- 1901

vations for each layer, substantially reducing 1902

memory usage. The reversible layers, intro- 1903

duced in (Gomez et al., 2017), require only a 1904

single set of activations to be stored for the en- 1905

tire model, significantly reducing the memory 1906

cost usually multiplied by the number of lay- 1907

ers (N). Moreover, the Reformer processes ac- 1908

tivations in chunks within feed-forward layers, 1909

further decreasing memory demands. These 1910

adjustments, along with the use of locality- 1911

sensitive hashing for attention computation, 1912

not only minimize memory and computational 1913

overhead but also maintain the model’s perfor- 1914

mance on par with the traditional transformer 1915

model for long sequences. 1916

13) Informer (Zhou et al., 2021) is a transformer- 1917

based model designed specifically to tackle 1918

challenges in long sequence time-series fore- 1919

casting, such as quadratic time complexity, 1920

high memory usage, and constraints of the 1921

traditional encoder-decoder architecture. The 1922

Informer introduces several modifications to 1923

enhance efficiency and effectiveness in pro- 1924

cessing long sequences: 1925

– ProbSparse Self-Attention Mechanism: 1926

This mechanism replaces the conven- 1927

21

tional self-attention in Transformers. It1928

is engineered to achieve O(L logL) in1929

both time complexity and memory us-1930

age, efficiently managing dependency1931

alignments without compromising per-1932

formance.1933

– Self-Attention Distilling: This process1934

improves attention management by con-1935

centrating on dominant attention scores1936

and halving the input size for each cas-1937

cading layer. This method effectively1938

manages extremely long input sequences1939

and significantly lowers the space com-1940

plexity to O((2− ϵ)L logL).1941

– Generative Style Decoder: Diverging1942

from the typical step-by-step decoding1943

process, the generative style decoder in1944

Informer predicts long time-series se-1945

quences in a single forward operation.1946

This approach accelerates inference for1947

long-sequence predictions and reduces1948

the propagation of cumulative errors dur-1949

ing the inference phase.1950

The Informer leverages these enhance-1951

ments—ProbSparse self-attention for efficient1952

processing, self-attention distilling to focus1953

on important attention scores, and a genera-1954

tive style decoder for rapid sequence genera-1955

tion—to improve its performance in forecast-1956

ing long sequences and capturing long-range1957

dependencies between extensive time-series1958

inputs and outputs.1959

14) Pyraformer (Liu et al., 2021) is a transformer-1960

based model that employs a pyramidal atten-1961

tion module (PAM) for efficient management1962

of time series data. This module uses inter-1963

scale and intra-scale connections to summa-1964

rize features at different resolutions and cap-1965

ture temporal dependencies across various1966

ranges. The design integrates a tree struc-1967

ture for inter-scale connections and neighbor-1968

ing intra-scale connections to achieve a multi-1969

resolution representation of time series. This1970

architecture ensures that Pyraformer scales lin-1971

early with the input series length, optimizing1972

computational efficiency while maintaining1973

a constant signal path length relative to the1974

sequence length L, and keeping both time and1975

space complexity linear with L.1976

Pyraformer operates by first embedding ob-1977

served data, covariates, and positions in a man- 1978

ner similar to the Informer (Zhou et al., 2021). 1979

It then constructs a multi-resolution C-ary tree 1980

through a coarser-scale construction module 1981

(CSCM), where each coarser scale node ag- 1982

gregates information from C finer scale nodes. 1983

This structure allows Pyraformer to model 1984

temporal dependencies efficiently across dif- 1985

ferent scales through sparse intra-scale con- 1986

nections, thus reducing computational over- 1987

head. Depending on the specific needs of dif- 1988

ferent downstream tasks, Pyraformer adapts 1989

its output structure to effectively meet the re- 1990

quirements of diverse time series analyses. 1991

15) Autoformer (Wu et al., 2021) is a transformer- 1992

based model that incorporates time series de- 1993

composition, drawing inspiration from clas- 1994

sical time series analysis methods. Unlike 1995

traditional transformers that rely on self- 1996

attention mechanisms to capture long-range 1997

dependencies, Autoformer introduces an auto- 1998

correlation mechanism as an alternative. This 1999

change addresses the issues that traditional 2000

models face with intricate temporal patterns 2001

and long-term forecasting, where identifying 2002

reliable dependencies can be challenging. To 2003

enhance efficiency in handling long series, tra- 2004

ditional transformers sometimes use sparse 2005

versions of self-attention, which can limit the 2006

effective use of information. 2007

Autoformer integrates decomposition blocks 2008

directly into its structure, moving away from 2009

the typical preprocessing approach of series 2010

decomposition. These blocks are specifically 2011

designed to progressively isolate long-term 2012

trends from the data during the forecasting 2013

process, allowing the model to refine and de- 2014

compose the data iteratively. This setup im- 2015

proves the handling of complex time series. 2016

The auto-correlation mechanism, inspired by 2017

stochastic process theory and based on the pe- 2018

riodicity of the series, focuses on identifying 2019

dependencies and aggregating representation 2020

at the sub-series level, effectively capturing 2021

and utilizing similarities derived from under- 2022

lying periodic patterns. 2023

The architecture of Autoformer adheres to a 2024

residual and encoder-decoder framework. The 2025

encoder eliminates long-term trend-cyclical 2026

components through the series decomposition 2027

22

blocks and focuses on modeling seasonal pat-2028

terns. In contrast, the decoder accumulates2029

the trend component extracted from the hid-2030

den variables, using past seasonal information2031

to enhance forecasting accuracy. Additionally,2032

Autoformer incorporates a moving average2033

within its decomposition blocks to smooth out2034

periodic fluctuations and highlight long-term2035

trends, thereby facilitating a more targeted2036

analysis of stable trend components within2037

the time series.2038

16) Non-stationary Transformer (Liu et al.,2039

2022) addresses the challenges posed by non-2040

stationary real-world data, where the joint dis-2041

tribution changes over time, often leading to2042

the degradation of transformer performance.2043

Non-stationary Transformer consists of two in-2044

terdependent modules: series stationarization2045

and de-stationary attention. Series stationar-2046

