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Summary
In many practical applications of reinforcement learning (RL), such as finance and mo-

bility, safety considerations are paramount. Rather than solely maximizing expected rewards,
one must also account for risk to ensure reliable decision-making. Traditional RL primarily
focuses on expected reward maximization, a well-studied paradigm with both empirical and
theoretical breakthroughs. In this paper, we adopt an alternative approach that integrates risk-
awareness into policy optimization. Despite extensive research in risk-neutral RL, analyzing
risk-sensitive RL algorithms remains challenging, as each risk metric requires a distinct an-
alytical framework. We focus on variance—an intuitive and widely used risk measure—and
analyze the Mean-Variance Simultaneous Perturbation Stochastic Approximation Actor-Critic
(MV-SPSA-AC) algorithm, establishing finite-sample theoretical guarantees for the discounted
reward Markov Decision Process (MDP) setting. Our analysis covers both policy evaluation
and policy improvement within the actor-critic framework. We study a Temporal Difference
(TD) learning algorithm with linear function approximation (LFA) for policy evaluation and
derive finite-sample bounds that hold in both the mean-squared sense and with high proba-
bility under tail iterate averaging, with and without regularization. Additionally, we analyze
the actor update using a simultaneous perturbation-based approach and establish convergence
guarantees. These results contribute to the theoretical understanding of risk-sensitive actor-
critic methods in RL, offering insights into variance-based risk-aware policy optimization.

Contribution(s)
1. We consider mean-variance optimization in a discounted MDP, and derive finite-sample

guarantees for an actor-critic algorithm, with a critic based on linear function approxima-
tion, and an actor based on SPSA.
Context: We consider a mean-variance MDP with the variance of the return, whose
expectation is the usual risk-neutral objective. For this problem, existing work (L.A. &
Ghavamzadeh, 2016) provides only asymptotic convergence guarantees.

2. For mean-variance policy evaluation, we employ TD learning with linear function approx-
imation. We derive finite-sample bounds that hold (i) in the mean-squared sense and (ii)
with high probability under tail iterate averaging, with and without regularization. Notably,
our analysis for the regularized TD variant holds for a universal step size.
Context: Non-asymptotic policy evaluation bounds are not available for variance of the
return in a discounted MDP.

3. We employ an SPSA-based actor for policy optimization, and obtain an O(n−
1
4 ) bound in

the number of actor iterations.
Context: Notably, we resort to an SPSA-based actor, since the policy gradient theo-
rem for variance is not amenable for direct use in an actor-critic algorithm; see L.A. &
Ghavamzadeh (2016). Further, finite-sample bounds for a SPSA-based actor-critic algo-
rithm are not available, even in the risk-neutral RL setting, to the best of our knowledge.
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Abstract

Motivated by applications in risk-sensitive reinforcement learning, we study mean-1
variance optimization in a discounted reward Markov Decision Process (MDP). Specif-2
ically, we analyze a Temporal Difference (TD) learning algorithm with linear function3
approximation (LFA) for policy evaluation. We derive finite-sample bounds that hold4
(i) in the mean-squared sense and (ii) with high probability under tail iterate averaging,5
both with and without regularization. Our bounds exhibit an exponentially decaying de-6
pendence on the initial error and a convergence rate of O(1/t) after t iterations. More-7
over, for the regularized TD variant, our bound holds for a universal step size. Next,8
we integrate a Simultaneous Perturbation Stochastic Approximation (SPSA)-based ac-9
tor update with an LFA critic and establish anO(n−

1
4 ) convergence guarantee, where n10

denotes the iterations of the SPSA-based actor-critic algorithm. These results establish11
finite-sample theoretical guarantees for risk-sensitive actor-critic methods in reinforce-12
ment learning, with a focus on variance as a risk measure.13

1 Introduction14

In the standard reinforcement learning (RL) setting, the objective is to learn a policy that maximizes15
the value function, which is the expected value of the cumulative reward obtained over a finite or infi-16
nite time horizon. However, in many practical scenarios such as finance, automated driving and drug17
testing, a risk sensitive learning paradigm is crucial, where the value function (an expectation) must18
be balanced with an appropriate risk metric associated with the reward distribution. One approach is19
to formulate a constrained optimization problem, using the risk metric as a constraint and the value20
function as the objective. Variance is a popular risk measure and is typically incorporated into risk-21
sensitive optimization as a constraint while optimizing for the expected value. This mean-variance22
formulation was introduced in the seminal work of Markowitz (1952). Mean-variance optimiza-23
tion in RL has been studied in several works; see, e.g., Mannor & Tsitsiklis (2013); Tamar et al.24
(2016); L.A. & Ghavamzadeh (2016). We study mean-variance optimization in a discounted reward25
Markov decision process (MDP). Our key contribution is the analysis of an actor-critic algorithm26
for mean-variance optimization, along with finite-sample guarantees in this setting.27

Main Contributions. We study a discounted reward MDP with variance as the risk criterion and28
present two main contributions. Since one common approach to variance estimation is based on29
the difference between the second moment and the square of the first moment, estimating both30
moments is essential. Our first key contribution concerns the sub-problem of jointly evaluating the31
value function (first moment) and the second moment of the discounted cumulative reward. For32
simplicity, we refer to the second moment of the discounted cumulative reward as the square-value33
function. To address the curse of dimensionality in large state-action spaces, we analyze temporal34
difference (TD) learning with linear function approximation (LFA) for these estimates.35

1



Under review for RLC 2025, to be published in RLJ 2025

Table 1: Summary of the MSE bounds for a TD-critic.

Paper Iterate Objective Rate Step size
Universal
step size

L.A. & Ghavamzadeh (2016) Last iterate
Mean-

–1 c0c
c+t ✗

variance
Dalal et al. (2018) Last iterate Mean O(1/tσ) 1/tσ ✓

Bhandari et al. (2021)2 Full average Mean O(1/t) 1/
√
T ✓

Eldowa et al. (2022) Full average
Mean-

O(1/t) constant ✗
variance3

Patil et al. (2023) Tail average Mean O(1/t) constant ✓

Agrawal et al. (2024) Tail average
Mean-

O(1/t) constant ✗
variance4

Mitra (2025) Weighted average5 Mean O(1/t) constant ✗

This work Tail average
Mean-

O(1/t) constant ✗
variance

This work
Regularized Mean-

O(1/t) constant ✓
tail average variance

1 Asymptotic convergence of mean-variance TD shown. Here, c0 and c are arbitrary constants depend-
ing on the minimum eigenvalue. 2 T = number of TD iterations. 3 Variance of per-step reward as the risk
measure. 4 Asymptotic variance for average-reward MDP as the risk measure. 5 Weights are determined
by (1 − αA)−(t+1) with A = 0.5ω(1 − γ), which makes them indirectly dependent on the minimum
eigenvalue ω and the discount factor γ. Here, α is step size dependent on the minimum eigenvalue ω.

We present finite-sample bounds that quantify the deviation of the iterates from the fixed point,36
both in expectation and with high probability. The fixed point is joint in the sense that it includes37
both the value function and the square-value function. We present bounds for a constant step-size38
with and without tail-averaging; see Table 1 for a summary. Next, we establish O(1/t) finite-time39
convergence bounds for tail-averaged TD iterates, where t denotes the number of iterations of the40
TD algorithm. Furthermore, we present a finite-sample analysis of the regularized TD algorithm.41
From this analysis, we establish an O(1/t) bound, similar to the unregularized case. An advantage42
of regularization is that the step-size choice is universal, i.e., it does not require knowledge of the43
eigenvalues of the underlying linear system, whereas the unregularized TD bounds depend on such44
eigenvalue information, which is typically unknown in practice.45

While finite-sample analysis of TD with LFA has been studied in several recent works (cf. Prashanth46
et al., 2021; Dalal et al., 2018; Bhandari et al., 2021; Samsonov et al., 2024; Agrawal et al., 2024),47
to the best of our knowledge, no prior work has established finite-sample bounds for policy eval-48
uation of variance in the discounted reward MDP setting. Our bounds explicitly characterize their49
dependence on the discount factor, feature bounds, and rewards. Compared to existing finite-sample50
bounds for TD learning, the analysis of mean-variance-style TD updates is more intricate, as it re-51
quires tracking the solution of an additional projected fixed point by solving a separate Bellman52
equation for the square-value function. Furthermore, the Bellman equation associated with the53
square-value function includes a cross-term involving the value function (see (25) in the supple-54
mentary material). Due to this cross-term, obtaining a standard O(1/t) mean-squared error bound55
is challenging when using a constant step size, unless the spectral properties of the underlying linear56
system are known. To overcome this dependence, we investigate a regularized version of the mean-57
variance TD updates. To the best of our knowledge, ours is the first work to obtain a O(1/t) MSE58
bound with a universal step size for mean-variance TD. Prior works on TD-type algorithms for other59
notions of variance, cf. Agrawal et al. (2024); Eldowa et al. (2022), present O(1/t) bounds with a60
step size choice that requires underlying eigenvalue information.61

Our second key contribution lies in analyzing an actor-critic algorithm for mean-variance and deriv-62
ing finite-sample guarantees. The critic part uses the aforementioned LFA-based policy evaluation63
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for a fixed policy parameter. The actor uses an SPSA-based gradient estimator (Spall, 1992), de-64
parting from the more common risk-neutral approach of employing a likelihood ratio-based gradient65
estimator supported by the policy gradient theorem (see Section 4 for a discussion on SPSA’s ne-66
cessity). SPSA estimates policy gradients for the value and square-value functions using two policy67
trajectories: one generated using the current policy parameter and another using a randomly per-68
turbed parameter.69

We provide non-asymptotic convergence rates for an SPSA-based actor in the mean-variance frame-70
work. This result quantifies convergence to the stationary point in terms of the gradient norm of the71
Lagrangian, addressing a gap in prior work that focused exclusively on asymptotic guarantees. As72
an aside, mean-variance optimization has been shown to be NP-hard, even with model information73
available (Mannor & Tsitsiklis, 2013). Actor-critic methods present a viable alternative approach,74
and our analysis provides the rate of convergence for such an algorithm tailored to the mean-variance75
setting. Specifically, we show an O(n−

1
4 ) performance guarantee for the overall algorithm, where76

n is the number of actor loop iterations. To the best of our knowledge, there are no finite-sample77
guarantees for zeroth order actor-critic, even for the risk-neutral setting.78

Our results are beneficial for three reasons. First, we exhibit O(1/t) bounds for the regularized TD79
variant with a step size that is universal. In contrast, a universal step size for vanilla mean-variance80
TD is not feasible owing to certain cross-terms that are unique to the case of mean-variance policy81
evaluation. Our key observation is that regularization enables the use of a universal step size that82
is independent of the eigenvalues of the underlying system. Second, our proof is tailored to mean-83
variance TD, making the constants clear. In contrast, it is difficult to infer them from the general84
LSA bounds in (Durmus et al., 2024; Mou et al., 2020). Third, we provide high-probability bounds85
that exhibit better scaling w.r.t. the confidence parameter as compared to Samsonov et al. (2024).86

Related Work. This paper performs a finite-sample analysis of a TD critic, and an SPSA actor for87
mean-variance optimization in a discounted RL setting. We briefly review relevant works on each88
of these topics.89

Critic. TD learning, originally proposed by Sutton (1988), has been widely used for policy eval-90
uation in RL. Tsitsiklis & Van Roy (1997) established asymptotic convergence guarantees for TD91
learning with LFA. Many recent works have focused on providing non-asymptotic convergence guar-92
antees for TD learning (Bhandari et al., 2021; Dalal et al., 2018; Lakshminarayanan & Szepesvari,93
2018; Srikant & Ying, 2019; Prashanth et al., 2021; Patil et al., 2023; Durmus et al., 2024). In a94
recent study by Samsonov et al. (2024), the authors derived refined error bounds for TD learning by95
combining proof techniques from (Mou et al., 2020; Durmus et al., 2024) with a stability result for96
the product of random matrices. In contrast, our results target a different system of linear equations.97
Moreover, as mentioned before, our bounds for regularized TD feature a universal step size. The98
reader is referred to Section 3 for a detailed comparison of our critic bounds to the current literature.99

Actor-Critic. In (Lei et al., 2025), the authors propose a zeroth-order actor critic in a risk-neutral100
RL setting. However, they do not provide a finite-sample analysis. In (L.A. & Ghavamzadeh,101
2016), which is the closest related work, the authors propose an SPSA-based actor-critic algorithm102
for mean-variance optimization, and establish asymptotic convergence. In contrast, we provide a103
finite-sample analysis of their algorithm with a few variations: (i) We incorporate tail-averaging in104
TD-critic and derive finite-sample bounds for a universal step size; (ii) We prove a smoothness result105
for the Lagrangian of the mean-variance problem and use this result to provide a non-asymptotic106
bound for the SPSA-based actor that employs mini-batching for the critic updates. In (Xu et al.,107
2020; Kumar et al., 2023), the authors analyze risk-neutral actor critic algorithms with a gradient108
estimate based on the likelihood ratio method. They provide a finite-sample analysis. However, the109
likelihood ratio method for gradient estimation does not work for the case of variance, and hence,110
our non-asymptotic analysis involves a significant departure in the proof for the SPSA-based actor111
that we consider.112
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2 Problem formulation113

We consider an MDP with state space S and action space A, both assumed to be finite. The reward114
function r(s, a) maps state-action pairs (s, a) to a reward, with s ∈ S and a ∈ A. In this work,115
we consider a stationary randomized policy π which maps each state to a probability distribution116
over the action space. We consider a discounted MDP setting, and use γ ∈ (0, 1) to denote the117
discount factor. We use P(s′|s, a) to denote the probability of transitioning from state s to next state118
s′ given that action a is chosen following a policy π. The transition probability matrix P gives the119
probability of going from state s to s′ given a policy π. The elements of this matrix of dimension120
|S| × |S| are given by P(s, s′) =

∑
a π(a|s)P(s′|s, a). The value function V π(s), which denotes121

the expected value of cumulative sum of discounted rewards when starting from state s0 = s and122
following the policy π, is defined as123

V π(s) ≜ E [
∑∞
t=0 γ

tr(st, at) | s0 = s] . (1)

Furthermore, the variance of the infinite horizon discounted reward from state s0 = s, denoted as124
Λπ(s), is defined as Λπ(s) ≜ Uπ(s)− V π(s)2, where Uπ(s) represents the second moment of the125
cumulative sum of discounted rewards, and is defined as126

Uπ(s) ≜ E
[
(
∑∞
t=0 γ

tr(st, at))
2
∣∣∣ s0 = s

]
. (2)

Henceforth, we shall refer to Uπ as the square-value function. The well-known mean-variance127
optimization problem in a discounted MDP context is as follows: For a given state s0 = s and128
threshold c > 0, our goal is to solve the following constrained optimization problem:129

max
π

V π(s) subject to Λπ(s) ≤ c. (3)

The value function V π(s) satisfies the Bellman equation T1V π = V π , where T1 : R|S| → R|S| is130
the Bellman operator, defined by T1(V π(s0)) ≜ Eπ,P [r(s0, a0) + γV π(s′)] , where the actions are131
chosen according to the policy π. It is well known that T1 is a contraction mapping. In Sobel (1982),132
the author derives a Bellman type equation for Λπ(s). However, the underlying operator of this133
equation is not monotone. To workaround this problem, Tamar et al. (2016); L.A. & Ghavamzadeh134
(2016) use the square-value function Uπ , which satisfies a fixed point relation that is monotone.135
Given V π, Uπ , the variance can be calculated using Λπ . Using Proposition 6.1 in (L.A & Fu, 2022),136
we expand the square-value function (2) as137

Uπ(s) =
∑
a π(a|s)r(s, a)2 + γ2

∑
a,s′ π(a|s)P(s′|s, a)Uπ(s′) + 2γ

∑
a,s′ π(a|s)P(s′|s, a)r(s, a)V π(s′)

Similar to the value function, the square-value function also satisfies a Bellman equa-138
tion T2U

π = Uπ , where T2 : R|S| → R|S| is the Bellman operator, given139
by T2U

π(s) ≜ Eπ,P[r(s, a)2+γ2Uπ(s′)+2γr(s, a)V π(s′)]. For a given policy π, the Bell-140
man operators T1 and T2 can be represented in a compact vector-matrix form as141
T1(V ) = r + γPV, T2(U) = r̃ + 2γRPV + γ2PU, where U , V , r and r̃ are |S| × 1 vectors with142
r(si) =

∑
a∈A π(a|si)r(si, a), r̃(si) =

∑
a∈A π(a|si)r(si, a)2. Here, R is a |S| × |S| diagonal143

matrix with r(si) as the diagonal elements for i ∈ {1, . . . , |S|}. Now, we construct an operator144
T : R2|S| → R2|S|, which is given by T (V,U) = (T1(V ), T2(U))⊤ A sub-problem of (3) is pol-145
icy evaluation, i.e., estimation of V π(·) and Λπ(·) for a given policy π. L.A & Fu (2022); Tamar146
et al. (2016) establish that the operator T is a contraction mapping with respect to a weighted norm,147
ensuring a unique fixed point for T . In the next section, we describe a TD algorithm with LFA for148
policy evaluation, and this algorithm is based on (L.A. & Ghavamzadeh, 2016).149

3 Mean-variance TD-critic150

When the size of the underlying state space |S| is large, policy evaluation suffers the curse of di-151
mensionality, necessitating the computation and storage of the value function for each state in the152
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underlying MDP. A standard approach to overcome this difficulty is to use TD learning with function153
approximation, wherein the value function is approximated using a simple parametric class of func-154
tions. The most common example of this is TD learning with LFA (Tsitsiklis & Van Roy, 1997),155
where the value function for each state is approximated using a linear parameterized family, i.e.,156
V π(s) ≈ ω⊤ϕ(s), where ω ∈ Rq is a tunable parameter common to all states, and ϕ : S → Rq is a157
feature vector for each state s ∈ S, and typically q ≪ |S|.158

We approximate the value function V π(s) and the square-value function Uπ(s) using linear159
functions as follows: V π(s) ≈ v⊤ϕv(s), Uπ(s) ≈ u⊤ϕu(s), where the features ϕv(·) and160
ϕu(·) belong to low-dimensional subspaces in Rd1 and Rd2 , respectively. Let Φv and Φu de-161
note |S| × d1 and |S| × d2 dimensional matrices, with i-th and j-th column respectively as162 (
ϕiv(s1), . . . , ϕ

i
v(s|S|)

)⊤
,
(
ϕju(s1), . . . , ϕ

j
u(s|S|)

)⊤
where i ∈ {1, . . . , d1} and j ∈ {1, . . . , d2}.163

For analytical convenience, in our analysis we set d1 = d2 = q. We observe that owing to164
the function approximation, the actual fixed point remains inaccessible. Instead, the objective165
is to find the projected fixed points, denoted as w̄ = (v̄, ū)⊤ within the following subspaces:166
Sv :=

{
Φvv

∣∣v ∈ Rd1
}
, Su :=

{
Φuu

∣∣u ∈ Rd2
}
. We approximate the value and square-value167

functions within the subspaces defined above. Accordingly, we construct projections onto Sv and168
Su with respect to a weighted norm, using the stationary distribution as weights. For the analysis,169
we require the following assumptions that are standard for TD with LFA, (cf. Prashanth et al., 2021;170
Bhandari et al., 2021; Srikant & Ying, 2019; Patil et al., 2024).171

Assumption 1. The Markov chain underlying the policy π is irreducible.172

Assumption 2. The matrices Φv and Φu have full column rank.173

With finite state and action spaces, Assumption 1 guarantees the existence of a unique stationary174
distribution χπ for the Markov chain induced by policy π. Assumption 2, commonly made in the175
context of TD with LFA (cf. Bhatnagar et al. (2009); Bhandari et al. (2021); Prashanth et al. (2021)),176
mandates that the columns of the feature matrices Φv and Φu be linearly independent, guaranteeing177
the uniqueness of the fixed points. Additionally, it also ensures the existence of inverse of the feature178
covariance matrices (Φ⊤

v D
πΦv and Φ⊤

uD
πΦu), to define the projection matrices in (4).179

We denote Πv and Πu as the projection matrices which project from state space S onto the sub-180
spaces Sv and Su, respectively. For a given policy π, projection matrices are defined as in (L.A. &181
Ghavamzadeh, 2016, Eq. (8)):182

