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ABSTRACT

Research on transfer-based adversarial attacks provides critical insights into dis-
tinctions among Deep Neural Networks (DNNs), revealing their vulnerabilities
when exposed to unseen noise. Among these transfer-based adversarial attacks,
input transformation-based attacks are popular due to their simplicity and effec-
tiveness. However, their mechanisms remain poorly understood, potentially hin-
dering advancements in DNNs. This work explores the mechanism of the attacks,
suggesting that 1) when trained with input transformations, models can improve
transformation invariance by capturing diverse features from transformed inputs
rather than transformation-invariant features. Therefore, given a surrogate model
fs trained with input transformations φ, adversarial attacks can leverage these
transformations to expand the target function space fs ◦φ, thereby effectively and
rapidly improving adversarial transferability, as domain shifts are mitigated; 2) in-
put transformation-based attacks enhance adversarial transferability by expanding
the target function space. Such transformations effectively act as modifications
to the target model, thereby improving attack robustness against diverse models;
and 3) L2-normalization should be incorporated into the attack paradigm to mit-
igate gradient imbalance during adversarial example generation. This imbalance
arises from domain shift variability induced by different transformations. Based
on the findings, we design a simple transformation-based attack called SimAttack.
It achieves a mean attack success rate of 95.4% on 12 models, and some of the
generated examples are also effective against GPT 4.1.

1 INTRODUCTION

To identify the deficiencies of DNNs, researchers investigate the way to deceive a model by adding
perturbations to inputs, which refers to an adversarial attack. Later, it reveals that these adversarial
attacks can deceive another model while crafting noisy inputs for one model (i.e, surrogate models).
Thus the transferability study of adversarial attacks has come into focus and many novel transfer-
based attacks are proposed to improve the transferability of adversarial attacks, such as gradient-
based methods (Goodfellow et al., 2014; Kurakin et al., 2018; Dong et al., 2018; Fang et al., 2024),
input transformation-based methods (Xie et al., 2019; Zou et al., 2020; Lin et al., 2024; Zhu et al.,
2024a; Guo et al., 2025), model-related methods (Zhang et al., 2023; Xiaosen et al., 2023; Wang
et al., 2024b), ensemble-based methods (Liu et al., 2016; Chen et al., 2023a;b) and generation-based
methods (Naseer et al., 2019; Zhu et al., 2024b).

Among these transfer-based adversarial attacks, input transformation-based attacks are popular due
to their simplicity and effectiveness, and the update process for such attacks can be uniformly for-
mulated as

xadv
t = xadv

t−1 + α · sign(
∑
i

∇xadv
t−1

J(fs(φi(x
adv
t−1)), y)), (1)

where xadv
t denotes the adversarial example at the t-th iteration, and α is the step size. This param-

eter is typically set to ϵ/T (i.e., the perturbation budget ϵ divided by the total iterations T ), ensuring
the perturbation intensity remains within budget. The fs represents the surrogate model, while φi

denotes the i-th random transformation.

Here, inspired by the work Guo et al. (2025), we provide a more intuitive definition. Input
transformation-based attacks leverage random transformation φ(·) to construct multiple compos-
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ite functions fs(φi(·)) belonging to the function space fs ◦ φ, totaling I instances. The input xadv
t−1

is used to query these functions to obtain the updated adversarial example xadv
t , which can enable

the updated data xadv
t to attack all the functions in the function space. This process can enhance

adversarial transferability, allowing the adversarial example xadv
t to effectively attack other models.

From the above definition, this transformation modifies the surrogate model, not the input data. Each
transformation instance φi(·) can be viewed as a function φi : R

C×H×W → RC×H×W , and then
all the compositions fs(φi(·)) can construct a function space. If the target models ftar(·) reside in
this function space, such attacks successfully transfer to them. We argue that input transformation-
based attacks leveraging φ(·) can enhance model transformation invariance of adversarial examples
by adopting transformations that bridge feature-capture gaps between surrogate and target models,
thereby boosting adversarial transferability. The model transformation invariance refers to the fact
that adversarial examples remain effective even when the target model undergoes a transformation.

However, if the surrogate model fails to extract meaningful features from these transformed data
φi(x

adv
t−1), the resulting updates may become severely noisy. Consequently, if the transformed data

φi(x
adv
t ) resembles in-domain training data, adversarial attacks leveraging such transformations can

generate effective perturbations. This efficacy stems from models’ inherent strength in processing
in-domain data. The Methodology section (i.e., Sec. 3) will investigate the effect of domain shift
induced by data transformations and the feasibility of its mitigation.