ization normalizes the input data to unify its2047

statistical properties, enhancing predictability,2048

and adjusts the output to restore the original2049

statistics. This module utilizes a straightfor-2050

ward normalization approach without addi-2051

tional parameters. De-stationary attention, on2052

the other hand, aims to counteract the poten-2053

tial over-normalization by reintroducing the2054

intrinsic non-stationary characteristics of the2055

data into the model’s temporal dependencies.2056

The de-stationary attention module approxi-2057

mates how attention mechanisms would func-2058

tion on unnormalized data and integrates these2059

insights back into the model to maintain cru-2060

cial temporal dynamics. This setup allows sta-2061

tionformer to balance the predictability ben-2062

efits gained from normalized data with the2063

rich, detailed patterns inherent in the raw non-2064

stationary series.2065

Structurally, Non-stationary Transformer2066

adapts the traditional encoder-decoder setup.2067

The encoder extracts information from past2068

observations, while the decoder aggregates2069

this information to refine predictions. The2070

framework modifies the standard transformer2071

by applying series stationarization to both the2072

input and output of the model, and replaces the2073

conventional self-attention mechanism with2074

de-stationary attention. This adaptation aims2075

to enhance the model’s ability to predict non-2076

stationary series by effectively managing the2077

challenges associated with data variability2078

over time. 2079

17) Frequency Enhanced Decomposed Trans- 2080

former (FEDformer) (Zhou et al., 2022) is a 2081

transformer-based method that incorporates a 2082

time series decomposition scheme to address 2083

the limitations of traditional transformers, par- 2084

ticularly their high computational demands 2085

and challenges in capturing global time series 2086

trends. By combining transformers with the 2087

seasonal-trend decomposition method, FED- 2088

former aims to separate the broad trends from 2089

more detailed fluctuations in time series data. 2090

This allows the transformer component to fo- 2091

cus on more granular details while the decom- 2092

position handles the overall profile of the se- 2093

ries. 2094

The architecture of FEDformer includes spe- 2095

cialized blocks such as Fourier-enhanced and 2096

Wavelet-enhanced blocks within the trans- 2097

former framework. These blocks serve as 2098

substitutes for the conventional self-attention 2099

and cross-attention mechanisms, and they en- 2100

able the model to analyze important structures 2101

through frequency domain mapping. FED- 2102

former employs a selective approach to in- 2103

corporating Fourier components, which helps 2104

keep the computational complexity and mem- 2105

ory usage linear in relation to the length of 2106

the time series. Specifically, FEDformer is 2107

structured as a deep decomposition archi- 2108

tecture that integrates Frequency Enhanced 2109

Block (FEB), Frequency Enhanced Attention 2110

(FEA) connecting the encoder and decoder, 2111

and the Mixture Of Experts Decomposition 2112

block (MOEDecomp). This setup leverages 2113

both seasonal-trend decomposition and distri- 2114

bution analysis to facilitate the processing of 2115

time series data. 2116

18) ETSformer (Woo et al., 2022) is a 2117

transformer-based architecture tailored for 2118

time series forecasting, integrating exponen- 2119

tial smoothing techniques. ETSformer uses 2120

two novel mechanisms, Exponential Smooth- 2121

ing Attention (ESA) and Frequency Attention 2122

(FA), which are designed to replace the tra- 2123

ditional self-attention mechanism in standard 2124

transformers. ESA utilizes attention scores 2125

based on relative time lags, enabling efficient 2126

handling of growth components with a com- 2127

putational complexity of O(L logL) for a 2128

23

length-L lookback window. Similarly, FA em-2129

ploys Fourier transformations to identify dom-2130

inant seasonal patterns, selecting bases with2131

the highest amplitudes in the frequency do-2132

main to achieve the same level of complexity.2133

ETSformer is structured with modular decom-2134

position blocks that allow it to dissect time-2135

series data into distinct, interpretable compo-2136

nents such as level, growth, and seasonality.2137

This design facilitates layer-wise decompo-2138

sition of the time series into these compo-2139

nents, enhancing the model’s ability to capture2140

and represent complex temporal dynamics.2141

The architecture systematically extracts latent2142

growth and seasonal patterns through a deep,2143

multi-layered approach, where each layer pro-2144

gressively refines the extraction of these tem-2145

poral features. The final forecast generated2146

by ETSformer integrates these decomposed2147

elements—level, trend, and seasonality—into2148

a cohesive output that is both practical and2149

interpretable for human analysts. By empha-2150

sizing recent observations, the model aligns2151

with the principles of exponential smoothing,2152

ensuring that more recent trends carry greater2153

weight in the forecast.2154

19) Flowformer (Wu et al., 2022b) modifies the2155

traditional transformer architecture by inte-2156

grating flow network theory to tackle the scal-2157

ability issues typical of standard transform-2158

ers. The conventional attention mechanism in2159

transformers is known for its quadratic com-2160

plexity, which limits their ability to process a2161

large number of tokens and scale to larger2162

models effectively. To address this, Flow-2163

former introduces the Flow-Attention mecha-2164

nism, grounded in the principles of flow con-2165

servation. This mechanism reimagines atten-2166

tion as information flowing from sources (val-2167

ues) to sinks (results) via learned flow capaci-2168

ties (attentions), aiming to achieve linear com-2169

plexity.2170

The Flow-Attention mechanism manages the2171

flow of information by regulating incoming2172

flow at sinks to initiate source competition2173

and outgoing flow at sources for sink allo-2174

cation. This management of flow helps in2175

aggregating relevant information without re-2176

lying on specific inductive biases and aims2177

to prevent the common issue of degenerated2178

attentions found in typical attention mecha- 2179

nisms. Flowformer embeds flow conservation 2180

within its attention mechanism to streamline 2181

the process of information aggregation and 2182

refinement. By integrating these elements, 2183

Flowformer seeks to provide an alternative 2184

approach that could potentially handle large 2185

datasets and complex time series data more 2186

efficiently than traditional transformers, with- 2187

out the computational complexity typically 2188

associated with these models. 2189

20) Patch Time Series Transformer (PatchTST) 2190