Πv = Φv(Φ
⊤
v D

πΦv)
−1Φ⊤

v D
π and Πu = Φu(Φ

⊤
uD

πΦu)
−1Φ⊤

uD
π, (4)

where Πv and Πu project the true value and square-value functions onto the linear spaces spanned183
by the columns of Φv and Φu, respectively. In the above, Dπ is a diagonal matrix with entries from184
the stationary distribution χ. In (L.A. & Ghavamzadeh, 2016), the authors established the following185
projected fixed point relations:186

Φv v̄ = ΠvTv(Φv v̄), and Φuū = ΠuTu(Φuū). (5)

(L.A & Fu, 2022, Proposition 6.2) establishes that the joint operator T (U, V ) =
(
Tv
Tu

)
is a contraction187

with respect to a weighted norm. Since the operator Π =
(
Πv 0
0 Πu

)
is non-expansive and the matri-188

ces Φv and Φu have full column rank, (Tamar et al., 2016, Proposition 8) ensures that the projected189
Bellman operator ΠT (U, V ) is also a contraction with respect to a weighted norm. Consequently,190
the projected Bellman operator ΠT (U, V ) admits a unique projected fixed point w̄ = (v̄, ū)⊤. The191
equations in (5) can therefore be equivalently expressed as the following linear system:192

−Mw̄ + ξ = 0, where M =
(

Φ⊤
v D(I−γP)Φv 0

−2γΦ⊤
uDRPΦv Φ⊤

uD(I−γ2P)Φu

)
, ξ =

(
Φ⊤
v DR

Φ⊤
uDr̃

)
,

r =
(
r(s1) . . . r(s|S|)

)⊤
, and

(6)

the matrix R is diagonal, with its components given by r(si) =
∑
a∈A π(a|si)r(si, a) for i ∈193

{1, . . . , |S|}. r̃ is a vector with its components given by r̃(si)=
∑
a∈A π(a|si)r(si, a)2.194
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Algorithm 1: TD with Tail Averaging (Critic)
Input: Initialize w0 = (v0, u0), step-size β, critic batch size m, tail index k
Output: Tail-averaged iterate wk+1:m = ( 1

m−k

∑m
t=k+1 vt ,

1
m−k

∑m
t=k+1 ut)

⊤

for t = 0 to m do
Sample action at using the policy π(·|st), observe the next state st+1 and reward rt = r(st, at)
/* Update the TD parameters as follows: */

vt+1 = vt + β δt ϕv(st), ut+1 = ut + β ϵt ϕu(st) (7)

where δt = rt + γv⊤t ϕv(st+1)− v⊤t ϕv(st),

ϵt = rt
2 + 2γrtv

⊤
t ϕv(st+1) + γ2u⊤

t ϕu(st+1)− u⊤
t ϕu(st).

end for

Basic algorithm. Letting wt = (vt, ut)
⊤, we rewrite (7) to obtain the following update iteration:195

wt+1 = wt + β(rtϕt −Mtwt), (8)

where ϕt = (ϕv(st), r(st, at)ϕu(st))
⊤,Mt ≜

(
at o
ct bt

)
with ct ≜ −2γrtϕu(st)ϕv(st+1)

⊤,196

at ≜ ϕv(st)ϕv(st)
⊤ − γϕv(st)ϕv(st+1)

⊤ and bt ≜ ϕu(st)ϕu(st)
⊤ − γ2ϕu(st)ϕu(st+1)

⊤.197

In (8), we have used rt to denote r(st, at), for notational convenience. We observe that the expected198
value of Mt is equal to M, where M is defined in (6). An alternative view of the update rule is the199
following:200

wt+1 = wt + β(−Mwt + ξ +∆Mt), (9)

where ∆Mt = rtϕt − Mtwt − E [rtϕt −Mtwt | Ft], with ξ as defined in (6). Under an i.i.d.201
observation model (see Assumption 5), ∆Mt is a martingale difference w.r.t. the filtration {Ft}t≥0,202
where Ft is the sigma field generated by {w0, . . . , wt}. We remark that we utilize the update it-203
eration (8) instead of (9) to obtain finite-sample bounds in the next section. The rationale behind204
this choice is a technical advantage of not requiring a projection operator to keep the iterates wt205
bounded. To elaborate, in the proof of finite-sample bounds, we unroll the iteration in (8) and bound206
the bias and variance terms. Specifically, letting zt = wt − w̄ and ht(wt) = rtϕt −Mtwt, we get207
zt+1 = (I− βMt)zt + βht(w̄). The second term ht(w̄) does not depend on the iterate wt and can208
be bounded directly. On the other hand, unrolling (9) would result in a term β∆Mt in place of the209
ht(w̄), and bounding this term requires a projection since ∆Mt has the iterate wt.210

Tsitsiklis & Van Roy (1997) show asymptotic convergence of vt to v̄. They achieved this by veri-211
fying that the required conditions—on step-size, stability, and noise control—are satisfied with the212
TD update reinterpreted as as Linear Stochastic Approximation (LSA) iteration. Similarly, the con-213
vergence of wt to w̄ was established by L.A. & Ghavamzadeh (2016). Several recent works have214
analyzed the finite-sample behavior of TD learning with LFA, particularly focusing on deriving215
mean-squared error bounds (Bhandari et al., 2021). However, a direct finite-sample analysis of (8)216
is not available in the literature—a gap that we address next.217

Bounds for the TD-critic. We make the following assumptions that are common in the finite-218
sample analysis of temporal difference (TD) learning, (cf. Prashanth et al., 2021; Bhandari et al.,219
2021; Patil et al., 2024).220

Assumption 3. ∀s ∈ S, ∥ϕv(s)∥2 ≤ ϕvmax <∞, ∥ϕu(s)∥2 ≤ ϕumax <∞.221

Assumption 4. ∀s ∈ S, a ∈ A, |r(s, a)| ≤ Rmax <∞.222

Assumption 3 ensures the existence of the feature covariance matrices Φ⊤
v D

πΦv and Φ⊤
uD

πΦu,223
as well as the projection matrices in (4). Assumption 4 bounds the rewards uniformly, ensuring224
the existence of the value function and the square-value function. We consider an i.i.d observation225
model, which is made precise in the assumption below.226

Assumption 5. The samples {st, rt, st+1}t∈N are formed as follows: For each t, (st, st+1) are227
drawn independently and identically from χ(s)P(s, s′), where χ is the stationary distribution un-228
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derlying policy π, and P is the transition probability matrix of the Markov chain underlying the229
given policy π. Further, rt is a function of st and at, which is chosen using the given policy π.230

The i.i.d observation model is often considered as first step to analyse TD learning. Furthermore,231
the finite-time bounds obtained under the i.i.d. observation model can be directly extended to the232
Markovian setting using the constructions in (Patil et al., 2024, Remark 6) and (Samsonov et al.,233
2024, Section 5).234

Mean-Squared Error Bounds. We first present a mean-squared error bound for the last iterate235
with a constant step size, with the proof in Section 7.236

Theorem 3.1. Suppose Assumptions 1 to 5 hold. Run TD Updates in (7) for t iterations with a237
step size β satisfying the following constraint: β ≤ βmax = µ

c where µ = λmin(
M⊤+M

2 ) and238

c = max
{
4(ϕvmax)

4+4γ2R2
max(ϕ

u
max)

2
(ϕvmax)

2, 4(ϕumax)
4}+2γRmax((ϕ

v
max)

2(ϕumax)
2+(ϕumax)

4).239
Then, we have240

E
[
∥wt+1 − w̄∥22

]
≤ 2 exp (−βµt)E

[
∥z0∥22

]
+

2βσ2

µ
, (10)

where w0 is the initial parameter, w̄ is the TD fixed point, z0 = w0 − w̄ is initial error and241
σ2 = 2R2

max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)
+ 2
(
(ϕvmax)

4 (1 + γ)
2
+ (ϕumax)

4
(
1 + γ2

)2
+ 4γ2R2

max(ϕ
v
max)

2(ϕumax)
2
)
∥w̄∥22 .242

Notice that the bound in (10) is for a constant stepsize that requires information about the minimum243
eigenvalue of the symmetric part of M. In the context of regular TD, such a problematic eigenvalue244
dependence has been surmounted using tail-averaging, which we introduce next. We remark that245
tail-averaging for the case of mean-variance TD does not overcome the eigenvalue dependence.246
However, the benefit of tail averaging is that we obtain a bound that vanishes as as t → ∞, while247
the bound in (10) does not vanish asymptotically.248

Tail averaging. The tail-average is computed by averaging the iterates {wk+1, . . . , wt}, given by249
wk+1:t =

1
t−k

∑t
i=k+1 wi, where k is the tail index, and averaging starts at k + 1. Polyak & Ju-250

ditsky (1992); Fathi & Frikha (2013) investigated the advantages of iterate averaging, providing the251
asymptotic and non-asymptotic convergence guarantees in the stochastic approximation literature,252
respectively. Tail averaging preserves the advantages of iterate averaging, while also ensuring de-253
pendence on initial error is forgotten at a faster rate (Patil et al., 2023; Samsonov et al., 2024). Now,254
we present a mean-squared error bounds for the tail-averaged variant for the TD-critic, with the255
proof in Section 8.256

Theorem 3.2. Suppose Assumptions 1 to 5 hold. Run Algorithm 1 for t iterations with a step257
size β as specified in Theorem 3.1. Then, we have the following bound for the tail average iterate258
wk+1:t =

1
t−k

∑t
i=k+1 wi:259

E
[
∥wk+1:t − w̄∥22

]
≤10 exp (−kβµ)

β2µ(t− k)2
E[∥z0∥22] +

10σ2

µ2(t− k)
, (11)

where z0, σ, w̄, µ are as defined in Theorem 3.1.260

As in the case of regular TD with tail averaging, it can be observed that the initial error (the first261
term in (11)) is forgotten exponentially. The second term, with k = t/2 (or any other fraction of262
t), decays as O(1/t). Tail averaging is advantageous when compared to full iterate averaging (i.e.,263
k = 1), as the latter would not result in an exponentially decaying initial error term. The bound for264
regular TD with tail averaging in Patil et al. (2024) uses a universal step-size, which does not require265
information about the eigenvalues of the underlying feature matrix. However, arriving at O(1/t)266
bound for the case of variance is challenging owing to certain cross-terms that cannot be handled in267
a manner analogous to regular TD, see Section 6 for the details.268

Regularization for universal step size. The results in Theorems 3.1–3.2 suffer from the disad-269
vantage of a stepsize which requires knowledge of the spectral properties of the underlying matrix270
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M. In practical RL settings, such information is seldom available. To circumvent this shortcoming,271
we propose a regularization-based TD algorithm that works with a universal step size, for a suitably272
chosen regularization parameter. Instead of (6), we solve the following regularized linear system for273
some ζ > 0:274

−(M+ ζI)w̄reg + ξ = 0, (12)

The corresponding TD updates in (7) to solve (12) would become275

v̌t+1 = (I− β̌ζ)v̌t + β̌ δ̌t ϕv(st), ǔt+1 = (I− β̌ζ)ǔt + β̌ ϵ̌t ϕu(st), (13)

where δ̌t, ϵ̌t are the regularized variants of the corresponding quantities defined in (7), i.e., with276
vt, ut replaced by v̌t, ǔt respectively. We combine the updates in (13) as277

w̌t+1 = w̌t + β̌(rtϕt − (ζI+Mt)w̌t), (14)

where Mt, rt, ϕt are defined in (8). We now present a result that shows the regularized tail-averaged278
variant (14) converges at the optimal rate of O(1/t) in the mean-squared sense, for a step size that279
is universal.280

Theorem 3.3. Suppose Assumptions 1 to 5 hold. Let w̌k+1:t = 1
t−k

∑t−k
i=k+1 w̌i denote the tail-281

averaged regularized iterate. For ζ = 1√
t−k and the step size β̌ satisfying β̌ ≤ β̌max = ζ

č . Then we282
have283

E
[
∥w̌k+1:t − w̄∥22

]
≤ 20 exp (−kβ̌(2µ+N− 1

2 ))

β̌2(2µ+N− 1
2 )2N2

E
[
∥w̌0 − w̄reg∥22

]
+ 20σ̌2

µ2N +
2R2

max((ϕ
v
max)

2+R2
max(ϕ

u
max)

2)
ι2N ,

where č and σ̌ are defined in Section 9, ι denotes the minimum singular value of M, N = t−k, and284
µ = λmin(

M⊤+M
2 )285

We first bound E
[
∥w̌k+1:t − w̄reg∥22

]
in Theorem 9.1 in the supplementary material, specialize this286

bound for the case of ζ = 1√
t−k . Next, using the fact that ∥w̄reg − w̄∥22 is O(ζ2), followed by a287

triangle inequality, we obtain the bound in the theorem above, see Section 9 for the proof.288

High-probability bounds. For the high probability bound, we consider the following update rule:289
wt+1 = Γ(wt + γht(wt)), where Γ projects on to the set C ≜ {w ∈ R2q | ∥w∥2 ≤ H}.290

Assumption 6. The projection radius H of the set C satisfies H >
∥ξ∥2

µ , where µ = λmin(
M⊤+M

2 )291
and ξ is as defined in (6).292

Under the additional projection-related assumption above, we state the high-probability bound for293
the tail-averaged variant of Algorithm 1. Subsequently, we introduce the regularized mean-variance294
TD variant to establish high-probability bounds. The following theorem provides a high-probability295
bound for the unregularized (vanilla) mean-variance TD.296

Theorem 3.4. Suppose Assumptions 1 to 6 hold. Run Algorithm 1 for t iterations with step size β297
as defined in Theorem 3.2. Then, for any δ ∈ (0, 1], we have the following bound for the projected298
tail-averaged iterate wk+1:t:299

P
(
∥wk+1:t−w̄∥2 ≤ 2τ

µ
√
t−k

√
log
(
1
δ

)
+ 4 exp(−kβµ)

βµN E [∥w0 − w̄∥2]+
4τ

µ
√
t−k

)
≥1−δ,

where w0, w̄, β are defined as in Theorem 3.1, and300

τ =
(
2R2

max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)
+ 2
(
(ϕvmax)

4 (1 + γ)
2
+ (ϕumax)

4
(
1 + γ2

)2
+ 4γ2R2

max(ϕ
v
max)

2(ϕumax)
2
)
H2
) 1

2 .

The following theorem provides a high-probability bound for the regularized mean-variance TD.301
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Theorem 3.5. Assume that the conditions in Assumptions 1 to 6 hold. Run Algorithm 1 for t it-302
erations with a step size β̌ ≤ β̌max as specified in Theorem 3.3. Then, for any δ ∈ (0, 1], with303
probability at least 1− δ, the projected tail-averaged regularized TD iterate satisfies304

∥w̌k+1:t − w̄reg∥2 ≤ 2τ̌
(2µ+ζ)

√
N

√
log
(
1
δ

)
+ 4 exp(−kβ̌(2µ+ζ))

β̌(2µ+ζ)N
E ∥w0 − w̄reg∥2 +

4τ̌
(2µ+ζ)

√
N
.

where N , w̌0, w̄reg, and µ are defined as in Theorem 3.3. Moreover,305
τ̌ =

(
2R2

max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)
+ 4
(
ζ2 + (ϕvmax)

4(1 + γ)2 + (ϕumax)
4(1 + γ2)2 + 4β2R2

max(ϕ
v
max)

2(ϕumax)
2
)
H2
) 1

2 .306

We use a martingale decomposition and Lipschitz concentration of sub-Gaussian random vari-307
ables to establish the high-probability bounds. This technique has been employed for vanilla TD308
(Prashanth et al., 2021). Our contribution extends this technique to mean-variance TD and its regu-309
larized variant, enabling a universal step size. As in the MSE bound case, owing to the cross terms,310
a universal step size does not appear to be feasible sans regularization, and we believe this is a use-311
ful finding as it deviates from the corresponding result for vanilla TD. In contrast, the authors in312
(Samsonov et al., 2024) employ Berbee’s coupling lemma to arrive at a sub-exponential tail bound.313

Discussion: The update rule in (8) represents a Linear Stochastic Approximation (LSA), and314
mean-variance TD is indeed a special case of the general LSA framework. Several previous works,315
including Srikant & Ying (2019), provide a finite time analysis for LSA. Their bounds can be applied316
to (8). However, our analysis differs in the following ways: First, the step size ϵ in Srikant & Ying317
(2019) depends on the eigenvalues of the transition probability matrix P , which can be difficult to318
obtain. We alleviate this dependency by employing regularization to achieve a universal step size319
that is independent of spectral information. Second, we derive explicit constants for the matrix M320
(mean-variance TD) instead of the matrix A (vanilla TD). Third, our analysis focuses on the recur-321
sive structure of the error to the projected fixed point, whereas Srikant & Ying (2019) analyze the322
drift of a Lyapunov function. Finally, Srikant & Ying (2019) provide finite-time bounds for Mean323
Squared Error, while we additionally establish high-probability bounds.324

The current literature on bounds for TD (or more generally, linear stochastic approximation) for325
Polyak-Ruppert averaging scheme does not achieve O(1/t) bounds, to the best of our knowledge.326
Instead, with a Polyak-Ruppert stepsize 1/kα, the bound is O(1/tα), with α < 1, see (Prashanth327
et al., 2021). Tail-averaging with a “universal” step size was shown to close this gap for vanilla TD.328
Our contribution is to show that tail-averaging with universal step size may not be feasible to obtain329
an O(1/t) for mean-variance TD, while regularization closes this gap.330

In Samsonov et al. (2024), the authors provide high-probability bounds for a general linear stochas-331
tic approximation algorithm, and specialize them to obtain bounds for the regular TD algorithm. For332
mean-variance TD (8), we could, in principle, apply the bounds from the aforementioned reference.333
However, the bound that we derive in Theorem 3.4 enjoys a better dependence on the confidence pa-334
rameter δ. Specifically, we obtain a

√
log(1/δ) actor, corresponding to a sub-Gaussian tail, while the335

bounds in Samsonov et al. (2024) feature a log(1/δ) factor, which is equivalent to a sub-exponential336
tail. Furthermore, our result makes all constants clear in the case of mean-variance TD.337

4 SPSA-based Actor338

In this section, we analyze an actor algorithm based on SPSA-based gradient estimates. Throughout,339
we consider a parametrized class of stationary randomized policies {πθ, θ ∈ Rd}. We denote the340
score function as ψθ(s, a) = ∇θ log πθ(a|s). We consider smoothly-parameterized polices, i.e.,341
satisfying the following assumptions:342

Assumption 7. ∀(s, a) ∈ S ×A and θ1, θ2 ∈ Rd, ∃ positive constants Lψ , Cψ and Cπ such that343
(i) ∥ψθ1(s, a)− ψθ2(s, a)∥2 ≤ Lψ ∥θ1 − θ2∥2; (ii) ∥ψθ(s, a)∥2 ≤ Cψ;344
(iii) ∥πθ1(·|s)− πθ2(·|s)∥TV ≤ Cπ ∥θ1 − θ2∥2, where ∥ · ∥TV denotes the total-variation norm.345

In the above, (i) and (ii) imply that score function is smooth and bounded. This generally holds for346
most commonly used policy classes. Since we asssume finte action space, (iii) holds for any smooth347
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Algorithm 2: SPSA-based actor with TD critic for mean-variance optimization (MV-SPSA-AC)
Input: Initialize θ0 ∈ Rd, perturbation constant {pt}, critic batch size m, actor step size {αt}, critic step

size {βt}, number of iterations n, and tail-index k.
for t← 0 to n− 1 do

Generate ∆(t) ∼ {±1}d (symmetric Bernoulli)
/* Critic: Obtaining tail-averaged TD iterates for policy evaluation */