Additionally, a critical concern emerges: if models learn transformation-invariant features, random
transformations cannot expand the function space, thereby rendering the method ineffective. This
limitation arises because capturing the same features before and after the transformation will result in
identical example gradients before and after the transformation. Typically, transformations φ(·) are
employed during training to enhance model transformation-invariance, defined as consistent outputs
for original and transformed inputs. Intuitively, this is because models may capture transformation-
invariant features. This issue will also be discussed in the Methodology section.

This study mainly investigates the aforementioned issues, with contributions summarized as follows:

• When trained with input transformations, models can improve transformation invariance
by capturing diverse features from transformed inputs rather than transformation-invariant
features. Consequently, given a surrogate model trained with input transformations, ad-
versarial attacks can leverage these transformations to expand the target function space,
thereby effectively and rapidly improving adversarial transferability, as models excel on
in-domain data.

• Input transformation-based attacks enhance adversarial transferability by expanding the
target function space. Such transformations effectively act as modifications to the target
model, thereby improving attack robustness against diverse models.

• During adversarial example generation, varying domain shifts across different transforma-
tions can cause gradient imbalance and excessive noise. To address this, we introduce
gradient normalization while employing a large set of random transformations.

• Based on these findings, we propose SimAttack, a simple yet effective transformation-
based attack. This method leverages transformations used in surrogate model training along
with other effective ones, incorporating gradient normalization to achieve state-of-the-art
results in the experimental evaluations.

2 RELATED WORK

This work mainly focuses on the mechanism interpretability of input transformation-based attacks,
but also touches on mechanisms for model-related attacks and utilizes some ideas from gradient
attribution. Therefore, in this section, we introduce these three types of related work.

Input Transformation-Based Attack. One of the most popular approaches is the input
transformation-based attack due to its effectiveness and simplicity. The input transformation-based
attack elaborates transformations to enhance adversarial transferability. DIM Xie et al. (2019) ran-
domly resizes and adds padding to input examples to improve adversarial transferability. Conse-
quently, DEM Zou et al. (2020) calculates the average gradient of several DIM’s transformed im-
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ages to further improve adversarial transferability. Then, many novel transformations are presented,
which calculate the average gradient of the transformed images to improve adversarial transferabil-
ity. For example, SSM Long et al. (2022) randomly scales images and adds noise in the frequency
domain. SIA Wang et al. (2023) splits the image into blocks and applies various transformations to
each block. DeCowA Lin et al. (2024) augments input examples via an elastic deformation to obtain
rich local details of the augmented inputs. L2T Zhu et al. (2024a) optimizes the input-transformation
trajectory along the adversarial iteration, achieving great performance. BSR Wang et al. (2024a) ran-
domly shuffles and rotates the image blocks to generate adversarial examples with great adversarial
transferability. OPS Guo et al. (2025) observes a mirroring relationship between model general-
ization and adversarial example transferability and uses transformation and random perturbations
to generate adversarial examples. The mechanism underlying this approach is not well understood.
To mitigate this, our work demonstrates that data transformation can help adversarial attacks avoid
low-transferability perturbations by guiding adversarial examples to attack more models.

Model-Related Attack. This approach improves adversarial transferability by changing properties
of surrogate models, such as data transformation and structural changes. SGM Wu et al. (2020)
utilizes more gradients from the skip connections in the residual blocks. MTA Qin et al. (2023)
trains a meta-surrogate model, whose adversarial examples can maximize the loss on a single or a set
of pre-trained surrogate models. AGS Wang et al. (2024b) trains surrogate models with adversary-
centric contrastive learning and adversarial invariant learning. VDC Wang et al. (2024a) adds virtual
dense connections for dense gradient back-propagation in attention maps and MLP blocks, without
altering the forward propagation. Our work investigates the role of input transformations.

Gradient-Based Feature Attribution. This approach delves into identifying the importance of
input features to the model’s output. CAM Zhou et al. (2016) identifies discriminative regions that
the model uses to make a prediction through the linearly weighted summation of activation maps
from the last convolution layer. Grad-Cam Selvaraju et al. (2017) introduces a general method that
uses the gradients w.r.t. the activation map to measure the channel importance. Later, some novel
methods Xu et al. (2020); Zhuo & Ge (2024) are proposed to improve performance by reducing
noise, but the key idea remains unchanged. Our work uses feature attribution to demonstrate whether
there are differences in the features captured by the model before and after data transformation.