(Nie et al., 2023) is a transformer-based model 2191

for multivariate time series forecasting. It 2192

is built on two key principles: (i) segmenta- 2193

tion of time series into subseries-level patches, 2194

which serve as input tokens to the transformer, 2195

and (ii) channel-independence, where each 2196

channel contains a single univariate time se- 2197

ries that shares the same embedding and trans- 2198

former weights across all series. The patching 2199

mechanism provides three main advantages: 2200

it retains local semantic information in embed- 2201

dings, significantly reduces the computational 2202

and memory complexity of attention maps 2203

for a given look-back window, and enables 2204

the model to attend to longer historical de- 2205

pendencies. The model operates as follows: 2206

multivariate time series data is divided into 2207

independent channels, each processed sep- 2208

arately while sharing the same transformer 2209

backbone. Each univariate time series under- 2210

goes instance normalization before being seg- 2211

mented into patches, which then serve as in- 2212

put tokens for the transformer. PatchTST em- 2213

ploys masked self-supervised learning, where 2214

patches are randomly selected and set to zero, 2215

requiring the model to reconstruct the miss- 2216

ing values. The training objective minimizes 2217

Mean Squared Error (MSE) loss between the 2218

predicted and ground truth values, demonstrat- 2219

ing the effectiveness of transformers when 2220

time series data is segmented into patches at 2221

the subseries level. For downstream time se- 2222

ries tasks, the same transformer encoder is 2223

extended and trained with a linear layer for 2224

task-specific predictions. 2225

C.6 LLM-based models 2226

21) OneFitsAll (Zhou et al., 2024) employs pre- 2227

trained language and computer vision models, 2228

24

developed from billions of tokens, for time2229

series analysis. This approach, termed the2230

Frozen Pretrained Transformer (FPT), retains2231

the original self-attention and feedforward2232

(FFN) layers of the pre-trained models, which2233

hold the majority of the learned knowledge.2234

The model is fine-tuned for various time series2235

classification tasks, with adjustments made2236

only to the positional embeddings and layer2237

normalization layers to adapt to specific down-2238

stream tasks. Additionally, to more effectively2239

manage local semantic information, OneFit-2240

sAll incorporates a patching technique as de-2241

scribed by (Nie et al., 2023). This method2242

aggregates adjacent time steps into a single2243

patch-based token, thereby increasing the his-2244

torical time horizon that can be processed by2245

the model without increasing the token length,2246

reducing information redundancy within trans-2247

former models.2248

D Adapting Supervised Forecasting2249

Baseline Models for Classification2250

It is important to note that some of our super-2251

vised learning-based baselines were adapted from2252

forecasting to classification tasks without alter-2253

ing the core design of the models. We employ2254

a lightweight multi-layer perceptron (MLP)-based2255

projection layer on top of the model’s encoded fea-2256

tures (originally designed for forecasting) to map2257

them to classification labels. The parameters of2258

this layer are learned during training, enabling the2259

model to adapt effectively for classification tasks.2260

This approach aligns with methods used in prior2261

works such as OneFitsAll (Zhou et al., 2024) and2262

TimesNet (Wu et al., 2022a) when adapting fore-2263

casting models for multivariate classification.2264

To further clarify how each baseline model is2265

used for classification, all baseline codes are avail-2266

able in our implementation repository at https:2267

//anonymous.4open.science/r/LETS-C.2268

E Comparison Baselines: Unsupervised2269

Representation Learning Methods2270

E.1 CNN-based models2271

1) T-Loss (Franceschi et al., 2019) is an unsu-2272

pervised method for learning general-purpose2273

representations of multivariate time series2274

while handling variations in length. It trains2275

a scalable encoder, structured as a deep con-2276

volutional neural network with dilated con-2277

volutions, to produce fixed-length vector rep- 2278

resentations regardless of input length. The 2279

loss function is designed as a triplet loss with 2280

time-based negative sampling, leveraging the 2281

encoder’s ability to process time series of un- 2282

equal lengths. The objective is to ensure that 2283

similar time series obtain similar representa- 2284

tions without requiring supervision to learn 2285

such similarity. 2286

2) Temporal Neighborhood Coding (TNC) 2287

(Tonekaboni et al., 2021) is a self-supervised 2288

approach that leverages the local smoothness 2289

of signals to define temporal neighborhoods 2290

and learn generalizable representations for 2291

time series. It builds on the smoothness of the 2292

generative process of signals to capture mean- 2293

ingful representations for time series windows 2294

by ensuring that, in the representation space, 2295

signals close in time are distinguishable from 2296

those farther apart. In other words, tempo- 2297

ral proximity remains identifiable in the en- 2298

coding space. For each sample window, a 2299

neighborhood distribution is first defined. The 2300

encoder learns the distribution of windows in 2301

the representation space, and samples from 2302

these distributions are fed into a discriminator, 2303

which predicts the probability of the windows 2304

belonging to the same neighborhood. TNC 2305

is a general framework, making it agnostic 2306

to both the nature of the time series and the 2307

architecture of the encoder. The encoder can 2308

be any parametric model suited to the signal 2309

properties. For the discriminator, a simple 2310

multi-headed binary classifier is used. 2311

3) TS2Vec (Yue et al., 2022) is a universal con- 2312

trastive learning framework for time series rep- 2313

resentation learning across all semantic levels. 2314

It performs hierarchical contrastive learning 2315

over augmented context views, enabling ro- 2316

bust contextual representations for each times- 2317

tamp while capturing multi-resolution tempo- 2318

ral dependencies. To learn representations at 2319

different granularity, TS2Vec applies a simple 2320

aggregation mechanism. The representation 2321

of an arbitrary sub-sequence is obtained via 2322

max pooling over the corresponding times- 2323

tamps, allowing the model to generate fine- 2324

grained representations at any resolution. The 2325

framework hierarchically discriminates posi- 2326

tive and negative samples across both instance- 2327

25

https://anonymous.4open.science/r/LETS-C
https://anonymous.4open.science/r/LETS-C
https://anonymous.4open.science/r/LETS-C