Run Algorithm 1 for the unperturbed policy πθt to compute wk+1:m = (vk+1:m, uk+1:m)⊤

Run Algorithm 1 for the perturbed policy πθt+pt∆(t) to compute w+
k+1:m = (v+k+1:m, u+

k+1:m)⊤.
/* Actor: Estimating SPSA gradients for policy improvement */

∇iĴ(θ) =
ϕv(s0)

⊤(v+k+1:m − vk+1:m)

pt∆i(t)
;∇iÛ(θ) =

ϕu(s0)
⊤(u+

k+1:m − uk+1:m)

pt∆i(t)

θt+1 = θt+αt(∇Ĵ(θt)−λ(∇Û(θt)−2Ĵ(θt)∇Ĵ(θt)))
end for
Output: Final policy θR chosen uniformly at random from {θ1, . . . , θn}

policy. A similar assumption has been made earlier for the analysis of actor-critic algorithms in348
a risk-neutral RL setting, cf. (Xu et al., 2021). By applying the Lagrangian relaxation procedure349
(Bertsekas, 1996) to (3), we get the following unconstrained optimization problem for a fixed λ ≥ 0:350

min
θ
L(θ) = −V πθ (s0) + λ(Λπθ (s0)− c), (15)

where L(θ) represents the Lagrangian function. In this paper, we treat λ as a fixed bias-variance351
tradeoff parameter, and find a ‘good-enough’ policy parameter for the problem (15) defined above.352
For the actor update, we require the gradient of the Lagrangian w.r.t. the policy parameter θ,353

∇θL(θ) = −∇Vθ(s0) + λ(∇Uθ(s0)− 2Vθ(s0)∇Vθ(s0)). (16)

For notational simplicity, we let Vθ(s0) = J(θ), Uθ(s0) = U(θ), and ∇Vθ(s0) = ∇J(θ).354

Basic algorithm. We describe the Mean Variance SPSA Actor Critic (MV-SPSA-AC) algorithm355
for mean-variance optimization. Algorithm 2 presents the pseudocode of this algorithm. This algo-356
rithm is a variant of the actor-critic algorithm proposed in L.A. & Ghavamzadeh (2016), where the357
authors provide only asymptotic guarantees. MV-SPSA-AC algorithm deviates from their algorithm358
by incorporating tail averaging in the TD critic with LFA, and performing a mini-batch update for359
the SPSA-based actor. More importantly, we perform a finite-sample analysis.360

Need for SPSA. The variance of the return we consider lacks a simple linear Bellman equation,361
unlike the value function in risk-neutral RL. To address this, variance is estimated as the differ-362
ence between the second moment and the square of the first moment of the return. Since the sec-363
ond moment satisfies a simple linear Bellman equation, this approach makes variance estimation364
feasible. The policy gradient expression for the square-value function is as follows (see (L.A. &365
Ghavamzadeh, 2016) for the derivation):366

∇U(θ)= 1
1−γ2

(∑
s,aν̃θ(s, a)∇ log πθ(a|s)Wθ(s, a)︸ ︷︷ ︸

T1(θ)

+2γ
∑
s,a,s′ ν̃θ(s, a)P (s

′|s, a)∇Vθ(s′)︸ ︷︷ ︸
T2(θ)

)
.

(17)
As seen from the expression above, the second term T2(θ) requires the gradient ∇Vθ(s′) for every367
state s′ ∈ S . An actor-critic algorithm would require an estimate of the value gradient with every368
possible start state, making it impractical for implementations. SPSA-based gradient estimates offer369
a viable alternative to overcome this issue. Wθ(s, a) is equivalent of action-value function for U(θ).370

Actor. The policy parameter θ is updated in the negative direction of gradient of the Lagrangian,371
with step size αt as follows:372

θt+1 = θt+αt(∇Ĵ(θt)−λ(∇Û(θt)−2Ĵ(θt)∇Ĵ(θt))), (18)
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where (19) is used for computing ∇Ĵ(θt) and ∇Û(θt) respectively. In a risk-neutral RL setting, the373
usual recipe for the actor part is to use the policy gradient theorem to form likelihood ratio-based374
gradient estimates. In L.A. & Ghavamzadeh (2016), it is shown that such an approach does not375
extend to cover the mean-variance case. The authors there proposed an alternative actor that uses376
SPSA for gradient estimation. This scheme uses two policy trajectories: one with parameter θt377
and another with a perturbed parameter θt + pt∆(t), denoted by the superscript ‘+’, where ∆(t)378
is a d-dimensional vector of independent Rademacher (±1) random variables. Using these two379
trajectories, we form estimates of the gradient of the value and square-value functions as follows:380

∇iĴ(θt) =
ϕv(s0)

⊤(v+k+1:m − vk+1:m)

pt∆i(t)
, ∇iÛ(θ) =

ϕu(s0)
⊤(u+k+1:m − uk+1:m)

pt∆i(t)
, (19)

where vk+1:m and v+k+1:m are the tail-averaged critic parameters for the value function under the381
unperturbed (θt) and perturbed (θt + pt∆(t)) policy parameters, respectively. Here, m is the critic382
batch size. Similarly, uk+1:m and u+k+1:m are the tail-averaged critic parameters for the square-value383
function under the unperturbed and perturbed policy parameters, respectively. We describe next the384
policy evaluation components in the critic.385

Critic. We perform m TD-critic updates to form the estimates for value function386
Ĵ(θ) = ϕv(s0)

⊤vk+1:m and square-value function Û(θ) = ϕu(s0)
⊤uk+1:m, respectively. Further,387

we perform m updates for the perturbed policy θt + pt∆(t) to form the value and square-value388
function estimates as Ĵ(θ + pt∆(t)) = ϕv(s0)

⊤v+k+1:m and Û(θ + pt∆(t)) = ϕu(s0)
⊤u+k+1:m,389

respectively. We use tail-averaged critic variants for each policy evaluated above.390

Main results. For every policy θ, we assume Assumption 1 holds, which implies the ex-391
istence of the stationary distribution χπθ , and scalars κ > 0 and ρ ∈ (0, 1) such that392
sups∈S ∥P(st | s0 = s)− χπθ∥TV ≤ κρt, ∀t ≥ 0. For the analysis of MV-SPSA-AC algorithm,393
we need to establish that the Lagrangian L(·) is a smooth function of θ. Further, it can be seen from394
(16) that , the smoothness of J(·) and U(·) would imply to smoothness of L(·). In a risk-neutral395
setting, J(·) is the usual objective, and Xu et al. (2021, Proposition 1) established smoothness of396
J(·) in (20). On the other hand, smoothness of U(·) requires a new proof, and involves significant397
departures from the one for J(·). The result below states smoothness for J(·) and U(·), with the398
latter result being a technical contribution of this paper.399

Lemma 4.1. Suppose Assumptions 7 holds. Then, for any θ1, θ2 ∈ Rd, we have400

∥∇J(θ1)−∇J(θ2)∥2 ≤ LJ ∥θ1 − θ2∥2 , ∥∇U(θ1)−∇U(θ2)∥2 ≤ LU∥θ1 − θ2∥, (20)

where LJ = Rmax

(1−γ) (4CνCψ + Lψ), Cν = 1
2Cπ

(
1 + ⌈logρ κ−1⌉+ (1− ρ)−1

)
and LU =401

1
1−γ2 (

R2
max

(1−γ)2 (Lψ + 4CψCν(1 +
γ

Rmax
)) + 2LJ).402

We remark that the smoothness result for the square-value function in Lemma 4.1, derived in the403
context of variance as a risk measure, holds independent significance, as it may prove useful in404
variants of actor-only or actor-critic methods for mean-variance optimization. Using smoothness of405
J(·) and U(·), we arrive at the following result.406

Lemma 4.2. Let Lo = LJ

(
1 + 2λ Rmax

(1−γ)2 + 2λ
(RmaxCψ
(1−γ)2

)2)
+ λLU . For any θ1, θ2 ∈ Rd, we have407

∥∇L(θ1)−∇L(θ2)∥2 ≤ Lo ∥θ1 − θ2∥2 . (21)

The smoothness claim in the result above for the Lagrangian is a key technical contribution, as it408
serves as a building block for the analysis of the actor update. In particular, this smoothness result409
facilitates an SGD-type analysis for the actor update. For the analysis of Algorithm 2, we make the410
following assumption that ensures the value and square-value functions lie in a linear space.411

Assumption 8. For any given policy parameter θ, let v̄(θ), ū(θ) denote solutions to fixed point412
equations in (5). Then, E[ϕ(s0)⊤v̄(θ)] = J(θ),E[ϕ(s0)⊤ū(θ)] = U(θ).413
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A similar assumption is made in (Kumar et al., 2023, Eq. (13)). Our analysis can be easily extended414
to include an approximation error term if Assumption 8 does not hold. The main result that estab-415
lishes stationary convergence of the algorithm MV-SPSA-AC is given below (see Section 11 for a416
proof sketch and Section 12 for the detailed proof).417

Theorem 4.3. Suppose Assumptions 1 to 8 hold. Run MV-SPSA-AC1 for n iterations with actor step418
size αt ≡ α = 1/n3/4, perturbation constant pt ≡ p = 1/n1/4, critic batch size m = n, and critic419
step size β ≤ βmax as defined in Theorem 3.1. Let θR be chosen uniformly from {θ1, . . . , θn}. Then,420

E
[
∥∇L(θR)∥2

]
≤ C/n1/4,

for some constant C that is specified in Section 12.421

Remark 1. We need to account for the biased nature of the SPSA gradient estimators in our anal-422
ysis. This introduces the perturbation constant pt, leading to the terms O( 1p ), O( 1

p2t
), and O(pt).423

Consequently, we face a trade-off that arises due to the bias in the SPSA gradient estimates, acting424
as a bottleneck.425

Remark 2. Eldowa et al. (2022) study the variance of per-step rewards, analyzed as reward volatil-426
ity (Bisi et al., 2020; Zhang et al., 2021), which is also equivalent to the discount-normalized427
variance in (Filar et al., 1989). Unlike the variance of the return, this objective lends itself to a428
REINFORCE-type policy gradient algorithm and does not require a zeroth-order gradient estima-429
tion scheme. This is because the gradient of the variance of per-step rewards does not feature a430
‘problematic’ term like T2(·); instead it only has a term analogous to T1(·), which can be more431
easily handled similar to the risk-neutral case.432

The result above establishes the convergence to a stationary point of Lagrangian, and this is signif-433
icant because L(θ) encapsulates both the mean and variance of returns. Optimizing L(θ) ensures a434
tradeoff between maximizing the value function and minimizing variance. This result is particularly435
notable as it establishes convergence guarantees for a non-convex function. Mean-variance opti-436
mization has been shown to be NP-hard even if the transition dynamics are available, see (Mannor437
& Tsitsiklis, 2013). Policy-gradient and actor-critic algorithms present a viable alternative where438
the usual convergence guarantees are to a stationary point. For instance, several policy gradient-type439
algorithms have been shown to converge to an approximate stationary point in the literature, cf. (Xu440
et al., 2021; Zhang et al., 2020).441

We remark on the sample complexity required for ϵ-accurate convergence of the MV-SPSA-AC442
algorithm. Theorem 4.3 indicates that the actor loop must run Ω(ϵ−4) times. However, in each443
iteration, the critic is executed twice—once for the perturbed and once for the unperturbed trajecto-444
ries—using n samples per run to estimate the policy gradients. Thus, the total sample complexity for445
ϵ-accurate convergence is O(ϵ−4). While this represents slow convergence, the use of biased SPSA446
gradient estimates typically degrades the rate. To the best of our knowledge, finite-sample results447
for zeroth-order actor-critic methods remain unavailable, even in risk-neutral RL (Lei et al., 2025).448
Investigating whether sharper analyses or stronger assumptions could improve the convergence rate449
is an interesting direction for future work.450

5 Concluding remarks451

We considered a risk-aware discounted reward MDP through mean-variance optimization. Specifi-452
cally, we analyzed an mean-variance actor-critic algorithm, and derived finite-sample performance453
guarantees. We first obtained an O(1/t) bound on the convergence of the tail-averaged iterate of the454
mean-variance TD with LFA. We also obtained a high probability bound that effectively exhibits a455
sub-Gaussian tail. Next, we employed an SPSA-based actor in conjunction with the above critic,456
and obtained an O(n−1/4) convergence guarantee in the number n of actor iterations.457

1We employ the un-regularized variant of TD-critic for deriving the bound above. The modification to use the regularized
critic for the analysis is straightforward, and we omit the details.
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579

6 Outline of critic analysis580

Below, we sketch the proof of Theorem 3.1 to highlight the main ideas and key differences from the581
standard TD proof. Full proofs of Theorem 3.1 and Theorems 3.2 to 3.5 are provided in Appendices582
7–10.583

As in proofs of standard TD bounds, we perform a bias-variance decomposition to obtain584

E
[
∥zt+1∥2

]
≤ 2E

[∥∥Ct:0z0
∥∥2]︸ ︷︷ ︸

zbias
t

+2β2 E

∥∥∥∥∥
t∑

k=0

Ct:k+1hk(w̄)

∥∥∥∥∥
2


︸ ︷︷ ︸
zvariance
t

, (22)

where Ci:j =

{
(I− βMi)(I− βMi−1) . . . (I− βMj) if i ≥ j

I otherwise.
585

To bound the bias term, we expand the matrix product by one step, yielding586

zbias
t = E

[∥∥Ct:0z0
∥∥2]

= E
[
E
[(
Ct−1:0zbias

t−1

)⊤
(I− βMt)

⊤
(I− βMt)

(
Ct−1:0zbias

t−1

) ∣∣∣Ft]] .
Next, we establish a result for any y ∈ R2q that aids in handling both the bias and variance terms.587

E
[
y⊤ (I− βMt)

⊤
(I− βMt) y

∣∣∣ Ft] = ∥y∥22 − β y⊤E
[(
M⊤

t +Mt

)
|Ft
]
y︸ ︷︷ ︸

T1

+ β2 y⊤E
[
M⊤

t Mt

∣∣ Ft] y︸ ︷︷ ︸
T2

(23)

The term T1 is lower-bounded in a standard manner (as in regular TD), i.e.,588

y⊤E
[(
M⊤

t +Mt

) ∣∣ Ft] y = y⊤
(
M⊤ +M

)
y ≥ 2µ ∥y∥22 , (24)

where µ = λmin(
M⊤+M

2 ) is the minimum eigenvalue of the matrix M+M⊤

2 .589

On the other hand, bounding term T2 involves significant deviations. In particular,590

y⊤E
[
M⊤

t Mt

∣∣ Ft] y = v⊤E
[
a⊤t at + c⊤t ct

∣∣ Ft] v︸ ︷︷ ︸
S1

+u⊤E
[
b⊤
t bt

∣∣ Ft]u︸ ︷︷ ︸
S2

+ v⊤E
[
c⊤t bt

∣∣ Ft]u︸ ︷︷ ︸
S3

+u⊤E
[
b⊤
t ct

∣∣ Ft] v︸ ︷︷ ︸
S4

. (25)

Here, S1 and S2 resemble terms that appear in the finite-sample analysis of regular TD, while S3591
and S4 are cross-terms specific to the estimation of the square-value function.592

We bound S1, S2 as follows:593

S1 ≤
(
(ϕvmax)

2 (1 + γ)
2
+ 4γ2R2

maxϕ
u
max

2
)
v⊤Bv, (26)
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S2 ≤ (ϕumax)
2
(
1 + 2γ2 + γ4

)
u⊤Gu.

In the above, B and G are expectations of the outer product of vectors ϕv(st) and ϕu(st) respec-594
tively. If the cross-terms were not present, then one could have related T2 to a constant multiple of595
v⊤Bv + u⊤Gu, leading to a universal step size choice, in the spirit of Patil et al. (2024). However,596
cross-terms present a challenge to this approach, and we bound the S3, S4 cross-terms as follows:597

S3 + S4 ≤ 2(ϕumax)
2Rmaxv

⊤ (γ(B+G) + γ3(B+G)
)
u. (27)

We overcome the challenge of bounding the cross-terms (S3 and S4) through the following key598
observations: First, the cross-terms exhibit symmetry and are equal. Consequently, analyzing one599
term suffices, as the derived upper bound applies to the other term as well. Second, to bound the600
cross-term, we leverage the following inequality:601

−v⊤
(
aa⊤ + bb⊤

2

)
u ≤ v⊤

(
ab⊤

)
u ≤ v⊤

(
aa⊤ + bb⊤

2

)
u.

A similar inequality, also employed in bounding S1 and S2, simplifies the bound in terms of the602
matrices B and G, resulting in the expression in (27).603
Combining the bounds on S1 to S4 in conjunction with the fact that v⊤(B+G)u ≤ λmax(B+G)

2 ∥y∥22604
(see Lemma 7.2), we obtain the following bound for a step size β ≤ βmax specified in Theorem 3.1605
statement:606

E
[
y⊤ (I− βMt)

⊤
(I− βMt) y

∣∣∣ Ft] ≤ (1− βµ) ∥y∥22 . (28)

Using the bound above, the bias term in (22) is handled as follows:607

zbiast ≤ exp (−βµt)E
[
∥z0∥2

]
.

Using ∥hk(w̄)∥2 ≤ σ2, we bound the variance term as follows:608

E

∥∥∥∥∥
t∑

k=0

Ct:k+1hk(w̄)

∥∥∥∥∥
2

2

 ≤ σ2
t∑

k=0

E
[
E
[
∥(I− βMt)∥2

∣∣∣ Ft] ∥∥Ct−1:k+1
∥∥2
2

]

≤ σ2
t∑

k=0

(1− βµ)E
[∥∥Ct−1:k+1

∥∥2
2

]
≤ σ2

t∑
k=0

(1− βµ)
t−k ≤ σ2

βµ
. (29)

The main claim follows by combining the bounds on the bias and variance terms, followed by609
straightforward simplifications. The reader is referred to Section 7 for the full proof.610

7 Proof of Theorem 3.1611

Proof.612
Step 1: Bias-variance decomposition613

Recall the updates in Algorithm 1 can be rewritten as follows:614

wt+1 = wt + β(rtϕt −Mtwt). (30)

Defining the centered error as zt+1 = wt+1 − w̄, we obtain615

zt+1 = wt − w̄ + β(rtϕt −Mtwt) + βMtw̄ − βMtw̄
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= (I− βMt)(wt − w̄) + β(rtϕt −Mtw̄)

= (I− βMt)zt + β(rtϕt −Mtw̄).

Letting ht(wt) = rtϕt −Mtwt, we have616

zt+1 = (I− βMt)zt + βht(w̄).

Unrolling the equation above, we obtain617

zt+1 = (I− βMt)((I− βMt−1)zt−1 + βht−1(w̄)) + βht(w̄)

= (I− βMt)(I− βMt−1) . . . (I− βM0)z0 + βht(w̄)

+ β(I− βMt)ht−1(w̄)

+ β(I− βMt)(I− βMt−1)ht−2(w̄)

...
+ β(I− βMt)(I− βMt−1) . . . (I− βM1)h0(w̄).

Define618

Ci:j =

{
(I− βMi)(I− βMi−1) . . . (I− βMj) if i ≥ j

I otherwise.

Using the definition above, we obtain619

∥zt+1∥2 =

∥∥∥∥∥Ct:0z0 + β

t∑
k=0

Ct:k+1hk(w̄)

∥∥∥∥∥
2

.

