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Summary

In many practical applications of reinforcement learning (RL), such as finance and mo-
bility, safety considerations are paramount. Rather than solely maximizing expected rewards,
one must also account for risk to ensure reliable decision-making. Traditional RL primarily
focuses on expected reward maximization, a well-studied paradigm with both empirical and
theoretical breakthroughs. In this paper, we adopt an alternative approach that integrates risk-
awareness into policy optimization. Despite extensive research in risk-neutral RL, analyzing
risk-sensitive RL algorithms remains challenging, as each risk metric requires a distinct an-
alytical framework. We focus on variance—an intuitive and widely used risk measure—and
analyze the Mean-Variance Simultaneous Perturbation Stochastic Approximation Actor-Critic
(MV-SPSA-AC) algorithm, establishing finite-sample theoretical guarantees for the discounted
reward Markov Decision Process (MDP) setting. Our analysis covers both policy evaluation
and policy improvement within the actor-critic framework. We study a Temporal Difference
(TD) learning algorithm with linear function approximation (LFA) for policy evaluation and
derive finite-sample bounds that hold in both the mean-squared sense and with high proba-
bility under tail iterate averaging, with and without regularization. Additionally, we analyze
the actor update using a simultaneous perturbation-based approach and establish convergence
guarantees. These results contribute to the theoretical understanding of risk-sensitive actor-
critic methods in RL, offering insights into variance-based risk-aware policy optimization.

Contribution(s)

1. We consider mean-variance optimization in a discounted MDP, and derive finite-sample
guarantees for an actor-critic algorithm, with a critic based on linear function approxima-
tion, and an actor based on SPSA.

Context: We consider a mean-variance MDP with the variance of the return, whose
expectation is the usual risk-neutral objective. For this problem, existing work (L.A. &
Ghavamzadeh, 2016) provides only asymptotic convergence guarantees.

2. For mean-variance policy evaluation, we employ TD learning with linear function approx-
imation. We derive finite-sample bounds that hold (i) in the mean-squared sense and (ii)
with high probability under tail iterate averaging, with and without regularization. Notably,
our analysis for the regularized TD variant holds for a universal step size.

Context: Non-asymptotic policy evaluation bounds are not available for variance of the
return in a discounted MDP.

3. We employ an SPSA-based actor for policy optimization, and obtain an O(n_i) bound in
the number of actor iterations.
Context: Notably, we resort to an SPSA-based actor, since the policy gradient theo-
rem for variance is not amenable for direct use in an actor-critic algorithm; see L.A. &
Ghavamzadeh (2016). Further, finite-sample bounds for a SPSA-based actor-critic algo-
rithm are not available, even in the risk-neutral RL setting, to the best of our knowledge.
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Abstract

Motivated by applications in risk-sensitive reinforcement learning, we study mean-
variance optimization in a discounted reward Markov Decision Process (MDP). Specif-
ically, we analyze a Temporal Difference (TD) learning algorithm with linear function
approximation (LFA) for policy evaluation. We derive finite-sample bounds that hold
(i) in the mean-squared sense and (ii) with high probability under tail iterate averaging,
both with and without regularization. Our bounds exhibit an exponentially decaying de-
pendence on the initial error and a convergence rate of O(1/t) after ¢ iterations. More-
over, for the regularized TD variant, our bound holds for a universal step size. Next,
we integrate a Simultaneous Perturbation Stochastic Approximation (SPSA)-based ac-
tor update with an LFA critic and establish an O(n‘i) convergence guarantee, where n
denotes the iterations of the SPSA-based actor-critic algorithm. These results establish
finite-sample theoretical guarantees for risk-sensitive actor-critic methods in reinforce-
ment learning, with a focus on variance as a risk measure.

1 Introduction

In the standard reinforcement learning (RL) setting, the objective is to learn a policy that maximizes
the value function, which is the expected value of the cumulative reward obtained over a finite or infi-
nite time horizon. However, in many practical scenarios such as finance, automated driving and drug
testing, a risk sensitive learning paradigm is crucial, where the value function (an expectation) must
be balanced with an appropriate risk metric associated with the reward distribution. One approach is
to formulate a constrained optimization problem, using the risk metric as a constraint and the value
function as the objective. Variance is a popular risk measure and is typically incorporated into risk-
sensitive optimization as a constraint while optimizing for the expected value. This mean-variance
formulation was introduced in the seminal work of Markowitz (1952). Mean-variance optimiza-
tion in RL has been studied in several works; see, e.g., Mannor & Tsitsiklis (2013); Tamar et al.
(2016); L.A. & Ghavamzadeh (2016). We study mean-variance optimization in a discounted reward
Markov decision process (MDP). Our key contribution is the analysis of an actor-critic algorithm
for mean-variance optimization, along with finite-sample guarantees in this setting.

Main Contributions. We study a discounted reward MDP with variance as the risk criterion and
present two main contributions. Since one common approach to variance estimation is based on
the difference between the second moment and the square of the first moment, estimating both
moments is essential. Our first key contribution concerns the sub-problem of jointly evaluating the
value function (first moment) and the second moment of the discounted cumulative reward. For
simplicity, we refer to the second moment of the discounted cumulative reward as the square-value
function. To address the curse of dimensionality in large state-action spaces, we analyze temporal
difference (TD) learning with linear function approximation (LFA) for these estimates.
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Table 1: Summary of the MSE bounds for a TD-critic.

Uni 1
Paper Iterate Objective Rate Step size mver:sa
step size
. Mean- 1 coc
L.A. & Ghavamzadeh (2016) Last iterate ) - o X
variance
Dalal et al. (2018) Last iterate Mean 0O(1/t7) 1/t7 4
Bhandari et al. (2021)* Full average Mean O(1/t) 1/vVT v
Mean-
Eldowa et al. (2022) Full average .ean , O(1/t)  constant X
variance
Patil et al. (2023) Tail average Mean O(1/t)  constant v
Mean-
Agrawal et al. (2024) Tail average .ean . O(1/t)  constant X
variance
Mitra (2025) Weighted average® Mean O(1/t)  constant X
Mean-
This work Tail average .ean O(1/t)  constant X
variance
Regularized Mean-
This work e?gu anze faan O(1/t)  constant v
tail average variance

! Asymptotic convergence of mean-variance TD shown. Here, co and c are arbitrary constants depend-
ing on the minimum eigenvalue. > T = number of TD iterations. * Variance of per-step reward as the risk
measure. * Asymptotic variance for average-reward MDP as the risk measure. > Weights are determined
by (1 — aA)~“*V with A = 0.5w(1 — 7), which makes them indirectly dependent on the minimum
eigenvalue w and the discount factor . Here, « is step size dependent on the minimum eigenvalue w.

We present finite-sample bounds that quantify the deviation of the iterates from the fixed point,
both in expectation and with high probability. The fixed point is joint in the sense that it includes
both the value function and the square-value function. We present bounds for a constant step-size
with and without tail-averaging; see Table 1 for a summary. Next, we establish O(1/t) finite-time
convergence bounds for tail-averaged TD iterates, where ¢ denotes the number of iterations of the
TD algorithm. Furthermore, we present a finite-sample analysis of the regularized TD algorithm.
From this analysis, we establish an O(1/t) bound, similar to the unregularized case. An advantage
of regularization is that the step-size choice is universal, i.e., it does not require knowledge of the
eigenvalues of the underlying linear system, whereas the unregularized TD bounds depend on such
eigenvalue information, which is typically unknown in practice.

While finite-sample analysis of TD with LFA has been studied in several recent works (cf. Prashanth
et al., 2021; Dalal et al., 2018; Bhandari et al., 2021; Samsonov et al., 2024; Agrawal et al., 2024),
to the best of our knowledge, no prior work has established finite-sample bounds for policy eval-
uation of variance in the discounted reward MDP setting. Our bounds explicitly characterize their
dependence on the discount factor, feature bounds, and rewards. Compared to existing finite-sample
bounds for TD learning, the analysis of mean-variance-style TD updates is more intricate, as it re-
quires tracking the solution of an additional projected fixed point by solving a separate Bellman
equation for the square-value function. Furthermore, the Bellman equation associated with the
square-value function includes a cross-term involving the value function (see (25) in the supple-
mentary material). Due to this cross-term, obtaining a standard O(1/¢) mean-squared error bound
is challenging when using a constant step size, unless the spectral properties of the underlying linear
system are known. To overcome this dependence, we investigate a regularized version of the mean-
variance TD updates. To the best of our knowledge, ours is the first work to obtain a O(1/t) MSE
bound with a universal step size for mean-variance TD. Prior works on TD-type algorithms for other
notions of variance, cf. Agrawal et al. (2024); Eldowa et al. (2022), present O(1/t) bounds with a
step size choice that requires underlying eigenvalue information.

Our second key contribution lies in analyzing an actor-critic algorithm for mean-variance and deriv-
ing finite-sample guarantees. The critic part uses the aforementioned LFA-based policy evaluation
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for a fixed policy parameter. The actor uses an SPSA-based gradient estimator (Spall, 1992), de-
parting from the more common risk-neutral approach of employing a likelihood ratio-based gradient
estimator supported by the policy gradient theorem (see Section 4 for a discussion on SPSA’s ne-
cessity). SPSA estimates policy gradients for the value and square-value functions using two policy
trajectories: one generated using the current policy parameter and another using a randomly per-
turbed parameter.

We provide non-asymptotic convergence rates for an SPSA-based actor in the mean-variance frame-
work. This result quantifies convergence to the stationary point in terms of the gradient norm of the
Lagrangian, addressing a gap in prior work that focused exclusively on asymptotic guarantees. As
an aside, mean-variance optimization has been shown to be NP-hard, even with model information
available (Mannor & Tsitsiklis, 2013). Actor-critic methods present a viable alternative approach,
and our analysis provides the rate of convergence for such an algorithm tailored to the mean-variance
setting. Specifically, we show an O(n_%) performance guarantee for the overall algorithm, where
n is the number of actor loop iterations. To the best of our knowledge, there are no finite-sample
guarantees for zeroth order actor-critic, even for the risk-neutral setting.

Our results are beneficial for three reasons. First, we exhibit O(1/t) bounds for the regularized TD
variant with a step size that is universal. In contrast, a universal step size for vanilla mean-variance
TD is not feasible owing to certain cross-terms that are unique to the case of mean-variance policy
evaluation. Our key observation is that regularization enables the use of a universal step size that
is independent of the eigenvalues of the underlying system. Second, our proof is tailored to mean-
variance TD, making the constants clear. In contrast, it is difficult to infer them from the general
LSA bounds in (Durmus et al., 2024; Mou et al., 2020). Third, we provide high-probability bounds
that exhibit better scaling w.r.t. the confidence parameter as compared to Samsonov et al. (2024).

Related Work. This paper performs a finite-sample analysis of a TD critic, and an SPSA actor for
mean-variance optimization in a discounted RL setting. We briefly review relevant works on each
of these topics.

Critic. TD learning, originally proposed by Sutton (1988), has been widely used for policy eval-
uation in RL. Tsitsiklis & Van Roy (1997) established asymptotic convergence guarantees for TD
learning with LFA. Many recent works have focused on providing non-asymptotic convergence guar-
antees for TD learning (Bhandari et al., 2021; Dalal et al., 2018; Lakshminarayanan & Szepesvari,
2018; Srikant & Ying, 2019; Prashanth et al., 2021; Patil et al., 2023; Durmus et al., 2024). In a
recent study by Samsonov et al. (2024), the authors derived refined error bounds for TD learning by
combining proof techniques from (Mou et al., 2020; Durmus et al., 2024) with a stability result for
the product of random matrices. In contrast, our results target a different system of linear equations.
Moreover, as mentioned before, our bounds for regularized TD feature a universal step size. The
reader is referred to Section 3 for a detailed comparison of our critic bounds to the current literature.

Actor-Critic. In (Lei et al., 2025), the authors propose a zeroth-order actor critic in a risk-neutral
RL setting. However, they do not provide a finite-sample analysis. In (L.A. & Ghavamzadeh,
2016), which is the closest related work, the authors propose an SPSA-based actor-critic algorithm
for mean-variance optimization, and establish asymptotic convergence. In contrast, we provide a
finite-sample analysis of their algorithm with a few variations: (i) We incorporate tail-averaging in
TD-critic and derive finite-sample bounds for a universal step size; (ii) We prove a smoothness result
for the Lagrangian of the mean-variance problem and use this result to provide a non-asymptotic
bound for the SPSA-based actor that employs mini-batching for the critic updates. In (Xu et al.,
2020; Kumar et al., 2023), the authors analyze risk-neutral actor critic algorithms with a gradient
estimate based on the likelihood ratio method. They provide a finite-sample analysis. However, the
likelihood ratio method for gradient estimation does not work for the case of variance, and hence,
our non-asymptotic analysis involves a significant departure in the proof for the SPSA-based actor
that we consider.
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2 Problem formulation

We consider an MDP with state space S and action space A, both assumed to be finite. The reward
function (s, a) maps state-action pairs (s,a) to a reward, with s € S and a € A. In this work,
we consider a stationary randomized policy m which maps each state to a probability distribution
over the action space. We consider a discounted MDP setting, and use v € (0,1) to denote the
discount factor. We use P(s’|s, a) to denote the probability of transitioning from state s to next state
s’ given that action a is chosen following a policy 7. The transition probability matrix P gives the
probability of going from state s to s’ given a policy w. The elements of this matrix of dimension
|S| x |S| are given by P(s,s") = > _m(a|s)P(s'|s,a). The value function V7 (s), which denotes
the expected value of cumulative sum of discounted rewards when starting from state so = s and
following the policy T, is defined as

VT (s) £ E[Y o v'r(se, ar) | so = s]. (1)

Furthermore, the variance of the infinite horizon discounted reward from state s, = s, denoted as
A™(5s), is defined as A™(s) £ U™ (s) — V™ (s)2, where U™ (s) represents the second moment of the
cumulative sum of discounted rewards, and is defined as

U(s) & B [(7207'r(se,00)” [ s0 = 5] @

Henceforth, we shall refer to U™ as the square-value function. The well-known mean-variance
optimization problem in a discounted MDP context is as follows: For a given state so = s and
threshold ¢ > 0, our goal is to solve the following constrained optimization problem:

max V7(s) subject to A"(s) <e. 3)
The value function V™ (s) satisfies the Bellman equation 73 V™ = V™, where T : RISI — RISl s
the Bellman operator, defined by T3 (V™ (sq)) = E™F [r(so, ao) + YV ™ (s")] , where the actions are
chosen according to the policy 7. It is well known that 77 is a contraction mapping. In Sobel (1982),
the author derives a Bellman type equation for A™(s). However, the underlying operator of this
equation is not monotone. To workaround this problem, Tamar et al. (2016); L.A. & Ghavamzadeh
(2016) use the square-value function U™, which satisfies a fixed point relation that is monotone.
Given V7, U™, the variance can be calculated using A™. Using Proposition 6.1 in (L.A & Fu, 2022),
we expand the square-value function (2) as

UT(s) = Yo mlals)r(s,a)? + 92 32, o w(als)P(s'|s,a)UT(s") + 27 32, o m(al)P(s'| s, a)r(s, a) V7 (s")

Similar to the value function, the square-value function also satisfies a Bellman equa-
tion TobU™ = U”, where T, : RISl — RIS js the Bellman operator, given
by ToU™(s) & E™P[r(s,a)?+72U™(s')+2vr(s,a)V™(s')]. For a given policy =, the Bell-
man operators 7; and T, can be represented in a compact vector-matrix form as
Ty (V) =r++PV, To(U) = 7 + 2yRPV + ~+2PU, where U, V, r and 7 are |S| x 1 vectors with
7(si) = Y peam(alsi)r(si,a), 7(si) = ,cam(als;)r(s;,a)®. Here, Ris a |S| x |S| diagonal
matrix with 7(s;) as the diagonal elements for ¢ € {1,...,|S|}. Now, we construct an operator
T : RSI — R2ISI, which is given by T(V,U) = (T1(V),T>(U)) T A sub-problem of (3) is pol-
icy evaluation, i.e., estimation of V™ (-) and A™(-) for a given policy 7. L.A & Fu (2022); Tamar
et al. (2016) establish that the operator 7" is a contraction mapping with respect to a weighted norm,
ensuring a unique fixed point for 7". In the next section, we describe a TD algorithm with LFA for
policy evaluation, and this algorithm is based on (L.A. & Ghavamzadeh, 2016).