wise and temporal dimensions, reinforcing the2328

ability to capture contextual relationships in2329

time series data.2330

The contrastive objective is based on aug-2331

mented context views, ensuring that repre-2332

sentations of the same sub-series in different2333

augmented contexts remain consistent. To2334

achieve this, two overlapping subseries are2335

randomly sampled from an input time series,2336

and consistency of contextual representations2337

is encouraged on the common segment. The2338

encoder is optimized jointly with temporal2339

and instance-wise contrastive loss, with the2340

total loss summed across multiple scales in2341

a hierarchical manner. The encoder consists2342

of three key components: an input projection2343

layer, a timestamp masking module, and a di-2344

lated CNN module. The input projection layer2345

maps observations at each timestamp into a2346

high-dimensional latent space via a fully con-2347

nected layer. The timestamp masking module2348

then masks latent vectors at randomly selected2349

timestamps to generate an augmented context2350

view. Importantly, masking is applied at the2351

latent vector level rather than raw input val-2352

ues, as time series values may be unbounded,2353

making it impractical to use a special token2354

for raw data.2355

E.2 Transformer-based models2356

4) Time-Series Representation Learning via2357

Temporal and Contextual Contrasting (TS-2358

TCC) (Eldele et al., 2021) is an unsupervised2359

framework for learning time-series represen-2360

tations from unlabeled data using contrastive2361

learning. It transforms raw time-series data2362

into two different but correlated views through2363

weak and strong augmentations. TS-TCC con-2364

sists of two key modules: a temporal con-2365

trasting module and a contextual contrasting2366

module. The temporal contrasting module2367

enhances robustness by enforcing a cross-2368

view prediction task, where past latent fea-2369

tures from one augmentation predict the fu-2370

ture of another. This design encourages the2371

model to learn transformation-invariant repre-2372

sentations while handling perturbations from2373

different timesteps and augmentations. The2374

contextual contrasting module further refines2375

representation learning by maximizing simi-2376

larity among different contexts of the same2377

sample while minimizing similarity across2378

samples. By building on the representations 2379

learned from temporal contrasting, this mod- 2380

ule enhances the model’s ability to capture dis- 2381

criminative features. TS-TCC employs simple 2382

yet effective augmentations applicable to any 2383

time-series data, ensuring adaptability across 2384

diverse datasets. 2385

5) Time Series Transformer (TST) (Zerveas 2386

et al., 2021) is a transformer-based framework 2387

for unsupervised representation learning of 2388

multivariate time series. It employs a masked 2389

Mean Squared Error (MSE) loss to train a 2390

transformer model, extracting dense vector 2391

representations through an autoregressive in- 2392

put denoising objective. Specifically, parts 2393

of the input are masked (set to zero), and the 2394

model is trained to predict the missing values. 2395

Since transformers are inherently insensitive 2396

to input order, TST incorporates positional 2397

encoding to capture the sequential nature of 2398

time series data. Only the predictions on the 2399

masked values contribute to the MSE loss. 2400

The pre-trained model can be applied to vari- 2401

ous downstream tasks, including classification. 2402

For classification, the final representation vec- 2403

tors from all time steps are concatenated into a 2404

single vector, which serves as input to a linear 2405

output layer with parameters corresponding to 2406

the number of classes. 2407

6) MOMENT (Goswami et al., 2024) is an open- 2408

source foundation model for general-purpose 2409

time series analysis. It follows a masked time 2410

series modeling approach, where the goal is 2411

to reconstruct masked input time series using 2412

a lightweight reconstruction head. First, a uni- 2413

variate time series is segmented into disjoint 2414

fixed-length sub-sequences (patches). Before 2415

patching, reversible instance normalization 2416

(Kim et al., 2021) is applied to the time se- 2417

ries. Each patch is then mapped to a em- 2418

bedding, using a trainable linear projection if 2419

all time steps are observed, and a designated 2420

learnable mask embedding if some patches 2421

are masked. During pretraining, patches are 2422

randomly masked by replacing their patch em- 2423

beddings with a special learnable mask em- 2424

bedding. These patch embeddings are then 2425

fed into a transformer encoder to learn patch 2426

representations. The transformed patch em- 2427

beddings are used to reconstruct both masked 2428

26

and unmasked time series patches through a2429

lightweight reconstruction head. Pretraining2430

ensures that embeddings and high-level rep-2431

resentations of the time series are effectively2432

learned, with the objective of minimizing the2433

masked reconstruction error (Mean Squared2434

Error) between the ground truth and predicted2435

patches.2436

To process multivariate time series, MO-2437

MENT operates independently on each chan-2438

nel, aligning with recent studies (Nie et al.,2439

2023; Zhou et al., 2024) that support channel-2440

wise modeling as an effective strategy. Unlike2441

traditional architectures that use a decoder of2442

similar size to the encoder, MOMENT em-2443

ploys a lightweight reconstruction head, en-2444

abling task-specific fine-tuning with minimal2445

trainable parameters while preserving the en-2446

coder’s high-level learned features. For clas-2447

sification, MOMENT operates in a zero-shot2448

setting by replacing its reconstruction head2449

with a linear classification head, mapping2450

patch representations to logits corresponding2451

to class labels.2452

F Adapting Unsupervised Representation2453

Learning Models for Classification2454

There are two approaches to adapting unsupervised2455

representation learning baseline models for classi-2456

fication:2457

• Two-stage approach: First, sequence-level2458

representations for each time series are ob-2459

tained without access to labels, using the un-2460

supervised representation learning model. In2461

the second stage, a machine learning classi-2462

fier (e.g., a Support Vector Machine with an2463

RBF kernel) is trained on these representa-2464

tions with labeled data. The classifier applies2465

a softmax function to generate a probability2466

distribution over classes, with cross-entropy2467

loss computed against the categorical ground2468

truth labels. This approach is used for all unsu-2469

pervised baselines except MOMENT, specifi-2470

cally for T-Loss, TNC, TS2Vec, TS-TCC, and2471

TST.2472

• Direct adaptation approach: Instead of a2473

two-stage process, the reconstruction head2474

in the unsupervised representation learning2475

model is replaced with a linear classification2476

head that maps patch representations to log- 2477

its corresponding to class labels. MOMENT 2478

adopts this approach by replacing its recon- 2479

struction head with a linear head that outputs 2480

logits equal to the number of classes. 2481

G Reproduction Details for Baselines 2482

To facilitate the reproduction of all baselines 2483

and clarify how each baseline model is used, all 2484

baseline codes are available in our implemen- 2485

tation repository at https://anonymous.4open. 2486

science/r/LETS-C. Additionally, Table 5 lists 2487

the original code sources for each baseline model. 2488

All models, except MOMENT, were trained on 2489

each dataset individually—either with labels for 2490

supervised learning methods or without labels for 2491

unsupervised representation learning methods. 2492

H Implementation Details for LETS-C 2493

The experiments were conducted on a Linux 2494

machine equipped with an NVIDIA T4 Tensor 2495

Core GPU with 16GB of memory. We utilized 2496

the PyTorch v2.4.0 deep learning platform run- 2497

ning on Python 3.11 for all models. We set 2498

a fixed random seed for all experiments to en- 2499

sure reproducibility. All configurations employed 2500

the RAdam optimizer Liu et al. (2019a), with 2501

its default hyperparameters settings (β1, β2) = 2502

(0.9, 0.999). Further, we explored LETS-C’s per- 2503

formance across three different text embedding 2504

models: e5-mistral-7b-instruct (Wang et al., 2505

2024), gte-large-en-v1.5 (Li et al., 2023), and 2506

nomic-embed-text-v1 (Nussbaum et al., 2024), 2507

in addition to text-embedding-3-large in Sec- 2508

tion 5.3. Exploratory hyperparameter optimization 2509

was conducted, revealing that 1-3 1D convolutional 2510

layers and 1-2 linear layers are optimal for the 2511

performance of LETS-C across all datasets. For a 2512

detailed description of the hyperparameters, see 2513

Appendix Section I. For tokenization, we found 2514

that maintaining a precision of one decimal place 2515

optimizes performance (see Appendix Section N 2516

for details), thus we adopted that precision through- 2517

out the experiments. 2518

I Hyperparameter Settings for LETS-C 2519

I.1 Hyperparameter Search Space 2520

Our hyperparameter search for the lightweight clas- 2521

sification head included determining the optimal 2522

number of convolutional layers, whether to use 2523

dropout or pooling within the convolutional blocks, 2524

27

https://anonymous.4open.science/r/LETS-C
https://anonymous.4open.science/r/LETS-C
https://anonymous.4open.science/r/LETS-C

Table 5: Code source for each baseline.