Taking expectations and using ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, we obtain620

E[∥zt+1∥2] ≤ 2zbias
t + 2β2zvariance

t , (31)

where zbias
t = E

[∥∥Ct:0z0
∥∥2] and zvariance

t = E
[∥∥∥∑t

k=0 C
t:k+1hk(w̄)

∥∥∥2].621

622
Step 2: Bounding the bias term623

Next, we state and prove a useful lemma that will assist in bounding the bias term in (31).624

Lemma 7.1. Consider a random vector y ∈ R2q and let Ft be sigma-algebra generated by625
{w0 . . . wt}, For β ≤ βmax, we have626

E
[
y⊤ (I− βMt)

⊤
(I− βMt) y

∣∣∣ Ft] ≤ (1− βµ) ∥y∥22 , (32)

E [∥(I− βMt) y∥ | Ft] ≤
(
1− βµ

2

)
∥y∥2 , (33)

where627
β ≤ βmax =

µ

k
. (34)

µ = λ
min

(
M⊤+M

2

) is the minimum eigenvalue of the matrix M⊤+M
2 and628

k = max
{
4(ϕvmax)

4+4γ2R2
max(ϕ

u
max)

2
(ϕvmax)

2, 4(ϕumax)
4
}

+ 2γRmax((ϕ
v
max)

2(ϕumax)
2 + (ϕumax)

4).
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Proof. To prove the desired result, we split (32) as follows:629

E
[
y⊤ (I− βMt)

⊤
(I− βMt) y

∣∣∣ Ft] = E
[
y⊤
(
I− β

(
M⊤

t +Mt

)
+ β2M⊤

t Mt

)
y
∣∣ Ft]

= ∥y∥22 − β y⊤E
[(
M⊤

t +Mt

) ∣∣ Ft] y︸ ︷︷ ︸
T1

+β2 y⊤E
[
M⊤

t Mt

∣∣ Ft] y︸ ︷︷ ︸
T2

. (35)

We lower-bound the term T1 as follows:630

y⊤E
[(
M⊤

t +Mt

) ∣∣ Ft] y = y⊤
(
M⊤ +M

)
y ≥ 2µ ∥y∥22 . (36)

Next, we upper bound the term T2 as follows:631

M⊤
t Mt =

(
at o
ct bt

)⊤(
at o
ct bt

)
=

(
a⊤t at + c⊤t ct c⊤t bt

b⊤
t ct b⊤

t bt

)
,

Plugging the above in T2, we obtain632

y⊤E
[
M⊤

t Mt

∣∣ Ft] y = y⊤E
[(

a⊤t at + c⊤t ct c⊤t bt
b⊤
t ct b⊤

t bt

) ∣∣∣∣ Ft] y
=
(
v⊤ u⊤

)
E
[(

a⊤t at + c⊤t ct c⊤t bt
b⊤
t ct b⊤

t bt

) ∣∣∣∣ Ft](vu
)

= v⊤E
[
a⊤t at + c⊤t ct

∣∣ Ft] v︸ ︷︷ ︸
S1

+u⊤E
[
b⊤
t bt

∣∣ Ft]u︸ ︷︷ ︸
S2

+ v⊤E
[
c⊤t bt

∣∣ Ft]u︸ ︷︷ ︸
S3

+u⊤E
[
b⊤
t ct

∣∣ Ft] v︸ ︷︷ ︸
S4

. (37)

To upper bound T2, we first establish upper bounds for the terms S1, S2, S3, and S4.633

First, we consider the term S1.634

v⊤E
[
a⊤t at + c⊤t ct

∣∣ Ft] v = v⊤E
[
a⊤t at

∣∣ Ft] v︸ ︷︷ ︸
(a)

+ v⊤E
[
c⊤t ct

∣∣ Ft] v︸ ︷︷ ︸
(b)

. (38)

We bound (a) in (38) as:635

v⊤E
[
a⊤t at

∣∣ Ft] v
= v⊤E[

(
ϕv(st)ϕv(st)

⊤−γϕv(st)ϕv(st+1)
⊤)⊤ (ϕv(st)ϕv(st)

⊤

−γϕv(st)ϕv(st+1)
⊤) | Ft ]v

= v⊤E
[
ϕv(st)ϕv(st)

⊤ϕv(st)ϕv(st)
⊤−γϕv(st)ϕv(st)⊤ϕv(st)ϕv(st+1)

⊤

− γϕv(st+1)ϕv(st)
⊤ϕv(st)ϕv(st)

⊤

+ γ2ϕv(st+1)ϕv(st)
⊤ϕv(st)ϕv(st+1)

⊤ | Ft
]
v

(i)
= v⊤E

[
∥ϕv(st)∥22

(
ϕv(st)ϕv(st)

⊤ − γ
(
ϕv(st)ϕv(st+1)

⊤ + ϕv(st+1)ϕv(st)
⊤)︸ ︷︷ ︸

(I)

+ γ2ϕv(st+1)ϕv(st+1)
⊤) | Ft]v

(ii)

≤ (ϕvmax)
2v⊤E

[
ϕv(st)ϕv(st)

⊤ + γ
(
ϕv(st)ϕv(st)

⊤ + ϕv(st+1)ϕv(st+1)
⊤)

+ γ2ϕv(st+1)ϕv(st+1)
⊤ | Ft

]
v
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≤ (ϕvmax)
2
(
1 + 2γ + γ2

)
v⊤Bv, (39)

where B = E
[
ϕv(st)ϕv(st)

⊤ | Ft
]
. In the above, the inequality in (i) follows from ∥ϕv(st)∥22 =636

ϕv(st)
⊤ϕv(st); (ii) follows by applying the bound on the features from Assumption 3 and using the637

following inequality for term (I) in (i):638

−v⊤
(
aa⊤ + bb⊤

2

)
v ≤ v⊤

(
ab⊤

)
v ≤ v⊤

(
aa⊤ + bb⊤

2

)
v. (40)

The final inequality in (39) follows by using the following equivalent forms for B:639

B = E
[
ϕv(st)ϕv(st)

⊤ | Ft
]
= E

[
ϕv(st+1)ϕv(st+1)

⊤ ∣∣ Ft] = Eχ,P
[
ϕv(st)ϕv(st)

⊤]
= Eχ,P

[
ϕv(st+1)ϕv(st+1)

⊤] . (41)

The equivalences above hold from the i.i.d observation model (Assumption 5).640

Next, We bound (b) in (38) as:641

v⊤E
[
ct

⊤ct
∣∣ Ft] v = v⊤E

[(
−2γrtϕu(st)ϕv(st+1)

⊤)⊤ (−2γrtϕu(st)ϕv(st+1)
⊤) | Ft] v

= 4γ2v⊤E
[
r2tϕv(st+1)ϕu(st)

⊤ϕu(st)ϕv(st+1)
⊤ ∣∣ Ft] v

(i)
= 4γ2v⊤E

[
r2t ∥ϕu(st)∥

2
2 ϕv(st+1)ϕv(st+1)

⊤
∣∣∣ Ft] v

(ii)

≤ 4γ2R2
max(ϕ

u
max)

2v⊤Bv, (42)

where (i) follows from ∥ϕu(st)∥22 = ϕu(st)
⊤ϕu(st) and (ii) follows from bound on rewards (As-642

sumption 4) and value of B in (41).643

Combining (39) and (42), we obtain the upper bound for S1 as follows:644

v⊤E
[
a⊤t at + c⊤t ct

∣∣ Ft] v ≤
(
(ϕvmax)

2 (1 + γ)
2
+ 4γ2R2

max(ϕ
u
max)

2
)
v⊤Bv. (43)

Next, we upper bound S2 in (37) as follows:645

u⊤E
[
b⊤
t bt

∣∣ Ft]u
= u⊤E[

(
ϕu(st)ϕu(st)

⊤ − γ2ϕu(st)ϕu(st+1)
⊤)⊤ (ϕu(st)ϕu(st)

⊤

− γ2ϕu(st)ϕu(st+1)
⊤) | Ft]u

= u⊤E
[
ϕu(st)ϕu(st)

⊤ϕu(st)ϕu(st)
⊤ − γ2

(
ϕu(st)ϕu(st)

⊤ϕu(st)ϕu(st+1)
⊤

+ ϕu(st+1)ϕu(st)
⊤ϕu(st)ϕu(st)

⊤)
+ γ4(ϕu(st+1)ϕu(st)

⊤ϕu(st)ϕu(st+1)
⊤) | Ft

]
u

(i)
= u⊤E

[
∥ϕu(st)∥22

(
ϕu(st)ϕu(st)

⊤ − γ2
(
ϕu(st)ϕu(st+1)

⊤ + ϕu(st+1)ϕu(st)
⊤)︸ ︷︷ ︸

(II)

+ γ4ϕu(st+1)ϕu(st+1)
⊤) | Ft]u

(ii)

≤ (ϕumax)
2
u⊤E

[
ϕu(st)ϕu(st)

⊤ + γ2
(
ϕu(st)ϕu(st)

⊤ + ϕu(st+1)ϕu(st+1)
⊤)

+ γ4ϕu(st+1)ϕu(st+1)
⊤ | Ft

]
u

(iii)

≤ (ϕumax)
2
(
1 + 2γ2 + γ4

)
u⊤Gu, (44)

where G = E
[
ϕu(st)ϕu(st)

⊤
∣∣ Ft]. In the above, the inequality in (i) follows from ∥ϕu(st)∥22 =646

ϕu(st)
⊤ϕu(st); (ii) follows from bound on features (Assumption 3) and applying the inequality (40)647

to (II); and (44) follows by bound on features (Assumption 5).648
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The inequality in (44) follows by following equivalent forms of G:649

G = E
[
ϕu(st)ϕu(st)

⊤ ∣∣ Ft] = E
[
ϕu(st+1)ϕu(st+1)

⊤ ∣∣ Ft] = Eχ,P
[
ϕu(st)ϕu(st)

⊤]
= Eχ,P

[
ϕu(st+1)ϕu(st+1)

⊤] . (45)

The equivalences above hold from the i.i.d observation model (Assumption 5).650

We observe that scalars S3 and S4 in (37) are equal, i.e.,651

v⊤E
[
c⊤t bt

∣∣ Ft]u = u⊤E
[
b⊤
t ct

∣∣ Ft] v.
We establish upper bound for S3 in (37) as follows:652

v⊤E
[
c⊤t bt

]
u

= v⊤E
[
− 2γrtϕv(st+1)ϕu(st)

⊤ϕu(st)ϕu(st)
⊤

+ 2γ3rtϕv(st+1)ϕu(st)
⊤ϕu(st)ϕu(st+1)

⊤ | Ft
]
u

(i)
= ∥ϕu(st)∥22 v

⊤E[−2rtγ ϕv(st+1)ϕu(st)
⊤︸ ︷︷ ︸

(III)

+2rtγ
3 ϕv(st+1)ϕu(st+1)

⊤︸ ︷︷ ︸
(IV )

| Ft]u

(ii)

≤ (ϕumax)
2Rmaxv

⊤E
[
γ
(
ϕv(st+1)ϕv(st+1)

⊤ + ϕu(st)ϕu(st)
⊤)

+ γ3(ϕv(st+1)ϕv(st+1)
⊤ + ϕu(st+1)ϕu(st+1)

⊤) | Ft
]
u

≤(ϕumax)
2Rmaxv

⊤ (γ(B+G) + γ3(B+G)
)
u, (46)

where (i) follows from ∥ϕu(st)∥22 = ϕu(st)
⊤ϕu(st) ; (ii) follows from bounds on features and653

rewards (Assumptions 3 and 4) and applying the inequality below to the coefficients of γ (III) with654
(a = ϕv(st+1), b = ϕu(st)) and γ3 (IV) with (a = ϕv(st+1), b = ϕu(st+1)) respectively.655

−v⊤
(
aa⊤ + bb⊤

2

)
u ≤ v⊤

(
ab⊤

)
u ≤ v⊤

(
aa⊤ + bb⊤

2

)
u.

(46) follows by using values of matrices B (41) and G (45).656

Substituting (43)–(46) in (37), we determine the upper bound for T2 as follows:657

y⊤E
[
M⊤

t Mt

∣∣ Ft] y ≤
(
(ϕvmax)

2 (1 + γ)
2
+ 4γ2R2

max(ϕ
u
max)

2
)
v⊤Bv (47)

+ (ϕumax)
2
(
1 + γ2

)2
u⊤Gu

+ 2(ϕumax)
2Rmax(γ(1 + γ2))v⊤ (B+G)u.

Next, we state and prove a useful result to simplify (47) further.658

Lemma 7.2. For any y = (v, u)⊤ ∈ R2|S| and matrix B+G defined in (46), we have659

v⊤(B+G)u ≤
λmax(B+G)

2
∥y∥22 .

Proof. We have660

v⊤(B+G)u
(a)

≤ ∥v∥B+G ∥u∥B+G

(b)

≤
√
v⊤(B+G)v

√
u⊤(B+G)u

(c)

≤ λmax(B+G)

√
∥v∥22 ∥u∥

2
2
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(d)

≤ λmax(B+G)
∥v∥22 + ∥u∥22

2
(e)

≤
λmax(B+G)

2
∥y∥22 ,

where (a) follows by Cauchy-Schwarz inequality; (b) follows by definition of the weighted norm; (c)661
follows by Rayleigh quotient theorem for a symmetric real matrix Q, i.e., x⊤Qx ≤ λmax(Q) ∥x∥

2
2;662

(d) follows by AM-GM inequality; and (e) follows by definition of ∥y∥22 = ∥v∥22 + ∥u∥22.663

Substituting the upper bounds obtained for T1 (36) and T2 (47) in (35), we get664

E
[
y⊤ (I− βMt)

⊤
(I− βMt) y

∣∣∣ Ft] = ∥y∥22 − β y⊤E
[(
M⊤

t +Mt

)
|Ft
]
y︸ ︷︷ ︸

T1

+ β2 y⊤E
[
M⊤

t Mt

∣∣ Ft] y︸ ︷︷ ︸
T2

≤ ∥y∥22 − 2βµ ∥y∥22 + β2

((
(ϕvmax)

2 (1 + γ)
2
+ 4γ2R2

max(ϕ
u
max)

2
)
v⊤Bv

+ (ϕumax)
2
(
1 + γ2

)2
u⊤Gu+ 2(ϕumax)

2Rmax(γ(1 + γ2))v⊤ (B+G)u

)
(i)

≤ ∥y∥22 − 2βµ ∥y∥22 + β2

((
(ϕvmax)

2 (1 + γ)
2
+ 4γ2R2

max(ϕ
u
max)

2
)
λmax(B) ∥v∥

2
2

+ (ϕumax)
2
(
1 + γ2

)2
λmax(G) ∥u∥

2
2 + (ϕumax)

2Rmax(γ(1 + γ2))λmax(B+G) ∥y∥
2
2

)
≤ ∥y∥22 − 2βµ ∥y∥22 + β2

(
max

{(
(ϕvmax)

2 (1 + γ)
2
+ 4γ2R2

max(ϕ
u
max)

2
)
λmax(B),

(ϕumax)
2
(
1 + γ2

)2
λmax(G)

}
∥y∥22 + (ϕumax)

2Rmax(γ(1 + γ2))λmax(B+G) ∥y∥
2
2

)
≤ ∥y∥22 − β

(
2µ− β

(
max

{(
(ϕvmax)

2 (1 + γ)
2
+ 4γ2R2

max(ϕ
u
max)

2
)
λmax(B),

(ϕumax)
2
(
1 + γ2

)2
λmax(G)

}
+ (ϕumax)

2Rmax(γ(1 + γ2))λmax(B+G)

))
∥y∥22

(ii)

≤ ∥y∥22 − β

(
2µ− β

(
max

{
4(ϕvmax)

4+4γ2R2
max(ϕ

u
max)

2
(ϕvmax)

2, 4(ϕumax)
4
}

+ 2γRmax

(
(ϕvmax)

2(ϕumax)
2 + (ϕumax)

4
) ))

∥y∥22

≤ (1− βµ) ∥y∥22 , (48)

where (i) follows from Lemma 7.2 and using x⊤Qx ≤ λmax(Q) ∥x∥
2
2; (ii) follows using λmax(B) ≤665

(ϕvmax)
2, λmax(G) ≤ (ϕumax)

2, and λmax(B+G) ≤ (ϕvmax)
2 + (ϕumax)

2 as B,G are outer products of666
vectors ϕv(st) and ϕu(st) respectively; (48) follows by choosing β ≤ βmax.667

Re-writing (48) in norm form gives:668

E
[
y⊤ (I− βMt)

⊤
(I− βMt) y

∣∣∣ Ft] = E
[
∥(I− βMt)y∥2

∣∣∣ Ft] ≤ (1− βµ) ∥y∥22 . (49)

Taking square root on both sides of (49) yields the second claim669

E [∥(I− βMt)y∥ | Ft] ≤ (1− βµ)
1
2 ∥y∥2 ≤

(
1− βµ

2

)
∥y∥2 , (50)
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where (50) follows by using the inequality (1− x)
1
2 ≤ 1− x

2 , for x ≥ 0 with x = βµ.670

Now, we bound the bias term as follows:671

zbias
t = E

[∥∥Ct:0z0
∥∥2]

= E
[
E
[(
Ct−1:0zbias

t−1

)⊤
(I− βMt)

⊤
(I− βMt)

(
Ct−1:0zbias

t−1

)
|Ft
]]

(i)

≤ (1− βµ)E
[∥∥Ct−1:0zbias

t−1

∥∥2]
≤ (1− βµ)

t E
[
∥z0∥2

]
(51)

≤ exp (−βµt)E
[
∥z0∥2

]
, (52)

where (i) follows by Lemma 7.1; (51) follows by unrolling the recursion and using Lemma 7.1672
repetitively; and (52) follows by using the inequality below673

(1− βµ)t = exp(t log(1− βµ)) ≤ exp(−βµt).

674
Step 3: Bounding the variance term For the variance bound, we require an upper bound for675
∥ht(w̄)∥2, which we derive below.676

∥ht(w̄)∥2 = ∥rtϕ(st)−Mtw̄∥2

(a)

≤ 2 ∥rtϕ(st)∥2 + 2 ∥Mtw̄∥22
(b)

≤ 2R2
max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)
+ 2 ∥Mt∥2 ∥w̄∥22

(c)

≤ 2R2
max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)
+ 2((ϕvmax)

4 (1 + γ)
2
+ (ϕumax)

4
(
1 + γ2

)2
+ 4γ2R2

max(ϕ
v
max)

2(ϕumax)
2) ∥w̄∥22

= σ2, (53)

where (a) follows using ∥a+ b∥2 ≤ 2 ∥a∥2+2 ∥b∥2; (b) follows by bounds on features and rewards677
(Assumptions 3 and 4); and (c) follows by expanding the upper bound on ∥Mt∥2.678

Next, we bound the variance term in (31) as follows:679

zvariance
t = E

∥∥∥∥∥
t∑

k=0

Ct:k+1hk(w̄)

∥∥∥∥∥
2

2


(a)

≤
t∑

k=0

E
[∥∥Ct:k+1hk(w̄)

∥∥2
2

]
(b)

≤
t∑

k=0

E
[∥∥Ct:k+1

∥∥2 ∥hk(w̄)∥2]
(c)

≤ σ2
t∑

k=0

E
[∥∥Ct:k+1

∥∥2
2

]
(d)

≤ σ2
t∑

k=0

E
[
E
[∥∥Ct:k+1

∥∥2
2

∣∣∣ Ft]]
(e)

≤ σ2
t∑

k=0

E
[
E
[∥∥(I− βMt)C

t−1:k+1
∥∥2
2

∣∣∣ Ft]]
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(f)

≤ σ2
t∑

k=0

E
[
E
[
∥(I− βMt)∥2

∣∣∣ Ft] ∥∥Ct−1:k+1
∥∥2
2

]
(g)

≤ σ2
t∑

k=0

(1− βµ)E
[∥∥Ct−1:k+1

∥∥2
2

]
(h)

≤ σ2
t∑

k=0

(1− βµ)
t−k

(i)

≤ σ2

βµ
, (54)

where (a) follows by triangle inequality and linearity of expectations; (b) follows by using the in-680
equality ∥Ax∥ ≤ ∥A∥ ∥x∥; (c) follows by a bound on ∥hk(w̄)∥2 in (53); (d) follows by the tower681
property of conditional expectations; (e) follows by unrolling the product of matrices Ct:k+1 by682
one factor; (f) follows by using the inequality ∥AB∥ ≤ ∥A∥ ∥B∥; (g) follows by Lemma 7.1; (h)683
follows by unrolling the the product of matrices; and (i) follows by computing the upper bound for684
the finite geometric series.685

Step 4: Clinching argument686

The main claim follows by combining the bounds on the bias (52) and variance (54) terms in (31)687
as follows:688

E[∥zt+1∥2] ≤ 2zbias
t + 2β2zvariance

t

≤ 2 exp (−βµt)E
[
∥z0∥2

]
+

2βσ2

µ
.

