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ABSTRACT

Research on transfer-based adversarial attacks provides critical insights into dis-
tinctions among Deep Neural Networks (DNNs), revealing their vulnerabilities
when exposed to unseen noise. Among these transfer-based adversarial attacks,
input transformation-based attacks are popular due to their simplicity and effec-
tiveness. However, their mechanisms remain poorly understood, potentially hin-
dering advancements in DNNs. This work explores the mechanism of the attacks,
suggesting that 1) when trained with input transformations, models can improve
transformation invariance by capturing diverse features from transformed inputs
rather than transformation-invariant features. Therefore, given a surrogate model
fs trained with input transformations (, adversarial attacks can leverage these
transformations to expand the target function space f5 o ¢, thereby effectively and
rapidly improving adversarial transferability, as domain shifts are mitigated; 2) in-
put transformation-based attacks enhance adversarial transferability by expanding
the target function space. Such transformations effectively act as modifications
to the target model, thereby improving attack robustness against diverse models;
and 3) L2-normalization should be incorporated into the attack paradigm to mit-
igate gradient imbalance during adversarial example generation. This imbalance
arises from domain shift variability induced by different transformations. Based
on the findings, we design a simple transformation-based attack called SimAttack.
It achieves a mean attack success rate of 95.4% on 12 models, and some of the
generated examples are also effective against GPT 4.1.

1 INTRODUCTION

To identify the deficiencies of DNNs, researchers investigate the way to deceive a model by adding
perturbations to inputs, which refers to an adversarial attack. Later, it reveals that these adversarial
attacks can deceive another model while crafting noisy inputs for one model (i.e, surrogate models).
Thus the transferability study of adversarial attacks has come into focus and many novel transfer-
based attacks are proposed to improve the transferability of adversarial attacks, such as gradient-
based methods (Goodfellow et al.| 2014; Kurakin et al.,[2018; Dong et al.,|2018}; [Fang et al., |2024),
input transformation-based methods (Xie et al.,[2019; Zou et al.,|2020; [Lin et al., |2024; |Zhu et al.,
2024a}; |Guo et al.l |2025), model-related methods (Zhang et al., 2023} | Xiaosen et al.| [2023; Wang
et al., 2024b)), ensemble-based methods (Liu et al.,[2016} |Chen et al.,[2023ajb) and generation-based
methods (Naseer et al.,[2019; |Zhu et al., [2024D).

Among these transfer-based adversarial attacks, input transformation-based attacks are popular due
to their simplicity and effectiveness, and the update process for such attacks can be uniformly for-

mulated as
2 = 2N+ o sign(D | Vean I (fu(0i(@29)), ), (1

where 2¢% denotes the adversarial example at the ¢-th iteration, and « is the step size. This param-
eter is typically set to /7" (i.e., the perturbation budget e divided by the total iterations T°), ensuring
the perturbation intensity remains within budget. The f represents the surrogate model, while ¢;
denotes the ¢-th random transformation.

Here, inspired by the work (Guo et al. (2025), we provide a more intuitive definition. Input
transformation-based attacks leverage random transformation ¢(-) to construct multiple compos-
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ite functions f(y;(-)) belonging to the function space f; o ¢, totaling I instances. The input z¢%}

is used to query these functions to obtain the updated adversarial example z¢%", which can enable

the updated data 39" to attack all the functions in the function space. This process can enhance
adversarial transferability, allowing the adversarial example z:¢% to effectively attack other models.

From the above definition, this transformation modifies the surrogate model, not the input data. Each
transformation instance ;(-) can be viewed as a function ¢; : REXHXW _ ROXHXW "and then
all the compositions fs(¢;(+)) can construct a function space. If the target models f;,,-(-) reside in
this function space, such attacks successfully transfer to them. We argue that input transformation-
based attacks leveraging ¢(-) can enhance model transformation invariance of adversarial examples
by adopting transformations that bridge feature-capture gaps between surrogate and target models,
thereby boosting adversarial transferability. The model transformation invariance refers to the fact
that adversarial examples remain effective even when the target model undergoes a transformation.

However, if the surrogate model fails to extract meaningful features from these transformed data

@i (z¢™), the resulting updates may become severely noisy. Consequently, if the transformed data

©;(28%) resembles in-domain training data, adversarial attacks leveraging such transformations can

generate effective perturbations. This efficacy stems from models’ inherent strength in processing
in-domain data. The Methodology section (i.e., Sec. [3) will investigate the effect of domain shift
induced by data transformations and the feasibility of its mitigation.

Additionally, a critical concern emerges: if models learn transformation-invariant features, random
transformations cannot expand the function space, thereby rendering the method ineffective. This
limitation arises because capturing the same features before and after the transformation will result in
identical example gradients before and after the transformation. Typically, transformations ¢(-) are
employed during training to enhance model transformation-invariance, defined as consistent outputs
for original and transformed inputs. Intuitively, this is because models may capture transformation-
invariant features. This issue will also be discussed in the Methodology section.