3 METHODOLOGY

3.1 ROLE OF TRANSFORMATION IN MODEL TRAINING

Among previous transfer-based adversarial attacks, some methods Wu et al. (2020); Qin et al.
(2023); Wang et al. (2024b;a), referred to as model-related attacks, enhance adversarial transferabil-
ity by strategically modifying surrogate models. This demonstrates that the properties of surrogate
models play a crucial role in adversarial example generation. Meanwhile, input transformations are
widely used in model training to improve transformation invariance, implying they influence surro-
gate model characteristics. Then what is the influence, and what difference do they make when
using in input transformation-based attacks compared to other transformations?

Typically, data transformations are considered to provide models with transformation-invariance. In
other words, whether a model processes transformed data or original data, it can produce invariant
outputs. Intuitively, this may arise from models capturing transformation-invariant features through
data transformations. However, the results shown in Fig. 1 demonstrate that this is not true. As
shown in Fig. 1, we utilize the feature attribution to show the difference between the captured fea-
tures of original and transformed data and calculate the similarity between the results, which can be
formulated as:

Cos(∇xJ(fs(φ(x)), y),∇xJ(fs(x), y)), (2)
where Cos(·, ·) computes cosine similarity, and other symbols align with Eq. 1.

To investigate whether models can capture transformation-invariant features via data transforma-
tion, we train models on CIFAR-100 Krizhevsky et al. (2009) transformed by random rotation and
resize-padding. We then compare gradient-based feature attribution maps between transformed and
non-transformed inputs using Eq. 2. To show the influence of data transformations used in model
training, beyond the transformation (i.e., rotation) employed during training, we introduce a trans-
formation (i.e., block shuffle) unused in training for comparison. If models successfully capture
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Figure 1: Similarity between gradients of inputs with and without transformation (i.e., the columns
labeled “None” and others). Similarity can be calculated by Eq. 2. The used models are trained
using data transformed by random rotation and resize-padding. The “None” column refers to inputs
with no transformation, “Rot” to inputs with rotation, and “Shuffle” to inputs with block shuffle.
Specifically, the “Rot (5)” indicates a rotation of 5 degrees, while “Shuffle (3)” indicates that inputs
are split into several blocks and these blocks are randomly shuffled. The results suggest that although
models can yield invariant outputs when processing transformed data, the models capture different
features derived from the transformed data rather than invariant features.

transformation-invariant features, the feature attribution maps of the transformed and original data
should be identical or highly similar. This can be formulated as

∇xJ(fs(φ(x)), y) = ∇xJ(fs(x), y). (3)

This invariance will lead to the degradation of input transformation-based attacks when utilizing
transformations used in surrogate model training. The degradation can be formulated as

xadv
t = xadv

t−1 + α · sign(
∑
i

∇xadv
t−1

J(fs(φi(x
adv
t−1)), y))

= xadv
t−1 + α · sign(∇xadv

t−1
J(fs(x

adv
t−1), y)).

(4)

However, the results in Fig. 1 demonstrate that regardless of whether a transformation was used in
training, models produce different responses to the transformed inputs. This suggests that models
cannot capture transformation-invariant features via data transformation. Instead, the models es-
tablish more projections φ(x) → y. This supports that input transformation-based attacks do not
degenerate into non-transformation-based attacks when utilizing the transformation used in surro-
gate model training. Therefore, we can utilize the transformation used in surrogate model training as
the random transformation φ in the attack, guiding adversarial examples to target a set of functions
fs(φi(·)) ( belonging to a function space) instead of a single function fs(·). Straightforwardly, this
can improve the adversarial transferability of the adversarial examples while having little impact on
the attack success rate against the surrogate model fs(·), since the transformed data φi(x) remains
in-domain for the surrogate model fs(·). To further demonstrate these points, we train surrogate
models with and without transformations and then use the models to generate adversarial examples
with and without the transformations. The results of these adversarial examples are shown in Fig. 2.

The results in Fig. 2 show that surrogate models trained with transformations can leverage the trans-
formations to generate better adversarial examples superior to those generated without the trans-
formations. This also supports that data transformation helps models establish more projections
φ(x) → y rather than capturing transformation-invariant features. Also, the comparison of surro-
gate models with and without transformations reveals that models exhibiting better generalization
capabilities typically generate more effective adversarial examples.

In summary, the role of data transformation is to help models capture different features
from transformed data rather than capturing transformation-invariant features. Therefore, input
transformation-based attacks can leverage the transformation used in surrogate model training as
the random transformation φ in the attack, guiding adversarial examples to target a set of functions
fs(φi(·)) to improve transferability.
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Figure 2: Attack success rate of input transformation-based attack with and without the data trans-
formation used in surrogate model training. The surrogate models are trained on CIFAR-100, and
the transformation number I of the attack is 100. We evaluate the performance on the data that can
be classified correctly by all the models.