Model Source

Supervised Learning Methods

DTW https://github.com/markdregan/K-Nearest-Neighbors-with-Dynamic-Time-Warping/tree/master
XGBoost https://github.com/dmlc/xgboost
ROCKET https://github.com/angus924/rocket/tree/master
LightTS https://github.com/thuml/Time-Series-Library/blob/main/models/LightTS.py
DLinear https://github.com/thuml/Time-Series-Library/blob/main/models/DLinear.py
LSTM https://anonymous.4open.science/r/LETS-C/baselines/models/supervised/lstm.py
LSTNet https://github.com/laiguokun/LSTNet
LSSL https://github.com/state-spaces/s4
TCN https://github.com/White-Link/UnsupervisedScalableRepresentationLearningTimeSeries
TimesNet https://github.com/thuml/Time-Series-Library/blob/main/models/TimesNet.py
Transformer https://github.com/thuml/Time-Series-Library/blob/main/models/Transformer.py
Reformer https://github.com/thuml/Time-Series-Library/blob/main/models/Reformer.py
Informer https://github.com/thuml/Time-Series-Library/blob/main/models/Informer.py
Pyraformer https://github.com/thuml/Time-Series-Library/blob/main/models/Pyraformer.py
Autoformer https://github.com/thuml/Time-Series-Library/blob/main/models/Autoformer.py
Non-stationary Transformer https://github.com/thuml/Time-Series-Library/blob/main/models/Nonstationary_Transformer.py
FEDformer https://github.com/thuml/Time-Series-Library/blob/main/models/FEDformer.py
ETSformer https://github.com/thuml/Time-Series-Library/blob/main/models/ETSformer.py
Flowformer https://github.com/thuml/Flowformer/tree/main/Flowformer_TimeSeries
PatchTST https://github.com/yuqinie98/PatchTST
One Fits All https://github.com/DAMO-DI-ML/NeurIPS2023-One-Fits-All

Unsupervised Representation Learning Methods

T-Loss https://github.com/White-Link/UnsupervisedScalableRepresentationLearningTimeSeries
TNC https://github.com/sanatonek/TNC_representation_learning
TS2Vec https://github.com/zhihanyue/ts2vec
TS-TCC https://github.com/emadeldeen24/TS-TCC
TST https://github.com/gzerveas/mvts_transformer
MOMENT https://github.com/moment-timeseries-foundation-model/moment

Ours https://anonymous.4open.science/r/LETS-C

the number of dense layers, the type of activation2525

function for each layer, and whether to employ2526

batch normalization. We explored 1 to 5 convo-2527

lutional layers and 1 to 4 linear layers. We also2528

tested various learning rates, ranging from 0.001 to2529

0.05, different activation functions such as ReLU,2530

GELU, and tanh, and truncation lengths for the2531

text-embedding-large from 64 to 1024.2532

I.2 Optimal Hyperparameters2533

Table 6 presents the optimal configurations for2534

our experiments across various datasets. All2535

configurations employed tokenization with a pre-2536

cision of one decimal place and utilized the2537

text-embedding-3-large embeddings. It is cru-2538

cial to note that the count of linear layers includes2539

the output layer; therefore, a configuration with one2540

linear layer means that this single layer functions as2541

the output layer within the model architecture. Fur-2542

thermore, all convolutional layers utilized a kernel2543

size of 3. Additionally, each configuration used the2544

RAdam optimizer Liu et al. (2019a) with its default2545

hyperparameter settings (β1, β2) = (0.9, 0.999).2546

J Model Performance 2547

Figure 3 displays a comparison of models based 2548

on the average classification accuracy across all 2549

datasets, as summarized in Table 4. 2550

K Computational Cost Analysis 2551

Table 7 discusses the training and inference times 2552

for our model as compared to the SOTA OneFit- 2553

sAll (Zhou et al., 2024) across the 10 benchmark 2554

datasets. We observe that our approach signifi- 2555

cantly reduces the total training time to just 14.66% 2556

and the inference time to 31.67% of those required 2557

by OneFitsAll. 2558

L Monetary Costs Analysis 2559

Our approach incurs monetary costs when utiliz- 2560

ing OpenAI’s text-embedding-3-large model 2561

(OpenAI, 2024). To compute the cost of generat- 2562

ing text embeddings for our datasets, we followed 2563

the pricing structure of $0.130 per million tokens. 2564

Each time series sample, including all time steps, 2565

was embedded separately for each dimension. To 2566

estimate the number of tokens per sample, we con- 2567

28

https://github.com/markdregan/K-Nearest-Neighbors-with-Dynamic-Time-Warping/tree/master
https://github.com/dmlc/xgboost
https://github.com/angus924/rocket/tree/master
https://github.com/thuml/Time-Series-Library/blob/main/models/LightTS.py
https://github.com/thuml/Time-Series-Library/blob/main/models/DLinear.py
https://anonymous.4open.science/r/LETS-C/baselines/models/supervised/lstm.py
https://github.com/laiguokun/LSTNet
https://github.com/state-spaces/s4
https://github.com/White-Link/UnsupervisedScalableRepresentationLearningTimeSeries
https://github.com/thuml/Time-Series-Library/blob/main/models/TimesNet.py
https://github.com/thuml/Time-Series-Library/blob/main/models/Transformer.py
https://github.com/thuml/Time-Series-Library/blob/main/models/Reformer.py
https://github.com/thuml/Time-Series-Library/blob/main/models/Informer.py
https://github.com/thuml/Time-Series-Library/blob/main/models/Pyraformer.py
https://github.com/thuml/Time-Series-Library/blob/main/models/Autoformer.py
https://github.com/thuml/Time-Series-Library/blob/main/models/Nonstationary_Transformer.py
https://github.com/thuml/Time-Series-Library/blob/main/models/FEDformer.py
https://github.com/thuml/Time-Series-Library/blob/main/models/ETSformer.py
https://github.com/thuml/Flowformer/tree/main/Flowformer_TimeSeries
https://github.com/yuqinie98/PatchTST
https://github.com/DAMO-DI-ML/NeurIPS2023-One-Fits-All
https://github.com/White-Link/UnsupervisedScalableRepresentationLearningTimeSeries
https://github.com/sanatonek/TNC_representation_learning
https://github.com/zhihanyue/ts2vec
https://github.com/emadeldeen24/TS-TCC
https://github.com/gzerveas/mvts_transformer
https://github.com/moment-timeseries-foundation-model/moment
https://anonymous.4open.science/r/LETS-C

Table 6: Optimal hyperparameter configuration for LETS-C.

LETS-C

Dataset/Configuration
Model Hyperparameter Training Process

Embedding
dimension

Conv layers Linear
layers

Activation Learning
rate

Batch
size

EthanolConcentration 64 2 1 tanh 0.007 64
FaceDetection 64 1 1 tanh 0.007 128
Handwriting 16 1 2 tanh 0.007 64
Heartbeat 512 1 1 tanh 0.007 64
Japanese Vowels 512 1 2 GELU 0.007 64
PEMS-SF 1024 3 1 tanh 0.007 64
Self-Regulation SCP1 64 1 1 tanh 0.007 64
Self-Regulation SCP2 1024 2 1 GELU 0.007 64
Spoken Arabic Digits 512 1 1 tanh 0.001 64
UWave Gesture Library 1024 1 1 tanh 0.001 64

Table 7: Comparison of training and inference times (in seconds) per batch for OneFitsAll (Zhou et al., 2024) versus
our model across the 10 benchmark datasets. The Ratio (%) is calculated using the formula 100× time of LETS-C

time of OneFitsAll ,
quantifying the computational efficiency of our model relative to OneFitsAll.

