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ABSTRACT

Visually semantic concepts such as objects and categories provide a natural foun-
dation for semantic reasoning, yet standard deep learning-based vision models
routinely extract and aggregate features using homogeneous stacks of spatial lay-
ers. As a result, feature representations are learnt implicitly without clear or-
ganisation, rendering decision-making processes opaque and difficult to interpret.
Psychovisual processing provides a way to mimic how the brain encodes and inter-
prets visual information that produces higher abstractions from low-level process-
ing. In this paper, we propose Semantic Visual Coding (SVC), a learnt frequency
domain representation that introduces explicit psychovisual abstraction into con-
volutional neural networks (CNNs). Inspired by psychovisually motivated image
codes from the 1990s, SVC learns band-limited filters that encode task-relevant
semantics as distinct regions of the frequency domain. These converge towards
sparse (data-driven) coronal patterns that suggest a natural representation scheme
for semantic abstractions supporting model reasoning. We also introduce a frame-
work that adapts CNNs to be psychovisually aware by combining traditional low-
level spatial feature extraction with high-level abstraction in the frequency domain
via SVC, which we call ‘PsychoNet’. Salience analyses show that PsychoNet’s
spatial layers extract highly interpretable object parts and morphological features,
unlike blob-like regions produced by standard CNNs. It further finds that SVC
forms structured selections of these parts that are organised by spatial scale, sug-
gesting frequency domain abstraction as a promising direction for interpretable
models which reveal the semantic features they employ.

Figure 1: The brain encodes and interprets visual information using psychovisual processing, which
separates feature extraction from higher cognition using intermediate abstractions. PsychoNet in-
troduces similar pipelines to CNNs. Early spatial layers extract low-level features, similar to early
cortical processing, and Phasor Blocks localise key characteristic object parts. Subsequently, these
parts are encoded in the frequency domain by Semantic Visual Coding (SVC) into sparse frequency
sub-bands. We believe that this is a naturally emergent representation for semantic information, sim-
ilar to psychovisual abstractions. FFT denotes the Fast Fourier Transform.

1 INTRODUCTION

Ever since the ImageNet challenge popularised deep learning for computer vision (Krizhevsky et al.,
2017; Deng et al., 2009), architectural advances have focused on the design of spatial domain fea-
ture extractors, from convolution layers (He et al., 2016; Xie et al., 2017; Huang et al., 2017; Liu
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et al., 2022) to more recent token mixers based on attention mechanisms (Dosovitskiy et al., 2021;
Tolstikhin et al., 2021; Gao et al., 2021; Rao et al., 2023). Although these models achieve impressive
performance, the way they reason in deeper layers is often opaque and difficult to interpret. Psy-
chovisual processing—the way human vision encodes and interprets visual information—separates
feature extraction from higher cognition using intermediate abstractions, like objects, relations, and
categories, providing a natural basis for reasoning (Quiroga et al., 2005; Kriegeskorte et al., 2008;
Quiroga, 2012; Le et al., 2024). In contrast, current architectures refine and aggregate image features
using homogeneous stacks of spatial layers, with the feature processing emerging implicitly through
training and often lacking clear organisation.

In this work, we propose Semantic Visual Coding (SVC), a frequency-domain high-level pro-
cessing module that bridges low-level feature extraction and decision making in CNNs, revealing
interpretable, object-part-based semantic representations that underpin model reasoning within a
psychovisual-inspired pipeline. Concretely, they are implemented with data-driven band-limited
frequency filters, inspired by psychovisual coding schemes from the 1990s that targeted perceptu-
ally salient frequencies found by human vision studies (Saadane et al., 1994; Guedon et al., 1995;
Saadane et al., 1998). Semantic Visual Coding (SVC) extends this idea to high-level abstraction
by allowing networks to discover by learning the sparse frequency subsets most relevant to a given
task. These promote richer intermediate abstractions grounded in task-oriented semantic features
and yield potentially interpretable views of the model’s reasoning, pointing to a naturally emergent
framework for high-level abstraction with semantic reasoning. In future, we also aim to apply SVC
to domains where the frequency domain is the natural measurement space, particularly magnetic
resonance imaging (MRI) (Chandra et al., 2021) as transparency and trustworthy model behaviour
are crucial due to the high-stakes nature of medical applications.

Additionally, we develop PsychoNet, a framework that incorporates SVC into conventional con-
volutional neural networks (CNNs), demonstrated on the widely used ResNet and state-of-the-art
ConvNeXt architectures. PsychoNet establishes a coherent dual-domain pipeline (Figure 1): initial
low-level image features are extracted in the spatial domain and augmented by learning complex-
valued representations, then SVC constructs high-level abstractions in the frequency domain that
support decision making with semantic reasoning. To the best of our knowledge, this work presents
the first data-driven exploration of the frequency domain for high-level representation learning in
vision, whereas prior studies focus mainly on lower level feature learning or parameterising spatial
models (Chi et al., 2020; Rippel et al., 2015; Rao et al., 2023). To summarise, the key contributions
of this work are:

• Inspired by psychovisual abstraction, we introduce SVC, a deep-learning based module
that automatically learns frequency domain representations of high-level semantic image
information for a given vision task. These emerge as sparse selections of coronal frequency
sub-bands in the discrete Fourier Transform (DFT).

• Our PsychoNet (Figure 1) is a framework that integrates SVC into conventional CNN mod-
els. We demonstrate it enables interpretable psychovisual-like processing on ResNet and
ConvNeXt architectures while maintaining or improving performance across various clas-
sification tasks.

• Through salience analysis, we demonstrate clear evidence of semantic reasoning by reveal-
ing that intermediate spatial layers consistently focus on meaningful object parts, which
SVC encodes using data-driven, psychovisual coding–inspired filters. Abstractions pro-
duced by SVC are shown to form structured encodings of the object parts, whose use in
final decision making mirrors human psychovisual processing and highlights a promising
pathway toward interpretable model reasoning.

2 BACKGROUND

In this section, we review related prior computer vision works on methods with biological motiva-
tions, as well as those that use the frequency domain. Additional details/background about psycho-
visual coding, the Fourier Transform and complex-valued neural networks are provided in Appendix
A.
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Biologically Inspired Vision. Biologically inspired approaches in computer vision predominantly
focus on modelling early vision stages. In particular, much attention has been given to receptive
fields (RF) - regions of visual stimuli that elicit strong neural responses in the visual cortex. Mam-
malian RFs are known to act as directional differential operators, closely resembling traditional im-
age processing functions like wavelets and Gabor filters (Olshausen & Field, 1996; Hubel & Wiesel,
1962; Ringach, 2002). These parallels motivated their use in approximating low-level human vi-
sion, serving as effective feature extractors for basic visual structures like edges and shapes. In deep
learning, these functions have been used to build neural networks that mimic cortical pathways (Liu
et al., 2023), and early-layer CNN kernels also perform similar directional operations (Krizhevsky
et al., 2017; Rippel et al., 2015). Beyond RFs, cortical responses have also been modelled from a
frequency domain perspective.

Research conducted in the 1990s by French researchers led by Dominique Barba in understanding
human vision included psychovisual experiments determining frequency sensitivities of the human
visual cortex (Saadane et al., 1994; Senane et al., 1995; Saadane et al., 1998). These informed the
design of psychovisual coding, an image quantization and compression scheme that is perceptually
lossless to humans. It first decomposes the frequency domain into a number of coronal sub-bands
(Figure 2 (left)), then for each sub-band applies specific quantization thresholds derived based on the
discovered sensitives. This enabled only frequencies corresponding to perceptually salient image
figures to be encoded in full, while the rest are removed or heavily compressed without affecting
perceived image quality. An extended review covering the motivations and additional background
for psychovisual coding is included in Appendix A.1.

Frequency Domain Learning. Frequency analysis has long been a staple in traditional image pro-
cessing. Unlike the spatial domain, which is highly localised and expresses features in contiguous
pixel neighbourhoods, the frequency domain is more conducive to global representations (see Ap-
pendix A.2). Formulated in this space, image processing functions like ridgelets (Candés & Donoho,
1999), curvelets (Starck et al., 2002) and contourlets (Do & Vetterli, 2005) have appealing sparse
representations. In fact, they bear a strong resemblance to psychovisual codes since they target
specific selections of sub-bands, corresponding to features from different spatial scales. Although
these functions have been incorporated into neural networks before, they are only effective on small
problems due to their handcrafted nature (Liu et al., 2021).