3 Mean-variance TD-critic

When the size of the underlying state space |S| is large, policy evaluation suffers the curse of di-
mensionality, necessitating the computation and storage of the value function for each state in the



153
154
155
156
157
158

159
160
161
162

163
164
165
166
167
168
169
170
171

172
173

174
175
176
177
178
179

180
181
182

183
184
185
186

187

188

189
190
191
192

193
194

Mean-Variance SPSA Actor Critic

underlying MDP. A standard approach to overcome this difficulty is to use TD learning with function
approximation, wherein the value function is approximated using a simple parametric class of func-
tions. The most common example of this is TD learning with LFA (Tsitsiklis & Van Roy, 1997),
where the value function for each state is approximated using a linear parameterized family, i.e.,
V™ (s) ~ w' ¢(s), where w € R? is a tunable parameter common to all states, and ¢ : S — R?is a
feature vector for each state s € S, and typically ¢ < |S|.

We approximate the value function V7 (s) and the square-value function U™(s) using linear
functions as follows: V7 (s) ~ v ¢,(s), UT™(s) =~ u'¢,(s), where the features ¢,(-) and
¢u(-) belong to low-dimensional subspaces in R and R%, respectively. Let ®, and ®, de-
note |S| x dy and |S| x do dimensional matrices, with i-th and j-th column respectively as
((;52‘}(51), ey ¢%(8|3‘))T s (qﬁft(sl), ceey ¢i(8‘3|))T where ¢ € {1, Cey dl} and j € {17 .. ,dg}.
For analytical convenience, in our analysis we set d; = do = ¢q. We observe that owing to
the function approximation, the actual fixed point remains inaccessible. Instead, the objective
is to find the projected fixed points, denoted as w = (v,u)' within the following subspaces:
Sy = {@vv |v S Rdl}, Sy = {<I>uu |u S Rd2} . We approximate the value and square-value
functions within the subspaces defined above. Accordingly, we construct projections onto S, and
S, with respect to a weighted norm, using the stationary distribution as weights. For the analysis,
we require the following assumptions that are standard for TD with LFA, (cf. Prashanth et al., 2021;
Bhandari et al., 2021; Srikant & Ying, 2019; Patil et al., 2024).

Assumption 1. The Markov chain underlying the policy  is irreducible.

Assumption 2. The matrices ®,, and ®,, have full column rank.

With finite state and action spaces, Assumption 1 guarantees the existence of a unique stationary
distribution ., for the Markov chain induced by policy 7. Assumption 2, commonly made in the
context of TD with LFA (cf. Bhatnagar et al. (2009); Bhandari et al. (2021); Prashanth et al. (2021)),
mandates that the columns of the feature matrices ®,, and ®,, be linearly independent, guaranteeing
the uniqueness of the fixed points. Additionally, it also ensures the existence of inverse of the feature
covariance matrices (@ID”@U and 'IJI D™ ®,,), to define the projection matrices in (4).

We denote II, and IT,, as the projection matrices which project from state space S onto the sub-
spaces S, and S,,, respectively. For a given policy 7, projection matrices are defined as in (L.A. &
Ghavamzadeh, 2016, Eq. (8)):

I, =&,(®/ D"®,) '®/D"and I, = ®,(®, D"®,) '® D", 4)

where II,, and II,, project the true value and square-value functions onto the linear spaces spanned
by the columns of ®,, and ®,,, respectively. In the above, D™ is a diagonal matrix with entries from
the stationary distribution . In (L.A. & Ghavamzadeh, 2016), the authors established the following
projected fixed point relations:

&,0 = I1,T,(®,0), and &, = I1, T, (®,,1). ©®)

(L.A & Fu, 2022, Proposition 6.2) establishes that the joint operator T'(U, V') = (?) is a contraction

11,
0
ces ®, and ®,, have full column rank, (Tamar et al., 2016, Proposition 8) ensures that the projected
Bellman operator IIT'(U, V) is also a contraction with respect to a weighted norm. Consequently,
the projected Bellman operator II7'(U, V') admits a unique projected fixed point w = (v, ). The

equations in (5) can therefore be equivalently expressed as the following linear system:

T T
—Mw + £ = 0, where M = (‘i’“ DA-P)®, 0 ) , E= (‘Pu DR) 7

with respect to a weighted norm. Since the operator IT = 12 ) is non-expansive and the matri-

-2 DRP&®, & D(I-4?P)®, & Dr (6)
.
r=(r(s1) ... r(ss)) ,and
the matrix R is diagonal, with its components given by r(s;) = > . 4 m(alsi)r(si,a) for i
{1,...,|S]|}. 7 is a vector with its components given by 7(s;) =>_ . 4 7(alsi)7(si, a)?.
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Algorithm 1: TD with Tail Averaging (Critic)
Input: Initialize wo = (vo, uo), step-size G, critic batch size m, tail index k
Output: Tail-averaged iterate Wit 1:m = (77 orps1 Ut > 7F Dopepops Ut) -
fort = 0tomdo
Sample action a; using the policy 7(+|s;), observe the next state s;+1 and reward ry = r(s¢, at)

/* Update the TD parameters as follows: */

Vi1 = V¢ + B 0t Pou(St), Ut+1 = us + B € du(St) @)
where 6; = r; + ’yU;r(fJU(St+1) — vtngﬁv(st),

e =11+ 29740 Gu(se41) + 77U Pulse1) — uf Gulse).
end for

Basic algorithm. Letting w; = (vy, ut)T, we rewrite (7) to obtain the following update iteration:

W1 = wy + B(rigs — Mywy), ¥

where ¢; = (Qj)v(st)?r(shat)¢u(3t))T7Mt £ (Z Sf) with c; = —27rt¢u(3t)¢v(3t+1)—rv

a; £ dy(s)du(s0) T — Yhu(5t)Pu(s141) " and by £ ¢y (5:)Bu(5:) T — V2Pu(s0)Pu(se41) "

In (8), we have used r; to denote 7 (s, a;), for notational convenience. We observe that the expected
value of M, is equal to M, where M is defined in (6). An alternative view of the update rule is the
following:

w1 = wy + B(—Muw; + & + AMy), )

where AM; = 11y — Myw; — E [regpy — Myw; | Fy], with £ as defined in (6). Under an i.i.d.
observation model (see Assumption 5), AM, is a martingale difference w.r.t. the filtration {F; };+>0,
where F; is the sigma field generated by {wy,...,w;}. We remark that we utilize the update it-
eration (8) instead of (9) to obtain finite-sample bounds in the next section. The rationale behind
this choice is a technical advantage of not requiring a projection operator to keep the iterates wy
bounded. To elaborate, in the proof of finite-sample bounds, we unroll the iteration in (8) and bound
the bias and variance terms. Specifically, letting z; = w; — w and hy(wy) = ey — Mypw,, we get
zt41 = (I — M)z + Bhe(w). The second term h,(w) does not depend on the iterate w; and can
be bounded directly. On the other hand, unrolling (9) would result in a term SAM, in place of the
h¢(@), and bounding this term requires a projection since AM; has the iterate w;.

Tsitsiklis & Van Roy (1997) show asymptotic convergence of v; to ¥. They achieved this by veri-
fying that the required conditions—on step-size, stability, and noise control—are satisfied with the
TD update reinterpreted as as Linear Stochastic Approximation (LSA) iteration. Similarly, the con-
vergence of w, to w was established by L.A. & Ghavamzadeh (2016). Several recent works have
analyzed the finite-sample behavior of TD learning with LFA, particularly focusing on deriving
mean-squared error bounds (Bhandari et al., 2021). However, a direct finite-sample analysis of (8)
is not available in the literature—a gap that we address next.

Bounds for the TD-critic. We make the following assumptions that are common in the finite-
sample analysis of temporal difference (TD) learning, (cf. Prashanth et al., 2021; Bhandari et al.,
2021; Patil et al., 2024).

Assumption 3. Vs € S,

¢v(3)”2 < :’)nax < o0, ¢u(5)||2 < (b%ax < .
Assumption 4. Vs € S,a € A, |r(s,a)| < Rpax < 00.

Assumption 3 ensures the existence of the feature covariance matrices ® D"®, and &/ D" ®,,,
as well as the projection matrices in (4). Assumption 4 bounds the rewards uniformly, ensuring
the existence of the value function and the square-value function. We consider an i.i.d observation
model, which is made precise in the assumption below.

Assumption 5. The samples {s:, T+, St41 }ten are formed as follows: For each t, (st,5141) are
drawn independently and identically from x(s)P(s,s’), where x is the stationary distribution un-
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derlying policy m, and P is the transition probability matrix of the Markov chain underlying the
given policy . Further, 4 is a function of s; and a, which is chosen using the given policy .

The i.i.d observation model is often considered as first step to analyse TD learning. Furthermore,
the finite-time bounds obtained under the i.i.d. observation model can be directly extended to the
Markovian setting using the constructions in (Patil et al., 2024, Remark 6) and (Samsonov et al.,
2024, Section 5).

Mean-Squared Error Bounds. We first present a mean-squared error bound for the last iterate
with a constant step size, with the proof in Section 7.

Theorem 3.1. Suppose Assumptions 1 to 5 hold. Run TD Updates in (7) for t iterations with a

. . . . . T
step size (3 satisfying the following constraint: 3 < Bnax = % where p = Amin (M 2+M) and

¢ = max {4( lr;ax)4+4'y2R?nax( 7rfmx)z( %ax)2’4( %ax)4}+2’7RmaX(( lr;ax)2( 1r¢1ax)2+( %ax)4)'
Then, we have

2B0?
B e - 0l3] < 2exp (-5un B [Jal] + 22, (10)

where wy is the initial parameter, w is the TD fixed point, zo = wo — w is initial error and
2 ) _
02 = 2R%1ax((¢%ax)2 + R?r)ax(¢%ax)2) + 2((¢1ri-|ax)4 (1 + 7)2 + (¢;ax)4 (1 + 72) + 472R12nax(¢tmax)2(¢?nax)2) Hng .

Notice that the bound in (10) is for a constant stepsize that requires information about the minimum
eigenvalue of the symmetric part of M. In the context of regular TD, such a problematic eigenvalue
dependence has been surmounted using tail-averaging, which we introduce next. We remark that
tail-averaging for the case of mean-variance TD does not overcome the eigenvalue dependence.
However, the benefit of tail averaging is that we obtain a bound that vanishes as as t — oo, while
the bound in (10) does not vanish asymptotically.

Tail averaging. The tail-average is computed by averaging the iterates {wg1, ..., w;}, given by
Wht1:p = ﬁ Zf:kﬂ w;, where k is the tail index, and averaging starts at k + 1. Polyak & Ju-
ditsky (1992); Fathi & Frikha (2013) investigated the advantages of iterate averaging, providing the
asymptotic and non-asymptotic convergence guarantees in the stochastic approximation literature,
respectively. Tail averaging preserves the advantages of iterate averaging, while also ensuring de-
pendence on initial error is forgotten at a faster rate (Patil et al., 2023; Samsonov et al., 2024). Now,
we present a mean-squared error bounds for the tail-averaged variant for the TD-critic, with the
proof in Section 8.

Theorem 3.2. Suppose Assumptions 1 to 5 hold. Run Algorithm 1 for t iterations with a step

size B as specified in Theorem 3.1. Then, we have the following bound for the tail average iterate
t

Wg1:t = tflk Zi:k+1 wis

1002

2] _10exp (—kpBp)
E [Hwarl:t - w||2 < m7 (11)

T BPult—k)?

where 2o, 0, W, i are as defined in Theorem 3.1.

2
Efllzoll2) +

As in the case of regular TD with tail averaging, it can be observed that the initial error (the first
term in (11)) is forgotten exponentially. The second term, with & = ¢/2 (or any other fraction of
t), decays as O(1/t). Tail averaging is advantageous when compared to full iterate averaging (i.e.,
k = 1), as the latter would not result in an exponentially decaying initial error term. The bound for
regular TD with tail averaging in Patil et al. (2024) uses a universal step-size, which does not require
information about the eigenvalues of the underlying feature matrix. However, arriving at O(1/t)
bound for the case of variance is challenging owing to certain cross-terms that cannot be handled in
a manner analogous to regular TD, see Section 6 for the details.

Regularization for universal step size. The results in Theorems 3.1-3.2 suffer from the disad-
vantage of a stepsize which requires knowledge of the spectral properties of the underlying matrix
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M. In practical RL settings, such information is seldom available. To circumvent this shortcoming,
we propose a regularization-based TD algorithm that works with a universal step size, for a suitably
chosen regularization parameter. Instead of (6), we solve the following regularized linear system for
some ¢ > O:

_(M + CI)wreg + g = 07 (12)

The corresponding TD updates in (7) to solve (12) would become
V1 = (L= B0+ B Oy do(se), g1 = (I— Bt + B & dulse), (13)

where d;, & are the regularized variants of the corresponding quantities defined in (7), i.e., with
vy, Uy replaced by vy, Uy respectively. We combine the updates in (13) as

W1 = Wy + Brege — (CT+ My)y), (14)

where My, r;, ¢ are defined in (8). We now present a result that shows the regularized tail-averaged
variant (14) converges at the optimal rate of O(1/t) in the mean-squared sense, for a step size that
is universal.

Theorem 3.3. Suppose Assumptions 1 to 5 hold. Let Wy11.4+ = ﬁ Z:;: 1 Wi denote the tail-

—L and the step size f3 satisfying B < Pmax = % Then we

averaged regularized iterate. For ( = ik

have

~ _1 2 vo\2 2 u \2
y 2] 20exp (—kB(2u+N"3)) 2] 2062, 2Rea((dhed R (Gma)”)
E [HwkH:t — sz} < Y= T E {Hwo — Wregll5| + Mz‘}, 4 I ma) m?)

where ¢ and & are defined in Section 9, 1 denotes the minimum singular value of M, N =t — k, and
-\ M'+M
B= Amin(F5)

We first bound E {Hu“)k“:t — H)regﬂg} in Theorem 9.1 in the supplementary material, specialize this

bound for the case of { = ﬁ Next, using the fact that || @Wyeg — w||§ is O(¢?), followed by a

triangle inequality, we obtain the bound in the theorem above, see Section 9 for the proof.