Model/Dataset EC FD HW HB JV PEMS-SF SCP1 SCP2 SAD UW Average ↓

Time

Training
time (s)

LETS-C (Ours) 0.01 0.01 0.009 0.01 0.01 0.11 0.004 0.01 0.01 0.01 0.02
OneFitsAll 0.35 0.23 0.14 0.07 0.02 0.28 0.11 0.13 0.97 0.07 0.24

Ratio (%) 3.17 8.02 6.71 16.18 42.85 40.49 4.30 8.40 1.21 15.30 14.66

Inference
time (s)

LETS-C (Ours) 0.01 0.05 0.01 0.01 0.01 0.10 0.004 0.01 0.02 0.01 0.02
OneFitsAll 0.16 0.10 0.06 0.04 0.02 0.15 0.06 0.08 0.15 0.04 0.09

Ratio (%) 10.58 50.50 14.75 31.15 68.41 66.10 7.02 19.59 18.00 30.55 31.67

sidered the numerical format of the time series val-2568

ues, where each time step consists of a three-digit2569

number. These digits are separated by spaces, and2570

consecutive time steps are delimited by commas,2571

resulting in an estimated six tokens per time step.2572

The total token count for each dataset was then2573

computed as:2574

Total Tokens = Total Samples × Num. Dimensions2575

× Tokens per Series,2576

where the estimated tokens per series were de-2577

rived from the series length multiplied by six.2578

The dataset characteristics, including train and test2579

sizes, number of dimensions, and series lengths,2580

are detailed in Table 4. Using this approach, the2581

total number of tokens across all datasets was ap-2582

proximately 1.05 billion, leading to an estimated2583

embedding cost of $137.07. It is important to note2584

that API costs may fluctuate over time, leading to2585

potentially different or outdated values. Further-2586

more, cost remains a common limitation for all2587

LLM-based approaches that rely on closed-source2588

paid models. 2589

M Assessing Text Embeddings with 2590

Cosine Similarity 2591

Figure 4 visualizes the within-class and between- 2592

class cosine similarities of text embeddings derived 2593

from the testing time series. Each matrix entry is 2594

scaled using min-max normalization to range from 2595

0 to 1, where warmer colors in the heatmap repre- 2596

sent higher similarities and darker shades indicate 2597

lower similarities. Diagonal entries show within- 2598

class similarities, highlighting intra-class cohesion, 2599

while off-diagonal entries reveal between-class re- 2600

lationships 2601

Similar to the training set, we observe that 2602

within-class similarity consistently exceeds across- 2603

class similarity, thereby validating the hypothesis 2604

that text embeddings effectively retain and convey 2605

significant information from the underlying time 2606

series data. 2607

29

Figure 3: Model comparison based on classification accuracy, averaged across all datasets listed in Table 4. For
detailed results, refer to Table 1 in the main paper.

N Numerical Precision for Tokenization2608

To explore the impact of numerical precision on the2609

computation of embeddings, we analyzed classifi-2610

cation accuracy across precisions 1 to 6 using four2611

datasets: Handwriting, Heartbeat, JapaneseVow-2612

els, and UWaveGestureLibrary. We selected these2613

datasets because they were the smaller ones among2614

the 10 available, making the computation of em-2615

beddings more computationally affordable. Figure2616

5 illustrates the average classification accuracy (%)2617

across these numerical precisions. Detailed results2618

can be found in Table 8.2619

Studies in the NLP domain have shown that2620

longer inputs do not perform well with language2621

models (Press et al., 2020; Levy et al., 2024). Our2622

empirical analysis supports this claim, revealing a2623

decrease in classification accuracy with increased2624

numerical precision when computing text embed-2625

dings. The average accuracy starts at 72.8% with2626

precision 1 and declines to 69% at precision 6. Ad-2627

ditionally, the percentage of AvgWins is highest2628

at precision 1. As numerical precision increases,2629

so does the length of the time series and the input2630

to the text embedding model. Note that the maxi-2631

mum token length for text-embedding-3-large2632

embeddings is 8191, and thus keeping precision 2633

of 1 ensures that context length doesn’t exceed the 2634

maximum permissible token length. This issue is 2635

especially problematic for datasets with longer time 2636

series, such as the EthanolConcentration dataset, 2637

which includes 1751 time steps per sample. This 2638

finding led us to opt for precision 1 in our study. 2639

Note that these precision results also depend on 2640

the type of tokenization selected, and defining an 2641

appropriate tokenization for time series is one of 2642

the potential future directions for this work. 2643

O Generalization Across Various Text 2644

Embedding Models 2645

To evaluate the generalization capabilities of 2646

our approach across different text embedding 2647

models beyond text-embedding-3-large (Ope- 2648

nAI, 2024), the performance of LETS-C was 2649

tested using three alternative embedding mod- 2650

els: e5-mistral-7b-instruct (Wang et al., 2651

2024), gte-large-en-v1.5 (Li et al., 2023), and 2652

nomic-embed-text-v1 (Nussbaum et al., 2024). 2653

A summary of the embedding models utilized in 2654

this study is provided in Table 9. 2655

30

Figure 4: Heatmaps illustrating within-class and between-class cosine similarities of text embeddings derived from
the testing time series data in Japanese Vowels (left) with 9 classes and Spoken Arabic Digits (right) with 10
classes. On both axes, x and y represent different classes. Diagonal entries indicate within-class similarities, and
off-diagonal entries represent between-class similarities. Warmer colors signify higher cosine similarities, while
cooler colors suggest lower similarities.

Figure 5: Average classification accuracy (%) across numerical precisions 1 to 6. Results are averaged from four
datasets: Handwriting, Heartbeat, JapaneseVowels, and UWaveGestureLibrary. See Table 8 in the Appendix for
detailed results.