3.2 MECHANISM OF INPUT TRANSFORMATION-BASED ATTACKS

(a) ResNet18 (b) ViT-S

Figure 3: Accuracy of noisy inputs and mean attack success rate of adversarial attacks that employ
random uniform noise as the transformation. The transformation number I is 100, with noise inten-
sity defining the bounds of uniform sampling. We run 5 times and take the mean. This illustrates the
trade-off between domain shift induced by data transformations φ(·) and the range of target function
space fs(φ(·)).

The results in Fig. 2 show that input transformation-based attacks introduce the transformation (i.e.,
rotation and block shuffle) to improve adversarial transferability, even when surrogate models are
trained without them. This suggests that, beyond the transformations used in surrogate model train-
ing, the attacks can introduce additional transformations to enhance transferability. However, this
introduces a trade-off: while data transformations φ(·) expand the target function space fs ◦φ, they
simultaneously induce domain shifts that degrade the model. To further illustrate this clearly, we
generate adversarial examples with noise of different intensities, and the results are presented in
Fig. 3. We can expand the function space fs(φ(·)) by enhancing the bound of random noise, as
a larger bound encompasses smaller variations. The domain shifts are demonstrated through the
accuracy of images with varying noise intensities. As shown in Fig. 3, severe domain shift leads to
model degradation. However, compared to downstream tasks, its impact on adversarial attacks is
significantly less pronounced. This phenomenon may arise because the attack mechanism can lever-
age feature projections from any category, whereas the downstream task relies solely on projections
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corresponding to the correct category. Note that, as shown in Fig. 2, introducing such transforma-
tions into surrogate model training can mitigate the domain shift, but incurs higher hardware costs
and increased time consumption.

Figure 4: The similarity between adversarial examples generated through the approach in Eq. 5 and
those produced using individual transformations. We then rank the transformations based on similar-
ity and report the mean attack success rate for the ordered combination of these transformations. The
similarity approximates each transformation’s contribution. The transformations employed include
block-shuffle Wang et al. (2024a), resize-padding Xie et al. (2019), random cropping, ssm Long
et al. (2022) (which randomly scales images and adds noise in the frequency domain), random shift,
dropout, Gaussian blurring, random scaling, and random flip. The models are trained on CIFAR-100
with rotation and resize-padding.

So far, we know that it is feasible to expand the function space through transformations that are
not used in training. We next explore compensating for model differences through function space
expansion centered on surrogate models. An ensemble attack-like task is introduced to generate
adversarial examples, which can be formulated as

1

I

∑
i

J(fs(φi(x)), y) + J(ftar(x), y), (5)

where ftar denotes the target model, and the φi represents a composite transformation sampled from
a transformation set Ψ. We quantify the similarity between adversarial examples generated through
the approach in Eq. 5 and those produced using individual transformations. The similarity approx-
imates each transformation’s contribution, with results visualized in Fig. 4. The results reveals that
despite architectural differences among target models, transformation contribution rankings remain
remarkably consistent, particularly for the least effective transformations. Although function space
expansion via transformations exhibits some bias, transformations yielding limited function space
expansion typically underperform across all target models.

3.3 PROPOSED INPUT TRANSFORMATION-BASED ATTACK

Based on our findings, we propose a simple transfer-based attack named SimAttack, as shown in
Alg. 1. To maximize the function space, we randomly select several transformations from the trans-
formation set Ψ as a composite transformation φi (Row 3 in Alg. 1), rather than serially combining
all transformations or using other methods. Furthermore, we observe that domain shifts caused by
different transformations may lead to gradient imbalances, as shown in Tab. 1. Specifically, gradients
derived from transformations used during training tend to be smaller than those from other transfor-
mations. Therefore, inspired by optimizers Kingma & Ba (2014); Loshchilov & Hutter (2017), we
introduce l2-norm over each input as the normalization Norm(·) into our proposed attack (Row 4
in Alg. 1), thereby mitigating gradient imbalance.
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Table 1: Gradients of inputs with different transformations. We average the results of 10,000 trans-
formed data.

Rotation Resize-padding Block Shuffle Shift
ResNet18 0.0282 0.0207 0.0740 0.0830
ViT-S 0.0813 0.0793 0.1406 0.1427

As mentioned above, data transformation causes domain shifts, which in turn lead to increased noise
in gradients. Increasing the number of random transformations mitigates noise, and we quantify this
relationship in Fig. 5a and Fig. 5b. A single transformation may require more than 100 times to
achieve optimal performance. Therefore, the transformation number may need to be set to several
thousand to achieve optimal performance when using a number of transformations.