High-probability bounds. For the high probability bound, we consider the following update rule:
wy1 = ['(wy + vhe(wy)), where T projects on to the set C = {w € R?? | ||wl|, < H}.

MT+M)

Assumption 6. The projection radius H of the set C satisfies H > %, where |1 = Amin(*—

and € is as defined in (6).

Under the additional projection-related assumption above, we state the high-probability bound for
the tail-averaged variant of Algorithm 1. Subsequently, we introduce the regularized mean-variance
TD variant to establish high-probability bounds. The following theorem provides a high-probability
bound for the unregularized (vanilla) mean-variance TD.

Theorem 3.4. Suppose Assumptions 1 to 6 hold. Run Algorithm 1 for t iterations with step size
as defined in Theorem 3.2. Then, for any 6 € (0, 1], we have the following bound for the projected
tail-averaged iterate wy1.¢:

_ T 4dexp(—kBu _ T
P (w1 —lly < 52 y/log () + L2BHAE (llwo — @l,)+ 4 ) 216,

where wy, w, B are defined as in Theorem 3.1, and
T = (ZRgﬁax ((¢1n{13x)2 + R?nax(gz&#\axy) + 2((¢ﬁwax)4 (1 + ’7)2 + (¢:¢13x)4 (1 + 72)2 + 472R?11ax(¢:1}13x)2(¢7r;-’|ax)2)H2)%’

The following theorem provides a high-probability bound for the regularized mean-variance TD.
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Theorem 3.5. Assume that the conditions in Assumptions 1 to 6 hold. Run Algorithm 1 for t it-
erations with a step size 8 < Pmax as specified in Theorem 3.3. Then, for any § € (0, 1], with
probability at least 1 — 0, the projected tail-averaged regularized TD iterate satisfies

y _ 27 1 4 exp(—kB(2u+(¢)) N 4r
||wk+1:t — wregH2 < W log (g) + W]E ”UJQ - wreg||2 + VN

where N, o, W and p are defined as in Theorem 3.3. Moreover,

7 = (2R (Dh)? + Rrae(B0)?) + 4(C + (B (1 +7)% o (Bl50) (1 7202 + 45 R (B0 () H?)
We use a martingale decomposition and Lipschitz concentration of sub-Gaussian random vari-
ables to establish the high-probability bounds. This technique has been employed for vanilla TD
(Prashanth et al., 2021). Our contribution extends this technique to mean-variance TD and its regu-
larized variant, enabling a universal step size. As in the MSE bound case, owing to the cross terms,
a universal step size does not appear to be feasible sans regularization, and we believe this is a use-
ful finding as it deviates from the corresponding result for vanilla TD. In contrast, the authors in
(Samsonov et al., 2024) employ Berbee’s coupling lemma to arrive at a sub-exponential tail bound.

Discussion: The update rule in (8) represents a Linear Stochastic Approximation (LSA), and
mean-variance TD is indeed a special case of the general LSA framework. Several previous works,
including Srikant & Ying (2019), provide a finite time analysis for LSA. Their bounds can be applied
to (8). However, our analysis differs in the following ways: First, the step size € in Srikant & Ying
(2019) depends on the eigenvalues of the transition probability matrix P, which can be difficult to
obtain. We alleviate this dependency by employing regularization to achieve a universal step size
that is independent of spectral information. Second, we derive explicit constants for the matrix M
(mean-variance TD) instead of the matrix A (vanilla TD). Third, our analysis focuses on the recur-
sive structure of the error to the projected fixed point, whereas Srikant & Ying (2019) analyze the
drift of a Lyapunov function. Finally, Srikant & Ying (2019) provide finite-time bounds for Mean
Squared Error, while we additionally establish high-probability bounds.

The current literature on bounds for TD (or more generally, linear stochastic approximation) for
Polyak-Ruppert averaging scheme does not achieve O(1/t) bounds, to the best of our knowledge.
Instead, with a Polyak-Ruppert stepsize 1/k%, the bound is O(1/t*), with o < 1, see (Prashanth
et al., 2021). Tail-averaging with a “universal” step size was shown to close this gap for vanilla TD.
Our contribution is to show that tail-averaging with universal step size may not be feasible to obtain
an O(1/t) for mean-variance TD, while regularization closes this gap.

In Samsonov et al. (2024), the authors provide high-probability bounds for a general linear stochas-
tic approximation algorithm, and specialize them to obtain bounds for the regular TD algorithm. For
mean-variance TD (8), we could, in principle, apply the bounds from the aforementioned reference.
However, the bound that we derive in Theorem 3.4 enjoys a better dependence on the confidence pa-
rameter d. Specifically, we obtain a 1/log(1/4) actor, corresponding to a sub-Gaussian tail, while the
bounds in Samsonov et al. (2024) feature a log(1/§) factor, which is equivalent to a sub-exponential
tail. Furthermore, our result makes all constants clear in the case of mean-variance TD.

4 SPSA-based Actor

In this section, we analyze an actor algorithm based on SPSA-based gradient estimates. Throughout,
we consider a parametrized class of stationary randomized policies {7y, § € R?}. We denote the
score function as 1y(s,a) = Vglogmy(a|s). We consider smoothly-parameterized polices, i.e.,
satisfying the following assumptions:

Assumption 7. V(s,a) € S x Aand 6,0, € R%, 3 positive constants Ly, Cy, and Cy. such that

(i) |16, (5, a) = o, (s,0) |5 < Ly |01 = 0255 (i) e (s, a)lly < Cops
(iii) ||, (-|5) — o, (:|5)||rv < Cr ||01 — 2|5, where || - || v denotes the total-variation norm.

In the above, (i) and (ii) imply that score function is smooth and bounded. This generally holds for
most commonly used policy classes. Since we asssume finte action space, (iii) holds for any smooth
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Algorithm 2: SPSA-based actor with TD critic for mean-variance optimization (MV-SPSA-AC)

Input: Initialize 6 € R?, perturbation constant {p; }, critic batch size m, actor step size {a }, critic step
size { 8¢}, number of iterations n, and tail-index k.

fort <~ Oton —1do

Generate A(t) ~ {£1}¢ (symmetric Bernoulli)

/* Critie: Obtaining tail-averaged TD iterates for policy evaluation x/

Run Algorithm 1 for the unperturbed policy g, to compute w+1:m = (Vkt1:m, ukH;m)T

Run Algorithm 1 for the perturbed policy g, 1, a () to compute w;, 1. = (v 1., u;LH:m)T.

/+ Actor: Estimating SPSA gradients for policy improvement x*/

. ¢U(SO)T(U;:+1:m — Ukt1:m) . ¢u(50)T(uk++1:m — Uk+1:m)

VO = A V0= PNID)
Orr1 =0+ (VJI(0:) = AN(VU(8:) —2J(0:)V J(6r)))

end for

Output: Final policy 6z chosen uniformly at random from {61, ...,0,}

policy. A similar assumption has been made earlier for the analysis of actor-critic algorithms in
a risk-neutral RL setting, cf. (Xu et al., 2021). By applying the Lagrangian relaxation procedure
(Bertsekas, 1996) to (3), we get the following unconstrained optimization problem for a fixed A > 0:

min L(9) = =V (s0) + A(AF (s0) — ), (15)

where L(0) represents the Lagrangian function. In this paper, we treat A as a fixed bias-variance
tradeoff parameter, and find a ‘good-enough’ policy parameter for the problem (15) defined above.
For the actor update, we require the gradient of the Lagrangian w.r.t. the policy parameter 6,

VoL(0) = —VVy(s0) + AMVUs(s0) — 2Va(s0)VV(s0))- (16)

For notational simplicity, we let Vy(so) = J(0), Up(s0) = U(0), and VVp(s9) = V.J(0).

Basic algorithm. We describe the Mean Variance SPSA Actor Critic (MV-SPSA-AC) algorithm
for mean-variance optimization. Algorithm 2 presents the pseudocode of this algorithm. This algo-
rithm is a variant of the actor-critic algorithm proposed in L.A. & Ghavamzadeh (2016), where the
authors provide only asymptotic guarantees. MV-SPSA-AC algorithm deviates from their algorithm
by incorporating tail averaging in the TD critic with LFA, and performing a mini-batch update for
the SPSA-based actor. More importantly, we perform a finite-sample analysis.

Need for SPSA. The variance of the return we consider lacks a simple linear Bellman equation,
unlike the value function in risk-neutral RL. To address this, variance is estimated as the differ-
ence between the second moment and the square of the first moment of the return. Since the sec-
ond moment satisfies a simple linear Bellman equation, this approach makes variance estimation
feasible. The policy gradient expression for the square-value function is as follows (see (L.A. &
Ghavamzadeh, 2016) for the derivation):

VU(0)= ﬁ (ZS,aﬁG(& a)Vlogmy(als)Wo(s,a) +273_, , «P6(s,a)P(s']s,a)VVy(s') ).

Tl (9) T2 (9)

a7
As seen from the expression above, the second term T5(6) requires the gradient VVjp(s') for every
state s’ € S. An actor-critic algorithm would require an estimate of the value gradient with every
possible start state, making it impractical for implementations. SPSA-based gradient estimates offer
a viable alternative to overcome this issue. Wy(s, a) is equivalent of action-value function for U (6).

Actor. The policy parameter 6 is updated in the negative direction of gradient of the Lagrangian,
with step size o as follows:

Or i1 = O+ (VI (0:) = N(VU (6,) —2J (6,)V T (61))), (18)

10
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where (19) is used for computing vJ (0;) and vU (0:) respectively. In a risk-neutral RL setting, the
usual recipe for the actor part is to use the policy gradient theorem to form likelihood ratio-based
gradient estimates. In L.A. & Ghavamzadeh (2016), it is shown that such an approach does not
extend to cover the mean-variance case. The authors there proposed an alternative actor that uses
SPSA for gradient estimation. This scheme uses two policy trajectories: one with parameter 6;
and another with a perturbed parameter 6; + p;A(t), denoted by the superscript ‘+°, where A(t)
is a d-dimensional vector of independent Rademacher (41) random variables. Using these two
trajectories, we form estimates of the gradient of the value and square-value functions as follows:

¢v(50)T(Ui—:+1;m — Ukt1:m) " . ¢u(50)T(U§+1;m = Uk41:m)
peAi(D) Vi) = pesi (1)

ViJ(0;) = . (19

where vj41.:m and v}, ., are the tail-averaged critic parameters for the value function under the
unperturbed (6;) and perturbed (6; + p:A(¢)) policy parameters, respectively. Here, m is the critic
batch size. Similarly, w4 1., and uz | 1. are the tail-averaged critic parameters for the square-value
function under the unperturbed and perturbed policy parameters, respectively. We describe next the
policy evaluation components in the critic.

Critic. We perform m TD-critic updates to form the estimates for value function
J(0) = ¢y (50) " Vgt 1.m and square-value function U(6) = ¢ (50) | Ug1.m. respectively. Further,
we perform m updates for the perturbed policy 0; + p;A(t) to form the value and square-value
function estimates as J (0 + p:A(t)) = ¢y(s0) v 1., and U(0 + pA(t) = du(so) "ty 1.
respectively. We use tail-averaged critic variants for each policy evaluated above.

Main results. For every policy 6, we assume Assumption 1 holds, which implies the ex-
istence of the stationary distribution x,, and scalars k > 0 and p € (0,1) such that
Sup,eg [IP(st | $0 =) — Xnollpy < Kp', V& > 0. For the analysis of MV-SPSA-AC algorithm,
we need to establish that the Lagrangian L(-) is a smooth function of 6. Further, it can be seen from
(16) that , the smoothness of J(-) and U(-) would imply to smoothness of L(-). In a risk-neutral
setting, J(-) is the usual objective, and Xu et al. (2021, Proposition 1) established smoothness of
J(-) in (20). On the other hand, smoothness of U (-) requires a new proof, and involves significant
departures from the one for .J(-). The result below states smoothness for J(-) and U(-), with the
latter result being a technical contribution of this paper.

Lemma 4.1. Suppose Assumptions 7 holds. Then, for any 61,0 € R%, we have
IVJ(01) = VI (02)ll, < Ly l|0r = bally, [VU(61) = VU(O2)lly < Lully — 02, (20)

where L; = g‘ji;‘) (4C,Cy + Ly), C, = 5C (14 Mlog,x 1+ (1—p)~') and Ly =

R2
=2 (@25 (Ly +4CyC (1 + 51-)) + 2Ly).

We remark that the smoothness result for the square-value function in Lemma 4.1, derived in the
context of variance as a risk measure, holds independent significance, as it may prove useful in
variants of actor-only or actor-critic methods for mean-variance optimization. Using smoothness of
J(-) and U(-), we arrive at the following result.

Lemmad4.2. Let L, =Ly (1 + 2/\(1R_mj;x)2 + 2A(ﬁmjx,g‘20 )2> + ALy Forany 61,05 € R?, we have

[VL(61) = VL(62)l5 < Lo [0 — 2], - 1)

The smoothness claim in the result above for the Lagrangian is a key technical contribution, as it
serves as a building block for the analysis of the actor update. In particular, this smoothness result
facilitates an SGD-type analysis for the actor update. For the analysis of Algorithm 2, we make the
following assumption that ensures the value and square-value functions lie in a linear space.

Assumption 8. For any given policy parameter 0, let ©(0),u(0) denote solutions to fixed point
equations in (5). Then, E[¢(so) "9(0)] = J(0),E[p(s0) Tu(0)] = U(6).

11
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A similar assumption is made in (Kumar et al., 2023, Eq. (13)). Our analysis can be easily extended
to include an approximation error term if Assumption 8 does not hold. The main result that estab-
lishes stationary convergence of the algorithm MV-SPSA-AC is given below (see Section 11 for a
proof sketch and Section 12 for the detailed proof).

Theorem 4.3. Suppose Assumptions 1 to 8 hold. Run MV-SPSA-AC" for n iterations with actor step
size iy = o = 1/n3/4, perturbation constant p; = p = 1/711/47 critic batch size m = n, and critic
step size 8 < Bmax as defined in Theorem 3.1. Let O be chosen uniformly from {61, ..., 0,}. Then,

E[IVL©R)I] < O/m'/t,

for some constant C that is specified in Section 12.

Remark 1. We need to account for the biased nature of the SPSA gradient estimators in our anal-
ysis. This introduces the perturbation constant py, leading to the terms O(%), O(p%), and O(py).
Consequently, we face a trade-off that arises due to the bias in the SPSA gradient esttimates, acting
as a bottleneck.

Remark 2. Eldowa et al. (2022) study the variance of per-step rewards, analyzed as reward volatil-
ity (Bisi et al., 2020; Zhang et al., 2021), which is also equivalent to the discount-normalized
variance in (Filar et al., 1989). Unlike the variance of the return, this objective lends itself to a
REINFORCE-type policy gradient algorithm and does not require a zeroth-order gradient estima-
tion scheme. This is because the gradient of the variance of per-step rewards does not feature a
‘problematic’ term like Tx(-); instead it only has a term analogous to Ty(-), which can be more
easily handled similar to the risk-neutral case.