This study mainly investigates the aforementioned issues, with contributions summarized as follows:

* When trained with input transformations, models can improve transformation invariance
by capturing diverse features from transformed inputs rather than transformation-invariant
features. Consequently, given a surrogate model trained with input transformations, ad-
versarial attacks can leverage these transformations to expand the target function space,
thereby effectively and rapidly improving adversarial transferability, as models excel on
in-domain data.

* Input transformation-based attacks enhance adversarial transferability by expanding the
target function space. Such transformations effectively act as modifications to the target
model, thereby improving attack robustness against diverse models.

* During adversarial example generation, varying domain shifts across different transforma-
tions can cause gradient imbalance and excessive noise. To address this, we introduce
gradient normalization while employing a large set of random transformations.

* Based on these findings, we propose SimAttack, a simple yet effective transformation-
based attack. This method leverages transformations used in surrogate model training along
with other effective ones, incorporating gradient normalization to achieve state-of-the-art
results in the experimental evaluations.

2 RELATED WORK

This work mainly focuses on the mechanism interpretability of input transformation-based attacks,
but also touches on mechanisms for model-related attacks and utilizes some ideas from gradient
attribution. Therefore, in this section, we introduce these three types of related work.

Input Transformation-Based Attack. One of the most popular approaches is the input
transformation-based attack due to its effectiveness and simplicity. The input transformation-based
attack elaborates transformations to enhance adversarial transferability. DIM [Xie et al.| (2019) ran-
domly resizes and adds padding to input examples to improve adversarial transferability. Conse-
quently, DEM [Zou et al.| (2020) calculates the average gradient of several DIM’s transformed im-
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ages to further improve adversarial transferability. Then, many novel transformations are presented,
which calculate the average gradient of the transformed images to improve adversarial transferabil-
ity. For example, SSM |Long et al.|(2022)) randomly scales images and adds noise in the frequency
domain. SIA |Wang et al.|(2023)) splits the image into blocks and applies various transformations to
each block. DeCowA |Lin et al.| (2024) augments input examples via an elastic deformation to obtain
rich local details of the augmented inputs. L2T Zhu et al.|(2024a) optimizes the input-transformation
trajectory along the adversarial iteration, achieving great performance. BSR [Wang et al.|(2024a)) ran-
domly shuffles and rotates the image blocks to generate adversarial examples with great adversarial
transferability. OPS |Guo et al.| (2025) observes a mirroring relationship between model general-
ization and adversarial example transferability and uses transformation and random perturbations
to generate adversarial examples. The mechanism underlying this approach is not well understood.
To mitigate this, our work demonstrates that data transformation can help adversarial attacks avoid
low-transferability perturbations by guiding adversarial examples to attack more models.

Model-Related Attack. This approach improves adversarial transferability by changing properties
of surrogate models, such as data transformation and structural changes. SGM Wu et al.| (2020)
utilizes more gradients from the skip connections in the residual blocks. MTA |Qin et al. (2023)
trains a meta-surrogate model, whose adversarial examples can maximize the loss on a single or a set
of pre-trained surrogate models. AGS |Wang et al.| (2024b)) trains surrogate models with adversary-
centric contrastive learning and adversarial invariant learning. VDC|Wang et al.|(2024a) adds virtual
dense connections for dense gradient back-propagation in attention maps and MLP blocks, without
altering the forward propagation. Our work investigates the role of input transformations.

Gradient-Based Feature Attribution. This approach delves into identifying the importance of
input features to the model’s output. CAM [Zhou et al.[(2016) identifies discriminative regions that
the model uses to make a prediction through the linearly weighted summation of activation maps
from the last convolution layer. Grad-Cam Selvaraju et al.[(2017) introduces a general method that
uses the gradients w.r.t. the activation map to measure the channel importance. Later, some novel
methods Xu et al.| (2020); [Zhuo & Ge| (2024) are proposed to improve performance by reducing
noise, but the key idea remains unchanged. Our work uses feature attribution to demonstrate whether
there are differences in the features captured by the model before and after data transformation.

3 METHODOLOGY

3.1 ROLE OF TRANSFORMATION IN MODEL TRAINING

Among previous transfer-based adversarial attacks, some methods Wu et al| (2020); Qin et al.
(2023));/'Wang et al.| (2024bja)), referred to as model-related attacks, enhance adversarial transferabil-
ity by strategically modifying surrogate models. This demonstrates that the properties of surrogate
models play a crucial role in adversarial example generation. Meanwhile, input transformations are
widely used in model training to improve transformation invariance, implying they influence surro-
gate model characteristics. Then what is the influence, and what difference do they make when
using in input transformation-based attacks compared to other transformations?