689

8 Proof of Theorem 3.2690

Proof.691
Step 1: Bias-variance decomposition for tail averaging692

The tail averaged error when starting at k + 1, at time t is given by693

zk+1:t =
1

N

k+N∑
i=k+1

zi =
1

t− k

t∑
i=k+1

zi.

By taking expectations, ∥zk+1:t∥2 can be expressed as:694

E
[
∥zk+1:t∥22

]
=

1

N2

k+N∑
i,j=k+1

E
[
z⊤i zj

]
(a)

≤ 1

N2

( k+N∑
i=k+1

E
[
∥zi∥22

]
+ 2

k+N−1∑
i=k+1

k+N∑
j=i+1

E
[
z⊤i zj

])
, (55)

where (a) follows from isolating the diagonal and off-diagonal terms.695

Next, we state and prove a result that bounds the second term in (55).696

Lemma 8.1. For all i ≥ 1, we have697

k+N−1∑
i=k+1

k+N∑
j=i+1

E
[
z⊤i zj

]
≤ 2

βµ

k+N∑
i=k+1

E
[
∥zi∥22

]
. (56)
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Proof.

k+N−1∑
i=k+1

k+N∑
j=i+1

E
[
z⊤i zj

] (a)
=

k+N−1∑
i=k+1

k+N∑
j=i+1

E

[
z⊤i (C

j:i+1zi + β

j−i−1∑
l=i+1

Cj:l+1hl(w̄))

]

(b)
=

k+N−1∑
i=k+1

k+N∑
j=i+1

E
[
z⊤i C

j:i+1zi
]

(c)

≤
k+N−1∑
i=k+1

k+N∑
j=i+1

E
[
∥zi∥E

[
∥Cj:i+1zi∥

∣∣ Fj]]
(d)

≤
k+N−1∑
i=k+1

k+N∑
j=i+1

(
1− βµ

2

)j−i
E
[
∥zi∥22

]

≤
k+N∑
i=k+1

E
[
∥zi∥22

] ∞∑
j=i+1

(
1− βµ

2

)j−i
(e)

≤ 2

βµ

k+N∑
i=k+1

E
[
∥zi∥22

]
,

where (a) follows by expanding zj using (31); (b) follows from the observation that698

E[ht(w̄) | Ft] = E[rtϕt −Mtw̄ | Ft] = ξ −Mw̄ = 0;

(c) follows by using Cauchy-Schwarz inequality and tower property of expectations; (d) follows699
from a repetitive application of Lemma 7.1; and (e) follows by computing the limit of the infinite700
geometric series.701

Substituting the result of Lemma 8.1 in (55), we obtain702

E
[
∥zk+1:t∥22

]
≤ 1

N2

(
k+N∑
i=k+1

E
[
∥zi∥22

]
+

4

βµ

k+N∑
i=k+1

E
[
∥zi∥22

])

=
1

N2

(
1 +

4

βµ

) k+N∑
i=k+1

E
[
∥zi∥22

]
(a)

≤ 2

N2

(
1 +

4

βµ

) k+N∑
i=k+1

zbiasi︸ ︷︷ ︸
zbiask+1,N

+
2

N2

(
1 +

4

βµ

)
β2

k+N∑
i=k+1

zvariancei︸ ︷︷ ︸
zvariancek+1:t

, (57)

where (a) follows from the bias-variance decomposition of E[∥zi∥22] in (31).703

704
Step 2: Bounding the bias705

First term, zbiask+1:t in (57) is bounded as follows:706

zbiask+1:t ≤
2

N2

(
1 +

4

βµ

) ∞∑
i=k+1

zbiasi

(a)

≤ 2

N2

(
1 +

4

βµ

) ∞∑
i=k+1

(1− βµ)iE
[
∥z0∥22

]
(b)
=

2E
[
∥z0∥22

]
βµN2

(1− βµ)
k+1

(
1 +

4

βµ

)
,
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where (a) follows from (51), which provides a bound on zbiasi ; (b) follows from the bound on the707
summation of a geometric series.708

Step 4: Bounding the variance709

Next, the second term zvariancek+1:t in (57) is bounded as follows:710

zvariancek+1:t

(a)

≤ 2β2

N2

(
1 +

4

βµ

) k+N∑
i=k+1

σ2

βµ

≤ 2β2

N2

(
1 +

4

βµ

) N∑
i=0

σ2

βµ

=

(
1 +

4

βµ

)
2βσ2

µN
,

where (a) follows from (54), which provides a bound on zvariancei .711

Step 5: Clinching argument712

Finally substituting the bounds on zbiask+1:t and zvariancek+1:t in (57), we get713

E[∥zk+1:t∥22] ≤
(
1 +

4

βµ

)(
2

βµN2
(1− βµ)k+1E[∥z0∥22] +

2βσ2

µN

)
,

(a)

≤
(
1 +

4

βµ

)(
2 exp(−kβµ)

βµN2
E[∥z0∥22] +

2βσ2

µN

)
(b)

≤ 10 exp(−kβµ)
β2µ2N2

E
[
∥z0∥22

]
+

10σ2

µ2N
,

where (a) follows from (1 + x)y = exp(y log(1 + x)) ≤ exp(xy); (b) uses βµ < 1 as β ≤ βmax714
defined in Theorem 3.1, which implies that 1 + 4

βµ ≤ 5
βµ .715

9 Proof of Theorem 3.3716

For proving Theorem 3.3, we first establish an upper bound on the mean squared error (MSE) of the717
difference between the tail-averaged TD iterate and the regularized TD fixed point. The result below718
provides this bound, which we subsequently use to prove Theorem 3.3.719

Theorem 9.1. Suppose Assumptions 1 to 4 hold. Let w̌k+1:t = 1
N

∑k+N
i=k+1 w̌i denote the tail-720

averaged regularized iterate with N = t− k. Suppose the step size β̌ satisfies721

β̌ ≤β̌max =
ζ

č
, where

č = ζ2 + 2ζ
(
(ϕvmax)

4(1 + γ)2 + (ϕumax)
4(1 + γ2)2 + 4γ2R2

max(ϕ
v
max)

2(ϕumax)
2
) 1

2

+max
{
4(ϕvmax)

4+4γ2R2
max(ϕ

u
max)

2
(ϕvmax)

2, 4(ϕumax)
4
}

+ 2γRmax((ϕ
v
max)

2(ϕumax)
2 + (ϕumax)

4).

Then,722

E
[
∥w̌k+1:t − w̄reg∥22

]
≤

10 exp
(
−kβ̌(2µ+ ζ)

)
β̌2 (2µ+ ζ)

2
N2

E
[
∥w̌0 − w̄reg∥22

]
+

10σ̌2

(2µ+ ζ)2N
, (58)

where N = t− k, µ = λmin(
M⊤+M

2 ), and723

σ̌2=2R2
max

(
(ϕvmax)

2+R2
max(ϕ

u
max)

2
)
+4
(
ζ2 + (ϕvmax)

4 (1+γ)
2
+(ϕumax)

4
(
1+γ2

)2
+4γ2R2

max(ϕ
v
max)

2(ϕumax)
2
)
∥w̄reg∥22 (59)
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Proof. Our proof incorporates techniques from Patil et al. (2024). However, as described earlier, the724
analysis of mean-variance TD involves additional cross-terms, which necessitate significant devia-725
tions in the proof.726
Step 1: Bias-variance decomposition with regularization727

For regularized TD, we solve the following linear system:728

−(M+ ζI)w̄reg + ξ = 0, (60)

The corresponding TD updates in Algorithm 1 to solve (60) would be:729

vt+1 = (I− β̌ζ)vt + β̌ δ̌t ϕv(st), (61)

ut+1 = (I− β̌ζ)ut + β̌ ϵ̌t ϕu(st),

where δ̌t, ϵ̌t are defined as730

δ̌t =r(st, at) + γv̌⊤t ϕv(st+1)− v̌⊤t ϕv(st) (62)

ϵ̌t =r(st, at)
2 + 2γr(st, at) v̌

⊤
t ϕv(st+1) + γ2ǔ⊤t ϕu(st+1)− ǔ⊤t ϕu(st).

We rewrite the updates in the alternative form as:731

w̌t+1 = w̌t + β̌(rtϕt − (ζI+Mt)w̌t), (63)

where Mt, rt, ϕt are defined in (8).732

Letting ȟt(wt) = rtϕt − (ζI+Mt)w̌t, we have733

w̌t+1 = w̌t + β̌ȟt(w̌t). (64)

As in the case of ‘vanilla’ mean-variance TD, we arrive at a one-step recursion for the centered error734
žt+1 = w̌t+1 − w̄reg as follows:735

žt+1 = w̌t − w̄reg + β̌(rtϕt −Mtw̌t) + β̌(ζI+Mt)w̄reg − β̌(ζI+Mt)w̄reg

= (I− β̌(ζI+Mt))(wt − w̄reg) + β̌(rtϕt − (ζI+Mt)w̄reg)

= (I− β̌(ζI+Mt))zt + β̌ȟt(w̄reg). (65)

Unrolling the equation above, we obtain736

žt+1 = Čt:0ž0 + β̌

t∑
k=0

Čt:k+1ȟk(w̄reg), (66)

where737

Či:j =

{
(I− β̌(ζI+Mi))(I− β̌(ζI+Mi−1)) . . . (I− β̌(ζI+Mj)) if i ≥ j

I otherwise.

Taking expectations and using ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, we obtain,738

E
[
∥žt+1∥2

]
≤ 2E

(∥∥Čt:0ž0
∥∥2)+ 2β̌2E

∥∥∥∥∥
t∑

k=0

Čt:k+1ȟk(w̄reg)

∥∥∥∥∥
2
 , (67)

≤ 2žbias
t + 2β̌2žvariance

t ,

where žbias
t = E

[∥∥Čt:0ž0
∥∥2] and žvariance

t = E
[∥∥∥∑t

k=0 Č
t:k+1ȟk(w̄reg)

∥∥∥2].739

740
Step 2: Bounding the bias term741

Before we bound the bias term, we first state and prove some useful lemmas.742
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Lemma 9.2.

∥M∥ ≤
(
(ϕvmax)

4(1 + γ)2 + (ϕumax)
4(1 + γ2)2 + 4γ2R2

max(ϕ
v
max)

2(ϕumax)
2
) 1

2 .

Proof. Recall that M = E[Mt | Ft] where743

Mt ≜

(
at o
ct bt

)
with at ≜ ϕv(st)ϕv(st)

⊤ − γϕv(st)ϕv(st+1)
⊤,

bt ≜ ϕu(st)ϕu(st)
⊤ − γ2ϕu(st)ϕu(st+1)

⊤,

ct ≜ −2γrtϕu(st)ϕv(st+1)
⊤.

We bound the norm of the matrices at,bt, ct using bound on features and rewards (Assumptions 3744
and 4) as:745

∥at∥ ≤ (1 + γ)(ϕvmax)
2, ∥bt∥ ≤ (1 + γ2)(ϕumax)

2, ∥ct∥ ≤ 2γRmaxϕ
v
maxϕ

u
max. (68)

Next, we derive the result as follows:746

∥M∥ = ∥E[Mt | Ft]∥
(i)

≤ E[∥Mt∥ | Ft]
(ii)

≤
∥∥∥∥( (1 + γ)(ϕvmax)

2 0
2γRmaxϕ

v
maxϕ

u
max (1 + γ2)(ϕumax)

2

)∥∥∥∥
F

(iii)

≤
(
(ϕvmax)

4(1 + γ)2 + (ϕumax)
4(1 + γ2)2 + 4γ2R2

max(ϕ
v
max)

2(ϕumax)
2
) 1

2 ,

where (i) follows by Jensen’s inequality, (ii) follows by (68), and (iii) follows by expanding the747
Frobenius norm.748

749

Lemma 9.3. For any y̌ ∈ R2q measurable w.r.t Ft and β̌ ≤ β̌max as in Theorem 9.1. The following750
holds:751

E
[
y̌(I− β̌(ζI+Mt))

⊤(I− β̌(ζI+Mt))y̌
∣∣ Ft] ≤ (1− β̌(2µ+ ζ)

)
∥y̌∥22 ,

E
[∥∥(I− β̌(ζI+Mt))y̌

∥∥
2

∣∣ Ft] ≤ (1− β̌(2µ+ ζ)

2

)
∥y̌∥2 .

Proof. Notice that752

E
[
y̌⊤(I− β̌(ζI+Mt))

⊤(I− β̌(ζI+Mt))y̌
∣∣ Ft]

= E
[
y̌⊤(I− 2β̌ζI− β̌(Mt +M⊤

t )) + β̌2(ζ2I+ ζ(Mt +M⊤
t ) +M⊤

t Mt)y̌
∣∣ Ft]

= E
[
y̌⊤y̌

∣∣ Ft]− β̌E
[
y̌⊤2ζIy̌

∣∣ Ft]− β̌ y̌⊤E
[
M⊤

t +Mt

∣∣ Ft] y̌︸ ︷︷ ︸
Term 1

+ β̌2 y̌⊤E
[
M⊤

t Mt

∣∣ Ft] y̌︸ ︷︷ ︸
Term 2

+β̌2ζ y̌⊤E
[
Mt +M⊤

t

∣∣ Ft] y̌︸ ︷︷ ︸
Term 3

+β̌2E
[
y̌⊤ζ2Iy̌

∣∣ Ft] . (69)

We bound Term 1 in (69) as follows:753

y̌⊤E
[
M⊤

t +Mt

∣∣ Ft] y̌ = y̌⊤(M⊤ +M)y̌
(i)

≥ 2µ ∥y̌∥22 , (70)

where (i) follows from the fact that Assumption 2 implies M+M⊤ has a minimum positive eigen-754
value µ = λmin(

M⊤+M
2 ).755

We bound Term 2 in (69) using the bound for T2 in (47) as follows:756

y̌⊤E[M⊤
t Mt | Ft]y̌
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≤
(
(ϕvmax)

2 (1 + γ)
2
+ 4γ2R2

max(ϕ
u
max)

2
)
v̌⊤Bv̌

+ (ϕumax)
2
(
1 + γ2

)2
ǔ⊤Gǔ+ 2(ϕumax)

2Rmax(γ(1 + γ2))v̌⊤ (B+G) ǔ.

We bound Term 3 in (69) as follows:757

y̌⊤E[Mt +M⊤
t | Ft]y̌ ≤

∥∥E[Mt +M⊤
t | Ft]

∥∥ ∥y̌∥2 ≤
∥∥M+M⊤∥∥ ∥y̌∥2

(i)

≤ 2
(
(ϕvmax)

4(1 + γ)2 + (ϕumax)
4(1 + γ2)2 + 4γ2R2

max(ϕ
v
max)

2(ϕumax)
2
) 1

2 ∥y̌∥2 ,

where (i) follows by Lemma 9.2.758

Substituting the bounds for Terms 1–3 in (69), we obtain759

E[y̌⊤(I− β̌(ζI+Mt))
⊤(I− β̌(ζI+Mt))y̌ | Ft]

≤ E[y̌⊤y̌|Ft]− β̌E[y̌⊤2ζIy̌ | Ft]− β̌2µ ∥y̌∥2

+ β̌2
((

(ϕvmax)
2 (1 + γ)

2
+ 4γ2R2

max(ϕ
u
max)

2)
v̌⊤Bv̌

+ (ϕumax)
2
(
1 + γ2

)2
ǔ⊤Gǔ+ 2(ϕumax)

2Rmax(γ(1 + γ2))v̌⊤ (B+G) ǔ
)

+ β̌2
(
2
(
(ϕvmax)

4(1 + γ)2 + (ϕumax)
4(1 + γ2)2 + 4γ2R2

max(ϕ
v
max)

2(ϕumax)
2
) 1

2 ∥y̌∥2
)

+ β̌2E[y̌⊤ζ2Iy̌ | Ft].
(i)

≤ ∥y̌∥22 (1− 2β̌(µ+ ζ)) + β̌2
((

(ϕvmax)
2 (1 + γ)

2
+ 4γ2R2

max(ϕ
u
max)

2)
λmax(B) ∥v̌∥

2
2

+ (ϕumax)
2
(
1 + γ2

)2
λmax(G) ∥ǔ∥

2
2 + (ϕumax)

2Rmax(γ(1 + γ2))λmax(B+G) ∥y̌∥
2
2

+ 2ζ
(
(ϕvmax)

4(1 + γ)2 + (ϕumax)
4(1 + γ2)2

+ 4γ2R2
max(ϕ

v
max)

2(ϕumax)
2
) 1

2 ∥y̌∥2 + ζ2 ∥y̌∥22
)

≤
(
1− β̌

(
2µ+ 2ζ − β̌

(
max

{(
(ϕvmax)

2 (1 + γ)
2
+ 4γ2R2

max(ϕ
u
max)

2)
λmax(B),

(ϕumax)
2
(
1 + γ2

)2
λmax(G)

}
+ (ϕumax)

2Rmax(γ(1 + γ2))λmax(B+G)

+ ζ2 + 2ζ
(
(ϕvmax)

4(1 + γ)2 + (ϕumax)
4(1 + γ2)2

+ 4γ2R2
max(ϕ

v
max)

2(ϕumax)
2
) 1

2
)))

∥y̌∥22

≤
(
1−β̌

(
2µ+ 2ζ−β̌

(
max

{
4(ϕvmax)

4+4γ2R2
max(ϕ

u
max)

2
(ϕvmax)

2, 4(ϕumax)
4
}

+ 2γRmax

(
(ϕvmax)

2(ϕumax)
2+(ϕumax)

4
)

+ ζ2 + 2ζ
(
(ϕvmax)

4(1 + γ)2 + (ϕumax)
4(1 + γ2)2

+ 4γ2R2
max(ϕ

v
max)

2(ϕumax)
2
) 1

2

)))
∥y̌∥22

(ii)

≤ (1− β̌(2µ+ ζ)) ∥y̌∥22 , (71)

where (i) follows from Lemma 7.2 and using x⊤Qx ≤ λmax(Q) ∥x∥
2
2, and (ii) follows by choosing760

β̌ ≤ β̌max.761

Taking square root on both sides of (71) leads to762

E
[∥∥(I− β̌(ζI+Mt))y̌

∥∥ ∣∣ Ft] ≤ (1− β̌(2µ+ ζ))
1
2 ∥y̌∥2

(i)

≤
(
1− β̌(2µ+ ζ)

2

)
∥y̌∥2 , (72)
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where (i) follows by using the inequality (1− x)
1
2 ≤ 1− x

2 , for x ≥ 0 with x = β̌(2µ+ ζ).763

Now, we bound the bias term in (67) as follows:764

žbias
t = E

[∥∥Čt:0ž0
∥∥2]

= E
[
E
[(
Čt−1:0žbias

t−1

)⊤
(I− β̌(ζI+Mt))

⊤(I− β̌(ζI+Mt))(Č
t−1:0žbias

t−1)
] ∣∣∣ Ft]

(i)

≤
(
1− β̌(2µ+ ζ)

)
E
[∥∥Čt−1:0žbias

t−1

∥∥2]
(ii)

≤
(
1− β̌(2µ+ ζ)

)t E [∥ž0∥2] (73)

(iii)

≤ exp
(
−β̌(2µ+ ζ)t

)
E
[
∥ž0∥2

]
, (74)

where (i) follows by Lemma 9.3, (ii) follows by unrolling the recursion and using Lemma 9.3 repet-765
itively, and (iii) follows by using the inequality766

(1− β(2µ+ ζ))t = exp(t log(1− β(2µ+ ζ)) ≤ exp(−β(2µ+ ζ)t).