The result above establishes the convergence to a stationary point of Lagrangian, and this is signif-
icant because L(#) encapsulates both the mean and variance of returns. Optimizing L(6) ensures a
tradeoff between maximizing the value function and minimizing variance. This result is particularly
notable as it establishes convergence guarantees for a non-convex function. Mean-variance opti-
mization has been shown to be NP-hard even if the transition dynamics are available, see (Mannor
& Tsitsiklis, 2013). Policy-gradient and actor-critic algorithms present a viable alternative where
the usual convergence guarantees are to a stationary point. For instance, several policy gradient-type
algorithms have been shown to converge to an approximate stationary point in the literature, cf. (Xu
et al., 2021; Zhang et al., 2020).

We remark on the sample complexity required for e-accurate convergence of the MV-SPSA-AC
algorithm. Theorem 4.3 indicates that the actor loop must run 2(e~*) times. However, in each
iteration, the critic is executed twice—once for the perturbed and once for the unperturbed trajecto-
ries—using n samples per run to estimate the policy gradients. Thus, the total sample complexity for
e-accurate convergence is O(e~*). While this represents slow convergence, the use of biased SPSA
gradient estimates typically degrades the rate. To the best of our knowledge, finite-sample results
for zeroth-order actor-critic methods remain unavailable, even in risk-neutral RL (Lei et al., 2025).
Investigating whether sharper analyses or stronger assumptions could improve the convergence rate
is an interesting direction for future work.

5 Concluding remarks

We considered a risk-aware discounted reward MDP through mean-variance optimization. Specifi-
cally, we analyzed an mean-variance actor-critic algorithm, and derived finite-sample performance
guarantees. We first obtained an O(1/t) bound on the convergence of the tail-averaged iterate of the
mean-variance TD with LFA. We also obtained a high probability bound that effectively exhibits a
sub-Gaussian tail. Next, we employed an SPSA-based actor in conjunction with the above critic,
and obtained an O(n~'/*) convergence guarantee in the number 7 of actor iterations.

'We employ the un-regularized variant of TD-critic for deriving the bound above. The modification to use the regularized
critic for the analysis is straightforward, and we omit the details.

12
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580 6 Outline of critic analysis

581 Below, we sketch the proof of Theorem 3.1 to highlight the main ideas and key differences from the
582  standard TD proof. Full proofs of Theorem 3.1 and Theorems 3.2 to 3.5 are provided in Appendices
583 7-10.

584 As in proofs of standard TD bounds, we perform a bias-variance decomposition to obtain
2

E[llz041]17) < 2E [|C*0z0||] +26°E , 22)
—_——

t
Z Ct:k+1hk (’lf))
k=0

bias
2t

van
Ztanance

585 where C¥J/ =

(I—BM;)(I = BMi—1)...(I—BM;)  ifiz=j
I otherwise.

586 To bound the bias term, we expand the matrix product by one step, yielding
3 = [[lo"z]]
—E[E[(C1020m) " (1 pMy) T (1 pMy) (€0 ) | F]]
587  Next, we establish a result for any y € R?¢ that aids in handling both the bias and variance terms.
E {yT (I-6M;)" (I-5My)y ‘ ]:t} = Hy||§ ~By'E [(MZ + M) | F]y

@

+ 8%y 'E[M/M, | F]y (23)

®@

588 The term T1 is lower-bounded in a standard manner (as in regular TD), i.e.,

y E[(M] +M,) | Aly=y" (M"+M)y>2ulyl;, (24)

T . .. . . T
589  where pt = Amin( M 2+M) is the minimum eigenvalue of the matrix %

590  On the other hand, bounding term T2 involves significant deviations. In particular,

y' EM/M, | Fly=v'E[aja,+c/c; | F]Jv+u'E[b/ b, | F]u

D &

+v'Ee/b | F]ut+u'E [ble | F]v. (25)

9

591 Here, S1 and S2 resemble terms that appear in the finite-sample analysis of regular TD, while S3
592  and S4 are cross-terms specific to the estimation of the square-value function.

593 We bound S1, S2 as follows:

S1 < ((Gha? (1 47)° + 492 B0’ ) v B, 26)
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52 < (¢t)? (14272 +4%) u' Gu.

In the above, B and G are expectations of the outer product of vectors ¢, (s;) and ¢, (s;) respec-
tively. If the cross-terms were not present, then one could have related T2 to a constant multiple of
v ' Bv 4+ u' Gu, leading to a universal step size choice, in the spirit of Patil et al. (2024). However,
cross-terms present a challenge to this approach, and we bound the S3, S4 cross-terms as follows:

S3 + 54 < 2(¢% ) Rinaxv T (Y(B+ G) + 73 (B+ G)) u. (27)

We overcome the challenge of bounding the cross-terms (S3 and S4) through the following key
observations: First, the cross-terms exhibit symmetry and are equal. Consequently, analyzing one
term suffices, as the derived upper bound applies to the other term as well. Second, to bound the
cross-term, we leverage the following inequality:

T T T T
—T (aa ;_bb ) u<v' (abT) u<ov' (aa ;—bb ) u.

A similar inequality, also employed in bounding S1 and S2, simplifies the bound in terms of the
matrices B and G, resulting in the expression in (27).

Combining the bounds on S1 to S4 in conjunction with the fact that v T (B + G)u < w Hy||§
(see Lemma 7.2), we obtain the following bound for a step size 5 < Bnax specified in Theorem 3.1
statement:

E[y" (- pM)T @-BMy)y | F] < (1= 8u) Jyl} - 28)

Using the bound above, the bias term in (22) is handled as follows:
bias 2
2105 < exp (~But) E [|z0]°] -

Using ||hx()])* < o2, we bound the variance term as follows:

t 2

Z Ct:k+1 s (ﬂ))

k=0

B < o2 ZE[ [” (I ﬁMt)H ‘]_—t} Hct—l:kﬂnz}

2

<022 (1—Bu)E |:|Ct 1k+1H:|

2

3022(1—/3u <— (29)
k=0

Q

The main claim follows by combining the bounds on the bias and variance terms, followed by
straightforward simplifications. The reader is referred to Section 7 for the full proof.

7 Proof of Theorem 3.1

Proof.
Step 1: Bias-variance decomposition

Recall the updates in Algorithm 1 can be rewritten as follows:
wey1 = wy + B(regy — Mywy). (30)
Defining the centered error as 2z;41 = w;41 — W, we obtain

241 = wy — W+ B(regy — Mywy) + SMyw — fFMw
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(I — BM,)(wy — @) + B(ridy — Myw)
(I—pMy)z + B(rede — Myw).

616 Letting hy(wy) = r1 ¢y — Mywy, we have
Zt+]_ = (I — BMt)Zt + Bht(’lﬂ)
617  Unrolling the equation above, we obtain

zr1 = (I = BMy)((I = BM;—1)zi—1 + Bhi—1(w)) + Bhi(w)
=I-M)(I-M;i_q)...(I—My)zg + Bhe(w)
+ B(I — M) h—1(w)
+ B — BMy)(I — BM;—1)hi—2 (W)

+ BT — M) (I — M) ... (I = BM;)ho(w).

618 Define

Cii — (I—pBM;)(I—BM;_1)...(I— M) ifi>j
I otherwise.

619  Using the definition above, we obtain

2

t
Ct:OZO + Bzct:k+1hk(w)
k=0

l2e41]1 =

620 Taking expectations and using ||a + b||? < 2||a||? + 2||b||?, we obtain

E[[|ze41]%] < 228 + 252 z)mance, 31)

. . 2
621 where 2} = E [[|C*0%|”] and zjrinee — [Hz;_o ct:k+1hk(w)H }

622
623 Step 2: Bounding the bias term

624  Next, we state and prove a useful lemma that will assist in bounding the bias term in (31).

625 Lemma 7.1. Consider a random vector y € R?? and let F; be sigma-algebra generated by
626 {wq...wt}, For B < Pmax, We have

E[y" (- M) (X- M)y | F] < (-8 Iyl (32)
BT~ o) ol | 7 < (1= ) Bl 63)
627 where
B < B = & (34)
628 u= )\min ( MTim ) is the minimum eigenvalue of the matrix MT2+M and

k= max {4(dhax) +47 R (Gihax)” (Sinae) s 4 (Sinae) )
+2'7Rmax(( Ir’)nax)2( xax)2+( xax)4>'
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629  Proof. To prove the desired result, we split (32) as follows:

B[y (- M) A= M)y | A =E[y7 (1-8(M] + M) + 6°M M)y | ]
= Hy“g - 5yTE [(M: + Mt) | ]'-t} erBQ yT]E [M:Mt ‘ ]:t] Y.

@

630 We lower-bound the term T1 as follows:

@)

VTE[(M] +M,) | Fly=y" (M"+M)y> 2yl

631 Next, we upper bound the term T2 as follows:

T
o a; o
bt) (Ct bt)

632 Plugging the above in T2, we obtain

ag
C¢

MIMF(

y'EM/M, | F]y=y'E [(

a/a; +

" e (

_(aja;+c/c; /by
b:Ct ’

clc; c/b;

b, ¢, b, b,

a/a; + ¢/ c
T
bt Ct

)

b, b,

—Ft:|y

.
C, bt
b:bt) M (

v
u

v'Ela)a; +¢/c. | FJv+u E b b, | Fi]u

S

2

+0 E[c/ b, | F]Jutu'E[b]e, | Fi]v.

3

633  To upper bound T2, we first establish upper bounds for the terms S1, S2, S3, and S4.

634  First, we consider the term S1.

v'E [a:at + c:ct ’ .7-}} v=0v'E [a;rat | ]—'t] v+v E [c:ct | ]—'t] V.

635 We bound (a) in (38) as:

v E [a:at ’ .7-}] v

— 0 E[(Gu(st)bu(st) T =100 (50)b0(5041)T) | (dulst)bu(se)
—Pu(5t)Pu(se41) ") | Fi Jv
= 0 E[u(s1)u(s) " du(s:)00(s0) T =0 (s0)du(50) T duls0)du(s041) "
— Yo (se11)bo(50) T du(50)u(50)
+ V2P0 (5141) B0 (5¢) T Do (50) 0 (se51) T | Fe]v

@)

)

= 'UT]E[ H%(St)”g (¢v(3t)¢v(5t)T -7 (¢v(st)¢v(3t+1)—r + ¢v(5t+l>¢v(5t)—r>

+ V2 Py (8141) B0 (s141) ) | Fe]v

(1)
S (¢In)13x)2UTE[¢v(st)¢1)(8t)T + Y (d)’u(st)d)’u(st)—r + ¢U(St+1)¢v(3t+1)T)
+ 72 bu(s141)P0(se11) T | Filu
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< (Bhax)? (1427 +9%) v Bu, (39)

636  where B = E [¢,(s:)¢y(s:)" | F¢]. In the above, the inequality in (i) follows from || ¢, (s¢) ||§ =
637  ¢y(st) " du(s4); (ii) follows by applying the bound on the features from Assumption 3 and using the
638 following inequality for term (I) in (i):

T bbT T bbT
(et (e w
639 The final inequality in (39) follows by using the following equivalent forms for B:
B=E [¢v(8t)¢v<5t)—r ‘ ]:t] = [¢v(8t+1)¢v Si41) | ]:t] EX-P [¢U(St)¢v(5t)—r]
=EXT [fy(ser1)u(s41) '] - (41)
640 The equivalences above hold from the i.i.d observation model (Assumption 5).

641  Next, We bound (b) in (38) as:

v'Elei'e; | F]Jv=v'E {(*Q’Yrt¢u($t)¢u(5t+1)T)T (—2vre0u(s6)pu(s041) ) | ft} v
= 4y E [r2y(se41)u(se) dulse)bo(ser1) | | Fe]v

@ 4y TE [th bu (5015 Golse41)bu(si41) ‘ ]:t} v

(i1)
< 44*R? v )20 Bo, (42)

max( max

642  where (i) follows from H¢u(3t)||§ = ¢u(st) " bu(s¢) and (ii) follows from bound on rewards (As-
643 sumption 4) and value of B in (41).

644 Combining (39) and (42), we obtain the upper bound for S1 as follows:

TE [at at + ct Ct | ‘Ff] v < (( max) (1 + 7)2 + 472R2max( xax)Q) UTBU' (43)

645 Next, we upper bound S2 in (37) as follows:
u'E [b/ by | Fi] u
E[<¢U(St)¢u(8t>—r - '72¢u(8t>¢U(st+l)T>T (‘Z)U(St)(bu(st)—r
— P bulse)ulses1) ) | Felu
= u E[¢u(s)puls) dulst)dulse) T — 77 (dulse)bulse) " dulse)bulsiir)
+ ¢u(5t+1)¢u(5t)T¢u(5t)¢u(5t)T)
(¢ (5t+1)¢u(5t)T¢u(5t)¢u(8t+1)T) |]:t}u
TE[ ||¢u(8t)||2 (¢u(3t)¢u(8t)—r - 72 (¢u(5t)¢U(5t+1)T + ¢u(3t+l)¢U(3t)T)

(IT)

+’Y4¢u(5t+1)¢u(8t+1)—r) | ]:t]u
(@)

< (¢%ax)2 UTE [¢u(8t)¢u(8t)T + 72 (¢u(3t)¢u(5t)T + ¢u(3t+1)¢u(3t+l)T)
+ 7 bulst11)bulsei1) " | Felu
(i44)
< (Ohad)® (L+ 29" +9%) u' Gu, (44)
646  where G = E [¢u(s¢)¢u(s:) " | F:]. In the above, the inequality in (i) follows from bu(s)|2 =

647  ¢u(s¢) T du(se); (ii) follows from bound on features (Assumption 3) and applying the inequality (40)
648 to (II); and (44) follows by bound on features (Assumption 5).
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The inequality in (44) follows by following equivalent forms of G:
G =E [¢u(s)pu(s)" | Fi] =E [pul(sir1)pu(sirr) " | Fi] = EXF [pulsi)pulse) ]
= EXF [pulsi41)dulsir1) ] (45)
The equivalences above hold from the i.i.d observation model (Assumption 5).

We observe that scalars S3 and S4 in (37) are equal, i.e.,

v'E [c;rbt ’ }'t] u=u'E [bz—ct ‘ ]—'t] V.

We establish upper bound for S3 in (37) as follows:
v'E [¢/bi]u
=0 E[ = 29710y (5041)u(se) T dulse)dulse)
+29°r1u (st41)bu(51) " Duls)Pu(si1) " | Filu

(2 ||¢u(3t)||§ UTE[_QTH ¢v(5t+1)¢u(8t)T +27"t73 ¢u(5t+1)¢u(5t+1)T | Filu
N——
(IIT) (Iv)

(i)
S ( 1nﬁax)Z}BT“E!XUTE Y (¢U(St+1)¢v(8t+l)—r + d)u(st)(bu(st)—r)
+ 73(¢v(5t+1)¢7j(5t+1)—r + ¢u(8t+1)¢u(5t+1)T) | Fi|u
<(Smax) Bt " (7(B + G) +7*(B + G)) v, (46)

where (i) follows from ||gz5u(st)||§ = ¢u(st) "du(s¢) ; (ii) follows from bounds on features and
rewards (Assumptions 3 and 4) and applying the inequality below to the coefficients of v (III) with
(@ = ¢yp(8t+1), b = Pu(s¢)) and 42 (IV) with (@ = ¢, (811+1), b = Pu(s¢+1)) respectively.