In deep learning, the frequency domain has primarily been used to exploit the Convolution Theorem
(Gonzalez & Woods, 2014), whereby spatial circular convolution becomes simple elementwise mul-
tiplication in the frequency domain. Many works leveraging this property are performance-driven:
(Li et al., 2020a; Chi et al., 2020; Guan et al., 2021) use frequency-domain filters to accelerate
CNNs and incorporate global context, while (Rao et al., 2023; Lee-Thorp et al., 2021; Huang et al.,
2023) employ global frequency filters as lightweight and effective token mixers for transformer-
style models. Other studies use frequency-domain re-parameterizations of CNNs to analyse model
properties and behaviours (Rippel et al., 2015; Grabinski et al., 2023; Kabri et al., 2023), such as
optimal kernel structures. In contrast, our work contributes to frequency-domain representation
learning, a direction that remains comparatively underexplored. Since global context is crucial for
high-level features (Rao et al., 2023; Dosovitskiy et al., 2021), the frequency domain provides a nat-
ural setting in which to represent and process semantic structure. Our SVC module employs learn-
able band-limited frequency filters—data-driven analogues of hand-crafted visual codes—to encode
task-relevant semantic information. Unlike prior works that integrate frequency filters directly into
their base computational blocks, SVC acts as an abstraction layer bridging feature extraction and
decision. Another related work uses frequency filters to select and amplify domain-transferable fre-
quency (Lin et al., 2023), similar to how SVC selects task-relevant features, but their approach is
not framed as representation learning nor is it used for interpretability. Moreover, SVC also enables
the novel interpretable psychovisual-like processing achieved by PsychoNet.

3 METHOD

Semantic Visual Coding. A N × N digital image, or a spatial feature map derived from it by
a neural network, can be viewed as a 2D discrete signal x[m,n], m, n ∈ 0, ..., N . This can be
represented in the frequency domain as a linear combination of complex-valued sinusoids via the
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2D DFT(Cooley et al., 1969):

X[u, v] =
1

N2

N−1∑
m=0

N−1∑
n=0

x[m,n]e−2πi(um+vn
N ) (1)

where i denotes the imaginary unit. These weights are the (frequency) spectrum of the image and is
a complex-valued space known as the frequency domain, which can be computed efficiently using
the Fast Fourier Transform (FFT) (Cooley et al., 1969). Psychovisual coding (Saadane et al., 1998)
partitions this space into radial sub-bands (2 (left)), and assigns each a threshold corresponding
to sensitivity to human vision. These thresholds decide the level of granularity when quantizing
images, so that perceptually important features are preserved while others are coarsely represented
or discarded.

Figure 2: (Left) Hand-crafted psychovisual coding from Saadane et al. (1998), which quantizes
perceptually salient radial frequencies determined by human vision experiments. (Right) Our Se-
mantic Visual Coding module, a data-driven adaptation of psychovisual coding. It uses (1) Spectral
Branches for radial spectral decomposition (2) Hadamard Blocks to apply learnt element-wise filters
and channel mixing. CConv/BN/GELU denote complex-valued convolution, batch norm and GELU
operations - see Appendix B.2

We introduce Semantic Visual Coding (Figure 2 (right)) which aims to generalize this coding princi-
ple beyond low-level vision and adapt it to high-level features in deep network layers. In this setting,
the selection of frequencies should no longer be fixed by handcrafted thresholds, but instead learnt
directly from data to encode task-relevant semantic information. Semantic Visual Coding has the
following formulation:

Let X ∈ Cd×w×w be frequency domain input features, where d is the number of channels and
w × w the spatial size.

1. We apply Spectral Branches which replicate the radial frequency partitioning in psychovi-
sual codes. These divide X into disjoint rectangular sub-bands X1,X2, ... using DropCrop
blocks, which set a lower frequency boundary (dropi) by zeroing central frequencies and
an upper boundary (cropi) by cropping X to size d× cropi × cropi.

2. For each sub-band Xi, Hadamard Blocks apply a set of learnt filters Wi ∈ Cd×cropi×cropi

via element-wise (Hadamard) multiplication. Additionally, we also apply Softmax across
the channels of Wi to amplify important frequency selections and suppress unimportant
ones, emulating the quantization in psychovisual coding.

3. Hadamard Blocks further apply complex 1× 1 convolution block to mix together different
information extracted by each channel/filter, yielding our final representations.

In practice, for all models we apply Spectral Branches at a spatial resolution of w = 14 and use
three sub-bands with [cropi, dropi] values of [14, 8], [8, 4] and [4, 1] respectively. More details can
be found in Appendix B.

PsychoNet. The PsychoNet framework (Figure 3) adapts standard spatial CNNs to use Semantic
Visual Coding. This setting enables experimentation to assess if our codes produce meaningful ab-
stract representations that support interpretable semantic reasoning, as well as practical performance
evaluation against standard baselines.
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Figure 3: Example: Converting ResNet50/101 image classification models with PsychoNet.

In our experiments, we apply PsychoNet to ResNet (He et al., 2016) and ConvNeXt (Liu et al.,
2022) architectures. Below we summarise the main steps for implementing PsychoNet below while
full architectural configurations are provided in Appendix B.

1. A number of low-level feature extraction layers are retained from the base CNN, for exam-
ple, the first two resolution stages in the case of ResNet50 and ResNet101.

2. The remaining spatial layers are replaced with Phasor Blocks, described further below.
Compared to the original CNNs layers, Phasor Blocks typically use higher spatial resolu-
tion and only downsample down to 14× 14 instead of 7× 7. Though this increases FLOPs
(Appendix C), we found there is insufficient granularity at 7×7 to clearly separate low and
high frequencies after FFT.

3. 2D FFT is applied to convert features from the spatial to frequency domain. As with most
visual features, the magnitude of X’s DC (0 frequency) and low frequency features typi-
cally dominate over those of high frequency ones, so we use a simple companding operation
to reduce this imbalance (Appendix B).

4. SVC is applied, and its outputs from each frequency band aggregated. These are then used
for output prediction directly in the frequency domain using a complex-valued linear layer.

The ConvNeXt-based PsychoNet differs from its ResNet-based counterpart in only two key archi-
tectural aspects: (1) the use of ConvNeXt’s 4× 4 patch embedding layer at the input, and (2) 7× 7
depthwise convolution blocks are used instead of regular convolution layers within Phasor Blocks,
matching ConvNeXt’s primary computational block. Despite their minimal nature, these adaptations
are sufficient to recover performance close to ConvNeXt, as demonstrated in Section 4.

The following section outlines the motivation and formulation of Phasor Blocks, with additional
architectural details provided in Appendix B

Phasor Blocks. Filtering in the frequency domain is powerful as it captures information encoded
as both magnitude and phase. However, PsychoNet operates on real-valued inputs (natural images),
and real features incur the conjugate symmetry of the Fourier Transform (FT), rendering half of the
frequency domain redundant. While this constraint matters little when the frequency domain is used
solely for convolution (Rao et al., 2023; Li et al., 2020a), it limits learnt filtering from fully exploit-
ing complex representations. To address this, we introduce Phasor Blocks (Figure 4) to augment
real-valued spatial features with complementary complex-valued ones, breaking conjugate sym-
metry and improving the specificity of learned sub-bands. In practice, imaginary components are
generated from existing real features using lightweight depthwise convolution based blocks which
decouple spatial and channel mixing to encourage cross-channel interaction without altering spa-
tial structure. In natural complex signals, real and imaginary components convey complementary
information at the same spatial location (Gonzalez & Woods, 2014; Lee et al., 2022), making it im-
portant that the generated imaginary features do not introduce substantial new spatial information.
As demonstrated in later sections, this design enables Phasor Blocks to extract meaningful object
parts that form the basis of SVC abstractions supporting interpretable semantic reasoning. Further
evidence from the ablations in Appendix D.1 and the salience maps in Figure A.10 shows that while
SVC alone encourages attention to object parts, the inclusion of Phasor Blocks and their complex
representations leads to substantially clearer and more localised part-based salience, enabling greater
interpretability.
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Figure 4 provides an overview of the two Phasor Block configurations used in this work, with full
architectural diagrams and design details presented in Appendix B.3.

Figure 4: Phasor Blocks architectures. Phasor (I) blocks generate complementary imaginary
features for real-valued input. Phasor (C) blocks generate additional complex features for complex-
valued input based on its real component. Implementations of normal convolution (Conv), depthwise
convolution (DWConv) (Liu et al., 2022) and complex-valued convolution (CConv) blocks for each
of our models are presented in Figure A.2

4 EXPERIMENTS AND RESULTS

We applied PsychoNet across multiple ResNet architectures, which provide straightforward and well
understood baselines, as well as ConvNeXt-S, as an example of a state-of-the-art CNN. Quantita-
tive evaluation was conducted on image classification across small to large-scale datasets: CIFAR-
10/100 (Krizhevsky, 2009) both contain ∼50K low-resolutions images, while ImageNet-100 is a
moderate sized subset (∼130K images) of ImageNet (Deng et al., 2009). Finally, we also use the
standard large ImageNet-1K subset containing ∼1.2 million training and ∼50K validation images.
Full dataset, training and hardware details are presented in Appendix C, and full model configura-
tions in Appendix B.