Typically, data transformations are considered to provide models with transformation-invariance. In
other words, whether a model processes transformed data or original data, it can produce invariant
outputs. Intuitively, this may arise from models capturing transformation-invariant features through
data transformations. However, the results shown in Fig. [l| demonstrate that this is not true. As
shown in Fig. [I] we utilize the feature attribution to show the difference between the captured fea-
tures of original and transformed data and calculate the similarity between the results, which can be

formulated as:
Cos(VaJ (fs(@(2)), ), Vad (fs(2),y)), 2
where Cos(+, -) computes cosine similarity, and other symbols align with Eq.

To investigate whether models can capture transformation-invariant features via data transforma-
tion, we train models on CIFAR-100 Krizhevsky et al.| (2009) transformed by random rotation and
resize-padding. We then compare gradient-based feature attribution maps between transformed and
non-transformed inputs using Eq.[2] To show the influence of data transformations used in model
training, beyond the transformation (i.e., rotation) employed during training, we introduce a trans-
formation (i.e., block shuffle) unused in training for comparison. If models successfully capture
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Figure 1: Similarity between gradients of inputs with and without transformation (i.e., the columns
labeled “None” and others). Similarity can be calculated by Eq. [2] The used models are trained
using data transformed by random rotation and resize-padding. The “None” column refers to inputs
with no transformation, “Rot” to inputs with rotation, and “Shuffle” to inputs with block shuffle.
Specifically, the “Rot (5)” indicates a rotation of 5 degrees, while “Shuffle (3)” indicates that inputs
are split into several blocks and these blocks are randomly shuffled. The results suggest that although
models can yield invariant outputs when processing transformed data, the models capture different
features derived from the transformed data rather than invariant features.

-0.03 0.00

transformation-invariant features, the feature attribution maps of the transformed and original data
should be identical or highly similar. This can be formulated as

This invariance will lead to the degradation of input transformation-based attacks when utilizing
transformations used in surrogate model training. The degradation can be formulated as

o =2l + o S@'gn(Z Vaadn J(fs(i(2799)), y))

adv : adv (4)

=ro)ta 519”( watvJ (fs(2829), ).
However, the results in Fig. [T|demonstrate that regardless of whether a transformation was used in
training, models produce different responses to the transformed inputs. This suggests that models
cannot capture transformation-invariant features via data transformation. Instead, the models es-
tablish more projections ¢(z) — y. This supports that input transformation-based attacks do not
degenerate into non-transformation-based attacks when utilizing the transformation used in surro-
gate model training. Therefore, we can utilize the transformation used in surrogate model training as
the random transformation ¢ in the attack, guiding adversarial examples to target a set of functions
fs(pi(+)) ( belonging to a function space) instead of a single function f,(-). Straightforwardly, this
can improve the adversarial transferability of the adversarial examples while having little impact on
the attack success rate against the surrogate model f,(-), since the transformed data ¢;(z) remains
in-domain for the surrogate model f4(-). To further demonstrate these points, we train surrogate
models with and without transformations and then use the models to generate adversarial examples
with and without the transformations. The results of these adversarial examples are shown in Fig.

The results in Fig. 2]show that surrogate models trained with transformations can leverage the trans-
formations to generate better adversarial examples superior to those generated without the trans-
formations. This also supports that data transformation helps models establish more projections
©(x) — y rather than capturing transformation-invariant features. Also, the comparison of surro-
gate models with and without transformations reveals that models exhibiting better generalization
capabilities typically generate more effective adversarial examples.

In summary, the role of data transformation is to help models capture different features
from transformed data rather than capturing transformation-invariant features. Therefore, input
transformation-based attacks can leverage the transformation used in surrogate model training as
the random transformation ¢ in the attack, guiding adversarial examples to target a set of functions
fs(pi(+)) to improve transferability.
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Figure 2: Attack success rate of input transformation-based attack with and without the data trans-
formation used in surrogate model training. The surrogate models are trained on CIFAR-100, and
the transformation number I of the attack is 100. We evaluate the performance on the data that can
be classified correctly by all the models.

3.2 MECHANISM OF INPUT TRANSFORMATION-BASED ATTACKS
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Figure 3: Accuracy of noisy inputs and mean attack success rate of adversarial attacks that employ
random uniform noise as the transformation. The transformation number [ is 100, with noise inten-
sity defining the bounds of uniform sampling. We run 5 times and take the mean. This illustrates the
trade-off between domain shift induced by data transformations ¢(-) and the range of target function