T T T T
—T (aa ;_bb ) u<ov’ (abT) u<v’ (aa ;_bb ) U.

(46) follows by using values of matrices B (41) and G (45).
Substituting (43)—(46) in (37), we determine the upper bound for T2 as follows:

yTE MM | 7]y < ((60)? (149)° + 497 R, (0h0)) v Bo )
+ (Ga)? (1497 0" Gu
+ 2( 1nl:13x)2Rmax(’Y(]- + "}/2))'0T (B —+ G) Uu.

Next, we state and prove a useful result to simplify (47) further.

Lemma 7.2. Foranyy = (v, u)—r € R2IS! and matrix B 4+ G defined in (46), we have

)‘max(B-‘rG)

v (B+Gu < 5

2
1yllz -
Proof. We have

(a)
v B+ Gu < |vlgig lullgia

¢ VoT(B+G)oy/uT (B +G)u

(c) 2 2
< /\max(B+G) ||’U||2 Hu||2
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(d) ol|2 4 ||ul|?
< Amax(mc)“ Il : [lwll

(e) Ama\x(B-‘,—G)
< AmeBiC) 2.

where (a) follows by Cauchy-Schwarz inequality; (b) follows by definition of the weighted norm; (c)
follows by Rayleigh quotient theorem for a symmetric real matrix Q, i.e., ' Qz < Amax(q) |l ]|2

(d) follows by AM-GM inequality; and (e) follows by definition of ||y[|5 = [|v[|Z + [|u//3. O
Substituting the upper bounds obtained for T1 (36) and T2 (47) in (35), we get

E[y"@-5M)" (1= 8M)y | 7] = lyl; - 8y E[(M] + M) |F]y

@

+ 8%y E M/ M, | F]y

®

< 1 200 13+ 52 ((0hn)? (149)° + 492 o)) 0B

(830 (14947 G-t 208 B (1 49207 (B + G
< Iyl - 2Bl + 52< (D) (14 9) 4+ 492 R (G)” ) Amamy 1011
(O (147) ) [0l + (08 Forn 11497 Amacic 11 )
< 1 2 3+ 52 (] ((0n)? (149)° 4 492 R At
(U (1) At } 1015 + (B0 11497 Amscmsc 115
< 1= 520 5 (mox{ ((0ha)? (142)° + 92 R0 A
(U (14792)" A} + (G o114 A ) Il
<1018 = (21— 5 {405 7 R0 100

2

21 R (G (B0 + (0)") ) ) 01
< (1— 58w llyllz, (48)
where (i) follows from Lemma 7.2 and using z" Qz < Amax(Q) ||:CH§, (ii) follows using Amax(B) <

( 1ri1ax)27 >\max(G) < (¢1;1ax>27 and )‘max(B+G) < (¢1r;ax)2 + ( max)2 as B G are outer products of
vectors ¢, (s¢) and ¢, (s¢) respectively; (48) follows by choosing 8 < SBmax-

Re-writing (48) in norm form gives:

E[y" (- 5M)" (1- M)y | 7] =E[I@- Myl | ] < =Bl @9)

Taking square root on both sides of (49) yields the second claim

E[I(T =AMyl | Bl < (1= 8)? [, < (1 - ﬁ“) Il (50)
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670  where (50) follows by using the inequality (1 — z)2z <1 — 5, for x > 0 with x = Bp. O

671 Now, we bound the bias term as follows:
Z?ias —E |:Hct:Oon2:|

—E[E[(C:) " (1- AM) " (1- M) (C'0:%) |7

(@)

< (1-BuE [Hct IOZblasH }

< (1= )" E [l|20] (51)
<exp (~But)E [[l]*] (52

672 where (i) follows by Lemma 7.1; (51) follows by unrolling the recursion and using Lemma 7.1
673 repetitively; and (52) follows by using the inequality below

(1 - Bp)" = exp(tlog(l — Bu)) < exp(—pput).

674
675 Step 3: Bounding the variance term For the variance bound, we require an upper bound for
676  ||hy(w)]||?, which we derive below.

e (@)|* = e (se) — Mywl|”

(@)
< 2||r(se)|* + 2| Mya 5

(b)

< 2R2ma>< ((¢1r;ax)2 + R2ma><(¢%ax)2) +2 HMt”2 ||1I)||§

< 2]%rznax (( 1n)wax)2 + ernax( #\ax) ) + 2(( max) (1 + 7)2 + ( max) (1 + Y )
+ 472R2max(¢;ax)2( Qr'j\ax)Z) ||7I)||2
= o2, (53)

677 where (a) follows using ||a + b||> < 2 ||al|* + 2b||*; (b) follows by bounds on features and rewards
678 (Assumptions 3 and 4); and (c) follows by expanding the upper bound on || M, 2.

679 Next, we bound the variance term in (31) as follows:

Z Ct k+1h

Var] ance __

2

(%) ZE [“Ct:k—klhk(w)uﬂ

k=0

®) &
< S E[lC ) hu@)?]

k=0
o3 g o]
k=0
< 0'221[*:[ [|Ctk+1H ’]_-t”
<5 ZE [E [|la-pmpc—t+1 7 | 7]
k=0
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223 s [sfin- ol | 7] o=

(9) ¢

< O,QZ 1- Bu)E “Ct 1k+1”:|

h t

<o S a-ppt
k=0

2

INZ
=9

)

(54)

where (a) follows by triangle inequality and linearity of expectations; (b) follows by using the in-
equality ||Az|| < ||A| [|z]]; (¢) follows by a bound on ||k (@)]||? in (53); (d) follows by the tower
property of conditional expectations; (e) follows by unrolling the product of matrices C**¥*+1 by

Lemma 7.1; (h)

follows by unrolling the the product of matrices; and (i) follows by computing the upper bound for

the finite geometric series.

Step 4: Clinching argument

The main claim follows by combining the bounds on the bias (52) and variance (54) terms in (31)

as follows:

]E[”Zt-s-lHQ] < 22?“5 + 252Ztvariance

2602
2 — E 2 —_—
< 2exp (=Bu0) B [ll2ol*] + =7

8 Proof of Theorem 3.2

Proof.
Step 1: Bias-variance decomposition for tail averaging

The tail averaged error when starting at k£ + 1, at time t is given by

k+N t
Zk-s-ltf* g sz E Zi-
i=k+1 i:k+1

By taking expectations, ||z1.||> can be expressed as:

k+N
E|lzerall}] = 55 D E[ %]
i,j=k+1
(a) 1 k+N k+N—-1 k+N
d( CE[lg)e Y YE
i=k+1 i=k+1 j=i+1

where (a) follows from isolating the diagonal and off-diagonal terms.
Next, we state and prove a result that bounds the second term in (55).
Lemma 8.1. Forall i > 1, we have

k+N—-1 k+N k+N

> Y ERs<5 Y Bkl

i=k+1 j=1i+1 i=k+1

24
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Proof.
k+N—1 k+N k+N 1 k+N j—i—1
a —

> Y EETHD Y Y E[T© a0 Y )
i=k+1 j=i+1 i=k+1 j=i+1 l=i+1

k+N—1 k+N

> Y Blrory

i=k+1 j=i+1

() k+N—-1 k+N

< X X ElalEICT 5] | F))

i=k+1 j=1+1
(d) k+N—-1 k+N j—i )
2y Y (-2 E[Halb}
i=k+1 j=i+1
k+N %) ﬂ,u
<> e[l 3 (-2
i=k+1 Jj=t1+1
k+N
2
Z [EIHE
i=k+1

698 where (a) follows by expanding z; using (31); (b) follows from the observation that
Elhi(w) | Fi) = Elridy ~ Myw | F] = € ~ M = 0;

699 (c) follows by using Cauchy-Schwarz inequality and tower property of expectations; (d) follows
700 from a repetitive application of Lemma 7.1; and (e) follows by computing the limit of the infinite
701  geometric series. O

702  Substituting the result of Lemma 8.1 in (55), we obtain

k+N k+N
2
E {szJrl:tHQ} ( Z E [HZZH } ﬂ Z E [||zz|| D
i=k+1 i=k+1
k+N
w (e 5) 2 el
=2 (1t 5) X E|lals)
2 2
N ﬁM i=k+1
<a>2< 4)’“+N o 2( 4>2k-+1v _
< —= (14— Zilas—l—i 14+ — ﬁ Z;/arlance’ (57)
) 2 e ) 2
Zi‘fl N Z\llcaialncte

703  where (a) follows from the bias-variance decomposition of E[||z; ||§] in (31).

704
705  Step 2: Bounding the bias

706  First term, 2225 in (57) is bounded as follows:

k+1:t
blas < 2 bias
Rlt1:t Nz E 2

1=k+1

= (1 ' 51) > -4 [l

i=k+1

I/\g

2E [Hzollg] 4
®) _ gkt
- BuN? (1=Bw) (1 " ﬁu) ’
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707 where (a) follows from (51), which provides a bound on 23%; (b) follows from the bound on the
708 summation of a geometric series.

709  Step 4: Bounding the variance

710  Next, the second term z%j[if:'}ce in (57) is bounded as follows:

k+N
variance( ) 252
e = Bu >3 Bu

1=k+1

= ( Bu) Z « Bu

B 4 2,80
_( +Bu)

711 where (a) follows from (54), which provides a bound on z}21ance,

/\

\ /\

712 Step 5: Clinching argument

713 Finally substituting the bounds on 2[5, and 227 in (57), we get

Ellornald) < (14 5 ) (57 - B0 Bl + 252,

B BuN? N
(a) 4 Qexp(—kjﬁu) 2p02
(o) (G e+ )
) 10 exp(—kBu) o] 1002
< WE [H HQ] + 2N

714 where (a) follows from (1 + x)¥ = exp(y log(l + ) < exp(zy); (b) uses fu < 1 as 8 < Bmax
715  defined in Theorem 3.1, which implies that 1 + ﬁ# < ﬁi O

716 9 Proof of Theorem 3.3

717 For proving Theorem 3.3, we first establish an upper bound on the mean squared error (MSE) of the
718  difference between the tail-averaged TD iterate and the regularized TD fixed point. The result below
719  provides this bound, which we subsequently use to prove Theorem 3.3.

720 Theorem 9.1. Suppose Assumptions 1 to 4 hold. Let Wy41.+ = % Zfﬁﬁl w; denote the tail-

721 averaged regularized iterate with N =t — k. Suppose the step size [ satisfies

ﬁ <5max = é:v where

N

&=+ 20((Dmas) (1 +7)% + (Da) (1 +9%)? + 49° RY 0 (D10)* (Drma)”)
+max {4 max +472R12nax( 1rf1ax)2( g’mx)2’4( 1ninax)él}
+ QWRmEX(( max)2( Irgax)z + ( Ir:\ax)4)'

722  Then,
§ - 10exp (—kB(2u + Q) s 1052
E [||wk+1:t — wregng} = Bz 2+ <)2 N2 [H'wo - wreg”g} + W7 (58)
723 where N =t —k, p = )\min(MgiJrM), and
2Rr?nax (( max) +Rr2nax(¢%ax) )+4(<2 ( max) (1+7)2+(¢max) (1+7 )
+472Rr2n'1x( Umax)2(¢$ax) )H’LDFGEHQ (59)
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Proof. Our proof incorporates techniques from Patil et al. (2024). However, as described earlier, the
analysis of mean-variance TD involves additional cross-terms, which necessitate significant devia-
tions in the proof.

Step 1: Bias-variance decomposition with regularization

For regularized TD, we solve the following linear system:

_(M + CI)wreg + g = 07 (60)

The corresponding TD updates in Algorithm 1 to solve (60) would be:
vey1 = (T= BQ)ve + B 0¢ du(se), (61)
urrr = (L= BC)us + B & duls:),
where 5t, é; are defined as
O =1 (51, ar) + Y0/ o (8141) — 0 du(se) (62)

& =r(sp,a0)? + 2y7(se, az) 17,5T¢v(5t+1) + 7211:¢u(5t+1) — ﬁtTQSu(St)-

We rewrite the updates in the alternative form as:
Wir = Wy + Brige — (CL+My)iy), (63)
where My, r, ¢, are defined in (8).
Letting Bt(wt) = ri¢py — (CIT 4+ M;)w;, we have
W1 = Wy + Bhe(iby). (64)
As in the case of ‘vanilla’ mean-variance TD, we arrive at a one-step recursion for the centered error
Zg41 = Wiy1 — Wreg as follows:
Ze41 = By — Wreg + B(redpy — Myty) + B(CT + My )Wreg — B(CT + My )reg
= (I = B(CT+ M) (wy — Wreg) + Brecr — (CT+ M) Wieg)
= (I = B(CT+ My))ze + Bhe(treg)- (65)

Unrolling the equation above, we obtain
t
Zpr = C0% + 8 CF iy (ireg), (66)
where

& — (IT— BT+ M) (I—BCT+M,;q))...(T= BT+ M) ifi>j
otherwise.

Taking expectations and using ||a + b||*> < 2||al|? + 2||b|?, we obtain,
2

~t:0 3
C 20

t
Z ct:k+1hk (wreg) ) (67)

k=0

E [l121]] < 28 (| *) +26%E

S 22?1% T 2ﬁ2 ézfanance’

) . . . . 2
where éknas -k [HCEOZOHQ} and ézranance - |:HZZ:0 Ct:kJrlhk(mreg)H :|

Step 2: Bounding the bias term

Before we bound the bias term, we first state and prove some useful lemmas.
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Lemma 9.2.

M| < () (1 +7)? + () (1 42

Proof. Recall that M = E[M, | ;] where

[N

)? 4 497 Ry (D) (Dman)”)

M, £ (at li)t) with a; £ st(st)d)v(st)—r - "Y(ZSU(St)QSU(SH-l)Tv

¢u(3t)¢u(8t)T - ’Y2¢u(5t)¢u(5t+1)T,
=291y Bu(5t)bo(se41) -

We bound the norm of the matrices a;, by, c; using bound on features and rewards (Assumptions 3

Ct

by

A
Cy =

and 4) as:

||atH < (1 + 7)(¢1r:1ax)27 ||bt|| < (1 + 72)( gwx)27 ||CtH < 27RmaX¢1r)nax¢ﬁax'

Next, we derive the result as follows:

(1)
M| = [EM, | ]| < E{|M,|
() 2
<’<u+w<mg

(i)

| Fi]
0

2’7Rmax¢max max (1+7 )( max)Q)

< () (1 H+7)? + (Bha) (1477 + 477 R (1) (1))

F

(68)

where (i) follows by Jensen’s inequality, (ii) follows by (68), and (iii) follows by expanding the

Frobenius norm.