Model Param. (M) # Layers CIFAR-10 CIFAR-100 IN100 IN1K

ResNet50 25.56 54 94.14 78.10 80.90 76.04
Psycho-S 25.35 65 ↑ 20 .4% more 95.08 78.97 82.50 76.86
ResNet101 44.55 105 93.64 79.13 81.90 78.43
Psycho-B 42.01 93 ↓ 11 .4% less 94.99 79.49 83.60 78.85
ResNet152 60.10 156 93.17 77.51 83.60 79.59
Psycho-L 61.28 93 ↓ 40 .4% less 94.95 79.64 84.82 79.85
ResNet270 89.60 276 76.51 50.87 83.80 80.01
Psycho-H 88.61 93 ↓ 66 .3% less 94.68 79.89 85.00 80.45
ConvNeXt-S 50.22 113 94.09 76.96 86.98 80.78
PsychoDW 49.51 106 ↓ 6 .2% less 95.46 79.67 86.76 80.59

Table 1: Summary of classification results (% top-1 accuracies) on CIFAR-10, CIFAR-100,
ImageNet-100 (IN100) and ImageNet-1K (IN1K). Each pair of rows (separated by horizontal lines)
compares a baseline CNN and the PsychoNet based on it. Further detailed results are presented in
Appendix C.

A common characteristic of newer CNNs like ConvNeXt is their reduced dependence on depth for
model scaling (Liu et al., 2022; Xie et al., 2017), whereas large ResNet architectures heavily add
additional high-level layers to increase representational capacity (He et al., 2016). We hypothe-
size that since high-level processing in PsychoNet is handled by our frequency domain modules,
it should also be much less depth-dependent than ResNet. The Psycho-S/B/L/H models, counter-
parts to ResNet50/101/152/270, were designed to test this and do not increase Phasor Block depth
beyond the Psycho-B/ResNet101 size. Instead, parameter parity is maintained by widening (increas-
ing number of feature channels) the existing Phasor Blocks and SVC filters—an equally simple, if
not simpler, scaling strategy than the depth expansion used in ResNet. Table A.2 compares the
resulting channel-width configurations across these model sizes.

Overall, we found that PsychoNet slightly improves the performance of each baseline ResNet across
all datasets, despite Psycho-L and Psycho-H using ∼1.7× and ∼3× less layers than their ResNet
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Figure 5: (a) Comparison of model depth when scaling ResNet vs. PsychoNet. (b) Comparison
between activation maps (via KPCA-CAM) of Psycho-B and ResNet101 for a range of layer depths.
Real and imaginary components are denoted by R and I.

baselines respectively (Table 1, Figure 5 (a)). This demonstrates that SVC is able subsume the role
of a significant portion of deep spatial layers, showing it is an effective high-level processing module.
We believe this arises because SVC operates on globally focused frequency-domain representations,
in contrast to spatial features which are sparse and locally structured, requiring significant depth
to progressively aggregate features. We also note that ResNet152 and ResNet270 underperform
smaller ResNets on CIFAR-10/100, likely as their large depth is unsuited for the low-resolution
images in these datasets. In comparison, our much shallower Psycho-L/H models were unaffected.

On ConvNeXt-S, PsychoDW achieves comparable performance despite its Phasor Block being only
a simple adaptation of the ResNet-oriented one, indicating that further targeted adaptations may
yield even stronger performance. This demonstrates that PsychoNet extends naturally to modern
CNN architectures beyond ResNet. As shown in the following section, PsychoNet also adds inter-
pretable, psychovisual-style reasoning to both ResNet- and ConvNeXt-based models while main-
taining performance, which will be particularly beneficial for future applications such as medical
image analysis that require transparent and trustworthy models.

Finally, we also acknowledge that our PsychoNet models use considerably more FLOPs than their
respective CNN baselines (Table A.12). The increased computation is attributed to (1) Phasor Blocks
requiring higher-resolution features than the CNN layers, to support 14 × 14 SVC filters and (2)
complex-valued operations (complex convolution etc.) being poorly optimised in deep learning
frameworks. Regarding (1), Appendix D.1.1 presents FLOP-efficient variants of Psycho-S/B that
adds an early downsampling step to 7 × 7 and extracts the [14, 8] sub-bands from intermediate
Phasor Block features. On ImageNet-100, this preserves Psycho-S/B performance while matching
the FLOPs of ResNet-50/101. While these findings suggest that efficient PsychoNet variants are
achievable, our current focus remains on establishing the first instance of interpretable psychovi-
sual separation of low and high-level processing in CNNs, with supporting results presented in the
following section.

Filter learning. Figure 6 visualises SVC filters learnt by ResNet-based PsychoNet, showing the
top spatial principal components as an approximation of the most important frequency features. We
find that filters across every sub-band learn very sparse selections of frequencies; similar results
were found for the ConvNeXt-S based PsychoDW and are shown in Figure A.5 (a). However, this
requires sufficiently large training corpora - the ImageNet-100-trained filters are noticeably noisier
than for ImageNet-1K, and those for CIFAR-10/100 (Figure A.4) even more still. This suggests that
these patterns correspond to a data-driven representation naturally emergent from visual informa-
tion. Additionally, we ran ablation experiments to evaluate the effects of Phasor Blocks and Spec-
tral Branching (Appendix D.1). Removing Phasor Blocks (and replacing them with ResNet-style
residual bottleneck blocks (ResBlocks)) removes complex-valued spatial features and introduces
conjugate symmetry to the frequency domain. This yields symmetric filter features that are far less
expressive. Likewise, removing the spectral decomposition of Spectral Branches (we use one global
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filter instead of three band-limited ones) also reduces filter sparsity. This is likely as exposure to the
entire frequency domain makes it harder for filters to specialise to specific sub-bands.

Figure 6: SVC filters learnt by Psycho-B trained on ImageNet-100 and ImageNet-1K, as well as for
two ablation models on ImageNet-1K. Bilinear smoothing has been applied. ‘High/mid/low freq.’
refer to the [14, 8], [8, 4] and [4, 1] frequency sub-bands created by Spectral Branches. ‘No Spectral
Branches’ removes Spectral Branches and uses a single Hadamard Block with global filters - we
extract sub-bands only for the visualisation. ‘No Phasor Blocks’ replaces all Phasor Blocks with
ResBlocks.

Figure 7: Assorted activation maps (via KPCA-CAM) for mid-level Phasor Blocks of Psycho-B.
Real and imaginary components are denoted by R and I. An equivalent visualisation for PsychoDW
is shown in Figure A.6.

Representation Analysis. As our quantitative results suggested SVC likely subsumes the high-
level processing of deep ResNet layers, we visualise layer activations using KPCA-CAM (Karmani
et al., 2024) to compare spatial processing between the two models (Figure 5 (b)). This approach
generates salience maps by projecting activations onto the first principal component of their kernel
PCA. ResNet’s early layers target low-level features (edges), but later salience regions quickly grow
to cover the entire subject and it is not particularly clear on which parts of the shark each layer
is focusing. This likely reflects ResNet’s use of homogenous layer stacks, which, without explicit
structure, may learn layers that perform diffuse and weakly organised operations. In contrast, early-
mid level Phasor Blocks clearly fixate on morphological features of the shark, such as its snout,
fins and tail. Figure 7 shows further examples of Phasor Blocks localising key characteristics of
different object categories, such as dog ears, elephant tusks and car wheels. Similar results visu-
alising activation maps of PsychoDW, and comparing them to those of ConvNeXt-S, are presented
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in Figures A.5 (b) and A.6. Since KPCA-CAM only uses activations of the visualised layer and is
uninfluenced by model predictions (e.g. via backpropagation in gradient-based CAMs), these results
indicate that Phasor Blocks specalize to extract meaningful semantic object parts. This organisation
is likely shaped by the presence of SVC downstream, which we show below encodes these parts into
higher-level abstractions that support interpretable semantic reasoning. This is further support by the
salience maps in Figure A.10 that shows although SVC alone does promote object-part focus, clear
part-level isolation only emerges with the addition of Phasor Blocks and their complex features.

Interestingly, it appears that the imaginary components of Phasor Block activations capture more
global features than the real components (i.e. a dog’s face vs. its ears). An initial clustering visuali-
sation of Phasor Block activations is also presented in Figure A.8, which finds that observable clus-
tering emerges both components which becomes increasingly pronounced at deeper layers. These
findings suggest that Phasor Blocks learn a rich utilisation of complex-valued representations that is
iteratively refined through each block.