space f5(¢("))-

The results in Fig. 2] show that input transformation-based attacks introduce the transformation (i.e.,
rotation and block shuffle) to improve adversarial transferability, even when surrogate models are
trained without them. This suggests that, beyond the transformations used in surrogate model train-
ing, the attacks can introduce additional transformations to enhance transferability. However, this
introduces a trade-off: while data transformations ¢(-) expand the target function space f o @, they
simultaneously induce domain shifts that degrade the model. To further illustrate this clearly, we
generate adversarial examples with noise of different intensities, and the results are presented in
Fig. |3l We can expand the function space fs((:)) by enhancing the bound of random noise, as
a larger bound encompasses smaller variations. The domain shifts are demonstrated through the
accuracy of images with varying noise intensities. As shown in Fig.[3] severe domain shift leads to
model degradation. However, compared to downstream tasks, its impact on adversarial attacks is
significantly less pronounced. This phenomenon may arise because the attack mechanism can lever-
age feature projections from any category, whereas the downstream task relies solely on projections
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corresponding to the correct category. Note that, as shown in Fig. 2] introducing such transforma-
tions into surrogate model training can mitigate the domain shift, but incurs higher hardware costs
and increased time consumption.
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Figure 4: The similarity between adversarial examples generated through the approach in Eq.|5|and
those produced using individual transformations. We then rank the transformations based on similar-
ity and report the mean attack success rate for the ordered combination of these transformations. The
similarity approximates each transformation’s contribution. The transformations employed include
block-shuffle Wang et al.| (2024a), resize-padding Xie et al.| (2019), random cropping, ssm [Long
et al.|(2022) (which randomly scales images and adds noise in the frequency domain), random shift,
dropout, Gaussian blurring, random scaling, and random flip. The models are trained on CIFAR-100
with rotation and resize-padding.

So far, we know that it is feasible to expand the function space through transformations that are
not used in training. We next explore compensating for model differences through function space
expansion centered on surrogate models. An ensemble attack-like task is introduced to generate
adversarial examples, which can be formulated as

% Z J(fs(0i(@),y) + I (frar(2),y), )

where f;,,- denotes the target model, and the ; represents a composite transformation sampled from
a transformation set ¥. We quantify the similarity between adversarial examples generated through
the approach in Eq.[5]and those produced using individual transformations. The similarity approx-
imates each transformation’s contribution, with results visualized in Fig. E} The results reveals that
despite architectural differences among target models, transformation contribution rankings remain
remarkably consistent, particularly for the least effective transformations. Although function space
expansion via transformations exhibits some bias, transformations yielding limited function space
expansion typically underperform across all target models.

3.3 PROPOSED INPUT TRANSFORMATION-BASED ATTACK

Based on our findings, we propose a simple transfer-based attack named SimAttack, as shown in
Alg.[T] To maximize the function space, we randomly select several transformations from the trans-
formation set ¥ as a composite transformation ¢; (Row 3 in Alg.[I)), rather than serially combining
all transformations or using other methods. Furthermore, we observe that domain shifts caused by
different transformations may lead to gradient imbalances, as shown in Tab.[I} Specifically, gradients
derived from transformations used during training tend to be smaller than those from other transfor-
mations. Therefore, inspired by optimizers [Kingma & Ba| (2014); [Loshchilov & Hutter| (2017)), we
introduce lo-norm over each input as the normalization Norm(-) into our proposed attack (Row 4
in Alg.[I), thereby mitigating gradient imbalance.
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Table 1: Gradients of inputs with different transformations. We average the results of 10,000 trans-
formed data.

Rotation  Resize-padding  Block Shuffle Shift
ResNet18 0.0282 0.0207 0.0740 0.0830
ViT-S 0.0813 0.0793 0.1406 0.1427

As mentioned above, data transformation causes domain shifts, which in turn lead to increased noise
in gradients. Increasing the number of random transformations mitigates noise, and we quantify this
relationship in Fig. [5a) and Fig. [5b] A single transformation may require more than 100 times to
achieve optimal performance. Therefore, the transformation number may need to be set to several
thousand to achieve optimal performance when using a number of transformations.

Algorithm 1 A simple transfer-based attack (SimAttack)

Input: an benign example x¢, adversarial example z¢%", perturbation budget ¢, transformation set
W, step size a, iteration T, transformation number [.
Output: adversarial example x4,

1: Initialize o = ¢/T, xgd” = xg, go = 0.
2: fort=1toT do
3:  Sample I transformation compositions {¢;}!_, from transformation set V.

I
Update g; = 3> Norm(V yea J(f (pi(209%)), y) -

1
Update the momentum g; = g;—1 + ﬁ'
1

»

Update the example z¢% = clip(z¢% + o - sign(gy),0, 1).
end for
return the adversarial example x¢4?
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Figure 5: (a) and (b): The relationship between noise reduction and transformation number. The
surrogate models are trained on CIFAR-100 with rotation and resize-padding. The term “Current
ASR / Best ASR” refers to the current attack success rate divided by the best attack success rate. (c)
and (d): The role of transformation number I and L2-norm.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We describe the dataset, implementation setup, and input transformation setup in detail here.