Step 3: Bounding the variance term767

Before we find an upper bound for the variance term, we upper bound on ∥ht(w̄reg)∥2 as follows:768 ∥∥ȟt(w̄reg)
∥∥2 = ∥rtϕ(st)− (ζI+Mt)w̄reg∥2

(a)

≤ 2 ∥rtϕ(st)∥2 + 2 ∥(ζI+Mt)w̄reg∥22
(b)

≤ 2R2
max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)
+ 2 ∥ζI+Mt∥2 ∥w̄reg∥22

(c)

≤ 2R2
max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)
+ 4
(
ζ2 + (ϕvmax)

4 (1 + γ)
2

+ (ϕumax)
4
(
1 + γ2

)2
+ 4γ2R2

max(ϕ
v
max)

2(ϕumax)
2
)
∥w̄reg∥22 (75)

= σ̌2, (76)

where (a) follows using ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2, (b) follows using bound on features, rewards769
(Assumptions 3 and 4), and (c) follows by bound on M (Lemma 9.2) and using the inequality770
∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2.771

Next, we bound the variance term in (67) as follows:772

žvariance
t = E

∥∥∥∥∥
t∑

k=0

Čt:k+1ȟk(w̄reg)

∥∥∥∥∥
2

2


(a)

≤
t∑

k=0

E
[∥∥Čt:k+1ȟk(w̄reg)

∥∥2
2

]
(b)

≤
t∑

k=0

E
[∥∥Čt:k+1

∥∥2 ∥∥ȟk(w̄reg)
∥∥2]

(c)

≤ σ̌2
t∑

k=0

E
[∥∥Čt:k+1

∥∥2
2

]
(d)

≤ σ̌2
t∑

k=0

E
[
E
[∥∥Čt:k+1

∥∥2
2
|Ft
]]
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(e)

≤ σ̌2
t∑

k=0

E
[
E
[∥∥(I− β̌(ζI+Mt))Č

t−1:k+1
∥∥2
2
|Ft
]]

(f)

≤ σ̌2
t∑

k=0

E
[
E
[∥∥I− β̌(ζI+Mt)

∥∥2 |Ft] ∥∥Čt−1:k+1
∥∥2
2

]
(g)

≤ σ̌2
t∑

k=0

(1− β̌(2µ+ ζ))E
[∥∥Čt−1:k+1

∥∥2
2

]
(h)

≤ σ̌2
t∑

k=0

(1− β̌(2µ+ ζ))t−k

(i)

≤ σ̌2

β̌(2µ+ ζ)
, (77)

where (a) follows by triangle inequality and linearity of expectations; (b) follows by using the in-773

equality ∥Ax∥ ≤ ∥A∥ ∥x∥; (c) follows by a bound on
∥∥ȟk(w̄reg)

∥∥2, (d) follows by the tower774
property of conditional expectations; (e) follows by unrolling the product of matrices Čt:k+1 by775
one-time step; (f) follows by using the inequality ∥AB∥ ≤ ∥A∥ ∥B∥; (g) follows by Lemma 9.3;776
(h) follows by unrolling the product of matrices; and (i) follows by computing the upper bound for777
the finite geometric series.778

779
Step 4: Tail Averaging Using the parallel arguments from Section 8, we derive the bounds for780
tail-averaged error bounds for bias and variance terms as follows:781

782
4 (a) Bias-variance decomposition for tail averaging783

The tail averaged error when starting at k + 1, at time t is given by784

žk+1:t =
1

N

k+N∑
i=k+1

ži.

By taking expectations, ∥žk+1:t∥2 can be expressed as:785

E
[
∥žk+1:t∥22

]
=

1

N2

k+N∑
i,j=k+1

E
[
ž⊤i žj

]
(a)

≤ 1

N2

( k+N∑
i=k+1

E
[
∥ži∥22

]
+ 2

k+N−1∑
i=k+1

k+N∑
j=i+1

E
[
ž⊤i žj

])
, (78)

where (a) follows from isolating the diagonal and off-diagonal terms.786

Next, we state and prove Lemma 9.4 to bound the second term in terms of the first term in (78).787

Lemma 9.4. For all i ≥ 1, we have788

k+N−1∑
i=k+1

k+N∑
j=i+1

E
[
ž⊤i žj

]
≤ 2

β̌(2µ+ ζ)

k+N∑
i=k+1

E
[
∥ži∥22

]
. (79)

Proof.

k+N−1∑
i=k+1

k+N∑
j=i+1

E
[
ž⊤i žj

] (a)
=

k+N−1∑
i=k+1

k+N∑
j=i+1

E

[
ž⊤i (Č

j:i+1ži + β̌

j−i−1∑
l=i+1

Čj:l+1ȟl(w̄reg))

]
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(b)
=

k+N−1∑
i=k+1

k+N∑
j=i+1

E
[
ž⊤i Č

j:i+1zi
]

(c)

≤
k+N−1∑
i=k+1

k+N∑
j=i+1

E
[
∥ži∥E[

∥∥Čj:i+1ži
∥∥ |Fj ]]

(d)

≤
k+N−1∑
i=k+1

k+N∑
j=i+1

(
1− β̌(2µ+ ζ)

2

)j−i
E
[
∥ži∥22

]

≤
k+N∑
i=k+1

E
[
∥ži∥22

] ∞∑
j=i+1

(
1− β̌(2µ+ ζ)

2

)j−i
(e)

≤ 2

β̌(2µ+ ζ)

k+N∑
i=k+1

E
[
∥ži∥22

]
,

where (a) follows by expanding zj using (66), (b) follows from the observation that789

E[ȟt(w̄reg) | Ft] = E[rtϕt − (ζI+Mt)w̄reg | Ft] = ξ − (M+ ζI)w̄reg = 0,

(c) follows by using Cauchy-Schwarz inequality and tower property of expectations, (d) follows790
from a repetitive application of Lemma 9.3, and (e) follows by computing the limit of the infinite791
geometric series.792

Substituting the result of Lemma 9.4 in (78), we obtain793

E
[
∥žk+1:t∥22

]
≤ 1

N2

(
k+N∑
i=k+1

E
[
∥ži∥22

]
+

4

β̌(2µ+ ζ)

k+N∑
i=k+1

E
[
∥ži∥22

])

=
1

N2

(
1 +

4

β̌(2µ+ ζ)

) k+N∑
i=k+1

E
[
∥ži∥22

]
(a)

≤ 2

N2

(
1 +

4

β(2µ+ ζ)

) k+N∑
i=k+1

žbiasi︸ ︷︷ ︸
žbiask+1,N

+
2

N2

(
1 +

4

β(2µ+ ζ)

)
β̌2

k+N∑
i=k+1

žvariancei︸ ︷︷ ︸
žvariancek+1:t

, (80)

where (a) follows from (67).794

795
4 (b) Bounding the bias term796

First term, žbiask+1:tin (80) is bounded as follows:797

žbiask+1:t ≤
2

N2

(
1 +

4

β̌(2µ+ ζ)

) ∞∑
i=k+1

žbiasi

(a)

≤ 2

N2

(
1 +

4

β̌(2µ+ ζ)

) ∞∑
i=k+1

(1− β̌(2µ+ ζ))iE
[
∥ž0∥22

]
(b)
=

2E
[
∥ž0∥22

]
β̌(2µ+ ζ)N2

(
1− β̌(2µ+ ζ)

)k+1
(
1 +

4

β̌(2µ+ ζ)

)
,

where (a) follows from (73), which provides a bound on žbiasi and (b) follows from the bound on the798
summation of a geometric series.799

4 (c) Bounding the variance term800
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Next, the second term zvariancek+1:t in (80) is bounded as follows:801

žvariancek+1:t

(a)

≤ 2β̌2

N2

(
1 +

4

β̌(2µ+ ζ)

) k+N∑
i=k+1

σ̌2

β̌(2µ+ ζ)

≤ 2β̌2

N2

(
1 +

4

β̌(2µ+ ζ)

) N∑
i=0

σ̌2

β̌(2µ+ ζ)

=

(
1 +

4

β̌(2µ+ ζ)

)
2β̌σ̌2

(2µ+ ζ)N
,

where (a) follows from (77), which provides a bound on žvariancei .802

Step 5: Clinching argument803

Finally substituting the bounds on žbiask+1:t and žvariancek+1:t in (80), we get804

E[∥žk+1:t∥22]

≤
(
1 +

4

β̌(2µ+ ζ)

)(
2

β̌(2µ+ ζ)N2
(1− β̌(2µ+ ζ))k+1E[∥ž0∥22] +

2β̌σ̌2

(2µ+ ζ)N

)
,

(a)

≤
(
1 +

4

β̌(2µ+ ζ)

)(
2 exp(−kβ̌(2µ+ ζ))

β̌(2µ+ ζ)N2
E[∥z0∥22] +

2β̌σ̌2

(2µ+ ζ)N

)
(b)

≤ 10 exp(−kβ̌(2µ+ ζ))

β̌2(2µ+ ζ)2N2
E
[
∥ž0∥22

]
+

10σ̌2

β̌(2µ+ ζ)2N
, (81)

where (a) follows from (1 + x)y = exp(y log(1 + x)) ≤ exp(xy), and (b) uses β̌(2µ+ ζ) < 1 as805
β̌ ≤ β̌max defined in Theorem 9.1, which implies that806

1 +
4

β̌(2µ+ ζ)
≤ 5

β̌(2µ+ ζ)
.

807

Proof of Theorem 3.3808

The proof of Theorem 3.3 builds on Theorem 9.1 and a bound on ∥w̌k+1:t − w̄reg∥22, incorporating809
techniques from (Patil et al., 2024, Corollary 1,2).810

Proof. Notice that811

E
[
∥w̌k+1:t − w̄∥22

] (i)

≤ 2 ∥w̄reg − w̄∥22︸ ︷︷ ︸
Term 1

+2E
[
∥w̌k+1:t − w̄reg∥22

]
︸ ︷︷ ︸

Term 2

, (82)

where (i) follows by using ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2.812

We bound Term 1 below.813

∥w̄ − w̄reg∥22 =
∥∥M−1ξ − (M+ ζI)−1ξ

∥∥2
2

(a)

≤
∥∥M−1 − (M+ ζI)−1

∥∥2
2
∥ξ∥22

=
∥∥M−1(M+ ζI−M)(M+ ζI)−1

∥∥2
2
∥ξ∥22

≤
∥∥M−1

∥∥2
2
ζ2
∥∥(M+ ζI)−1

∥∥2
2
∥ξ∥22
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(b)

≤
ζ2(R2

max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)
)

ι2(ζ + ι)2
, (83)

where (a) follows from ∥AB∥ ≤ ∥A∥ ∥B∥, and (b) follows from the fact that814 ∥∥M−1
∥∥ = 1/ιmin(M), where ι = ιmin(M) is the minimum singular value of M.815

We observe that (81) bounds Term 2. Using this bound and (83) in (82), we obtain816

E
[
∥w̌k+1:t − w̄∥22

]
≤ 20 exp(−kβ̌(2µ+ ζ))

β̌2(2µ+ ζ)2N2
E
[
∥ž0∥22

]
+

20σ̌2

β̌(2µ+ ζ)2N

+
ζ2(R2

max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)
)

ι2(ζ + ι)2
. (84)

For ζ = 1√
N

, we obtain817

E
[
∥w̌k+1:t − w̄∥22

]
≤ 20 exp (−kβ̌(2µ+ (N)−1/2))

β̌2(2µ+ ζ)2N2
E
[
∥w̌0 − w̄reg∥22

]
+
20σ̌2

µ2N

+
2(R2

max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)
)

ι2N
. (85)

818

10 High Probability Bounds for Mean-Variance TD819

For the high probability bound, we consider the following update rule and assumption:820

wt+1 = Γ(wt + βht(wt)), (86)

where Γ projects on to the set C ≜ {w ∈ R2q | ∥w∥2 ≤ H}.821

Assumption 9. The projection radius H of the set C satisfies H >
∥ξ∥2

µ , where µ = λmin(
M⊤+M

2 )822
and ξ is as defined in (6).823

Under the additional projection-related assumption above, we state and prove a high probability824
bound for the tail-averaged variant of Algorithm 1 in the next section. Subsequently, we analyze the825
regularized mean-variance TD variant to derive high-probability bounds.826

10.1 Bounds for vanilla (un-regularized) mean-variance TD827

Theorem 10.1. Suppose Assumptions 1 to 6 hold. Run Algorithm 1 for t iterations with step size β828
as defined in Theorem 3.2. Then, for any δ ∈ (0, 1], we have the following bound for the projected829
tail-averaged iterate wk+1:t with N = t− k:830

P
(
∥wk+1:t−w̄∥2 ≤ 2τ

µ
√
N

√
log

(
1

δ

)
+
4 exp (−kβµ)

βµN
E [∥w0 − w̄∥2]+

4τ

µ
√
N

)
≥1−δ,

where w0, w̄, β are defined as in Theorem 3.1, and831

τ =
(
2R2

max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)
+ 2
(
(ϕvmax)

4 (1 + γ)
2
+ (ϕumax)

4
(
1 + γ2

)2
+ 4γ2R2

max(ϕ
v
max)

2(ϕumax)
2
)
H2
) 1

2 .

The proof follows a similar structure to Patil et al. (2024, Theorem 2) and Prashanth et al. (2021,832
Proposition 8.3), with necessary adaptations to account for our setting.833
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Proof. A martingale difference decomposition of ∥zk+1,N∥2 − E[∥zk+1:t∥2] is as follows:834

∥zk+1,N∥2 − E [∥zk+1:t∥2] =
k+N∑
i=k+1

(gi − gi−1) =

k+N∑
i=k+1

Di, (87)

where zk+1:t denotes tail-averaged iterate error,835

Di ≜ gi − E [gi | Gi−1] , gi ≜ E[∥zk+1:t∥2 | Gi], and

Gi denotes the sigma-field generated by random variables {wt, t ≤ i} for t, i ∈ Z+.836

Let hi(w) ≜ riϕi−Miw denote random innovation at time i for wi = w. If we show that functions837
gi are Li Lipschitz continuous in the random innovation hi at time i, then we can see that the838
martingale difference Di is a Li Lipschitz function of the ith random innovation.839

Let Ωij(w) represent the iterate value at time j, evolving according to (86), starting from the value840
of w at time i. Let w and w′ be two different iterate values at time i, dependent on h and h′,841
respectively, as w = wi−1 + βh and w′ = wi−1 + βh′. We compute the difference between the842
iterate values at time j when the initial values at time i are w and w′ as follows:843

Ωij(w)− Ωij(w
′) = Ωij−1(w)− Ωij−1(w

′)− β[hj(Ω
i
j−1(w))− hj(Ω

i
j−1(w

′))]

= Ωij−1(w)− Ωij−1(w
′)− βMj(Ω

i
j−1(w)− Ωij−1(w

′))

= (I− βMj)(Ω
i
j−1(w)− Ωij−1(w

′)). (88)

Taking expectation and since the projection Γ is non-expansive, we have the following844

E
[∥∥Ωij(w)− Ωij(w

′)
∥∥
2

]
= E

[
E
[∥∥Ωij(w)− Ωij(w

′)
∥∥
2

∣∣∣ Gj−1

]]
= E

[
E
[∥∥(I− βMj)(Ω

i
j−1(w)− Ωij−1(w

′))
∥∥
2

∣∣∣ Gj−1

]]
(i)

≤
(
1− βµ

2

)
E[
∥∥Ωij−1(w)− Ωij−1(w

′)
∥∥
2
]

(ii)
=

(
1− βµ

2

)j−i+1

∥w − w′∥2 ,

(iii)

≤ β

(
1− βµ

2

)j−i+1

∥h− h′∥2 . (89)

where (i) follows by Lemma 7.1; (ii) follows by repeated application of (i); and (iii) follows by845
substituting w and w′.846

Let Ωit(w) to be the value of the iterate at time t, where t ranges from the tail index k+ 1 to k+N .847
The iterate evolves according to (8) beginning from w at time i = k + 1. Next, we define848

Ω̃ik+1:t(w̃, w) ≜
(i− k)w̃

N
+

1

N

i+N∑
j=i+1

Ωij(w), (90)

where w̃ is the value of the tail averaged iterate at time i. In the above, Ω̃ik+1:t(w̃, w) denotes the849
value of tail-averaged iterate at time t.850

From (90) and using the triangle inequality, we have851

E
[∥∥∥Ω̃ii+1,N (w̃, w)− Ω̃ik+1:t(w̃, w

′)
∥∥∥
2

]
≤ E

 1

N

i+N∑
j=i+1

∥∥(Ωij(w)− Ωij(w
′))
∥∥
2

 . (91)
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Using (89), we bound the term Ωij(w)− Ωij(w
′) inside the summation of (91).852

E
[∥∥∥Ω̃ik+1(w̃, w)− Ω̃ik+1(w̃, w

′)
∥∥∥
2

]
≤ β

N

i+N∑
j=i+1

(
1− βµ

2

)j−i+1

∥h− h′∥2 . (92)

Considering the bounds on features, rewards, and the projection assumption (Assumptions 3 to 6),853
along with a bound on σ in (53), we obtain a uniform upper bound τ on ∥hi(w)∥ for all i as:854

τ =

(
2R2

max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)

+ 2
(
(ϕvmax)

4 (1 + γ)
2
+ (ϕumax)

4
(
1 + γ2

)2
+ 4γ2R2

max(ϕ
v
max)

2(ϕumax)
2
)
H2

) 1
2

Now, we use a martingale difference concentration, following Patil et al. (2024, Step 3, Theorem 2)855
to obtain856

P
(
∥zk+1,N∥2 − E

[
∥zk+1,N∥2

]
> ϵ
)
≤ exp(−ηϵ) exp

(
η2τ2

∑k+N
i=k+1 L

2
i

2

)
.

Optimising over η in the above inequality leads to857

P (∥zk+1:t∥2 − E [∥zk+1:t∥2] > ϵ) ≤ exp

(
− ϵ2

τ2
∑k+N
i=k+1 L

2
i

)
. (93)

Using Patil et al. (2024, Lemma 13), we obtain the following bound on the Lipschitz constant,858

k+N∑
i=k+1

L2
i ≤

4

Nµ2
. (94)

Now, with (94) in (93), we have859

P (∥zk+1:t∥2 − E[∥zk+1:t∥2] > ϵ)≤ exp

(
−Nµ

2ϵ2

4τ2

)
, (95)

For any δ ∈ (0, 1] the inequality (95) can be expressed in high-confidence form as:860

P

(
∥zk+1:t∥2 − E[∥zk+1:t∥2] ≤

2τ

µ
√
N

√
log

(
1

δ

))
≥ 1− δ. (96)

The final bound follows by substituting the bound on E [∥zk+1:t∥2] obtained by applying Jensen’s861
inequality to Theorem 3.2 in (96).862

10.2 Bounds for mean-variance TD with regularization863

Theorem 10.2. Suppose Assumptions 1 to 4, and 6 hold. Run Algorithm 1 for t iterations with a864
step size β̌ as specified in Theorem 9.1. Then, for any δ ∈ (0, 1], we have the following bound for865
the projected tail-averaged regularized TD iterate:866

P

(
∥w̌k+1:t−w̄reg∥2 ≤ 2τ̌

(2µ+ ζ)
√
N

√
log

(
1

δ

)
+
4 exp

(
−kβ̌ (2µ+ζ)

)
β̌ (2µ+ ζ)N

E ∥w0 − w̄reg∥2

+
4τ̌

(2µ+ζ)
√
N

)
≥ 1− δ,
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where N, w̌0, w̄reg, µ. are as specified in Theorem 9.1 and867

τ̌=
(
2R2

max

(
(ϕvmax)

2+R2
max(ϕ

u
max)

2
)

+4
(
ζ2 + (ϕvmax)

4 (1 + γ)
2
+(ϕumax)

4
(
1 + γ2

)2
+4β2R2

max(ϕ
v
max)

2(ϕumax)
2
)
H2
) 1

2

.