O

Lemma 9.3. For any §j € R?? measurable w.r.t F; and < Pmax as in Theorem 9.1. The following

holds:

E [g(I— B(CI+ M) " (I— B(CT+ M)

B {1 - At M, | 7] < (1

Proof. Notice that
Eg"(I-A(CT+M,)) (I-5CI+M
=E[y"(I-28¢I-B(M; +M])) +
=E[y'y|F]-BE [y 21y | 7] -

£))y

20+ ) 19113,

gl F] < (1-5(
B(QAH'C))
13l -

| 7]

BT+ ¢(My + M) + M/ M,)j | Fi
By’

E M, +M, | 7]y

Term 1

+ 525 "EM{ M, | | 5+8°Cy E M, + M, | 7] y+5%E [57 Ly | 7] .

Term 2

We bound Term 1 in (69) as follows:

Term 3

()
gT (M +M)g > 2u9l;,

(69)

(70)

where (i) follows from the fact that Assumption 2 implies M + M " has a minimum positive eigen-

value 1t = /\m;n(MT;’M).

We bound Term 2 in (69) using the bound for T2 in (47) as follows:

g EM, M, | F]j
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< (G (14 7)* + 492 Ry (91" ) T BO
+ (Gms)? (1477)° @ Gt + 2(Gngs)* Benax(v(1 +72))0 " (B + G) i
757  We bound Term 3 in (69) as follows:
§ EM; + M| Ay < [[EM, + M| F]| 717 < (MM )
%2(( B0 (177 (B0 (1 +72)? + 472 R (G2 (6000)?) * 42,

758  where (i) follows by Lemma 9.2.

—
=

759  Substituting the bounds for Terms 1-3 in (69), we obtain

E[?JT(I - B(CI + Mt))T(I - B(CI +My))y | Fi

<E[j'j|1F7] — BE[ 2¢15 | F] — B2u l7))?
B2 (D) (1 9)° + 492 R (G) )3 BE
+ (G (149%)" 0T Gt 2 ng) Rinan(1(1 +92))8T (B + G) 1)
5 (2((Gha) (L9 + (B (14 7°)° + 497 R (D000) (1)) * 1317
+ BBl Ly | F)-

(%) . .

< 11913 (1= 280+ O) + B (O (14 7)° + 49 R (D)) Ay 113

+ (020 (147%)" Amax(@) 17113 + (1) Brna(¥(1 + 7%) AmaxBc) 1313
+2¢((Fmax) (1 +7)% + (Sax) (1 +77)?

42 R (O (Bina)®) 1317 + €2 11115 )
<(1—ﬁ<2u+24 B(max{ ((9ha)® (1+7)" + 47" Rira(Bina) ) Amax(p)

(¢max) (1 +7 ) Amax(G)} + ((b&ax)ZRmax('Y(l + 72))>\max(B+G)
+ % 4 2¢((Pman) (1 +7)? + (max) (L +77)°

R, G ) ) ) 1
< (1= (24 265 (o {40 49 R (G0 1(6500)

+27Rmdx (( z\ax)Q( max) +< max)4)
+ 7 4 20 ((Dmax) (1 +7)? + (Pmae) (1 +9%)?

R, G 0h) ) ) 1913

(47) .
< 1= Beu+O) 9l (71)

760  where (i) follows from Lemma 7.2 and using ' Qx < Amax(Q) ||ac||§ and (ii) follows by choosing
761 B < Bimax.

762  Taking square root on both sides of (71) leads to

E[||(T= BT+ M| | 7] < (1= Bun+)? Il
()
< —/3(2“;0) 191 )
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763 where (i) follows by using the inequality (1 —z)z < 1 — 5, forz > 0 witho = B(2u 4+ Q). O

764 Now, we bound the bias term in (67) as follows:
]
—E[E[(€102%) T (1= BT+ M) (- AT+ M))(E05%)] | 7]

@) . § .
< (1-82u+Q)E [HCt*l’%gﬁ |ﬂ

i _ g [Hct:oéo

(i1) .

< (1-5Cu+0) E [I1%)7] 73)
(i) -

< exp (—Bn+ Ot E [|1%0]°] (74)

765  where (i) follows by Lemma 9.3, (ii) follows by unrolling the recursion and using Lemma 9.3 repet-
766 itively, and (iii) follows by using the inequality

(1 - B2+ ()" = exp(tlog(l — B(2u+ () < exp(—B(2u + ()t).

767  Step 3: Bounding the variance term

768  Before we find an upper bound for the variance term, we upper bound on || iy (Wreg) ||* as follows:

— 2 B
e (@reg)||” = llrec(se) — (CT+ M) g
(a)
< 2|red(se)|* + 2| (CT+ M) g |3
( max) + Ri\ax( gﬁlx)2) +2 ||<I =+ ]'v[t”2 ||1D|’eg||§

(
< 2Rp i (Dnax)” + Rrrax(Dmnax)?) +4(¢7 + (Shra)* (1 4+7)°

( max) <1+’Y) +472R3‘|ax( g’lax)Z( 7rf'nax) )eregng (75)
=07, (76)

769 where (a) follows using [|a 4 b||> < 2|lal|* + 2 |||, (b) follows using bound on features, rewards
770  (Assumptions 3 and 4), and (c) follows by bound on M (Lemma 9.2) and using the inequality
771 |la+0b|* < 2||al® + 2b|>.

772  Next, we bound the variance term in (67) as follows:

2

yvariance
2 =

t
Z Ct:k+1ﬁk (@reg)

k=0

2
t
(S) Z]E |:||Ct:k+1hk(wreg)“;:|
k=0
t
(%) ZE [ .
k=0
t
(S) 52 ZE [Hct:kﬂHﬂ

<6QZE{ “Ctk-i-l” |]_—tH

hk: (wreg) H 2}
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<J2ZE[ (= AT+ M+ 7y 7]

k=0
mv?iE[ [11— 1+ M) |ft]

(

)

g '221— 2u + O))E |:|Ct 1k+1||}
k=0
DR 5 t—k
<25 (1= BEn+0)
k=0
Q_a a7
B2u+ Q)

where (a) follows by triangle inequality and linearity of expectations; (b) follows by using the in-
equality ||Az| < ||A] ||z|; (c) follows by a bound on Hhk(w,eg) 2, (d) follows by the tower
property of conditional expectations; (e) follows by unrolling the product of matrices C**+1 by
one-time step; (
(h) follows by unrolling the product of matrices; and (i) follows by computing the upper bound for
the finite geometric series.

Step 4: Tail Averaging Using the parallel arguments from Section 8, we derive the bounds for
tail-averaged error bounds for bias and variance terms as follows:

4 (a) Bias-variance decomposition for tail averaging

The tail averaged error when starting at k£ + 1, at time t is given by

Zk—i-l:t:N E Zi-

i=k+1

2
can be expressed as:

1 kN
- 2 ST
E[l5di] = 5z > E[ET3]
ij=k+1
) k+N k+N—1 k+N
< NQ( S E[lalg)+2 Y Y E[: ) (78)
i=k+1 i=k+1 j=i+1
where (a) follows from isolating the diagonal and off-diagonal terms.
Next, we state and prove Lemma 9.4 to bound the second term in terms of the first term in (78).
Lemma 9.4. Foralli > 1, we have
k+N—1 k+N k+N
E[5 %] < ~— E{Zz } (79)
> Y B g 3 Bl
= j=i+1 1=k+1
Proof.
k+N—1 k+N k+N—1 k+N j—i—1
> Y E[EHE Y Y E|TE a1y o hl<wreg>)]
i=k+1 j=i+1 i=k+1 j=1+1 l=i+1
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k+N—-1 E+N

2 Y Y R[OS
i=k+1 j=i+1
() k+N-—-1 k+N

< > Y E[ElE|CE

i=k+1 j=i+1

@ k+ZN:1 kiv ( 2/”0) E||53)

i=k+1 j=i+1

s%fEW£}§jO—m%fofq

| 1F51]

i=k+1 j=i+1
( k+N
RAETHE
2 + C i=k+1

789  where (a) follows by expanding z; using (66), (b) follows from the observation that
E[ilt(wl’eg) | ft} = E[rt(bt - (CI + Mt)u_)reg | -Ft] = g - (M + Cl)wreg = Oa

790  (c) follows by using Cauchy-Schwarz inequality and tower property of expectations, (d) follows
791 from a repetitive application of Lemma 9.3, and (e) follows by computing the limit of the infinite
792  geometric series. O

793  Substituting the result of Lemma 9.4 in (78), we obtain

1[N 4 k+N
Mmmﬂs2<ZEWM+VZEWﬂ>
NS BRr+0) 55
k+N
7 (1 ) 2 Bl
=— |1+ —— E |||zl
w (U ) 2, 2 0
(@ 9 ( 4 ) k+N ' 9 ( 4 > k+N
< = 14+ 5 |as+7 1+ 52 vvarlance (80)
N2 B2p+¢) iz;l N2 B2u+ ) Z;I
Zblas Zvanance
k+1,N k+1:¢
794 where (a) follows from (67).
795
796 4 (b) Bounding the bias term
797  First term, 2225 ,in (80) is bounded as follows:
. ) 4 > .
vblas. <= (1 _ zbias
Z/C+1.t — N2 ( + 6(2M+<) i:;_l Zi
(@) 2 < 4 ) = . ; 2
< (1t (1= B2+ Q)'E [J12001]
N2 B(2u+¢) g% ?
2E [ I3]
(b) 2 = k+1 4
B2u+ N B2p+¢)

798  where (a) follows from (73), which provides a bound on 2P and (b) follows from the bound on the
799 summation of a geometric series.

800 4 (c) Bounding the variance term
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Next, the second term zj22¢® in (80) is bounded as follows:

vvariance (a) 282 4 k+N 6'2
kit = <1+ B<2u+<>> 2 B(2u+C)

i=k+1

2432 ( 4 ) N2
< —11 _ =
<\ 5emr0) 2 5@ 0

=0

(1 N 4 ) 2352
B2u+¢)) Cu+ N’
where (a) follows from (77), which provides a bound on zyariance,

Step 5: Clinching argument

Finally substituting the bounds on 2225, and /22" in (80), we get

E[|| 2+ 1:¢]3]

4 2 s f i o 112 2652 )
<<1+B(2u+c)><5(2u+C)N2(l Peu+ O Ellnlbl + 5 0 m )-
(@) 4 2exp(—kB(2u +¢)) 2 2652 )

(”Bmm)( Bon+one kit N
® 10e3<2p(—kﬂ(2u+C))E{”20”3} 4o 1052 |
B%(2p 4 €)2N? B(2p+ ()N

1)

where (a) follows from (1 + 2)¥ = exp(ylog(1 + z)) < exp(zy), and (b) uses B(2u+¢) < las
B < Bmax defined in Theorem 9.1, which implies that

TR

B2u+¢) ~ BRu+Q)

Proof of Theorem 3.3

The proof of Theorem 3.3 builds on Theorem 9.1 and a bound on ||Wgy1.+ — w,eg||§, incorporating
techniques from (Patil et al., 2024, Corollary 1,2).

Proof. Notice that

(1)
E [t = 03] < 2 [ireg = 0113 + 2E [ a1 = Tregl}] (82)
—_———
Term 1 Term 2

where (i) follows by using ||a + b||> < 2 ||a||® + 2 b]|*.
We bound Term 1 below.

@ — wreg|s = M~ — (M + CD) ¢

(a)

< M- (M)

= ||[M~H(M + ¢TI - M)(M + D)7 ]2
< IMTE ¢ ||V D) el
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(b CZ( max (( max) +R31ax( 1rfwax)Q))

, 83
< 2(C T 1) (83)
where (a) follows from ||AB|| < ||A||||B||, and (b) follows from the fact that
M| = 1/tmin (M), where ¢ = iy (M) is the minimum singular value of M.
We observe that (81) bounds Term 2. Using this bound and (83) in (82), we obtain
) ) 20 exp(—kB(2u + ¢)) 2052
E [lin - all}] < =2 e B [l + o=
P22+ C)*N B2p+ ()N
L R (D) + Ry (010%)) "
2(C+0)? '
For ¢ = ﬁ we obtain
; } 20 exp (—kB(2p + (N)~1/2 o 2052
E [lhinre — 0]2] < 22PN N OV (i — g 2] + 2
P (2u+ OPN? 12N
+ (Rg‘lax (( max) + ngax( %ax)Q)) (85)
12N '
O
10 High Probability Bounds for Mean-Variance TD
For the high probability bound, we consider the following update rule and assumption:
wiy1 = T(wy + Bhe(wy)), (86)
where I projects on to the set C £ {w € R* | ||w]||, < H}.
Assumption 9. The projection radius H of the set C satisfies H > ”5”2 , where i = )\min(MTJrM)

and € is as defined in (6).

Under the additional projection-related assumption above, we state and prove a high probability
bound for the tail-averaged variant of Algorithm 1 in the next section. Subsequently, we analyze the
regularized mean-variance TD variant to derive high-probability bounds.

10.1 Bounds for vanilla (un-regularized) mean-variance TD

Theorem 10.1. Suppose Assumptions I to 6 hold. Run Algorithm 1 for t iterations with step size 3
as defined in Theorem 3.2. Then, for any § e (O 1], we have the following bound for the projected
tail-averaged iterate Wy 1.4 with N =1 —

1 4exp k:ﬁ _ 4T
(unera =l < 2 hog (5 ) + 222 g a4 ) >1-5

where wq, W, 3 are defined as in Theorem 3.1, and

T _(2R213x (( max) + Rr2nax( &ax)Q) + 2(( ma><) (1 +7) + (¢max) (1 +’Y )
+ A2 R2, () 262 H2) 2

The proof follows a similar structure to Patil et al. (2024, Theorem 2) and Prashanth et al. (2021,
Proposition 8.3), with necessary adaptations to account for our setting.
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Proof. A martingale difference decomposition of ||z 1, ||, — E[|[2x+1:¢]|5] is as follows:

k+N k+N
lzkrrnvlly = Ellzksrallad = Y (9= gi-1) = Y Di (87)
i=k+1 i=k+1

where 21,4 denotes tail-averaged iterate error,
D; £ g9, —E[gi | Gi1], 9i £ E[l|zrt1:¢ll5 | Gi], and

G; denotes the sigma-field generated by random variables {w;, ¢ < i} fort, i € ZT.

Let h;(w) £ r;¢; — M,;w denote random innovation at time ¢ for w; = w. If we show that functions
g; are L; Lipschitz continuous in the random innovation h; at time ¢, then we can see that the
martingale difference D; is a L; Lipschitz function of the ith random innovation.

Let Q; (w) represent the iterate value at time j, evolving according to (86), starting from the value
of w at time i. Let w and w’ be two different iterate values at time ¢, dependent on h and A/,
respectively, as w = w;_1 + Bh and w’ = w;_1 + Bh’. We compute the difference between the
iterate values at time j when the initial values at time 7 are w and w’ as follows:

O (w) — Qi (w') = @y (w) = Qj_y (w') - B[hj(ﬂé (W) = hy (25 (w))]
—Qé 1(w) — Q] 1(“’/) BM( — 1 (w) — Q; 1(“’/))
= (I = M) (1 (w) — Q5 (w). (88)

Taking expectation and since the projection I is non-expansive, we have the following

E [||(w) - %5 w)],] = B [E [[(w) - 2@, | 6-1]]

:IE[ [H (T — BM;) () (w) — Q5 (w"))], ‘ gj‘lﬂ
9 (1_6u> (2 () — @5 ()],
D (-2 -,

(i37) J—itl
So(-T) -, (39)

where (i) follows by Lemma 7.1; (ii) follows by repeated application of (i); and (iii) follows by
substituting w and w’.