Figure 8: Psycho-B Phasor Block salience maps (via HiResCAM) conditioned on gradients (a) from
individual Spectral Branch sub-bands and (b) from individual frequency domain feature channels.

For initial exploration of SVC’s encoding mechanisms, we use HiResCAM (Draelos & Carin, 2020)
for gradient-based activation visualisation. It produces salience maps by element-wise multiplying
layer activations with gradients backpropogated from model predictions, so in classification the
salience regions have a high contribution to the class prediction. We extend this approach to isolate
regions used by specific parts of SVC by first masking (setting to zero) gradients from the other
components, enabling exploration of how SVC encodes Phasor Blocks features. First, we examine
each of the three sub-bands created by PsychoNet’s Spectral Branches. After masking gradients
of Hadamard Blocks for all but one of the sub-bands, Phasor Blocks’ salience regions reveal that
SVC distributes object parts by scale. Figure 8 (a) shows that the low-frequency sub-band focuses
on subjects broadly, while mid-high frequencies isolate more specific parts of different sizes. This
aligns with frequency domain theory, in which low frequencies capture coarse spatial structure and
higher frequencies finer detail and edges, supporting the view that SVC performs structured filtering
in the frequency domain. We also isolate activations from individual Hadamard Block channels,
showing that within each band, channels specialise to distinct object parts and correspond to distinct
sparse frequency selections (Figure 8 (b)). This analysis was also applied to PsychoDW with similar
results, shown in Figure A.7.

Overall, these result suggest that SVC learns a semantic intermediate representations that encodes
selections of object parts. Given that SVC is placed immediately before the decision making (clas-
sification) layers of PsychoNet, it is likely selecting those most relevant to the task. In doing so,
SVC functions as an abstraction bridging part extraction in Phasor Blocks and higher-level semantic
reasoning, mirroring the role of abstractions used in psychovisual processing.

Limitations and Future Work. A key limitation of our work is that, although we show SVC
organises and encodes selections of meaningful object parts, future research is still required to de-
termine how the deeper semantic meaning of these abstractions should be interpreted in relation to
broader notions of reasoning, such as those studied in neuroscience (Quiroga et al., 2005; Kriegesko-
rte et al., 2008). We will also explore addressing the high FLOP usage of PsychoNet by exploring

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

optimisations for complex-valued operations (e.g. employing Cauchy-Riemann identities (Ahlfors,
1979)) as well as more sophisticated formulations of Phasor Blocks.

Additionally, it would also be insightful to explore applying PsychoNet to broader task types, par-
ticularly image-to-image tasks like segmentation which may allow SVC to utilize wider frequency
ranges than classification. Another focus will be practical applications in MRI, to explore how
SVC’s semantic abstractions can enhance transparency and trustworthiness in models operating di-
rectly on k-space data. Finally, it is also known that aliasing can afflict standard CNN architectures
(Grabinski et al., 2022); future work should assess its impact on our frequency-domain representa-
tions and whether mitigation can improve results.

5 CONCLUSION

In this work, we introduced Semantic Visual Coding (SVC), the first high-level vision representa-
tion learnt in the frequency domain that produces sparse, data-driven coronal selections of discrete
Fourier space. Our PsychoNet framework integrating SVCs show that it can maintain performance
across multiple classification datasets, but is less depth-dependent, suggesting that SVC improves
high-level processing previously done by deep spatial layers. In contrast to the unorganised pro-
cessing of conventional CNNs, we find that PsychoNet clearly separates processing stages: Phasor
Blocks extract semantically meaningful object parts, while SVCs encode and organise these parts
into sparse, frequency domain representations used to make classification decisions that can be vi-
sualized. This pipeline provides strong evidence that it may mimic intermediate abstractions used
by the brain to separate feature extraction from higher cognition as suggested in previous neuro-
science studies. While further work is required to understand the reasoning mechanisms of SVCs,
it is clear that frequency domain abstraction is a promising direction for interpretable human-like
model reasoning.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ACKNOWLEDGEMENTS

In accordance to ICLR 2026 guidelines, we acknowledge the use of large language models (LLMs)
in preparing this manuscript. Their role was limited to assisting with editing and polishing writing.

Additional acknowledgements will be added after deanonymization.

ETHICS STATEMENT

All authors have reviewed the ICLR 2026 code of ethics and verified to the best of our knowledge
that the work in our paper conforms with it. In particular, this work introduces a new theoretical
framework, so it is unlikely to cause direct harm or negative impacts to society. Additionally, we
only use open datasets such as ImageNet, so privacy concerns do not arise, though we acknowledge
that these datasets contain known biases that may influence model behaviour.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All experiments in this work were
conducted on publicly available datasets, which have been appropriately cited. Detailed training
recipes and hardware details are presented in Appendix C and Appendix D.1. Detailed model con-
figurations are presented in Appendix B. After deanonymization, we will also release our code
repository including training scripts, model weights and instructions to reproduce all of our results.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

REFERENCES

Lars V. Ahlfors. Complex Analysis. McGraw-Hill, New York, 3rd edition, 1979. ISBN 978-
0070006577.

Irwan Bello, W. Fedus, Xianzhi Du, E. D. Cubuk, A. Srinivas, Tsung-Yi Lin, Jonathon Shlens, and
Barret Zoph. Revisiting ResNets: Improved Training and Scaling Strategies. Neural Information
Processing Systems, 2021.

Patrick Le Callet, Abdelhakim Saadane, and Dominique Barba. Interactions of chromatic compo-
nents in the perceptual quantization of the achromatic component. In Human Vision and Elec-
tronic Imaging IV, volume 3644, pp. 121–128. SPIE, May 1999. doi: 10.1117/12.348432.

E. J. Candés and D. L. Donoho. Ridgelets: a key to higher-dimensional intermittency? Philosoph-
ical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 357
(1760):2495–2509, 1999. doi: 10.1098/rsta.1999.0444.

S. S. Chandra, N. Normand, A. Kingston, J. Guédon, and I. Svalbe. Robust Digital Image Re-
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Appendices
In the following we present appendices to our work, structured as follows: Appendix A presents
additional background material. Appendix B provides detailed information about the architectural
configurations of all models used in our experiments. Appendix C presents results, dataset informa-
tion and training recipes for all of our classification experiments. Appendix D.1 provides full results
and details for PsychoNet architectural ablation studies.

A BACKGROUND

In this section we present additional background and details about psychovisual coding, the Fourier
Transform and complex-valued networks.

A.1 PSYCHOVISUAL CODING

Our work is inspired by groundbreaking research conducted in the 1990s by French researchers led
by Dominique Barba in understanding the human aspect of mammalian vision, i.e. the psychovi-
sual capability of the human brain for visual perception arising from the need for early television
signal compression (Hanen & Barba, 1993). At the time, statistical approaches based on Shannon’s
information theory and rectilinear methods such as discrete (Haar) wavelets were popular, and they
argued that these approaches were sub-optimal because they treated all errors equally. They would
propose psychovisual quantizers as an efficient form of image coding that would retain the impor-
tant image information pertaining to its interpretation by the human vision system and quantization
matched the detection thresholds of the visual cortex (Senane et al., 1995). These quantizers were
proposed to be the coronas of the 2D Fourier space, where the model of the vision system assumes
Fourier space is analyzed using radial symmetric functions (Saadane et al., 1994; 1998) (see Fig-
ure A.1), which they showed can also be mapped to colors in human vision (Callet et al., 1999). The
premise is that visual recognition and feature extraction could be performed by selecting coronal
sectors of Fourier space directly through the quantisation of adjacent frequencies, thereby provid-
ing directional band limited filtering within the scene. Their psychophysical experiments were also
used to select the optimal sub-bands that allowed image compression that was difficult for humans
to distinguish (Saadane et al., 2001). Our SVC is a data-driven adaptation of this approach, using
band-limited frequency filters to learn sparse frequency selections using supervisory signals from a
classification task.

Figure A.1: Coronal frequency sub-bands used in psychovisual coding from Saadane et al. (1998).

This work on visual codes over the course of a decade would result in among the first uses of
vector quantization for image coding (Senane et al., 1995), a perceptually based image quality met-
ric (Saadane et al., 2001) and one of the foundations of discrete projection theory, where a central
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slice theorem is established for discrete Fourier space based as exact 1D forms of these psychovi-
sual radial functions as slices and therefore projections in image space (Guedon et al., 1995). This
work would even pioneer the use of the wavelet transform to projection data before it would be
formalized as ridgelets by Candes and Donoho (Candés & Donoho, 1999). The Mojette transform
would itself form the basis of an entire area of discrete tomography that creates discrete projections
of images (Normand et al., 1996) in diverse areas such as image reconstruction (Kingston & Svalbe,
2007; Chandra et al., 2014) and compression (Guédon et al., 2001), computed tomography (Hou &
Zhang, 2013) and network transmission (Parrein et al., 2001; Verbert et al., 2002). Although the
number of publications is too numerous to list here, a summary of these works and areas can be
found in the Mojette transform book (Guédon, 2013).