O.1 e5-mistral-7b-instruct2656

The e5-mistral-7b-instruct model (Wang2657

et al., 2024) is based on the pretrained Mistral-2658

7b checkpoint (Jiang et al., 2023) and was fine-2659

tuned using the RankLLaMA training methodology2660

(Ma et al., 2024). It employed LoRA (Hu et al.,2661

2021) with a rank of 16 on a mixture of multilin-2662

gual datasets, which included both synthetic data2663

and a collection of 13 public datasets, yielding ap-2664

proximately 1.8 million examples after sampling.2665

Proprietary LLMs, such as GPT-4, were prompted2666

to generate diverse synthetic data with instructions2667

in multiple languages. Leveraging the strong lan-2668

guage understanding capabilities of the Mistral2669

model, e5-mistral-7b-instruct achieved state-2670

of-the-art results across nearly all task categories 2671

on the competitive MTEB benchmark. Techniques 2672

such as gradient checkpointing, mixed precision 2673

training, and DeepSpeed ZeRO-3 were applied to 2674

further reduce GPU memory requirements. 2675

O.2 gte-large-en-v1.5 2676

The gte-large-en-v1.5 model (Li et al., 2023) 2677

is a general text embedding (GTE) model that uti- 2678

lizes contrastive learning on an open-source large- 2679

scale dataset comprising unsupervised text pairs 2680

extracted from various sources. To enhance the 2681

quality of the learned text representations, high- 2682

quality text pairs with human labels from multiple 2683

sources were employed for contrastive fine-tuning. 2684

31

Table 8: Numerical Precision for Tokenization: This table reports classification accuracy (%). Red: Best perfor-
mance.

Dataset / Precision 1 2 3 4 5 6

Handwriting 23.2 15.9 11.6 11.1 12.0 11.2
Heartbeat 78.0 78.5 79.0 78.5 79.5 78.0
JapaneseVowels 99.2 98.4 97.6 96.8 95.9 95.1
UWaveGestureLibrary 90.6 90.6 92.5 89.1 90.3 91.9

Average ↑ 72.75 70.85 70.175 68.875 69.425 69.05

AvgWins % ↑ 50% 0% 25% 0% 25% 0%

Table 9: Summary of selected embedding models used in the study.

MTEB Rank Model Embedding Dimensions Max Token Length

15 text-embedding-3-large (OpenAI, 2024) 3072 8191

6 e5-mistral-7b-instruct (Wang et al., 2024) 4096 32768

9 gte-large-en-v1.5 (Li et al., 2023) 1024 8192

35 nomic-embed-text-v1 (Nussbaum et al., 2024) 768 8192

The model utilizes a multi-stage contrastive learn-2685

ing approach and benefits from a diverse training2686

data mixture, enabling it to achieve strong general-2687

ization performance for single-vector embeddings.2688

O.3 nomic-embed-text-v12689

The nomic-embed-text-v1 model (Nussbaum2690

et al., 2024) is a fully reproducible, open-source2691

English text embedding model with an 8192 con-2692

text length that outperforms both OpenAI Ada-0022693

and OpenAI text-embedding-3-small on short and2694

long-context tasks. To accommodate long sequence2695

lengths, the model adapts the BERT architecture2696

(Devlin et al., 2019) with several optimizations:2697

replacing absolute positional embeddings with ro-2698

tary positional embeddings (Su et al., 2024), us-2699

ing SwiGLU activation instead of GeLU (Shazeer,2700

2020), implementing Flash Attention (Dao et al.,2701

2022), setting Dropout to 0 (Geiping and Goldstein,2702

2023), and ensuring the vocabulary size is a multi-2703

ple of 64 (Portes et al., 2024; Shoeybi et al., 2019).2704

These modifications result in a 137M parameter2705

encoder.2706

P Trade-offs: Model Accuracy vs.2707

Parameter Complexity2708

Table 10 illustrates the trade-off between model2709

accuracy and the complexity of training parameters2710

in our model, which utilizes both embeddings and2711

time series data as inputs to a lightweight frame-2712

work. To vary model size, we adjust the number 2713

of linear and convolution layers in the classifica- 2714

tion head, ranging from 1 to 5 layers each, creating 2715

model variants of different sizes. 2716

Across all datasets, we find that significant reduc- 2717

tions in model parameters result in only a minimal 2718

loss of accuracy. This trade-off between model ac- 2719

curacy and parameter complexity is data-dependent. 2720

However, we generally observe a trend where a 2721

reduction in parameters leads to only a slight de- 2722

crease in accuracy. Next, let’s take a closer look at 2723

three datasets: Heartbeat, PEMS-SF, and Spoken 2724

Arabic Digits, to understand how these trade-offs 2725

manifest in different contexts. 2726

• Heartbeat: In the Heartbeat dataset, we retain 2727

99.48% of the optimal model’s accuracy using 2728

only 75% of its trainable parameters. Specif- 2729

ically, the optimal model achieves an accu- 2730

racy of 78% with 46,426 trainable parameters, 2731

while the second-best model achieves 77.6% 2732

accuracy with 34,820 parameters. Moreover, 2733

we retain 96.28% accuracy with a further re- 2734

duction to 57.95% of the parameters. 2735

• PEMS-SF: In the PEMS-SF dataset, the op- 2736

timal model starts with an accuracy of 93.1% 2737

and 564,231 trainable parameters. Reduc- 2738

ing the parameters to 173,866 (30.81% of the 2739

original), the model maintains 98.06% of its 2740

optimal accuracy at 91.3%. Further param- 2741

32

Table 10: Trade-off between model accuracy and the complexity of training parameters. The accuracy and
parameters of the best model are highlighted in bold. The accuracy difference is calculated as the raw difference
between the accuracies of the reduced model and the best model. The % Delta in accuracy and parameters is defined
separately for each as 100× Accuracy of the reduced model

Accuracy of the optimal model and 100× Parameters of the reduced model
Parameters of the optimal model , quantifying the accuracy

and computational efficiency of the reduced model relative to our best model.

Dataset Accuracy (%) ↑ Trainable
Parameters ↓

Difference | %
Delta in Accuracy ↑

% Delta in
Parameters ↓

EthanolConcentration
52.9 283950 - -
46 105344 -6.9 | 86.95 37.09

FaceDetection

68.9 3842 - -
68.6 2402 -0.3 | 99.56 62.51
67.9 962 -1.0 | 98.54 25.03
66.4 482 -2.5 | 96.37 12.54

Handwriting

23.8 154526 - -
23.2 107226 -0.6 | 97.47 69.39
22.7 53626 -1.1 | 95.37 34.70
20.2 20394 -3.6 | 84.87 13.19
19.4 13426 -4.4 | 81.51 8.68

Heartbeat
78 46426 - -

77.6 34820 -0.4 | 99.48 75.00
75.1 26908 -2.9 | 96.28 57.95

Japanese Vowels

99.2 148233 - -
98.9 123401 -0.3 | 99.69 83.24
98.6 105353 -0.6 | 99.39 71.07
98.4 100857 -0.8 | 99.19 68.03

PEMS-SF

93.1 564231 - -
91.3 173866 -1.8 | 98.06 30.81
90.8 85210 -2.3 | 97.52 15.10
87.9 69077 -5.2 | 94.41 12.24
87.3 62901 -5.8 | 93.77 11.14