The proof for the regularized case follows using arguments similar to those in the proof of Theo-868
rem 3.4 with changes indicated below.869

Proof. Let Ω̌ij(w̌) represent the iterate value at time j, evolving following (86), starting from the870
value of w̌ at time i. We compute the difference between the iterate values at time j when the initial871
values at time i are w̌ and w̌′, respectively. Let w̌ and w̌′ be two different parameter values at time i872
which depend on ȟ and ȟ′ as w̌ = w̌i−1 + β̌ȟ, and w̌′ = w̌i−1 + β̌h′. We obtain the difference as:873

Ω̌ij(w̌)− Ω̌ij(w̌
′) = Ω̌ij−1(w̌)− Ω̌ij−1(w̌

′)− β̌[ȟj(Ω̌
i
j−1(w̌))− ȟj(Ω̌

i
j−1(w̌

′))]

= (I− β̌(ζI+Mj))(Ω̌
i
j−1(w̌)− Ω̌ij−1(w̌

′)). (97)

Taking expectation and since the projection Γ is non-expansive, we have the following874

E
[∥∥Ω̌ij(w̌)− Ω̌ij(w̌

′)
∥∥
2

]
= E

[
E
[∥∥Ω̌ij(w̌)− Ω̌ij(w̌

′)
∥∥
2

∣∣∣ Ǧj−1

]]
= E

[
E
[∥∥(I− β̌Mj)(Ω̌

i
j−1(w̌)− Ω̌ij−1(w̌

′))
∥∥
2

∣∣∣ Ǧj−1

]]
(i)

≤
(
1− β̌(2µ+ ζ)

2

)
E
[∥∥Ω̌ij−1(w)− Ω̌ij−1(w̌

′)
∥∥
2

]
(ii)
=

(
1− β̌(2µ+ ζ)

2

)j−i+1

∥w̌ − w̌′∥2 ,

≤ β̌

(
1− β̌(2µ+ ζ)

2

)j−i+1 ∥∥ȟ− ȟ′
∥∥
2
. (98)

where (i) follows by Lemma 9.3; (ii) follows by repeated application of (i); and (98) follows by875
substituting the values of w and w′.876

Let Ω̌it(w̌) be the value of the iterate at time t where t ranges from the tail index k+1 to k+N . The877
iterate evolves according to (14) starting at the value w̌ at time i = k + 1. Next, we define878

Ω̄ik+1:t(ŵ, w̌) ≜
(i− k) ˜̌w

N
+

1

N

i+N∑
j=i+1

Ω̌ij(w̌), (99)

where ŵ is the value of the tail-averaged iterate at time i.879

Now, we prove that Lipschitz continuity in the random innovation ȟi at time i with constant Ľi.880

E
[∥∥∥ ˜̌Ωii+1,N ( ˜̌w, w̌)− ˜̌Ωik+1:t( ˜̌w, w̌

′)
∥∥∥
2

]
= E

 1

N

i+N∑
j=i+1

∥∥(Ω̌ij(w̌)− Ω̌ij(w̌
′))
∥∥
2

 . (100)

Using (98), we bound the term Ω̌ij(w̌)− Ω̌ij(w̌
′) in (100).881

E
[∥∥∥Ω̃ik+1(w̃, w)− Ω̃ik+1(w̃, w

′)
∥∥∥
2

]
≤ β

N

i+N∑
j=i+1

(
1− β̌(2µ+ ζ)

2

)j−i+1 ∥∥ȟ− ȟ′
∥∥
2
. (101)

Considering the bounds on features, rewards, and the projection assumption (Assumptions 3 to 6),882
along with a bound on σ̌ in (59), we find an upper bound τ̌ on

∥∥ȟi(w̌i)∥∥ as follows:883

τ̌=
(
2R2

max

(
(ϕvmax)

2+R2
max(ϕ

u
max)

2
)
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+ 4
(
ζ2 + (ϕvmax)

4 (1 + γ)
2
+(ϕumax)

4
(
1 + γ2

)2
+4β2R2

max(ϕ
v
max)

2(ϕumax)
2
)
H2
) 1

2

.

Using Patil et al. (2024, Lemma 20), we obtain the following bound on the Lipschitz constant,884

k+N∑
i=k+1

Ľ2
i ≤

4

N(2µ+ ζ)2
. (102)

The rest of the proof follows by making parallel arguments to those in Subsection 10.1.885

11 Outline of Actor Analysis886

Proof. (Sketch) As visualized in Figure 1, the proof begins by establishing the smoothness of the

Policy Gradient for the
square-value Function

(L.A. & Ghavamzadeh,
2016, Lemma 2)

Smoothness of
square-value

Function
(Lemma 4.1)

Smoothness of
value function
(Xu et al., 2021,

Proposition 1)

Smoothness of
state-action visi-
tation distribution

(Xu et al., 2021, Lemma 3)

Smoothness
of Lagrangian

(Lemma 4.2)

Gradient Estimation
using Perturbation
technique (SPSA)

(Spall, 1992)

Convergence to
ϵ-stationary point

(Theorem 4.3)

Figure 1: Logical dependency graph for proving Theorem 4.3. Rectangular nodes (blue) represent
established results from prior work, elliptical nodes (green) denote our novel contributions, and
dashed lines illustrate the logical dependencies we establish to derive the final result (green circle).

887
policy gradient for the square-value function:888

∇U(θ)= 1
1−γ2

(∑
s,aν̃θ(s, a)∇ log πθ(a|s)Wθ(s, a)︸ ︷︷ ︸

T1(θ)

+2γ
∑
s,a,s′ ν̃θ(s, a)P (s

′|s, a)∇Vθ(s′)︸ ︷︷ ︸
T2(θ)

)
.

(103)

We decompose the expression in (103) into T1(θ) and T2(θ). T1(θ) consists of three terms: the state-889
action visitation distribution, the score function, and the square-value function. To obtain a smooth-890
ness constant for T1(θ) (36), we use the following: (i) the smoothness result for the state-action891
visitation distribution (Lemma 12.1), as stated in (Xu et al., 2021, Lemma 3); (ii) the boundedness892
and smoothness of the policy (Assumption 7).893

T2(θ) is the product of the state-action visitation distribution and the policy gradient of the value894
function. To establish the smoothness constant for T2(θ), we apply the smoothness result for the895
value function from (Xu et al., 2021, Proposition 1).896

Combining the results for T1(θ) and T2(θ) gives the smoothness constants for the square-value897
function. By splitting the terms in the Lagrangian into the gradients of the value function and the898
square-value function and appropriately bounding the gradient norms, we obtain the smoothness899
constant L in (21) for the Lagrangian.900

The proof broadly follows a standard SGD analysis framework (Ghadimi & Lan, 2013; Kumar et al.,901
2023). However, key modifications are required to account for the use of SPSA-based gradient902
estimates, particularly in handling the perturbation parameter pt and critic batch size m.903

As ∇L(θt) is L-Lipschitz (Lemma 4.2), we have

L(θt+1) ≥ L(θt) + ⟨∇L(θt), θt+1 − θt⟩ −
Lα2

t

2
∥∇L̂(θt)∥2
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In the above, ∇L̂(θt). is an SPSA gradient estimate.904

Taking the expectation with respect to the sigma field Ft = σ(θk, k ≤ t), denoted by Et, we have905

Et[L(θt+1)] ≥ Et[L(θt)] + αtEt
[
∥∇L(θt)∥2

]
− αtK1

(
1 +

2λRmax

1− γ

)∥∥∥Et [∇Ĵ(θt)−∇J(θt)
]∥∥∥︸ ︷︷ ︸

(A)

− λαtK1

∥∥∥Et [∇Û(θt)−∇U(θt)
]∥∥∥︸ ︷︷ ︸

(B)

−L
2
α2
t Et

[
∥∇L̂(θt)∥2

]
︸ ︷︷ ︸

(C)

.

Now, substituting the bounds obtained for biased SPSA gradient estimates namely: (A) in (116), (B)906
in (117), and (C) in (118) into the above equation, we get907

Et[L(θt+1)] ≥ Et[L(θt)] + αtEt [∥∇L(θt)∥]

− αtK1

(
1 +

2λRmax

1− γ

)(
d

3
2LJpt
2

+
d

1
2ϕvmaxK2

pt
√
m

)

− λαtK1

(
d

3
2LUpt
2

+
d

1
2ϕumaxK2

pt
√
m

)
− Lα2

t

2

(
K3

p2t

)
.

Summing from t = 1 to n and dividing both sides by n, and setting αt = α and pt = p, we get908

1

n

n∑
t=1

E
[
∥∇L(θt)∥2

]
≤ C1

nα
+ C2p+

C3√
mp

+
C4α

p2
.

Setting α = na, p = nb, m = nc, we have909

E
[
∥∇L(θR)∥2

]
≤ C1n

−1−a + C2n
b + C3n

−b−c/2 + C4n
a−2b.

Optimizing for a, b, c, we find their values to be a = − 3
4 , b = − 1

4 , c = 1. Substituting these values,910
we get911

E
[
∥∇L(θR)∥2

]
≤ C1n

−1/4 + C2n
−1/4 + C3n

−1/4 + C4n
−1/4

= O(n−1/4).

912

12 Proofs for the claims in Section 4913

Before we prove the claims, we state a few useful supporting lemmas in the analysis.914

Lemma 12.1 (Restatement of Lemma 3 (Xu et al., 2021)). Consider the initialization distribution915
η(·) and the transition kernel P(·|s, a). Let η(·) = ζ(·) or η(·) = P(·|ŝ, â) for any given (ŝ, â) ∈916
S × A. Denote νπθ,η(·, ·) as the state-action visitation distribution of the MDP with policy πθ and917
initialization distribution η(·). Suppose the Assumption holds. Then, we have918 ∥∥νπθ1 ,η(·, ·)− νπθ2 ,η(·, ·)

∥∥
TV

≤ Cν ∥θ1 − θ2∥2 ,

for all θ1, θ2 ∈ Rd, where Cν = Cπ

(
1 + ⌈logρ κ−1⌉+ 1

1−ρ

)
.919

39



Under review for RLC 2025, to be published in RLJ 2025

12.1 Proof of Lemma 4.1920

Proof. The first claim concerning the smoothness of J(·) can be inferred from Xu et al. (2021,921
Proposition 1).922

We prove the smoothness of the square-value function below.923

From (L.A. & Ghavamzadeh, 2016, Lemma 1), we have924

∇U(θ) =
1

1− γ2

(∑
s,a

ν̃θ(s, a)∇ log πθ(a|s)Wθ(s, a)︸ ︷︷ ︸
T1(θ)

+2γ
∑
s,a,s′

ν̃θ(s, a)P (s
′|s, a)∇Vθ(s′)︸ ︷︷ ︸

T2(θ)

)
,

(104)

where

Wθ(s, a) = E

( ∞∑
k=0

γkrt+k

)2
∣∣∣∣∣∣ st = s, at = a


and ν̃θ(s, a) = (1 − γ2)

∑∞
t=0 γ

2tP(st = s, at = a) is the γ2-discounted state-action visitation925
distribution, with P(st = s, at = a) = P(st = s|s0 = s)πθ(a|s).926

∥∇U(θ1)−∇U(θ2)∥2 ≤ 1

1− γ2
(∥T1(θ1)− T1(θ2)∥2 + 2γ ∥T2(θ1)− T2(θ2)∥2) (105)

We now show that T1(θ), defined in (104) is Lipschitz in θ.927

∥T1(θ1)− T1(θ2)∥2

=

∥∥∥∥∥∑
s,a

ν̃θ1(s, a)︸ ︷︷ ︸
a1

∇ log πθ1(a|s)︸ ︷︷ ︸
b1

Wπθ1
(s, a)︸ ︷︷ ︸
c1

−
∑
s,a

ν̃θ2(s, a)︸ ︷︷ ︸
a2

∇ log πθ2(a|s)︸ ︷︷ ︸
b2

Wπθ2
(s, a)︸ ︷︷ ︸
c2

∥∥∥∥∥
2

=

∥∥∥∥∥∑
s,a

(a1b1c1 − a2b2c2)

∥∥∥∥∥
=

∥∥∥∥∥∑
s,a

a1b1c1 − a2b2c2 + a2b2c1 − a2b2c1

∥∥∥∥∥
=

∥∥∥∥∥∑
s,a

c1(a1b1 − a2b2) + a2b2(c1 − c2)

∥∥∥∥∥
=

∥∥∥∥∥∑
s,a

c1(a1b1 − a2b2 + a1b2 − a1b2) + a2b2(c1 − c2)

∥∥∥∥∥
=

∥∥∥∥∥∑
s,a

c1(a1(b1 − b2) + b2(a1 − a2)) + a2b2(c1 − c2)

∥∥∥∥∥
≤
∑
s,a

∣∣∣Wθ1(s, a)
∣∣∣∣∣∣ν̃θ1(s, a)∣∣∣∥∇ log πθ1(a|s)−∇ log πθ2(a|s)∥2

+
∑
s,a

∣∣∣Wθ1(s, a)
∣∣∣∥∇ log πθ1(a|s)∥2

∣∣∣ν̃θ1(s, a)− ν̃θ2(s, a)
∣∣∣

+
∑
s,a

ν̃θ2(s, a)∥∇ log πθ2(a|s)∥2
∣∣∣Wθ1(s, a)−Wθ2(s, a)

∣∣∣
(a)

≤ Rmax

(1− γ)2

∑
s,a

∥∇ log πθ1(a|s)−∇ log πθ2(a|s)∥2
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+
CψRmax

(1− γ)2

∑
s,a

|ν̃θ1(s, a)− ν̃θ2(s, a)|

+ Cψ
∑
s,a

∣∣∣Wθ1(s, a)−Wθ2(s, a)
∣∣∣ν̃θ2(s, a)

(b)

≤ RmaxLψ
(1− γ)2

∥θ1 − θ2∥2 +
2RmaxCψCν
(1− γ)2

∥θ1 − θ2∥2

+ Cψ
∑
s,a

|Wθ1(s, a)−Wθ2(s, a)|ν̃θ2(s, a)

(c)

≤ RmaxLψ
(1− γ)2

∥θ1 − θ2∥2 +
2RmaxCψCv
(1− γ)2

∥θ1 − θ2∥2

+
2RmaxCψCv
(1− γ)2

∥θ1 − θ2∥2

≤ RmaxLψ
(1− γ)2

∥θ1 − θ2∥2 +
4RmaxCψCv
(1− γ)2

∥θ1 − θ2∥2, (106)

where (a) follows by |Wθ(s, a)||ν̃θ1(s, a)| ≤ Rmax
(1−γ)2 for any θ ∈ Rd and by the upper bound Cψ928

on the score function, see Assumption 7; (b) follows by smoothness of the policy (Assumption 7)929
and Cν- Lipschitzness of ν̃(s, a) (see (Xu et al., 2021, Lemma 3)); (c) follows by employing similar930
arguments for the square-value function, in place of the value function in (Xu et al., 2021, Lemma931
4), as outlined below:932

Cψ
∑
s,a

|Wπ
θ1(s, a)−Wπ

θ2(s, a)|ν̃θ2(s, a) ≤ Cψ
Rmax

(1− γ)2
∥Pπθ1(·, ·)− Pπθ2(·, ·)∥TV

≤ 2RmaxCψCv
(1− γ)2

∥θ1 − θ2∥2.

Next, we obtain the Lipschitz constant for T2(θ) =
∑
s,a,s′ ν̃θ(s, a)P (s

′|s, a)∇Vθ(s′) below. The933
Lipschitzness of T2(θ) together with that of T1(θ) would lead to smoothness of U(·), from (104).934

∥T2(θ1)− T2(θ2)∥2

≤

∥∥∥∥∥ ∑
s,a,s′

ν̃θ1(s, a)P (s
′|s, a)∇Vθ1(s′)−

∑
s,a,s′

ν̃θ2(s, a)P (s
′|s, a)∇Vθ2(s′)

∥∥∥∥∥
≤

∥∥∥∥∥ ∑
s,a,s′

ν̃θ1(s, a)P (s
′|s, a)∇Vθ1(s′)−

∑
s,a,s′

ν̃θ2(s, a)P (s
′|s, a)∇Vθ2(s′)

+
∑
s,a,s′

ν̃θ2(s, a)P (s
′|s, a)∇Vθ1(s′)−

∑
s,a,s′

ν̃θ2(s, a)P (s
′|s, a)∇Vθ2(s′)

∥∥∥∥∥
≤
∑
s,a,s′

P (s′|s, a)∥∇Vθ1(s′)∥2∥ν̃θ1(s, a)− ν̃θ2(s, a)∥

+
∑
s,a,s′

P (s′|s, a)ν̃θ2(s, a)∥∇Vθ1(s′)−∇Vθ2(s′)∥2

(a)

≤ 2RmaxCψ
(1− γ)2

∑
s,a

∥ν̃θ1(s, a)− ν̃θ2(s, a)∥

+
∑
s,a,s′

P (s′|s, a)ν̃θ2(s, a)∥∇Vθ1(s′)−∇Vθ2(s′)∥2

(b)

≤ 2RmaxCψCν
(1− γ)2

∥θ1 − θ2∥2 + 2LJ∥θ1 − θ2∥2 (107)
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where (a) follows by P (s′|s, a)∥∇Vθ(s′)∥2 ≤ RmaxCψ
(1−γ)2 ; (b) follows by using (Xu et al., 2021, Lemma935

3), where Cν = (1/2)Cπ
(
1 + ⌈logρ κ−1⌉+ (1− ρ)−1

)
.936

Combining T1 and T2 into (105),937

∥∇U(θ1)−∇U(θ2)∥ ≤ LU∥θ1 − θ2∥2, where

LU =
1

1− γ2

(
RmaxLψ
(1− γ)2

+
4RmaxCψCv
(1− γ)2

+
4γRmaxCψCv + 4γLJ

(1− γ)2

)
.