A.2 THE FOURIER TRANSFORM AND THE FREQUENCY DOMAIN

In Section 3 we only describe the 2D DFT as digital images are discrete 2D signals in the spatial
domain, while the standard FT operates on continuous signals. The DFT is derived by first viewing
a discrete signal as the product of a continuous signal and a sequence of unit impulses (sampling),
applying the FT to yield a continuous function in the frequency domain, then sampling it again to
discretize it. Detailed derivations of both the FT and DFT may be found in most image processing
texts, such as (Gonzalez & Woods, 2014). There are also inverse transforms, namely the Inverse
Fourier Transform (IFT) and Inverse Discrete Fourier Transform (IDFT), for transforming frequency
domain signals back into the spatial domain. While we do not use them in PsychoNet, they reflect the
duality between the spatial and frequency domains - any operation in one domain has a counterpart
in the other. The most famous example of this relationship is the Convolution Theorem.

Let x[u, v], y[u, v], u, v ∈ 0, ..., N − 1 be two discrete N ×N spatial signals. The circular convolu-
tion of these two signals is defined as:

x[u, v] ∗ y[u, v] = 1

N2

N−1∑
m=0

N−1∑
n=0

x[m,n]y[((u−m))N , ((v − n))N ] (2)

where (.)N denotes modulo N . The Convolution Theorem (Gonzalez & Woods, 2014) then states
that:

F [x ∗ y] = F [x]⊙F [y] or equivalently x ∗ y = F−1 [F [x]⊙F [y]] (3)
where F [.] and F−1[.] denote the DFT and IDFT, and ⊙ the Hadamard product. Hence, circular
convolution in the spatial domain is equivalent to applying the Hadamard product in the frequency
domain. As such, the frequency domain is highly conducive to global representations, since each
element of an image’s frequency spectra presents a unique global view of the image, analogous to
convolving it with a directional striped kernel.

In practice, the DFT and IDFT are computed using the Fast Fourier Transform and Inverse Fast
Fourier Transform respectively (Cooley et al., 1969). Note that if x and y were multi-channel fea-
tures instead, i.e. of dimension d × N × N for d channels like the input features and learnt filters
of our Hadamard Blocks, then the frequency domain Hadamard product is equivalent to circular
depthwise convolution in the spatial domain. Unlike the Conv2D operation of CNNs, this does not
mix channels, which is why both of our Hadamard Blocks and the Global Filter block from Rao
et al. (2023) include explicit channel-mixing via 1× 1 convolution layers.

A.3 COMPLEX-VALUED NEURAL NETWORKS

Most work for complex-valued neural networks involve developing components of these networks to
work in the complex domain, such as activation functions (Scardapane et al., 2018). Most complex-
valued CNNs use the network blocks introduced by Trabelsi et al. (2018). The distributive property
of convolution allows convolution between a complex input h = a + ib and a complex kernel
W = WR + iWI to be decomposed into four real-valued component wise convolutions:

W ∗ h = (WR ∗ a−WI ∗ b) + i (WI ∗ a+WR ∗ b) (4)

Consequently, complex-valued convolution layers are usually more computationally and memory
intensive (additionally stores imaginary features) than real-valued ones. Trabelsi et al. (2018) also
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developed complex normalization methods and activation functions. Complex-valued modules in
PsychoNet use the complex-valued convolution (CConv) and batch-normalization (CBN) layers
from Trabelsi et al. (2018), and a naı̈ve adaptation of the GELU activation function (CGELU) which
just applies the original function to real and imaginary channels separately.

When applying complex-valued networks to real-valued images, most works use a small initial
module to convert the input into complex-valued features. However, such approaches have yielded
only minor improvements in the past over directly using real-valued networks (Trabelsi et al., 2018;
Li et al., 2020b). Accordingly, recent complex-valued networks predominantly focus on domains
with naturally complex data, such as MRI, radar and audio signal processing (Dedmari et al., 2018;
Vasudeva et al., 2022; Cole et al., 2021; Lee et al., 2022; Trabelsi et al., 2018). To try bridge this
gap, a complex-valued colour space by reinterpreting the cylindrical coordinates of the HSV colour
model as 2D magnitude and phase was developed (Yadav & Jerripothula, 2023). They applied this
to standard complex-valued CNNs, improving results on common image classification tasks, but
retained the high complexity of complex-valued networks. On the other hand, PsychoNet primarily
uses real-valued modules that learn to generate complementary complex-valued features to given
real features, as described in Section 3.
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B MODEL CONFIGURATIONS

Here we provide full details of the architectural configurations of all of our models. For all tables,
we use the ResNet approach of counting the number of model layers as the number of convolutional
and linear layers; each element-wise filter block in Hadamard Blocks are also counted as one layer.

B.1 CNN BASELINES

The ResNet50, 101 and 152 models we use are from He et al. (2016) and are implemented in most
common deep learning frameworks (we use the one from PyTorch (Paszke et al., 2017)). For
ResNet270, we follow the block configurations in Bello et al. (2021), but do not implement any of
the newer blocks/layers they also introduce, so it purely just adds more residual bottleneck blocks
(ResBlocks) to ResNet152 for fair scaling. Table A.1 compares the sizes of the four ResNet models
as well as their block configurations, grouped by feature resolution (which are 56×56, 28×28, 14×
14 and 7× 7).

Table A.1: ResNet block configurations.

Model Parameters (M) # Layers # Blocks

ResNet50 25.56 54 [3-4-6-3]
ResNet101 44.55 105 [3-4-23-3]
ResNet152 60.19 156 [3-8-36-3]
ResNet270 89.60 276 [4-29-53-3]

For ConvNeXt-S, we follow the original implemention in Liu et al. (2022).

B.2 PSYCHONET

Figure A.2 summarises the key configuration details of each PsychoNet variant, namely the fea-
ture resolution and channel width at each Phasor Block and the number of filters used in the SVC
module. Further architectural details for each model are reported in Tables A.3 through A.7. For
Phasor Blocks, we list each layer using the ‘resolution: layer configuration’ format. The ResNet-
based PsychoNet models use the same initial input embedding layer as ResNet (7× 7 Conv2D and
maxpooling) is used, while PsychoDW uses the same 4 × 4 patch embeddings as ConvNeXt-S.
Interestingly, we found that using the initial layers of ResNet50, instead of ConvNeXt-S, in our
ConvNeXt-S based PsychoDW actually yielded better results (approx. ↑ 0.5% top-1 accuracy on
ImageNet-1K), so we chose to use it for the model. However, we do change all ConvBlocks in
Phasor (C) (see Figure A.2) to depthwise convolution blocks to maintain general faithfulness to the
ConvNeXt model.

Finally, the companding operation we apply after taking the 2D FFT (in Figure 3) simply zeros the
DC component and applies the element-wise function:

x ∈ C, Compand : x → |x| 1
1.25 · exp(i∠x) (5)

where |x| denotes the magnitude of x and ∠x its phase. Since the exponent applied to the magnitude
is ∈ (0, 1), this function compresses frequencies of large magnitude (i.e. frequencies very close to
the DC component), and expands the magnitude of those further from it.
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Table A.2: Configuration summary of different PsychoNet variants. For Phasor Blocks, we display
resolution: [#channels per block], and ‘(I)’ denotes a Phasor Block (I)). #Filters denotes the
number of channels of element-wise filters per sub-band of SVC. #Layers show overall layers /
complex convolution layer counts.

Model Phasor Blocks #Filters #Layers Params (M)

Psycho-S 14× 14: [256 (I), 256, 384, 512, 512] 512 65 / 9 25.35

Psycho-B 28× 28: [256 (I), 256, 256, 384]
14× 14: [384, 384, 512, 512, 512]

512 93 / 13 42.01

Psycho-L 28× 28: [256 (I), 512, 512, 512]
14× 14: [512, 512, 512, 512, 512]

512 93 / 13 61.28

Psycho-H 28× 28: [256 (I), 512, 512, 512]
14× 14: [512, 512, 512, 640, 1024]

1024 93 / 13 88.61

Psycho-DW 28× 28: [256 (I), 256, 256, 512]
14× 14: [512, 1024, 1024, 1024, 1024]

2048 109 / 13 49.512

Table A.3: Detailed architecture of Psycho-S.