Self-Regulation SCP1
93.2 302626 - -
92.5 99657 -0.7 | 99.24 32.93

Self-Regulation SCP2

62.8 334402 - -
58.9 166306 -3.9 | 93.78 49.73
57.8 111106 -5.0 | 92.03 33.22
57.2 83330 -5.6 | 91.08 24.91
56.1 76386 -6.7 | 89.33 22.84

Spoken Arabic Digits

99.2 141790 - -
99 70066 -0.2 | 99.79 49.41

98.4 46658 -0.8 | 99.19 32.90
98.1 30964 -1.1 | 98.89 21.83
98 20646 -1.2 | 98.79 14.56

97.8 15487 -1.4 | 98.58 10.92
97.6 10328 -1.6 | 98.38 7.28
96.6 5308 -2.6 | 97.37 3.74

UWave Gesture
Library

90.6 263338 - -
88.4 211556 -2.2 | 97.57 80.33
87.5 176298 -3.1 | 96.57 66.94

33

eter reductions to 85,210 (15.10%), 69,0772742

(12.24%), and 62,901 (11.14%) result in ac-2743

curacies of 90.8%, 87.9%, and 87.3%, respec-2744

tively. These reductions illustrate that even2745

significant reductions in parameters only lead2746

to a slight decrease in performance.2747

• SpokenArabicDigits: For the Spoken Arabic2748

Digits dataset, reducing the number of train-2749

able parameters generally correlates with a2750

minor decline in accuracy, though the trade-2751

off is modest. The optimal model, achiev-2752

ing an accuracy of 99.2% with 141,790 train-2753

able parameters, shows that even with substan-2754

tial reductions to 70,066 parameters (49.41%2755

of the original), the accuracy remains high2756

at 99%, retaining 99.79% of the original2757

model’s accuracy. Further reductions to2758

46,658 (32.90%), 30,964 (21.83%), 20,6462759

(14.56%), 15,487 (10.92%), 10,328 (7.28%),2760

and 5,308 (3.74%) yield accuracies of 98.4%,2761

98.1%, 98%, 97.8%, 97.6%, and 96.6% re-2762

spectively.2763

These examples highlight that efficiency in terms of2764

trainable parameters does not linearly correspond2765

to a loss in model accuracy across various datasets.2766

While fewer parameters generally lead to a lower2767

accuracy, the decrement is often proportional and2768

manageable, making these models highly suitable2769

for deployment in resource-constrained environ-2770

ments or for applications requiring rapid processing2771

with minimal computational overhead.2772

Q Ablation Study2773

Table 11 presents the results of this study, com-2774

paring the performance of our default approach,2775

which adds embeddings to time series, to variants2776

that exclude either embeddings or the time series.2777

R Alternative Methods for Fusing Time2778

Series with Embeddings2779

We explored two additional methods for fusing2780

time series and embeddings beyond simple addi-2781

tion. The first method involves a Fusion network2782

that first processes embeddings and time series data2783

through convolutional and dense layers in two sep-2784

arate branches, then merges the features from both2785

branches into a final dense network. The second2786

method employs Concatenation, where the time2787

series and embeddings are concatenated and pro-2788

cessed through a lightweight classification head.2789

Despite cross-attention being another alternative 2790

for fusing different modalities, we didn’t include it 2791

in this study due to the computational complexity 2792

it adds to the model. Table 12 presents the classi- 2793

fication accuracy and trainable model parameters 2794

for these variations. 2795

We observe that the addition approach in the 2796

LETS-C architecture achieves the highest aver- 2797

age classification accuracy (76.11%) compared to 2798

the fusion network (73.40%) and concatenation 2799

(74.22%). Notably, when compared to all base- 2800

lines, concatenation emerges as the second-best 2801

method after addition, which achieves the highest 2802

accuracy. The fusion approach ranks fifth overall, 2803

with only OneFitsAll and TimesNet outperforming 2804

it, following addition and concatenation, in terms 2805

of average accuracy. 2806

34

Table 11: Comparison of classification accuracy (%) for different configurations: ours (both embeddings and time
series), embeddings only, and time series only. Red: Best.

Method/Dataset EC FD HW HB JV PEMS-SF SCP1 SCP2 SAD UW Average ↑ AvgWins % ↑

LETS-C (Ours) 52.9 68.9 23.8 78 99.2 93.1 93.2 62.8 99.2 90.6 76.17 60%

embedding only 38 59.4 20.1 80 99.2 92.5 88.7 63.9 99.2 88.4 72.94 40%
time series only 42.6 69.6 25.1 76.1 98.1 89 93.2 58.3 98.9 83.8 73.47 30%

Table 12: Comparison of classification accuracy (%) and trainable model parameters (millions) for alternative meth-
ods of fusing time series with embeddings. Higher AvgWins and accuracy averages indicate superior performance,
while lower model parameter averages suggest greater computational efficiency. Red: Best performance.

Accuracy ↑

Method/Dataset EC FD HW HB JV PEMS-SF SCP1 SCP2 SAD UW Average ↑ AvgWins % ↑

LETS-C (Addition) 52.9 68.9 23.8 78 99.2 93.1 93.2 62.8 99.2 90.6 76.17 70%

Fusion network 44.1 66.5 23.6 76.6 98.1 86.1 92.8 56.1 99.2 90.9 73.40 20%
Concatenation 43 65.1 22.5 79 98.9 93.1 93.9 58.9 99 88.8 74.22 30%

Trainable Parameters (M) ↓

Method/Dataset EC FD HW HB JV PEMS-SF SCP1 SCP2 SAD UW Average ↓

LETS-C (Addition) 0.28 0.003 0.15 0.04 0.14 0.56 0.30 0.33 0.14 0.26 0.22

Fusion Network 0.19 0.35 0.33 0.28 0.16 5.54 0.37 0.27 0.23 0.04 0.78
Concatenation 0.42 0.009 0.26 0.17 0.11 0.28 0.23 0.39 0.09 0.46 0.24

35

	Introduction
	Related Work
	Methodology
	Experimental Protocol and Details
	Results and Analysis
	Performance and Efficiency
	Effectiveness of LETS-C
	Additional Analysis

	Conclusion
	Limitations and Broader Perspective
	Related Works
	Datasets
	Comparison Baselines: Supervised Learning Methods
	Adapting Supervised Forecasting Baseline Models for Classification
	Comparison Baselines: Unsupervised Representation Learning Methods
	Adapting Unsupervised Representation Learning Models for Classification
	Reproduction Details for Baselines
	Implementation Details for LETS-C
	Hyperparameter Settings for LETS-C
	Model Performance
	Computational Cost Analysis
	Monetary Costs Analysis
	Assessing Text Embeddings with Cosine Similarity
	Numerical Precision for Tokenization
	Generalization Across Various Text Embedding Models
	Trade-offs: Model Accuracy vs. Parameter Complexity
	Ablation Study
	Alternative Methods for Fusing Time Series with Embeddings