Implementation Setup. Following the previous works|Wang et al.[(2021;2023); Zhu et al.| (2024a)),
we calculate attack success rate on 1, 000 images chosen from ILSVRC 2012 validation set Rus-
sakovsky et al.[(2015), and these images are classified correctly by all the models. Following the
widely used hyperparameter setup in the works [Dong et al| (2018)); Zhu et al.| (2024a)); [Lin et al.
(2024), we set the perturbation budget € to 16/255, iteration number 7' to 10, step size « to 1.6/255.
By default, the transformation number [ is 2,000. We run the experiments on a single A100.
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Input Transformation Setup. The properties of a model may primarily depend on its structure,
so we follow the experience shown in Fig.[d] By default, the input transformation set ¥ consists
of block shuffle, resize-padding, SSM, random shift, random cropping, and random rotation. To
expand the target function space, hyperparameters of input transformations are randomly selected
as follows: Block-shuffle splits inputs into 1 — 25 randomly sized blocks; resize-padding adopts
the configuration from [Xie et al.[(2019) with maximum scaling factor uniformly sampled from 1.14
to 1.66 (minimum fixed at 1.0); SSM applies noise factors sampled uniformly from 0.1 to 0.9;
random shift magnitudes range from O to a predefined maximum; random cropping adds 0-30 pixels
of padding before resizing to 224x224; and random rotation employs maximum angles uniformly
distributed between 0 and 180.

4.2 ROLE OF HYPERPARAMETER AND L2-NORM

We show the role of the transformation number I and L2-norm on our proposed SimAttack. The
results are shown in Fig. EI If the transformation number is too small, the gradient noise introduced
by domain shifts may reduce performance.

4.3 CASE STUDY ON LLM

We take the ViT-B as the surrogate model and show the adversarial examples of SimAttack success-
fully attacking GPT 4.1[Achiam et al. (2023), as shown in Fig.[f] Large models still cannot escape
the vulnerability of neural networks while people can still distinguish the images.

Prompt: Provide a concise description of the image using no more than three sentences.

The image shows a person holding a Canon camera and taking a
photo, with the camera covering most of their face. The background is
softly blurred, and the lighting is cool-toned. The photo is credited to
FiorellaLucia. 2008. in the bottom right corner.

The image depicts a close-up of an insect, possibly a beetle, with a
prominent circular structure on its back that resembles a camera lens.
The 1nsect 1s positioned on a smooth, light-colored surface. The overall
appearance is surreal, blending biological and mechanical elements.

The image shows a medieval-style shield with a metallic surface and
gold-colored trim. A gold cross 1s prominently featured in the center of
the shield. The shield 1s displayed against a red background.

| The image shows a close-up view of a watermelon with its rind
partially exposed, surrounded by a reddish fabric. The lighting
highlights the texture and pattern of the watermelon skin. The overall
composition creates a colorful and somewhat abstract appearance.

Figure 6: Case study on GPT 4.1 examples.

4.4 COMPARATIVE EXPERIMENTS

In this section, we adopt 5 common neural networks as surrogate models to compare our proposed
AdaAES with other advanced attacks and evaluate the attack success rate of different transfer-based
adversarial attacks on twelve models including ResNet18 He et al.| (2016), ResNet50 He et al.
(2016), ResNet101 He et al.| (2016)), ResNeXt50 Xie et al.|(2017)), DenseNet121|Huang et al.[(2017),
VGG19 [Simonyan & Zisserman| (2014), ViT-S [Dosovitskiy et al.| (2020), ViT-B |Dosovitskiy et al.
(2020), PiT-B Zhang et al.| (2023), Visformer [Chen et al.| (2021)), and Swin Transformer |[Liu et al.
(2021). We pick 7 adversarial attacks (including MI-FGSM |Dong et al.| (2018), DEM [Zou et al.
(2020), SIA |Wang et al. (2023, ANDA |Fang et al.|(2024), BSR |Wang et al.| (2024a), DeCowA |Lin
et al.|(2024), L2T Zhu et al.| (2024a), OPS |Guo et al.| (2025)) as the comparative methods. The re-
sults are shown in Tab. 2] The results show that our method outperforms all existing methods across
multiple surrogate models, which supports the soundness of our work.
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Table 2: Attack success rate (%) across twelve models on the adversarial examples crafted on a
surrogate model (labeled “Sur.”).

Sur. Attack Res18 Res50 Res101 NeXt Den VGG Incv3 ViT-S ViT-B PiT Vis. Swin Mean
MI-FGSM 47.3 30.0 28.1 28.5 445 479 97.9 23.1 137 169243 28.8 35.9
DEM 772 571 555 57.6 78.8 76.0 99.0 474 30.6 35.547.749.2 59.3

< SIA 879 692 654 69.0 859 83.6 999 49.1 34.7 46.558.9 61.5 67.6
g ANDA 66.1 50.1 484 49.8 69.5 66.0 99.7 38.1 27.2 31.842.9 45.6 529
‘E, BSR 87.7 719 675 70.6 87.0 85.6 99.8 51.1 37.0 48.762.8 65.6 69.6
8 DeCowA 787 578 573 61.1 785 788 98.0 47.4 32.1 38.949.6 54.7 61.1
= L2T 839 706 67.8 704 84.6 80.7 989 524 37.3 49.256.6 61.6 67.8