Psycho-S - based on ResNet50

Parameters (M) 25.35
# Layers (overall) 65
# Layers (complex) 9

Blocks

Input layer Conv2D(7×7, din=3, dout=64, stride=2), MaxPool(3×3, stride=2)

Initial CNN layers First 7 ResBlocks from ResNet50 (first two resolution stages).

Phasor Blocks

14× 14: (I) [din=128, dout=256, stride=2]
14× 14: (C) [din=256, dout=256]
14× 14: (C) [din=256, dout=384]
14× 14: (C) [din=384, dout=512]
14× 14: (C) [din=512, dout=512]

Spectral filters Sub-bands ([crop, drop]): [14, 8], [8, 4], [4, 1], d filter = 512

Output layer Average pool, ComplexLinear(din=1536, dout=1000), Softmax
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Table A.4: Detailed architecture of Psycho-B.

Psycho-B architecture - based on ResNet101

Parameters (M) 42.01
# Layers (overall) 93
# Layers (complex) 13

Blocks

Input layer Conv2D(7×7, din=3, dout=64, stride=2), MaxPool(3×3, stride=2)

Initial CNN layers First 7 ResBlocks from ResNet101 (first two resolution stages).

Phasor Blocks

28× 28: (I) [din=128, dout=256]
28× 28: (C) [din=256, dout=256]
28× 28: (C) [din=256, dout=256]
28× 28: (C) [din=256, dout=384]

14× 14: (C) [din=384, dout=384, stride=2]
14× 14: (C) [din=384, dout=384]
14× 14: (C) [din=384, dout=512]
14× 14: (C) [din=512, dout=512]
14× 14: (C) [din=512, dout=512]

Spectral filters Sub-bands ([crop, drop]): [14, 8], [8, 4], [4, 1], d filter = 512

Output layer Average pool, ComplexLinear(din=1536, dout=1000), Softmax

Table A.5: Detailed architecture of Psycho-L.

Psycho-L architecture - based on ResNet152

Parameters (M) 61.28
# Layers (overall) 93
# Layers (complex) 13

Blocks

Input layer Conv2D(7×7, din=3, dout=64, stride=2), MaxPool(3×3, stride=2)

Initial CNN layers First 7 ResBlocks from ResNet152.

Phasor Blocks

28× 28: (I) [din=128, dout=256]
28× 28: (C) [din=256, dout=512]
28× 28: (C) [din=512, dout=512]
28× 28: (C) [din=512, dout=512]

14× 14: (C) [din=512, dout=512, stride=2]
14× 14: (C) [din=512, dout=512]
14× 14: (C) [din=512, dout=512]
14× 14: (C) [din=512, dout=512]
14× 14: (C) [din=512, dout=512]

Spectral filters Sub-bands ([crop, drop]): [14, 8], [8, 4], [4, 1], d filter = 512

Output layer Average pool, ComplexLinear(din=1536, dout=1000), Softmax
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Table A.6: Detailed architecture of Psycho-H.

Psycho-H architecture - based on ResNet270

Parameters (M) 88.61
# Layers (overall) 93
# Layers (complex) 13

Blocks

Input layer Conv2D(7×7, din=3, dout=64, stride=2), MaxPool(3×3, stride=2)

Initial CNN layers First 7 ResBlocks from ResNet270.

Phasor Blocks

28× 28: (I) [din=128, dout=256]
28× 28: (C) [din=256, dout=512]
28× 28: (C) [din=512, dout=512]
28× 28: (C) [din=512, dout=512]

14× 14: (C) [din=512, dout=512, stride=2]
14× 14: (C) [din=512, dout=512]
14× 14: (C) [din=512, dout=512]
14× 14: (C) [din=512, dout=640]
14× 14: (C) [din=640, dout=1024]

Spectral filters Sub-bands ([crop, drop]): [14, 8], [8, 4], [4, 1], d filter = 1024

Output layer Average pool, ComplexLinear(din=3072, dout=1000), Softmax

Table A.7: Detailed architecture of PsychoDW.

PsychoDW architecture - based on ConvNeXt-S

Parameters (M) 49.512
# Layers (overall) 109
# Layers (complex) 13

Blocks

Input layer Conv2D(7×7, din=3, dout=64, stride=2), MaxPool(3×3, stride=2)

Initial CNN layers First 7 ResBlocks from ResNet50.

Phasor Blocks

28× 28: (I) [din=128, dout=256]
28× 28: (C) [din=256, dout=256]
28× 28: (C) [din=256, dout=256]
28× 28: (C) [din=256, dout=512]

14× 14: (C) [din=512, dout=512, stride=2]
14× 14: (C) [din=512, dout=1024]
14× 14: (C) [din=1024, dout=1024]
14× 14: (C) [din=1024, dout=1024]
14× 14: (C) [din=1024, dout=1024]

Spectral filters Sub-bands ([crop, drop]): [14, 8], [8, 4], [4, 1], d filter = 1024

Output layer Average pool, ComplexLinear(din=3072, dout=1000), Softmax

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B.3 PHASOR BLOCK ARCHITECTURE

Figure A.2 provides detailed architectural diagrams of Phasor Blocks, with key design choices dis-
cussed below.

Figure A.2: Further architecture details for the Phasor Blocks presented in Figure 4. For ConvNeXt-
based PsychoNet, we replace the two ConvBlocks at the start of Phasor (C) blocks with two DW-
ConvBlocks with the same number of channels. CConv/BN/GELU denote complex-valued convo-
lution, batch norm and GELU operations - see Appendix A.3. The following PsychoNet architecture
tables specify the values of din, doutand stride (s) for all of their Phasor Blocks.

Phasor (I) blocks generate an initial set of imaginary components using depthwise convolution
(‘DWConv’) blocks, comprising pairs of depthwise and 1×1 convolution layers. This configuration
decouples spatial and channel mixing, which is intended to encourage cross-channel interactions
without interfering with spatial relationships. In natural complex signals, the real and imaginary
components carry complementary information for the same spatial location (Gonzalez & Woods,
2014; Lee et al., 2022), so it is likely important that our generated imaginary features do not sig-
nificantly introduce new spatial information. A 1 × 1 complex convolution block then mixes the
real and imaginary features. Subsequently, Phasor (C) blocks further refine the complex represen-
tations. The top branch generates new real and imaginary features, while the bottom channel-mixes
the original features and combines them with the new ones. For ConvNeXt-based PsychoNet, we
replace Phasor (C) ’s regular convolution (‘Conv’) blocks with further DWConv blocks with 7 × 7
kernel size, matching ConvNeXt’s main computational block.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

C CLASSIFICATION EXPERIMENTS

In this section we present detailed results, dataset details and training recipes for all classification
experiments conducted.

C.1 IMAGENET-1K

We use the standard large ImageNet-1K subset from (Deng et al., 2009) containing ∼1.2 million
training and ∼50000 images for validation/testing. Table A.8 presents the training recipe used for
ImageNet experiments.

Table A.8: ImageNet training recipe

Setting Value

Image size 224× 224
Epochs 90
Batch size

(overall, not per GPU) 1024

Loss Cross entropy
Optimizer AdamW (β1 = 0.9, β2 = 0.999)
Scheduler cosine
Initial learning rate (LR) 5 · 10−4

Warmup warmup LR = 10−6 , 5 epochs
Learning rate decay min. LR = 10−5, 12 epochs

Augmentation resize, crop, interpolate, horizontal flip, RandAugment,
MixUp, CutMix, label smoothing

GPU

2× NVIDIA H100: Psycho-B, ResNet101,
all ‘Big’ sized ablation models

2× AMD MI300X: Psycho-S, ResNet50
4× AMD MI300X: All other models

Table A.8 presents all ImageNet-1K experiment results. PsychoNet moderately improves top-1
accuracy for all ResNet baselines (↑ 0.82%, 0.41%, 0.26% and 0.44% vs. ResNet50 to 270), and in-
curs a small decrease for ConvNeXt-S (↓ 0.19). Figure A.3 compares SVC filters learnt by different
ResNet-based PsychoNet sizes, showing that with larger model size, the filters become increasingly
structured and sparser, with clearer frequency selectivity and reduced noise. Figure A.4 compares
SVC filters learnt by Psycho-B on ImageNet-1K to the smaller resolution/size datasets in Appendix
C.2. It is evident that increasing image resolution and dataset size both yield much sparser filters.
These results suggest that the sparse patterns correspond to a data-driven representation naturally
emergent from visual information.

Figure A.3: Top principal components of SVC filters learnt by different sized ResNet-based Psy-
choNet models on ImageNet-1K. ‘High/mid/low freq.’ refer to the [14, 8], [8, 4] and [4, 1] frequency
sub-bands created by Spectral Branches.
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Table A.9: ImageNet-1K classification results. Each pair of rows (separated by horizontal lines)
compares a baseline CNN and the PsychoNet based on it. FLOPs were measured using a single
224× 224 input.