938

12.2 Proof of Lemma 4.2939

Proof. Notice that940

∥∇L(θ1)−∇L(θ2)∥2 ≤ ∥∇J(θ1)−∇J(θ2)∥2 + λ ∥∇U(θ1)−∇U(θ2)∥2
+ 2λ ∥J(θ1)∇J(θ1)− J(θ2)∇J(θ2)∥2

(a)

≤ LJ ∥θ1 − θ2∥2 + λLU ∥θ1 − θ2∥2 + 2λ ∥J(θ1)∇J(θ1)− J(θ2)∇J(θ2)∥2︸ ︷︷ ︸
(I)

, (108)

where (a) follows by Lemma 4.1.941

We bound (I) as follows:942

∥J(θ1)∇J(θ1)− J(θ2)∇J(θ2)∥2
= ∥J(θ1)∇J(θ1)− J(θ1)∇J(θ2) + J(θ1)∇J(θ2)− J(θ2)∇J(θ2)∥2
≤ |J(θ1)| · ∥∇J(θ1)−∇J(θ2)∥2 + ∥∇J(θ2)∥2 · |J(θ1)− J(θ2)|
(i)

≤ RmaxLJ
1− γ

∥θ1 − θ2∥2 + ∥∇J(θ2)∥2 · |J(θ1)− J(θ2)|

(ii)

≤ RmaxLJ
1− γ

∥θ1 − θ2∥2 +
RmaxCψ
(1− γ)2

|J(θ1)− J(θ2)|

≤ RmaxLJ
1− γ

∥θ1 − θ2∥2 +
RmaxCψ
(1− γ)2

∥θ1 − θ2∥2, (109)

where (i) follows by |J(θ)| ≤ Rmax
1−γ ; (ii) follows by ∥∇J(θ)∥2 ≤ RmaxCψ

(1−γ)2 for any θ ∈ Rd, we arrive943

at this by Policy Gradient Theorem (Sutton et al., 1999), Assumption 7 and |Qπθ (s, a)| ≤ Rmax
1−γ ;944

(109) follows by taking first order Taylor expansion at θ1, mean-value theorem ∃ θ̃ = λθ1+(1 −945
λ)θ2, for some λ ∈ [0, 1].946
J(θ1) = J(θ2) +∇J(θ̃)⊤(θ1 − θ2) =⇒ |J(θ1)− J(θ2)| ≤ RmaxCψ

(1−γ)2 ∥θ1 − θ2∥2.947

Now, substituting (109) in (108), we obtain948

∥∇L(θ1)−∇L(θ2)∥ ≤ ∥∇J(θ1)−∇J(θ2)∥+ 2λ∥J(θ1)∇J(θ1)− J(θ2)∇J(θ2)∥
+ λ∥∇U(θ1)−∇U(θ2)∥

≤ LJ∥θ1 − θ2∥2 + 2λ

(
RmaxLJ
1− γ

+
RmaxCψ
(1− γ)2

)
∥θ1 − θ2∥2 + λLU∥θ1 − θ2∥2

≤
(
LJ + 2λ

(
RmaxLJ
1− γ

+
RmaxCψ
(1− γ)2

)
+ λLU

)
∥θ1 − θ2∥2

≤ Lo∥θ1 − θ2∥2

Hence, Gradient of the Lagrangian is L-Lipschitz with Lo = LJ + 2λ
(
RmaxLJ
1−γ +

RmaxCψ
(1−γ)2

)
+ λLU .949

950
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12.3 Proof of Theorem 4.3951

Proof. Notice that as ∇L(θt) is L-Lipschitz (Lemma 4.2), we have

L(θt+1) ≥ L(θt) + ⟨∇L(θt), θt+1 − θt⟩ −
Lα2

t

2
∥∇L̂(θt)∥2

Taking expectation w.r.t the sigma field Ft = σ(θk, k ≤ t), denoted by Et952

Et[L(θt+1)] ≥ Et[L(θt)] + Et
[〈

∇L(θt), αt∇L(θt) + αt

(
∇L̂(θt)−∇L(θt)

)〉]
− Et

[
L

2
α2
t ∥∇L̂(θt)∥2

]
= Et[L(θt)] + αtEt

[
∥∇L(θt)∥2

]
+ αtEt

[
∇L(θt)⊤

(
∇L̂(θt)−∇L(θt)

)]
− Et

[
L

2
α2
t ∥∇L̂(θt)∥2

]
≥ Et[L(θt)] + αtEt

[
∥∇L(θt)∥2

]
− αt

∣∣∣Et [∇L(θt)⊤ (∇L̂(θt)−∇L(θt)
)]∣∣∣

− Et
[
L

2
α2
t ∥∇L̂(θt)∥2

]
(i)

≥ Et[L(θt)] + αtEt
[
∥∇L(θt)∥2

]
− αt ∥∇L(θt)∥

∥∥∥Et [∇L̂(θt)−∇L(θt)
]∥∥∥

− Et
[
L

2
α2
t ∥∇L̂(θt)∥2

]
(ii)

≥ Et[L(θt)] + αtEt
[
∥∇L(θt)∥2

]
− αtK1

∥∥∥Et [∇L̂(θt)−∇L(θt)
]∥∥∥

− L

2
α2
tEt

[
∥∇L̂(θt)∥2

]
(iii)

≥ Et[L(θt)] + αtEt
[
∥∇L(θt)∥2

]
− αtK1

∥∥∥Et [∇Ĵ(θt)−∇J(θt)
]∥∥∥

− λαtK1

∥∥∥Et [∇Û(θt)−∇U(θt)
]∥∥∥− 2λαtK1

∥∥∥Et [J(θt)∇J(θt)− Ĵ(θt)∇Ĵ(θt)
]∥∥∥

− L

2
α2
tEt

[
∥∇L̂(θt)∥2

]
(iv)

≥ Et[L(θt)] + αtEt
[
∥∇L(θt)∥2

]
− αtK1

∥∥∥Et [∇Ĵ(θt)−∇J(θt)
]∥∥∥

− λαtK1

∥∥∥Et [∇Û(θt)−∇U(θt)
]∥∥∥

− 2αtK1λ
∥∥∥Et [J(θt)∇J(θt)− J(θt)∇Ĵ(θt) + J(θt)∇Ĵ(θt)− Ĵ(θt)∇Ĵ(θt)

]∥∥∥
− L

2
α2
tEt

[
∥∇L̂(θt)∥2

]
(v)

≥ Et[L(θt)] + αtEt
[
∥∇L(θt)∥2

]
− αtK1

∥∥∥Et [∇Ĵ(θt)−∇J(θt)
]∥∥∥

− λαtK1

∥∥∥Et [∇Û(θt)−∇U(θt)
]∥∥∥

− 2αtK1λ
∥∥∥Et [J(θt)(∇Ĵ(θt)−∇J(θt)

)]∥∥∥− 2αtK1λ
∥∥∥Et [∇Ĵ(θt)(J(θt)− Ĵ(θt)

)]∥∥∥
− L

2
α2
tEt

[
∥∇L̂(θt)∥2

]
(vi)

≥ Et[L(θt)] + αtEt
[
∥∇L(θt)∥2

]
− αtK1

(
1 +

2λRmax

1− γ

)∥∥∥Et [∇Ĵ(θt)−∇J(θt)
]∥∥∥︸ ︷︷ ︸

(A)
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− λαtK1

∥∥∥Et [∇Û(θt)−∇U(θt)
]∥∥∥︸ ︷︷ ︸

(B)

−L
2
α2
t Et

[
∥∇L̂(θt)∥2

]
︸ ︷︷ ︸

(C)

− αtK1

(
2λ

√
dRmax

(1− γ)pt

)∣∣∣Et [Ĵ(θt)− J(θt)
]∣∣∣︸ ︷︷ ︸

(D)

, (110)

where (i) follows from applying the Cauchy–Schwarz inequality to the modulus of the inner product;953
(ii) follows from the uniform upper bound ∥∇L(θt)∥ ≤ K1, which we establish below; (iii) follows954
from substituting955

∇L(θ) = −∇J(θ) + λ(∇U(θ)− 2J(θ)∇J(θ));

(iv) follows from adding and subtracting the cross term J(θt)∇Ĵ(θt); (v) follows from the triangle956

inequality; and (vi) follows from the bound |J(θt)| ≤ Rmax

1−γ and ∥∇Ĵ(θt)∥ ≤ 2
√
dRmax

1−γ , which is a957
consequence of the definition of the SPSA gradient estimate,958

∇Ĵ(θ) = Ĵ(θt + pt∆t)− Ĵ(θt)

pt∆t
.

Before we derive upper bounds for (A), (B), (C), and (D) in (110), we first establish the bound959
∥∇L(θt)∥2 ≤ K1, which is used in (ii), as follows:960

By Policy Gradient Theorem (Sutton et al., 1999), we have

∇J(θ) = 1

1− γ
E(s,a)∼χθ(·,·) [∇ log πθ(a|s)Qπθ (s, a)] ,

where961

Qπθ (s, a) = E

[ ∞∑
t=0

γtr(st, at) | s0 = s, a0 = a

]
.

We upper bound the action-value function as |Qπθ (s, a)| ≤ Rmax
1−γ . Furthermore, by Assumption 7,962

the score function satisfies ∥∇ log πθ(a|s)∥2 ≤ Cψ. Thus, we obtain963

∥∇J(θ)∥2 ≤ RmaxCψ
(1− γ)2

, ∀θ ∈ Rd. (111)

In the same manner, we use (104), which is a policy gradient-style theorem for the square-value964
function from (L.A. & Ghavamzadeh, 2016, Lemma 1), to upper bound the norm of the square-value965
function below. Wπθ (s, a) is the action-value function corresponding to the square-value function,966
i.e., U(θ) = Ea∼πθ [Wπθ (s, a)], similar to Qπθ (s, a).967

∥∇U(θ)∥2

=
1

1− γ2

∥∥∥∥∥∥
∑
s,a

ν̃πθ (s, a)∇ log πθ(a|s)Wπθ (s, a) + 2γ
∑
s,a,s′

ν̃πθ (s, a)P (s
′|s, a)∇Vπθ (s′)

∥∥∥∥∥∥
≤ 1

1− γ2

∑
s,a

∥ν̃πθ (s, a)∇ log πθ(a|s)∥ |Wπθ (s, a)|

+
2γ

1− γ2

∑
s,a,s′

∥ν̃πθ (s, a)∥|P (s′|s, a)|∥∇Vπθ (s′)∥

≤ 1

1− γ2
∥∇ log πθ(a|s)∥

∑
s,a

ν̃πθ (s, a)Wπθ (s, a)

+
2γ

1− γ2

∑
s,a,s′

ν̃πθ (s, a)P (s
′|s, a)∥∇Vπθ (s′)∥
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≤ Cψ
1− γ2

∑
s,a

ν̃πθ (s, a)Wπθ (s, a) +
2γ

1− γ2

∑
s,a,s′

ν̃πθ (s, a)P (s
′|s, a)∥∇Vπθ (s′)∥

≤ CψRmax

(1− γ2)(1− γ)2
+

2γRmaxCψ
(1− γ2)(1− γ)2

(112)

Combining (111) and (112), we obtain K1:968

∥∇L(θt)∥ ≤∥∇J(θt)∥+ λ∥∇U(θt)∥+ 2λ|J(θt)|∥∇J(θt)∥

≤RmaxCψ
(1− γ)2

+ 2λ
RmaxCψ
(1− γ)3

+ λ∥∇U(θt)∥

≤RmaxCψ
(1− γ)2

+ 2λ
RmaxCψ
(1− γ)3

+ λ

(
CψRmax

(1− γ2)(1− γ)2
+

2γRmaxCψ
(1− γ2)(1− γ)2

)
=K1

Next, we bound (A) in (110) as follows:969 ∥∥∥Et [∇Ĵ(θt)−∇J(θt)
]∥∥∥ ≤ d

1
2

∣∣∣Et [∇iĴ(θt)−∇iJ(θt)
]∣∣∣∣∣∣Et [∇iĴ(θt)−∇iJ(θt)

]∣∣∣ (a)= ∣∣∣∣Et [ϕv(s0)⊤v+m − ϕv(s0)
⊤vm

pt∆i(t)
−∇iJ(θt)

]∣∣∣∣
(b)
=
∣∣∣Et [ϕv(s0)⊤v+m−ϕv(s0)⊤vm+ϕv(s0)

⊤v̄+−ϕv(s0)⊤v̄+−ϕv(s0)⊤v̄+ϕv(s0)⊤v̄
pt∆i(t)

−∇iJ(θt)
]∣∣∣

(c)
=

∣∣∣∣Et [ϕv(s0)⊤(v̄+ − v̄)

pt∆i(t)
+
ϕv(s0)

⊤(v+m − v̄+) + ϕv(s0)
⊤(v̄ − vm)

pt∆i(t)
−∇iJ(θt)

]∣∣∣∣
≤
∣∣∣∣Et [J(θt + pt∆(t))− J(θt)

pt∆i(t)
−∇iJ(θt)

]∣∣∣∣︸ ︷︷ ︸
(I)

+

∣∣∣∣Et [ϕv(s0)⊤(v+m − v̄+) + ϕv(s0)
⊤(v̄ − vm)

pt∆i(t)

]∣∣∣∣︸ ︷︷ ︸
(II)

,

(113)

where (a) follows by substituting value of SPSA gradient estimate ∇iĴ(θt); (b) follows adding970
and subtracting ϕv(s0)⊤v̄+ and ϕv(s0)⊤v̄, where, v̄ and v̄+ denote fixed points for unperturbed971
and perturbed policies, respectively; (c) follows by rearranging the terms; (113) follows by (critic972
approximation error at the fixed point is zero) Assumption 8, as a consequence, the first term in (I)973
is equal to the actual value function.974

We bound (I) in (113) as follows:975 ∣∣∣∣Et [J(θt + pt∆i(t))− J(θt)

pt∆i(t)
−∇iJ(θt)

]∣∣∣∣
(a)

≤

∣∣∣∣∣Et
[
pt(∇J(θt))⊤∆(t) + LJ

2 p
2
t∥∆(t)∥2

∆i(t)pt
−∇iJ(θt)

]∣∣∣∣∣
(b)

≤

∣∣∣∣∣∣Et
∑
j ̸=i

(
∆j(t)

∆i(t)

)
∇jJ(θt)

∣∣∣∣∣∣+
∣∣∣∣Et [LJpt∥∆(t)∥2

2

]∣∣∣∣
(c)

≤ dLJpt
2

, (114)

where (a) follows from the second-order Taylor expansion of J(θt + pt∆i(t)) around θt, lever-976
aging the fact that J(θ) has a Lipschitz gradient (with constant LJ ) to bound the quadratic term;977
(b) follows from the triangle inequality and expanding the inner product into a summation over978
components. Here, the first term has an expectation of zero because ∆(t) is a Rademacher vector.979
Specifically, each component ∆j(t) satisfies Et[∆j(t)] = 0, and the independence of ∆j(t) and980
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∆i(t) ensures that the expectation of the ratio ∆j(t)
∆i(t)

is also zero. By the linearity of expectation, the981

entire summation contributes zero in expectation; (c) follows by bounding ∥∆(t)∥ ≤
√
d.982

We bound (II) in (113) as follows:983 ∣∣∣∣Et [ϕv(s0)⊤(v+m − v̄+) + ϕv(s0)
⊤(v̄ − vm)

pt∆i(t)

] ∣∣∣∣
(a)

≤
∣∣∣∣Et [∥ϕv(s0)∥∥v+m − v̄+∥+ ∥ϕv(s0)∥∥v̄ − vm∥

pt∆i(t)

] ∣∣∣∣
(b)

≤ ϕvmax

pt

(
Et
[
∥v+m − v̄+∥

]
+ Et [∥vm − v̄∥]

)
(c)

≤ ϕvmax

pt
√
m

(
10

1
2 e

−kβµ
2

γ2µ

(
max

θi=1,...,n

E[∥w0 − w̄∥]
) 1

2

+
10

1
2σ

µ

)
︸ ︷︷ ︸

K2

(d)

≤ ϕvmaxK2

pt
√
m

, (115)

where (a) follows from the Cauchy-Schwarz inequality; (b) follows from the upper bound on the984
norm of the features (Assumption 3) and linearity of expectation; (c) follows by bounding the terms985
using the tail-averaged critic error bound in (11); (d) follows by defining K2 in step (c).986

Combining (114) and (115) in (113), we obtain an upper bound for (A) in (110) as:987 ∥∥∥Et [∇Ĵ(θt)−∇J(θt)
]∥∥∥ ≤ d

3
2LJpt
2

+
d

1
2ϕvmaxK2

pt
√
m

. (116)

We obtain the upper bound for (B) in (110) using arguments parallel to those used to derive the988
upper bound for (A). The only difference lies in the feature vector, where ϕumax replaces ϕvmax.989 ∥∥∥Et [∇Û(θt)−∇U(θt)

]∥∥∥ ≤ d
3
2LUpt
2

+
d

1
2ϕumaxK2

pt
√
m

. (117)

Next, we bound (C) in (110) as follows:990

The SPSA gradient estimate of the Lagrangian is denoted as991

∇L̂(θt) = ∇Ĵ(θt)− λ
(
∇Û(θt)− 2Ĵ(θt)∇Ĵ(θt)

)
.

Taking the expectation with respect to the sigma field Ft = σ(θk, k ≤ t), denoted by Et, we have992

Et[∥∇L̂(θt)∥22]
(a)

≤ 3Et[∥∇Ĵ(θt)∥22] + 3λ2Et[∥∇Û(θt)∥22] + 12λ2
(
Rmax

1− γ

)2

Et[∥∇Ĵ(θt)∥22]

(b)

≤ max

{
3 + 3

(
2λRmax

1− γ

)2

, 3λ2

}(
∥∇Ĵ(θt)∥22 + ∥∇Û(θt)∥22

)
(c)

≤ max

{
3 + 3

(
2λRmax

1− γ

)2

, 3λ2

}(
d

(
2Rmax

1− γ

)2
1

p2t
+ d

(
2R2

max

(1− γ)2

)2
1

p2t

)
(d)
=

K3

p2t
, (118)

where (a) follows from ∥a+ b+ c∥2 ≤ 3∥a∥2+3∥b∥2+3∥c∥2; (b) follows by taking the maximum993

of all coefficients; (c) follows by bounding the SPSA gradient estimate
∥∥∥J(θt+pt∆i(t))−J(θt)pt∆i(t)

∥∥∥2 ≤994
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(
2Rmax

(1−γ)pt

)2
for the first term and similarly bounding the SPSA gradient estimate of the square-value995

function for the second term; and (d) follows by defining K3 as a constant, which is the coefficient996
of 1

p2t
in (c).997

Now, substituting the bounds obtained for (A) in (116), (B) in (117), and (C) in (118) into (110), we998
get999

Et[L(θt+1)] ≥ Et[L(θt)] + αtEt
[
∥∇L(θt)∥2

]
− αtK1

(
1 +

2λRmax

1− γ

)∥∥∥Et [∇Ĵ(θt)−∇J(θt)
]∥∥∥︸ ︷︷ ︸

(A)

− λαtK1

∥∥∥Et [∇Û(θt)−∇U(θt)
]∥∥∥︸ ︷︷ ︸

(B)

− L

2
α2
tEt

[
∥∇L̂(θt)∥2

]
︸ ︷︷ ︸

(C)

≥ Et[L(θt)] + αtEt [∥∇L(θt)∥]− αtK1

(
1 +

2λRmax

1− γ

)(
d

3
2LJpt
2

+
d

1
2ϕvmaxK2

pt
√
m

)

− λαtK1

(
d

3
2LUpt
2

+
d

1
2ϕumaxK2

pt
√
m

)
− Lα2

t

2

(
K3

p2t

)

Rearranging the terms, we obtain1000

αtEt
[
∥∇L(θt)∥2

]
≤ Et[L(θt+1)]− Et[L(θt)]

+ αtK1

(
1 +

2λRmax

1− γ

)(
d

3
2LJpt
2

+
d

1
2ϕvmaxK2

pt
√
m

)

+ λαtK1

(
d

3
2LUpt
2

+
d

1
2ϕumaxK2

pt
√
m

)
+
L1α

2
tK3

2p2t

(a)

≤ E[Ht]− E[Ht+1] +
αtK1d

3
2

2

(
LJ

(
1 +

2λRmax

1− γ

)
+ λLU

)
pt

+ αtK1K2d
1
2

((
1 +

2λRmax

1− γ

)
(ϕvmax + λϕumax)

)
1

pt
√
m

+
α2
tL1K3

2p2t
,

1001

Et
[
∥∇L(θt)∥2

] (b)

≤ 1

αt
(E [Ht+1]− E [Ht]) +

K1d
3
2

2

(
LJ

(
1 +

2λRmax

1− γ

)
+ λLU

)
pt

+K1K2d
1
2

((
1 +

2λRmax

1− γ

)
(ϕvmax + λϕumax)

)
1

pt
√
m

+
αtL1K3

2p2t
,

where (a) follows by taking Ht = L(θt)−L(θ∗), where θ∗ is the optimal policy, and (b) follows by1002
dividing both sides by αt.1003

Summing from t = 1 to n, and taking the total expectation, we get1004

n∑
t=1

E
[
∥∇L(θt)∥2

]
≤ C1

αt
+ C2

n∑
t=1

pt +
C3√
m

n∑
t=1

1

pt
+ C4

n∑
t=1

αt
p2t
.

Here, we obtain |L(θ)| ≤ C1 = 2Rmax
1−γ

(
1 + λRmax

1−γ

)
after a telescoping sum.1005

Dividing by n on both sides and setting αt = α, pt = p, we get1006

1

n

n∑
t=1

E
[
∥∇L(θt)∥2

]
≤ C1

nα
+ C2p+

C3√
mp

+
C4α

p2
.
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Setting α = na, p = nb, m = nc, we have1007

E
[
∥∇L(θR)∥2

]
≤ C1n

−1−a + C2n
b + C3n

−b−c/2 + C4n
a−2b.

Optimizing for a, b, c, we find their values to be a = − 3
4 , b = − 1

4 , c = 1. Substituting these values,1008
we get1009

E
[
∥∇L(θR)∥2

]
≤ C1n

−1/4 + C2n
−1/4 + C3n

−1/4 + C4n
−1/4

= O(n−1/4).

1010
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