OPS 96.2 83.6 85.1 855 959 919 999 773 59.9 654779 80.7 83.3

Ours 98.2 923 91.8 93.3 98.1 98.0 100.0 82.9 71.0 77.387.3 87.8 89.8

MI-FGSM 749 61.5 509 552 99.9 68.5 58.0 31.6 20.6 27.941.4 443 529
DEM 98.0 91.0 858 &9.1 999 944 942 63.7 48.8 52.875.470.2 80.3

§ SIA 98.6 956 922 949 100.0 97.6 91.9 64.6 48.3 67.584.6 81.7 84.8
5  ANDA 934 862 81.0 83.6 999 89.8 82.6 53.7 40.8 55371.0 69.8 75.6
Z BSR 98.6 950 89.6 93.1 100.0 97.1 882 62.6 49.1 66.383.5 79.8 83.6
& DeCowA 985 925 89.0 914 100.0 96.4 93.8 733 57.7 70.383.4 80.6 85.6
A L2T 98.8 950 929 942 100.0 97.7 944 74.6 59.1 73.385.6 85.7 87.6
OPS 99.9 982 98.5 98.3 100.0 98.7 99.2 90.6 79.8 86.094.7 93.4 94.8
Ours 100.0 99.9 99.7 99.7 100.0 99.8 99.7 94.0 85.2 91.097.4 96.6 96.9
MI-FGSM 100.0 49.3 422 457 73.8 744 55.6 27.6 16.7 23.032.6 40.1 48.4
DEM 100.0 82.5 76.8 81.8 97.5 95.1 92.1 58.7 39.1 46.066.3 65.9 75.2
w SIA 100.0 919 87.6 89.7 99.2 98.6 91.5 62.7 439 585773 77.0 81.5
s ANDA  100.0 80.5 74.7 78.6 96.6 94.8 85.6 53.1 38.6 49.566.1 68.8 73.9
Z BSR 100.0 90.5 86.0 88.4 98.8 98.7 90.3 60.8 43.0 57.977.3 75.9 80.6
2 DeCowA 100.0 89.0 85.0 883 98.5 98.4 944 723 56.5 63.780.5 79.8 83.9
L2T 100.0 91.5 87.6 91.6 98.6 98.8 94.8 674 51.0 64.778.8 81.2 83.8
OPS 100.0 97.2 969 97.1 999 99.6 99.0 914 77.1 81.593.0 91.7 93.7
Ours 100.0 98.6 98.1 98.7 100.0 99.9 99.2 90.6 76.5 83.994.8 93.6 94.5
MI-FGSM 514 33.6 30.3 33.8 48.9 54.7 45.0 100.0 69.2 37.442.6 54.1 50.1
DEM 88.8 81.4 79.7 819 89.2 88.0 90.3 99.9 952 88.188.1 90.4 88.4
SIA 86.2 803 76.4 783 87.4 85.8 80.6 100.0 95.7 84.986.0 90.3 86.0
v ANDA 70.7 60.8 574 60.8 733 71.0 67.4 100.0 89.1 67.569.7 77.1 72.1
= BSR 87.6 824 820 83.6 89.0 87.1 84.0 100.0 94.8 90.688.1 91.1 88.4
~ DeCowA 860 757 73.8 77.5 97.1 853 842 98.8 87.2 83.483.6 859 84.9
L2T 88.5 81.1 78.0 80.8 88.0 87.1 86.7 99.2 92.8 84.584.5 89.6 86.7
OPS 96.1 91.1 93.0 92.8 96.6 942 972 99.7 97.0 95.095.2 96.0 95.3
Ours 98.1 95.7 96.0 97.3 98.5 97.6 98.3 100.0 98.9 98.198.3 98.8 98.0
MI-FGSM 52.8 39.3 33.8 38.8 50.9 57.3 464 72.0 97.3 40.543.4 54.7 52.3
DEM 8.1 77.8 785 784 874 853 863 93.7 979 86.985.2859 85.7
SIA 774 752 728 76.1 80.5 79.0 76.0 90.4 97.3 81.481.4 84.5 81.0
m ANDA 67.0 60.1 58.9 609 709 69.1 664 843 97.7 66.768.0 73.1 70.3
= BSR 749 737 71.7 732 784 752 753 84.1 93.9 78.276.0 79.7 77.9
~ DeCowA 82.1 743 741 760 81.8 79.1 81.4 86.7 92.2 83.182.4 82.6 81.3
L2T 829 782 76.7 779 83.0 823 82.0 90.2 95.7 82.282.6 85.5 83.3
OPS 943 91.8 91.8 92.8 955 92.2 944 98.0 98.7 95.094.9 95.1 94.5
Ours 97.7 964 968 97.3 984 97.4 97.8 98.9 99.7 98.498.2 98.2 97.9

5 CONCLUSIONS

This work reveals that: 1) To achieve model transformation-invariance, data transformations estab-
lish multiple projections from transformed inputs to outputs, rather than enabling models to capture
invariant features during training. This suggests introducing the transformations into surrogate mod-
els. 2) Input transformation-based attacks leverage transformations to expand target function space,
thereby improving adversarial transferability. The transform’s ability to expand the function space
may provide guidance across datasets. Also, normalization should be incorporated into the paradigm
of the attacks due to gradient imbalance.



Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Bin Chen, Jiali Yin, Shukai Chen, Bohao Chen, and Ximeng Liu. An adaptive model ensemble
adversarial attack for boosting adversarial transferability. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pp. 4489—-4498, 2023a.

Huanran Chen, Yichi Zhang, Yinpeng Dong, Xiao Yang, Hang Su, and Jun Zhu. Rethinking model
ensemble in transfer-based adversarial attacks. arXiv preprint arXiv:2303.09105, 2023b.

Zhengsu Chen, Lingxi Xie, Jianwei Niu, Xuefeng Liu, Longhui Wei, and Qi Tian. Visformer:
The vision-friendly transformer. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 589-598, 2021.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boost-
ing adversarial attacks with momentum. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 9185-9193, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Zhengwei Fang, Rui Wang, Tao Huang, and Liping Jing. Strong transferable adversarial attacks
via ensembled asymptotically normal distribution learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24841-24850, 2024.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Yu Guo, Weiquan Liu, Qingshan Xu, Shijun Zheng, Shujun Huang, Yu Zang, Siqi Shen, Chenglu
Wen, and Cheng Wang. Boosting adversarial transferability through augmentation in hypothesis
space. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 19175—
19185, 2025.

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.

770-778, 2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700—4708, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009. URL https://www.cs.toronto.edu/
~kriz/cifar.html.

Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
In Artificial intelligence safety and security, pp. 99—112. Chapman and Hall/CRC, 2018.

Qinliang Lin, Cheng Luo, Zenghao Niu, Xilin He, Weicheng Xie, Yuanbo Hou, Linlin Shen, and
Siyang Song. Boosting adversarial transferability across model genus by deformation-constrained
warping. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 3459—
3467, 2024.

Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversarial exam-
ples and black-box attacks. arXiv preprint arXiv:1611.02770, 2016.

10


https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

Under review as a conference paper at ICLR 2026

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012-10022, 2021.

Yuyang Long, Qilong Zhang, Boheng Zeng, Lianli Gao, Xianglong Liu, Jian Zhang, and Jingkuan
Song. Frequency domain model augmentation for adversarial attack. In European conference on
computer vision, pp. 549-566. Springer, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Muhammad Muzammal Naseer, Salman H Khan, Muhammad Haris Khan, Fahad Shahbaz Khan,
and Fatih Porikli. Cross-domain transferability of adversarial perturbations. Advances in Neural
Information Processing Systems, 32, 2019.

Yunxiao Qin, Yuanhao Xiong, Jinfeng Yi, and Cho-Jui Hsieh. Training meta-surrogate model for
transferable adversarial attack. In Proceedings of the AAAI conference on artificial intelligence,
volume 37, pp. 9516-9524, 2023.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211-252, 2015.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618-626,
2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Kunyu Wang, Xuanran He, Wenxuan Wang, and Xiaosen Wang. Boosting adversarial transferability
by block shuffle and rotation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 24336-24346, 2024a.

Ruikui Wang, Yuanfang Guo, and Yunhong Wang. Ags: Affordable and generalizable substitute
training for transferable adversarial attack. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 5553-5562, 2024b.

Xiaosen Wang, Xuanran He, Jingdong Wang, and Kun He. Admix: Enhancing the transferability
of adversarial attacks. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 16158-16167, 2021.

Xiaosen Wang, Zeliang Zhang, and Jianping Zhang. Structure invariant transformation for better ad-
versarial transferability. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 4607-4619, 2023.

Dongxian Wu, Yisen Wang, Shu-Tao Xia, James Bailey, and Xingjun Ma. Skip connections
matter: On the transferability of adversarial examples generated with resnets. arXiv preprint
arXiv:2002.05990, 2020.

Wang Xiaosen, Kangheng Tong, and Kun He. Rethinking the backward propagation for adversarial
transferability. Advances in Neural Information Processing Systems, 36:1905-1922, 2023.

Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and Alan L Yuille.
Improving transferability of adversarial examples with input diversity. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 2730-2739, 2019.

Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggregated residual trans-

formations for deep neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1492-1500, 2017.

11



Under review as a conference paper at ICLR 2026

Shawn Xu, Subhashini Venugopalan, and Mukund Sundararajan. Attribution in scale and space.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
9680-9689, 2020.

Jianping Zhang, Yizhan Huang, Weibin Wu, and Michael R Lyu. Transferable adversarial attacks
on vision transformers with token gradient regularization. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 16415-16424, 2023.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2921-2929, 2016.

Rongyi Zhu, Zeliang Zhang, Susan Liang, Zhuo Liu, and Chenliang Xu. Learning to transform
dynamically for better adversarial transferability. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 24273-24283, 2024a.