Model Top-1 Acc.
(%)

Top-5 Acc.
(%)

Layers Params (M) FLOPs (G) GPU

ResNet50 76.044 92.992 54 25.56 8.18 2× MI300X
Psycho-S 76.864 93.386 65 25.35 12.31 2× MI300X

ResNet101 78.428 94.220 105 44.55 15.60 2× H100
Psycho-B 78.846 94.600 93 42.01 30.13 2× H100

ResNet152 79.586 94.684 156 60.19 23.03 4× MI300X
Psycho-L 79.848 95.056 93 61.28 54.47 4× MI300X

ResNet270 80.012 95.088 276 89.60 40.50 4× MI300X
Psycho-H 80.454 95.290 93 88.61 64.12 4× MI300X

ConvNeXt-S 80.780 95.488 113 50.22 17.36 2× MI300X
Psycho-DW 80.590 95.384 106 49.51 27.42 2× MI300X

Figure A.4: Top principal components of SVC filters learnt by Psycho-B on different resolution and
size datasets. ‘High/mid/low freq.’ refer to the [14, 8], [8, 4] and [4, 1] frequency sub-bands created
by Spectral Branches.

C.1.1 PSYCHODW REPRESENTATION ANALYSIS

Figures A.5 through A.7 present qualitative visualisations and analysis for PsychoDW identical to
those applied to Psycho-B we presented in Section 4. Overall, these show similar results:

• Figure A.5 (a) shows that PsychoDW’s SVC filters also learn sparse selections of frequen-
cies across each sub-band.

• Figure A.5 (b) shows that similar to the Psycho-B vs. ResNet-101 comparison in Figure
5 (b), salience maps of PsychoDW’s low-mid level Phasor Blocks clearly emphasis spe-
cific object parts, while those of ConvNeXt-S are much more general and diffuse. Further
examples of the former are shown in Figure A.6.

• Figure A.7 shows that similar to for Psycho-B in Figure 8, PsychoDW’s SVC appears to
distribute object parts by scale between the three sub-bands, and individual filters within
each sub-band target distinct selections of object parts.

Overall, these results are highly consistent with those for Psycho-B, showing that SVC abstractions
and object-part-centric Phasor Block representations also translate to ConvNeXt-S.
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Figure A.5: (a) Top spatial principal components of SVC filters learnt by PsychoDW trained on
ImageNet-1K. Bilinear smoothing has been applied. (b) Comparison between activation maps (via
KPCA-CAM) of PsychoDW and ConvNeXt-S for a range of layer depths. Real and imaginary
components are denoted by R and I.

Figure A.6: Assorted activation maps (via KPCA-CAM) for mid-level Phasor Blocks of PsychoDW.
Real and imaginary components are denoted by R and I.
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Figure A.7: PsychoDW Phasor Block salience maps (via HiResCAM) conditioned on gradients
(a) from individual Spectral Branch sub-bands and (b) from individual frequency domain feature
channels.

C.2 SMALLER CLASSIFICATION DATASETS

Table A.10 presents experiment results for the CIFAR-10, CIFAR-100 and ImageNet-100 classifi-
cation experiments.

Module Parameters (M) # Layers CIFAR-10 CIFAR-100 ImageNet-100

ResNet50 25.56 54 94.14 78.10 80.90
Psycho-S 25.35 65 95.08 78.97 82.50

ResNet101 44.55 105 93.64 79.13 81.90
Psycho-B 42.01 95 94.99 79.49 83.60

ResNet152 60.10 156 93.17 77.51 83.60
Psycho-L 61.28 93 94.95 79.64 84.82

ResNet270 89.60 276 76.51 50.87 83.80
Psycho-H 88.61 93 94.68 79.89 85.00

ConvNeXt-S 50.22 113 94.09 76.96 86.98
PsychoDW 49.51 106 95.46 79.67 86.76

Table A.10: Classification results (% top-1 accuracies) for CIFAR-10, CIFAR-100 and ImageNet-
100. Each pair of rows (separated by horizontal lines) compares a baseline CNN and the PsychoNet
based on it.

CIFAR-10 is a small scale dataset comprising 50000 natural images for training and 10000 images
for testing across 10 classes, at a resolution of 32 × 32 (Krizhevsky, 2009). For compatibility with
this lower resolution (the ImageNet models have 224×224 input resolution), we reduce initial down-
sampling steps from our models. For ResNet and ResNet-based PsychoNet models, we removed the
first maxpooling layer and set stride=1 for the first two ResBlocks that originally had stride=2. For
ConvNeXt-S and PsychoDW, we replace the initial 4 × 4 patch embedding layer with a standard
3 × 3 Conv2D layer, and set stride=1 for the second downsampling layer. Table A.11 presents the
training recipe for the CIFAR-10 experiments. Overall, all of our PsychoNet models outperformed
their respective CNN baselines.

CIFAR-100 contains the same images and train-test split as CIFAR-10, but with labels reorganised
into 100 classes instead of 10. We use the same model configurations and training recipe as CIFAR-
10, but increase the number of epochs to 90 since the greater number of classes results in a harder
classification problem. Table A.11 presents the training recipe for the CIFAR-10 experiments. Over-
all, all of our PsychoNet models outperformed their respective CNN baselines.

ImageNet-100 is a subset of the ImageNet dataset (Deng et al., 2009) that contains examples for
100 classes. It contains 130100 images for training and 5100 images for testing, at the original
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Table A.11: CIFAR-10 training recipe

Setting Value

Image size 32× 32
Epochs 35
Batch size 64

Loss Cross entropy
Optimizer AdamW (β1 = 0.9, β2 = 0.999)
Scheduler OneCycle
Learning rate (LR) 10−3

Augmentation crop, horizontal flip

GPU 1× NVIDIA A100: Psycho-S/B, ResNet50/101
1× NVIDIA H100: All other models

resolution of 224 × 224. The model architectures remain the same as the ImageNet experiments,
but with the output linear layer modified to predict 100 logits. We use the same training recipe as
ImageNet-1K (Table A.8), but reduce the batch size to 128. Psycho-S/B and ResNet50/101 were
trained on 1× NVIDIA A100, while all over models used 1× AMD MI300X. Overall, the ResNet-
based PsychoNet models outperformed their respective baselines, but PsychoDW fell slightly short
of ConvNeXt-S.

C.3 CLUSTERING VISUALISATION

Figure A.8 presents an initial visualisation of clustering characteristics of Phasor Block activations
and SVC for Psycho-B. These show 2D PCA projections of features computed on samples from
10 randomly-selected classes from ImageNet-1K. Observable clustering emerges across both the
real and imaginary/magnitude-phase feature components, and becomes increasingly pronounced at
deeper layers.
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Figure A.8: Psycho-B clustering visualisation.
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D ABLATION STUDIES

D.1 ARCHITECTURAL ABLATIONS

We design four ablation model configurations to assess the impact of Phasor Blocks and SVC’s
multiple Spectral Branches on classification performance and visual code quality.

The postfix SP (Single Phasor) indicates that we remove all Phasor Blocks (C)s and make up for
the resultant layer and parameter deficit by adding additional ResBlocks. SP MB (Big/Large) were
created by applying this modification to Psycho-B/L respectively, and in-depth architectural details
of them are presented in Tables A.13 and A.14. The Single Branch (SB) models replace Spectral
Branches with a single Hadamard Block with full band filters and no prior DropCrop operations.
MP SB (Big/Large) and SP SB (Big/Large) were created by applying this modification to Psycho-
B/L and SP MB (Big/Large) respectively. Table A.12 and Figure A.9 present quantitative and qual-
itative results from this study.

Spectral Branches appreciably improve classification accuracy (0.45-0.58%), except for between
Big size SP MB and SP SB. In Figure A.9, we visualize the first two spectral bands of the MB
models, as well as the corresponding bands isolated from the full-band filters of the SB models. The
former are sparse and highlight distinct frequencies, while the latter exhibit a similar structure but
with significant noise. This suggests that the explicit spectral decomposition of Spectral Branches is
important for generating clear visual codes. Multiple Phasor Blocks slightly improve classification
accuracy (0.24-0.252%) for MB models and have little effect on SB ones. However, Figure A.9
shows that they drastically reduce noise and improve clarity of the SB filters, and moderately so for
the MB ones.