Let Qi (w) to be the value of the iterate at time ¢, where ¢ ranges from the tail index k + 1 to k + N.
The iterate evolves according to (8) beginning from w at time ¢ = k£ + 1. Next, we define

. (i—ka 1 &K
() £ 555 4 5 D O (w), (90)
j=it1

where w is the value of the tail averaged iterate at time . In the above, Q}C +1.¢(W,w) denotes the
value of tail-averaged iterate at time ¢.

From (90) and using the triangle inequality, we have

+N

| <E ZHQ’ L)), ©On

j 1+1

Qz+1 n(w,w) — Q?ﬁl;t(@aw/)
B[]
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Using (89), we bound the term Q) (w) — €} (w’) inside the summation of (91).

i+N j—it1
Jen X (55) -wl o

j=it+1

B [ (0, 0) = O (,0')

Considering the bounds on features, rewards, and the projection assumption (Assumptions 3 to 6),
along with a bound on ¢ in (53), we obtain a uniform upper bound 7 on ||h;(w)]| for all 7 as:

<2R?nax (Ba)® + B2u(010)%)

2 (@) (147 + (G (1492)7 + 492 R (D) (D) )H?)

Now, we use a martingale difference concentration, following Patil et al. (2024, Step 3, Theorem 2)
to obtain

Zk+N
P ([[241,505 = E [llzrr1.n55] > €) < exp(—ne) exp <Z2k+1> :
Optimising over 7 in the above inequality leads to
€2
P (lze+1:lly = Efllzks1:lls] > €) < exp TN ) (93)
Z’L k+1

Using Patil et al. (2024, Lemma 13), we obtain the following bound on the Lipschitz constant,

k+N
Y Li< (94)
i=k+1 N[L
Now, with (94) in (93), we have
Np2e?
P okl ~ Ellwsaall] > <exp (- ) ©5)

For any 0 € (0, 1] the inequality (95) can be expressed in high-confidence form as:

1
P ( lsks1ells — Elllsksnells] < 1og< ) >1-4 96)
The final bound follows by substituting the bound on E [||2;41.¢||,] obtained by applying Jensen’s
inequality to Theorem 3.2 in (96). O

10.2 Bounds for mean-variance TD with regularization

Theorem 10.2. Suppose Assumptions 1 to 4, and 6 hold. Run Algorithm 1 for t iterations with a
step size 5 as specified in Theorem 9.1. Then, for any § € (0,1], we have the following bound for
the projected tail-averaged regularized TD iterate:

B( a1 — g, < ! 4exp (8 1t O) e — g
: gl — f 2M+C) g2

+W> >1-19,
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where N, g, Wreg, pi- are as specified in Theorem 9.1 and

7 (2R (Bhrw)+ o (Gin))

FA(C + B (1574 (Bl (14 92) 482 R (G100)* (Binn) ) )

=

The proof for the regularized case follows using arguments similar to those in the proof of Theo-
rem 3.4 with changes indicated below.

Proof. Let Q;(w) represent the iterate value at time j, evolving following (86), starting from the
value of w at time 7. We compute the difference between the iterate values at time j when the initial
values at time ¢ are w and u’, respectively. Let « and @’ be two different parameter values at time ¢
which depend on hand i/ as @ = W;—1 + 6h and W' = w;_1 + ﬁ h'. We obtain the difference as:

Q5 (w) = (@) = Q1 (W) = Q5 (w ) [h( 1( W) = hy (21 (@))]

= (L= B(CT+ M) (1 () = Yy (@) O7)
Taking expectation and since the projection I' is non-expansive, we have the following
E [||% (@) - 25(@)]],] = E [B[[[€5(@) - (@], | G5-1]]

i p I
- j—it1
<a(1- 22D -, ©8)

where (i) follows by Lemma 9.3; (ii) follows by repeated application of (i); and (98) follows by
substituting the values of w and w’.

Let i (w0) be the value of the iterate at time t where t ranges from the tail index k4 1 to k + N. The
iterate evolves according to (14) starting at the value w at time ¢ = k + 1. Next, we define

o ( rj} i+N
1 (0, 0) £ +— > Q(w), (99)
j =1+1

where w is the value of the tail-averaged iterate at time <.
Now, we prove that Lipschitz continuity in the random innovation h; at time i with constant L;.

1+ N

=% > e @),| - 00

j i+1

E [Hég+l,N(u:}7 71}) - é?c+1:t(7j)a ’LD/)

Using (98), we bound the term € () — 2} (') in (100).

g & B+
Jeo Y (-2 i

¥ 5 (101)
j=i+1

{HQIH-I W, w) — ?c+1(u~’,w/) ||2

Considering the bounds on features, rewards, and the projection assumption (Assumptions 3 to 6),
along with a bound on & in (59), we find an upper bound 7 on Hh,(m ) || as follows:

P (220 ((Binn)+ B (Sinn))
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+A(C o+ (D) (1470 + (Bl (14 7%) 42 -2 (Bhr) (B HE )

Using Patil et al. (2024, Lemma 20), we obtain the following bound on the Lipschitz constant,

k+N 4
Z 2<—= (102)
i = 2
RN (TR
The rest of the proof follows by making parallel arguments to those in Subsection 10.1. O

11 Outline of Actor Analysis

Proof. (Sketch) As visualized in Figure 1, the proof begins by establishing the smoothness of the

Smoothness of
square-value
Function

(Lemma 4.1)

Policy Gradient for the
square-value Function
(L.A. & Ghavamzadeh,
2016, Lemma 2)

Smoothness
of Lagrangian
(Lemma 4.2)

Convergence to

e-stationary point

e (Theorem 4.3)
Smoothness of Smoothness of Gradient Estimation
state-action visi- value function using Perturbation
tation distribution (Xu et al.,, 2021, technique (SPSA)
(Xu et al., 2021, Lemma 3) Proposition 1) (Spall, 1992)

Figure 1: Logical dependency graph for proving Theorem 4.3. Rectangular nodes (blue) represent
established results from prior work, elliptical nodes (green) denote our novel contributions, and
dashed lines illustrate the logical dependencies we establish to derive the final result (green circle).

policy gradient for the square-value function:

VU (8) = 125 (5 0705, @)V log mp (al) Wa(5, @) +27 5, o o P05, @) P(5'ls, )V Vi (") ).
(103)

T1(0) T2(0)
We decompose the expression in (103) into 77 (0) and T5 (). T1(6) consists of three terms: the state-
action visitation distribution, the score function, and the square-value function. To obtain a smooth-
ness constant for 77 (0) (36), we use the following: (i) the smoothness result for the state-action
visitation distribution (Lemma 12.1), as stated in (Xu et al., 2021, Lemma 3); (ii) the boundedness
and smoothness of the policy (Assumption 7).

T5(0) is the product of the state-action visitation distribution and the policy gradient of the value
function. To establish the smoothness constant for 75(6), we apply the smoothness result for the
value function from (Xu et al., 2021, Proposition 1).

Combining the results for 73 (0) and T>(#) gives the smoothness constants for the square-value
function. By splitting the terms in the Lagrangian into the gradients of the value function and the
square-value function and appropriately bounding the gradient norms, we obtain the smoothness
constant L in (21) for the Lagrangian.

The proof broadly follows a standard SGD analysis framework (Ghadimi & Lan, 2013; Kumar et al.,
2023). However, key modifications are required to account for the use of SPSA-based gradient
estimates, particularly in handling the perturbation parameter p, and critic batch size m.

As VL(6,) is L-Lipschitz (Lemma 4.2), we have

2
Lo

S Ivien)?

L(0:41) > L(6:) + (VL(0),0:41 — 6;) —
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904 In the above, VL(6;). is an SPSA gradient estimate.
905 Taking the expectation with respect to the sigma field 7; = o(6x, k < t), denoted by E;, we have
E¢[L(0r+1)] > Ee[L(0:)] + Ee [ VL(6,)]|]

20 e [0y - <0
(A)
£ [VO(0) ~ VU(0,)]|| ~2a? & [IVL@)I?]
Al

— OétKl (1 +

— K ’

(B) ©

906 Now, substituting the bounds obtained for biased SPSA gradient estimates namely: (A) in (116), (B)
907 in (117), and (C) in (118) into the above equation, we get

E¢[L(Or+1)] > Ee[L(01)] + o By [ VL(O)]]]

2ARmax \ [(d3 L dz v K.
— kK (1+ a) 2 th+ 2 Pmax K2
1—v 2 pev'm
d>L dz ot K. La? [ K.
Ky | LLupe @2 0nadt ) Log (23)
2 pev/m 2 P

908 Summing from ¢ = 1 to n and dividing both sides by n, and setting oy = « and p; = p, we get

1 n Cy Cs Cya
->» E L(0y)|I*] < — —
n; (IVE@)IP) < 2+ Cop+ 2+ =5

b

909 Setting a = n%, p =n’, m = n° we have
E[[VL(Or)|?] < Cin™'7% + Conb + Csn =072 4 Oyn=2.

910  Optimizing for a, b, ¢, we find their values tobe a = —3, b = —1, ¢ = 1. Substituting these values,
911  we get

E [HVL(@R)HZ] < Cln_1/4 + an_1/4 + an_1/4 + C’4n_1/4
= O(n~14).

912 O

913 12 Proofs for the claims in Section 4

914  Before we prove the claims, we state a few useful supporting lemmas in the analysis.

915 Lemma 12.1 (Restatement of Lemma 3 (Xu et al., 2021)). Consider the initialization distribution
916  (-) and the transition kernel P(-|s,a). Let n(-) = ((-) or n(-) = P(:|8,a) for any given (8,a) €
917 S x A. Denote vy, (-, -) as the state-action visitation distribution of the MDP with policy m¢ and
918 initialization distribution 1)(+). Suppose the Assumption holds. Then, we have

Hyml,n('v ) - V7r92,77('7 )HTV <C, Hel - 92”2 )

919 forall 61,05 € R?, where C,, = C, (1 + [log, k1 + ilp)
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12.1 Proof of Lemma 4.1

Proof. The first claim concerning the smoothness of J(-) can be inferred from Xu et al. (2021,
Proposition 1).

We prove the smoothness of the square-value function below.

From (L.A. & Ghavamzadeh, 2016, Lemma 1), we have

VU (9) = 1 _172 <Zz§9(s,a)Vlogm;(a|s)W9(s,a) +2y Z ﬁe(s»a)P(5/|57a)VV9(5/)>,

s,a,s’

Ty (0) T5(6)
(104)

where

2
o0

Wy(s,a) =E <Z fykrt_HC st =s,a; = a
k=0

and 7g(s,a) = (1 —v?) Yo v*'P(s; = s,a; = a) is the y*-discounted state-action visitation
distribution, with P(s; = s,a: = a) = P(s; = s|so = s)mg(als).

[VU(01) — VU (02)|2 < ([I171(61) = T1(02) [l + 27 | T2(61) — T2(02)]]5) (105)

1—~2
We now show that 77 (), defined in (104) is Lipschitz in 6.

1 T1(61) — T1(02)]]2

= Z 991 (Sa a) \4 IOg o, (a|s) WTrsl (Sa a) - Z 592 (57 a) Vlog TGy (a\s) W7T92 (57 a)
—— ——

s,a
ai by c1 ’ az b2 ca

s,a

2

= Z(a1b101 - a25282)

s,a

= E a1bicr — azbacy + agbaci — azbacy

s,a

= ch(albl — CLng) + CLQbQ(Cl — CQ)

s,a

= ch(albl — agbs + arby — albg) + a2b2(01 — 02)

s,a

= ch(al(bl —ba) + ba(ar — az)) + agba(c1 — c2)

s,a

5>

s,a

+ 37 Wy (s,0)| |V Log o, (als) 2| 7o, (5,0) = 70, (5, )|

W, (5,a)| 70, (5,0) |V log ma, (als) — ¥ log mo, as) |2

D 20 (5, ) [V 1og o, (als) 12 Wa, (5, @) — Way (s,0)|

(@) Rmax
S Aoy 2 IV legmo, (als) = Viogms, (als) |2
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C R
w e Z|u91 (s,a) — g, (s,a)]

+@§:W%@®—W%@®DM&M

(b) Rmdew 2RmdxC¢C
< Somax Y v
+ C’/J E |W91 8,(1) - W(’z(sva”ﬂ%(saa)
(¢) Rmawa 2RmaxCyp Cy
< ST max Y v
S A=) 51161 — 022 + 1—) 01 — 62|z
2 R Oy C
— |0 7]
1—7) 161 — O2]|2
Rde Ld; 4Rmdx C¢ C
< omaxmy v
e ||91 Oa2||2 + (1—7) 161 — O22, (106)

where (a) follows by |Wy(s, a)||Dy, (s,a)] < (113'“;;*)2 forany § € R¢ and by the upper bound C,
on the score function, see Assumption 7; (b) follows by smoothness of the policy (Assumption 7)
and C,,- Lipschitzness of 7(s, a) (see (Xu et al., 2021, Lemma 3)); (c) follows by employing similar
arguments for the square-value function, in place of the value function in (Xu et al., 2021, Lemma

4), as outlined below:

Rmax

Cy Z [Wy. (s,a) — Wy, (s,a)|D,(s,a) < Cdzﬁnpol( ) = Pgy () lrv
2 R Cy C
< WII% O2]2-

Next, we obtain the Lipschitz constant for 75(0) = >__ , . Up(s,a)P(s[s,a)VVy(s') below. The
Lipschitzness of T5(6) together with that of T (6) would lead to smoothness of U (-), from (104).

[T2(61) — T2(02)]]2

< Z g, (s,a)P(s'|s,a)VVy, (s') — Z o, (s,a)P(s'|s,a)VVy,(s") ‘
< | D w0, (s,0)P(s']5,0)VVi, (s)) = Y 78, (5,a) P(s'|s,a) VVa, (s)
+Z%sa s'|s,a)VVp, (') — Zm@mwwwmm
< Z s'ls,a)[[VVe, (s')[|2]|7e, (5, a) — Dez(m)II
+ Z (5|5, @), (5, @)[|V Vo, (5) = V'V, (') 12
(a) QRmaXO¢ ~ -
< Xy _
< T2 ZIIVel(s,a) 7, (s, a)|
+ Z ’|s a)i, (s, )|V Ve, (s) = VVa, ()2
() 2Rmaxc
< SRV 00 — Oyl + 2L 161 — s (107)
(1—9)?
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where (a) follows by P(s'|s, a)||VVa(s')]]2 < I(?“;“Wc)”; ; (b) follows by using (Xu et al., 2021, Lemma
3), where C,, = (1/2)Cr (14 [log, s~ ']+ (1 —p)~1).

Combining 77 and T5 into (105),

||VU(91) — VU(HQ)” S LU||91 — 92”2, where
1 ( Rmaqup 4RmaXC¢,Ov 4’)/RmaXC¢,OU + 4’YLJ)

U T ) I (T L (1—7)?