Zhiyu Zhu, Huaming Chen, Xinyi Wang, Jiayu Zhang, Zhibo Jin, Kim-Kwang Raymond Choo, Jun
Shen, and Dong Yuan. Ge-advgan: Improving the transferability of adversarial samples by gra-
dient editing-based adversarial generative model. In Proceedings of the 2024 SIAM International
Conference on Data Mining (SDM), pp. 706—714. SIAM, 2024b.

Yue Zhuo and Zhigiang Ge. Ig 2: Integrated gradient on iterative gradient path for feature attribution.
IEEFE Transactions on Pattern Analysis and Machine Intelligence, 46(11):7173-7190, 2024.

Junhua Zou, Zhisong Pan, Junyang Qiu, Xin Liu, Ting Rui, and Wei Li. Improving the transferability
of adversarial examples with resized-diverse-inputs, diversity-ensemble and region fitting. In
European Conference on Computer Vision, pp. 563-579. Springer, 2020.

A APPENDIX

A.1 ABLATION STUDY ON INPUT TRANSFORMATION

By default, the input transformation set ¥ employed by our proposed SimAttack consists of block
shuffle, resize-padding, SSM, random shift, random cropping, and random rotation. We further
demonstrate the impact of adding and removing input transformations on our proposed SimAttack,
as shown in Tabs. [3]and ] The results supports that the selected transformation is the best setup.

Table 3: Attack success rate (%) across twelve models on the adversarial examples crafted on
ResNet18 by our proposed SimAttack with different transformations. By default, the input transfor-
mation set ¥ employed by our proposed SimAttack consists of block shuffle, resize-padding, SSM,
random shift, random cropping, and random rotation.

Method Res18 Res50 Res101 NeXt Den VGG Incv3 ViT-S ViT-B PiT Vis. Swin Mean

- Random shift 100 97.8 96.7 97.6 100 99.9 989 89.2 73.0 81.993.1 924 934
SimAttack (Ours) 100 98.6 98.1 98.7 100 99.9 99.2 90.6 76.5 83.994.8 93.6 94.5
+ Gaussian blurring 100 97.4 96.6 97.5 100 99.8 98.5 89.2 73.3 81.392.6 90.9 93.1
+ Dropout 100 97.0 955 96.8 99.9 999 985 88.5 71.2 79.892.7 90.7 92.5
+ Random scaling 100 96.5 95.7 96.6 99.9 99.4 98.5 87.5 70.8 78.692.1 90.2 92.2
+ Random Flip 100 97.4 96.7 97.499.9 99.5 98.8 89.2 73.2 80.392.3 91.6 93.0

12
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Table 4: Attack success rate (%) across twelve models on the adversarial examples crafted on ViT-S
by our proposed SimAttack with different transformations. By default, the input transformation set
¥ employed by our proposed SimAttack consists of block shuffle, resize-padding, SSM, random
shift, random cropping, and random rotation.

Method Res18 Res50 Res101 NeXt Den VGG Incv3 ViT-S ViT-B PiT Vis. Swin Mean

- Random shift 98.2 953 962 96.798.397.6 985 100 98.8 97.898.1 99.0 97.9
SimAttack (Ours) 98.1 959 96.1 97.2 98.597.6 98.3 100 98.9 98.198.4 98.8 98.0
+ Gaussian blurring 97.6 93.3 935 953 985 96.1 974 100 98.5 97.696.5 98.1 96.9
+ Dropout 972 93.0 92.8 945 98.1 96.0 97.0 100 98.6 97.196.3 98.0 96.6
+ Random scaling 97.2 91.5 92.1 93.1 97.5 95.6 96.3 100 98.3 96.795.5 97.2 95.9
+ Random Flip 973 920 91.8 93.6 97.3 95.8 96.8 100 98.4 96.595.7 97.1 96.0

A.2 CASE STUDY ON LLM

We take 5 neural networks (i.e., DenseNet18, InceptionV3, ResNet18, ViT-S and ViT-B) as the sur-
rogate models, respectively, and show the adversarial examples of SimAttack successfully attacking
GPT 4.1, as shown in Figs.[7]and[8] The surrogate models are trained on ImageNet dataset. Overall,
large models still cannot escape the vulnerability of neural networks while people can still distin-
guish the images. In Addition, the results in Row 1 (right) suggests that the two models based on the
transform structure may be more effective than convolutional neural networks (CNNs) in attacking
large language models, since the adversarial examples generated by ViT-S and ViT-B successfully
attack the GPT 4.1 but the ones generated by DenseNet121, InceptionV3 and ResNet18 are unable
to do so.

A.3 THE USE OF LARGE LANGUAGE MODELS

We employ large language models to check for typos and grammatical errors, and utilize the LLMs
to provide suggestions for fixing code bugs.
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Prompt: Provide a concise description of the image using no more than three sentences

Prompt: Provide a concise description of the image using no more than three sentences
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Figure 7: Case study on GPT 4.1 examples.

14



Under review as a conference paper at ICLR 2026

Prompt: Provide a concise description of the image using no more than three sentences.
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Figure 8: Case study on GPT 4.1 examples.

15