Finally, we also try removing the Phasor (I) block from the Big size SP MB model, yielding a
model without any Phasor Blocks (‘no phasor’). This further reduces accuracy slightly, and results
in the filters exhibiting conjugate symmetry as shown in Figure 6. We further visualise salience
maps for the no phasor ablation in Figure A.10. Compared to ResNet, the no phasor model places
greater emphasis on edge information across intermediate layers, likely reflecting the downstream
SVC making explicit use of high-frequency features. In later layers, salience increasingly concen-
trates on object parts, including the shark’s head and fins, consistent with our broader evidence that
SVC encourages object-part-based abstraction (Section 4). However, when Phasor Blocks are in-
cluded—as in the full Psycho-B model—object parts are isolated far more clearly in the salience
maps. This suggests that while SVC promotes part-focused semantic representations, the complex
representations introduced by Phasor Blocks are important for expressing these abstractions cleanly
and with high specificity.

Table A.12: Ablation study results. We compare all combinations of MB/SB and MP/SP model
configurations, for Big and Large model sizes, using ImageNet top-1 accuracy.

Model Multiple Phasor
Blocks

Multiple (Spectral)
Branches

Top-1 Acc. (%)
(Psycho-B base)

Top-1 Acc. (%)
(Psycho-L base)

MP MB (Psycho-B/L) ✓ ✓ 78.846 79.848
MP SB ✓ ✗ 78.394 79.268
SP MB ✗ ✓ 78.600 79.596
SP SB ✗ ✗ 78.548 79.124
no phasor

(SP SB w/o Phasor (I) )
✗ ✗ 78.44

Note that as per He et al. (2016), ResBlocks each comprises 1×1, 3×3 and 1×1 kernel size Conv2D
layers. In the below architecture tables, we denote their respective output channel sizes with din,
dbot and dout respectively (‘bot’ is short for bottleneck, as these layers follow a channel bottleneck
configuration). We also write ‘stride=2’ if a ResBlock performs 2× spatial downsampling, since it
is achieved by setting stride=2 in the 3× 3 Conv2D layer.
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Figure A.9: Most significant channel-wise principal components of learnt spectral filters from Large
size ablation models. We show the first two sub-bands of filters for MB models, and the full band
filter for SB models.

Figure A.10: (a) An extended version of Figure 5 (b) which additionally adds KPCACAM salience
maps for the no phasor ablation model. (a) Additional salience maps comparison between ResNet-
101 and no phasor.

D.1.1 FLOP EFFICIENT MODELS

As we identified that PsychoNet used considerably more FLOPs than ResNet and ConvNeXt base-
lines (see Table A.12), we conducted the following ablation experiment to show a fairly straightfor-
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Table A.13: Detailed architecture of the SP MB (Big) ablation model.

SP MB (Big) architecture

Parameters (M) 42.263
# Layers (overall) 91
# Layers (complex) 2

Blocks

Input layer Conv2D(7×7, din=3, dout=64, stride=2), MaxPool(3×3, stride=2)

ResBlocks

56× 56: [din=64, dbot=256, dout=256]
56× 56: [din=256, dbot=64, dout=256]× 2
28× 28: [din=256, dbot=128, dout=512, stride=2]
28× 28: [din=512, dbot=128, dout=512]× 7
28× 28: [din=512, dbot=256, dout=1024]
28× 28: [din=1024, dbot=256, dout=1024]× 4
14× 14: [din=1024, dbot=256, dout=1024, stride=2]
14× 14: [din=1024, dbot=384, dout=1536]
14× 14: [din=1536, dbot=384, dout=1536]× 6
14× 14: [din=1536, dbot=128, dout=512]

Phasor Blocks 14× 14: (I) [din=512, dout=512, stride=1]

SVC filters Sub-bands ([crop, drop]): [14, 8], [8, 4], [4, 1], dfilter 512

Output layer Average pool, ComplexLinear(din=1536, dout=1000), Softmax

Table A.14: Detailed architecture of the SP MB (Large) ablation model.

SP MB (Large) architecture

Parameters (M) 60.42
# Layers (overall) 90
# Layers (complex) 2

Blocks

Input layer Conv2D(7×7, din=3, dout=64, stride=2), MaxPool(3×3, stride=2)

ResBlocks

56× 56: [din=64, dbot=256, dout=256]
56× 56: [din=256, dbot=64, dout=256]× 2
28× 28: [din=256, dbot=128, dout=512, stride=2]
28× 28: [din=512, dbot=128, dout=512]× 5
28× 28: [din=512, dbot=256, dout=1024]
28× 28: [din=1024, dbot=256, dout=1024]× 6
14× 14: [din=1024, dbot=512, dout=2048, stride=2]
14× 14: [din=2048, dbot=512, dout=2048]× 7
14× 14: [din=2048, dbot=128, dout=512]

Phasor Blocks 14× 14: (I) [din=512, dout=512, stride=1]

SVC filters Sub-bands ([crop, drop]): [14, 8], [8, 4], [4, 1], dfilter 512

Output layer Average pool, ComplexLinear(din=1536, dout=1000), Softmax

ward architectural modification can be applied to improve FLOP efficiency of PsychoNet. Models
Psycho-S-7×7 and Psycho-B-7×7 are variations of Psycho-S and Psycho-B which decrease the spa-
tial feature size of some Phasor Block layers, obtained via:

• We add an additional downsampling stage by setting stride = 2 in one of the 14×14 spatial
feature size Phasor Blocks, so that the subsequent layers in the model now have a spatial
feature size of 7× 7.

• To preserve 14× 14 SVC filters, input features to sub-bands covering features from 7× 7
to 14 × 14 sub-band are taken from the output of the 14 × 14 Phasor Block immediately
preceding the new downsampling stage.
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As shown in Table A.15, both Psycho-S-7×7 and Psycho-B-7×7 slightly underperform the origi-
nal PsychoNet models, but match the much lower FLOP counts of the baseline ResNets and beat
their performance. This suggests that exploiting higher-resolution features from earlier stages while
reducing spatial resolution in deeper models is an effective and scalable strategy for improving ef-
ficiency, which will be investigated further in future work. Full architectural configurations for
Psycho-S-7×7 and Psycho-B-7×7 are presented in Tables A.16 and A.17 respectively.

Model Parameters
(M)

# Layers FLOPs (G) ImageNet-100 Top-1 Acc (%)

ResNet50 23.71 54 8.18 80.24
Psycho-S 22.59 62 12.30 82.50
Psycho-S-7×7 24.80 62 8.17 82.34

ResNet101 42.71 105 15.60 82.58
Psycho-B 39.24 90 30.12 83.60
Psycho-B-7×7 38.92 90 12.97 83.50

Table A.15: Comparison of FLOP-efficient Psycho-7×7 models against PsychoNet and ResNet base-
lines on ImageNet-100 classification.

Table A.16: Detailed architecture of Psycho-S-7×7.

Psycho-S-7×7

Parameters (M) 24.80
# Layers (overall) 62
# Layers (complex) 9
GFLOPs 8.17

Blocks

Input layer Conv2D(7×7, din=3, dout=64, stride=2), MaxPool(3×3, stride=2)

Initial CNN layers ResNet50 stem and first two resolution stages: 3× ResBlocks at
56× 56, 4× ResBlocks at 28× 28

Phasor Blocks

28× 28: (I) [din=128, dout=256, stride=2]
14× 14: (C) [din=256, dout=256]
14× 14: (C) [din=256, dout=384]

uparrow features used for 14× 14 SVC input
7× 7: (C) [din=384, dout=512, stride=2]
7× 7: (C) [din=512, dout=512]

SVC filters 14× 14 sub-bands ([crop, drop]): [14, 8], dfilter = 384
7× 7 sub-bands: [7, 4], [4, 1], dfilter = 512

Output layer Average pool, ComplexLinear(din=1408, dout=1000), Softmax
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Table A.17: Detailed architecture of Psycho-B-7×7.

Psycho-B-7×7

Parameters (M) 38.92
# Layers (overall) 90
# Layers (complex) 13
GFLOPs 12.97

Blocks

Input layer Conv2D(7×7, din=3, dout=64, stride=2), MaxPool(3×3, stride=2)

Initial CNN layers ResNet101 stem and first two resolution stages: 3× ResBlocks at
56× 56, 4× ResBlocks at 28× 28

Phasor Blocks

28× 28: (I) [din=128, dout=256, stride=2]
14× 14: (C) [din=256, dout=256]
14× 14: (C) [din=256, dout=256]
14× 14: (C) [din=256, dout=384]
14× 14: (C) [din=384, dout=384]
14× 14: (C) [din=384, dout=384]

↑ features used for 14× 14 SVC input,
7× 7: (C) [din=384, dout=512]
7× 7: (C) [din=512, dout=512]
7× 7: (C) [din=512, dout=512]

SVC filters 14× 14 sub-bands ([crop, drop]): [14, 8], dfilter = 384
7× 7 sub-bands: [7, 4], [4, 1], dfilter = 512

Output layer Average pool, ComplexLinear(din=1408, dout=1000), Softmax
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