12.2 Proof of Lemma 4.2
Proof. Notice that

IVL(61) = VL(O2)[ly < V(1) = VI (O2)l, + A[VU(61) = VU (62)],
+2A[|J(01)V I (01) = J(62)V I (02) ]

(@)
< Lyllfy = Oally + ALy [0y = B2, + 27 [[J(61)V I (61) = J(02)V I (02)]],, (108)
i

where (a) follows by Lemma 4.1.

We bound (I) as follows:

[7(61)VJ(61) — J(02)VJ(62)]]2
= [|J(61)VJ(61) = J(61)V I (02) + J(61)V I (02) — J(62)VJ (02)]|2
< [J(OD)]- [IVI(61) = VI (B2)[l2 + VI (02) |2 - [ (61) — J(62)]

() RmaxL
TS0 = Galla + VIOl - [T (01) = T (62)]

( 9 RmdeI Rmdxcw
T 1= all2 + T

RmaxLJ Rmaxcw
== 101 — 92||2+(1 e

where (i) follows by |J(6)]| < f“_““' (ii) follows by ||[VJ(0)]|2 < ﬁ‘““‘?w for any 6 € RY, we arrive

at this by Policy Gradient Theorem (Sutton et al., 1999), Assumption 7 and |Qr, (s, a)| < R'“‘i; ;
(109) follows by taking first order Taylor expansion at #;, mean-value theorem 3 0 = N0y + (1-
)02, for some A € [0, 1].

J(01) = J(62) + VI (O)T (01— 02) = [J(61) — J(62)] < 7=

5 1J(01) — J(02)]

51161 — 622, (109)

01 — O2]|2.
Now, substituting (109) in (108), we obtain

IVL(61) = VL(02)|| < [[VJ(61) = VI (62)[| 4 2A[[J (61) VI (61) — J(62) VI (62)]
+AIVU(01) = VU (62)]|

RmaxL Rmaxc
< Ly||y — 0s])2 + 2 ( - 7" s 7)”’ ) 161 — |2 + ALy |61 — 622

RmaXL Rmaxc
< (LJ“‘Q)\( L 4 ¢> -I-)\LU) 161 — 62]l2
1=y (1-9)?

< Lol||61 — 02]]2

949  Hence, Gradient of the Lagrangian is L-Lipschitz with L, = Lj + 2\ (% + R"‘“‘Cw> + ALy.

(1-7)?

O
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951 12.3 Proof of Theorem 4.3

Proof. Notice that as VL(6;) is L-Lipschitz (Lemma 4.2), we have
La?

2
952 Taking expectation w.r.t the sigma field 7; = o (0, k < t), denoted by E,

L(0t+1) Z L(at) + <VL(9t)a 0t+1 - 0t> ||v‘z’(0t)||2

Eu(L(0011)] = Eo[LO)] + Er [(VL(0:), VL) + o (VE(8,) — VL6, ) )]
~E | FeIVE@I?]
= E[L(0))] + By [[VL(0)]%] + ol [VL(et)T (vi(et) - VL(et))]

S
— By | Sad VL@

> By[L(0:)] + e [[VL(0)[I°] — v

E, [VL(Ht)T (vﬁ(et) - VL(et))} ‘

S
~ By | SR IVE@)

@

> By[L(0)] + ey [IVEO)]2] — e VL6 | [E [VE@) - VL] |

T
~ By | SR IVE@)

S B L(0)] + o [IVLO)1] — cuis |[B: [V L) VL6,

L ~
- aa?Et [||VL(9,5) ||2}

(

= BLO)) + e (V200 IP] - ook [ [75(60) - VI(0)

K, ‘ E, [vﬁ(et) _ VU(at)] H — DK, H]Et [J(Ot)VJ(Ot) _ j(et)vj(et)} H
— SalE: [|VL6)|?]

(iv)
Z ]Et[L(Ot)] + atIEt [||VL(9t)||2] — Othl

B[V - vI0)]|

~ Ak B [VO(0) - VU (6)]

= 20 K0\ [By [J00VI(0) = (009 (00) + 100V 0) — J0)VI0)]
— ok, [[|VLE)|?)
S EL00] + 0 [IVEO) ) ~ 0u, £ [V70) ~ 900

~ ik B [VO(0) - VU (6)]

= 20,0\ [ [90) (VI(00) - 9600 ||| - 200800 B [V I 00) (700 — T00)]

~ 5 olE: VL))

2\ Rinax
1—7

vzi) E¢[L(6:)] + oy [||VL(9t)||2] — G (1 + ) HEt [Vj(@t) B VJ(et)} H

(A)
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ok |[B: [VO(0) - VU] - ZazE [IVE01?]

(B) ©

-k (%)\ 70— 7)), (110)

(D)

where (i) follows from applying the Cauchy—Schwarz inequality to the modulus of the inner product;
(ii) follows from the uniform upper bound |V L(6;)|| < K1, which we establish below; (iii) follows
from substituting

VL(0) = —-VJ(O) + XVU(0) —2J(0)VJ(0));

(iv) follows from adding and subtracting the cross term .J(6;)V.J (6, ); (v) follows from the triangle

inequality; and (vi) follows from the bound |.J(6;)| < R%i;‘ and ||V.J(6,)] < QIR’““ , which is a
consequence of the definition of the SPSA gradient estimate,

Before we derive upper bounds for (A), (B), (C), and (D) in (110), we first establish the bound
IVL(6:)||, < K1, which is used in (ii), as follows:

By Policy Gradient Theorem (Sutton et al., 1999), we have

1

v‘](a) = G}E(s,a)fvxe(‘,-) [v log 7T9(Q|S)Qﬂ'9 (Sa a)] )

where

Qry(s,a) = Zvrst,atﬂso—s ap=al .
t=0
We upper bound the action-value function as |Q, (s, a)| < R%i;. Furthermore, by Assumption 7,
the score function satisfies ||V log mg(a|s)|l2 < Cy. Thus, we obtain

Rmaxcw
1=y

In the same manner, we use (104), which is a policy gradient-style theorem for the square-value
function from (L.A. & Ghavamzadeh, 2016, Lemma 1), to upper bound the norm of the square-value
function below. W, (s, a) is the action-value function corresponding to the square-value function,
ie.,U(0) =Equn, [Wa,(s,a)], similar to Q, (s, a).

IVJ(0)]2 < v € R%. (111)

IVU(0)]2

Zyﬂe s,a)Vlogme(als)Wa, (s, a) + 2y Z Uny(8,a)P(s'|35,a)VVy,(s")

s,a,s’

1—7

<1 72 > "y (5,a)V1og mo(als) || [Wr, (5, )]
s,a

2y _
t1z 72 Z [P (5, a) [| P(s"]5, a) ||V Va, ()]

s,a,s’

IN

||V10g7('9 ||ZV779 S, a 7r9 S a)

F oty 2 (80Pl a) [TV, ()]

s,a,s’
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C ~ 2 -
ST D (80 Way(5:0) + 775 D Ty (5,00 P(5 15, @) [TV ()]
Cd) Rmax 27Rmax Cd)
< (112)
(1=92)1=7)?2 (1-7)1-9)?
968 Combining (111) and (112), we obtain K7:
VL) <[V (0] + VU0 + 2A]J(0,)[[[V I (6:) |
Rmaxc(/) Rmaxcdj
< +2A + A|VU(0
Rmaxcw +2\ RmaxCdJ ( Cmeax 27Rmaxcw >
T(1—7)? (L—7)3 (1=92)1=7)?2 (1-7)1-9)?
:Kl
969 Next, we bound (A) in (110) as follows:
HEt[ J(6,) — VJHtH’<d2 E, [VJ ”
N o (a) $u(s0) v (m() o
E, [Vy](&t) V,J(Gt)” @ ‘Et[ G V.J(6,)
b so Tv — @y (S0 Um v(s TEJrf v (So Tfﬁrf v (So TT) v (S Tﬂ
® [ ) Tvt =0 (50) Tvm+u( O)ptA'(t(;b (s0) $v(s0) D+Pu(s0) T Vij(at)”
() v — 1) ¢v(50) (v, —0%) + ¢v(50)T(5 — Up) } ’
() + -V, J(0
{ PeA(t) (@)
(0 +ptA( ) — J(6) ” [%(So)T(vJr —u%) +¢v(So)T(v—vm)H
<I|E -V, J(0 +|E m ,
TR Ga] |+ P 1)
@D (I
(113)

970 where (a) follows by substituting value of SPSA gradient estimate Vi) (6:); (b) follows adding
971 and subtracting ¢,(so) "o and ¢, (so) ", where, ¥ and o denote fixed points for unperturbed
972 and perturbed policies, respectively; (c) follows by rearranging the terms; (113) follows by (critic
973 approximation error at the fixed point is zero) Assumption 8, as a consequence, the first term in (I)
974  is equal to the actual value function.

975 We bound (I) in (113) as follows:

J(0: +peAi(t) — J(6) o
E; [ ) VzJ(et):|
@ g, pt<v<f<9t>>Ti<f(>t)pt Pl A1 w(e»H
" A IRAINGIE
2o 5 (310 ] s [
9 dLp. (114)

- 2

976  where (a) follows from the second-order Taylor expansion of J(6; + p;A,(t)) around 6, lever-
977 aging the fact that J(6) has a Lipschitz gradient (with constant L ;) to bound the quadratic term;
978 (b) follows from the triangle inequality and expanding the inner product into a summation over
979 components. Here, the first term has an expectation of zero because A(¢) is a Rademacher vector.
980  Specifically, each component A ;(¢) satisfies E;[A;(¢)] = 0, and the independence of A;(¢) and
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981  A,(t) ensures that the expectation of the ratio 2? EE)) is also zero. By the linearity of expectation, the

982  entire summation contributes zero in expectation; (c) follows by bounding || A(t)|| < V/d.

983  We bound (I) in (113) as follows:

’ {sbu(So) (v — 1) +¢v($o)T(5—vm)]

PN
@ | [18u(so)llogh = 0%+ 16e(so)l 0 = v
= [ A (E) } ‘

< 2o (g, (o — 0¥ + Eu o — o)

(C) ¢ i v ( )é 1030
max max Elllwa — w n
= by ( o \omax Ellwo — ol -

( ) ¢maX
pt\/ﬁ

) (115)
984  where (a) follows from the Cauchy-Schwarz inequality; (b) follows from the upper bound on the

985 norm of the features (Assumption 3) and linearity of expectation; (c) follows by bounding the terms
986  using the tail-averaged critic error bound in (11); (d) follows by defining K in step (c).

987 Combining (114) and (115) in (113), we obtain an upper bound for (A) in (110) as:

988 We obtain the upper bound for (B) in (110) using arguments parallel to those used to derive the
989 upper bound for (A). The only difference lies in the feature vector, where ¢, replaces ¢

990 Next, we bound (C) in (110) as follows:

dzLth N d3 ¢l Ko
Pt\/TTL '

E, [VJ(ot) v.J(6,) ]H < (116)

max max-*

d3 Lup; N d2 ¢t Ko
2 pvm

(117)

B, [VO(0) - vU @) | <

991 The SPSA gradient estimate of the Lagrangian is denoted as
VI0,)=VJ(0) -\ (vU(at) - 2j(9t)vj(9t)) .

992 Taking the expectation with respect to the sigma field 7; = o(6x, k < t), denoted by E;, we have

2
E[[IVL(6:)I3] < BE[[[V I (00)113] + BNEe [ VU (6:)][3] + 12)° (Rma;> E [V (6)]3]

<imax{ 3 (o ) 3A2}(|vf<et>|§+vﬁwt)n%)

(©) 2R\ 2 1 2Rz \? 1
< max Fman 22 d (max> —+d ( max ) —
{ ( ) } ( 1-v) i Q=v2) pf
(@) K3
@ K3 (118)
Y2

993  where (a) follows from ||a + b+ c||* < 3|a||? + 3]|b]|% + 3]|c||?; (b) follows by taking the maximum

J(OuApi AL (D))= (6) ‘2 <
peAi(t) -

994  of all coefficients; (c) follows by bounding the SPSA gradient estimate H

46



Mean-Variance SPSA Actor Critic

(I=v)pe
996 function for the second term; and (d) follows by defining K5 as a constant, which is the coefficient
997 of p% in (c).

2
995 (L) for the first term and similarly bounding the SPSA gradient estimate of the square-value

998 Now, substituting the bounds obtained for (A) in (116), (B) in (117), and (C) in (118) into (110), we
999 get

Ei[L(0141)] > Eo[L(0:)] + By [ VL)%
2XRpmax
=l

— atKl (1 +

B, [VJ(6) - vI0)]|

(A)

~xauk |||, [VO@) - VU @) | - SaiE: [IVE@)IP]

B) ©
MRy \ [d2L dz g K.
= Eo[L(60:)] + culEy [[[VL(6) ] — cu Ky (1 Ty ) < Qth + pq:\/m 2)

d3 L dz ¢t K. La? (K
gk, | CLube 42 Omadt ) Loy <§’)
2 piv/m 2 p?

1000 Rearranging the terms, we obtain

e [IVL(0) 1] < Ei[L(Bp11)] — Ee[L(6,)]

O\ Rmax \ (A2 Lyp;  d? ¢l Ko
K 1 max
+ a8y < + -~ ) ( B + Pt\/ﬁ
d3Lyp;  di¢h, Ky \  Lia?Ks
_|_ )\OLK _|_ max t
t 1( 2 piy/m 2p?

1 OZQLlKg
o + 26500 LKy
) (Oms ) pev/m 2p?

(a) K d§ 2)\}%m X
< E[H] — E[Ht+1] + e 21 - <LJ (1 + 1a> + /\LU) Dt

2>\]:imax
L=y

+ atKlKQd% ((1 —|—
1001

3

®) 1 Kd3 A Ruax
B (IVE6I] 2 o Bl - Bl + 5 (L0 (1+ 552 ) L )

2AR, 1 a1 K
K K. d% 1 max v AGY t4/1423
+ K1k (( + 1—~ ( max T ¢max) pt\/m + QP% )

1002  where (a) follows by taking H; = L(6;) — L(.), where 6* is the optimal policy, and (b) follows by
1003 dividing both sides by ;.

1004 Summing from ¢ = 1 to n, and taking the total expectation, we get

n Cl n 03 n 1 n
E[|VLO)|?| < —+CoY pr+—Y —+C —.

S E(IVEOF] < e C Y ns S ey

1005 Here, we obtain |L(0)| < C; = 21%"‘;‘ (1 + %"2‘) after a telescoping sum.

1006  Dividing by n on both sides and setting a; = «, p; = p, we get

1 n Ol 03 0404
~ E E[[VL(O)|*] < — + Cop+ — + ——.
n no vmp  p?
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Setting o = n?, p = n®, m = n°, we have
E [[VL(Or)|?] < Cin~'7% + Conb + Csn =072 4 Oyn=2.

Optimizing for a, b, ¢, we find their values tobe a = —2, b = —%, ¢ = 1. Substituting these values,
we get

E [[VL(Or)|?] < Cin~Y* + Con™/* + Can= 4 + Cyn =14
=O(n~14).

48