Algorithm 1 A simple transfer-based attack (SimAttack)
Input: an benign example x0, adversarial example xadv

t , perturbation budget ϵ, transformation set
Ψ, step size α, iteration T , transformation number I .
Output: adversarial example xadv

T .
1: Initialize α = ϵ/T , xadv

0 = x0, g0 = 0.
2: for t = 1 to T do
3: Sample I transformation compositions {φi}Ii=0 from transformation set Ψ.

4: Update gt =
I∑
i

Norm(∇xadv
t−1

J(f(φi(x
adv
t−1)), y)) .

5: Update the momentum gt = gt−1 +
gt

∥gt∥1
.

6: Update the example xadv
t = clip(xadv

t−1 + α · sign(gt), 0, 1).
7: end for
8: return the adversarial example xadv

t

(a) ResNet18 (b) ViT-S (c) Transformation Number (d) L2-Norm

Figure 5: (a) and (b): The relationship between noise reduction and transformation number. The
surrogate models are trained on CIFAR-100 with rotation and resize-padding. The term “Current
ASR / Best ASR” refers to the current attack success rate divided by the best attack success rate. (c)
and (d): The role of transformation number I and L2-norm.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We describe the dataset, implementation setup, and input transformation setup in detail here.

Implementation Setup. Following the previous works Wang et al. (2021; 2023); Zhu et al. (2024a),
we calculate attack success rate on 1, 000 images chosen from ILSVRC 2012 validation set Rus-
sakovsky et al. (2015), and these images are classified correctly by all the models. Following the
widely used hyperparameter setup in the works Dong et al. (2018); Zhu et al. (2024a); Lin et al.
(2024), we set the perturbation budget ϵ to 16/255, iteration number T to 10, step size α to 1.6/255.
By default, the transformation number I is 2,000. We run the experiments on a single A100.

7
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Input Transformation Setup. The properties of a model may primarily depend on its structure,
so we follow the experience shown in Fig. 4. By default, the input transformation set Ψ consists
of block shuffle, resize-padding, SSM, random shift, random cropping, and random rotation. To
expand the target function space, hyperparameters of input transformations are randomly selected
as follows: Block-shuffle splits inputs into 1 → 25 randomly sized blocks; resize-padding adopts
the configuration from Xie et al. (2019) with maximum scaling factor uniformly sampled from 1.14
to 1.66 (minimum fixed at 1.0); SSM applies noise factors sampled uniformly from 0.1 to 0.9;
random shift magnitudes range from 0 to a predefined maximum; random cropping adds 0-30 pixels
of padding before resizing to 224×224; and random rotation employs maximum angles uniformly
distributed between 0 and 180.

4.2 ROLE OF HYPERPARAMETER AND L2-NORM

We show the role of the transformation number I and L2-norm on our proposed SimAttack. The
results are shown in Fig. 5. If the transformation number is too small, the gradient noise introduced
by domain shifts may reduce performance.

4.3 CASE STUDY ON LLM

We take the ViT-B as the surrogate model and show the adversarial examples of SimAttack success-
fully attacking GPT 4.1 Achiam et al. (2023), as shown in Fig. 6. Large models still cannot escape
the vulnerability of neural networks while people can still distinguish the images.

Figure 6: Case study on GPT 4.1 examples.

4.4 COMPARATIVE EXPERIMENTS

In this section, we adopt 5 common neural networks as surrogate models to compare our proposed
AdaAES with other advanced attacks and evaluate the attack success rate of different transfer-based
adversarial attacks on twelve models including ResNet18 He et al. (2016), ResNet50 He et al.
(2016), ResNet101 He et al. (2016), ResNeXt50 Xie et al. (2017), DenseNet121 Huang et al. (2017),
VGG19 Simonyan & Zisserman (2014), ViT-S Dosovitskiy et al. (2020), ViT-B Dosovitskiy et al.
(2020), PiT-B Zhang et al. (2023), Visformer Chen et al. (2021), and Swin Transformer Liu et al.
(2021). We pick 7 adversarial attacks (including MI-FGSM Dong et al. (2018), DEM Zou et al.
(2020), SIA Wang et al. (2023), ANDA Fang et al. (2024), BSR Wang et al. (2024a), DeCowA Lin
et al. (2024), L2T Zhu et al. (2024a), OPS Guo et al. (2025)) as the comparative methods. The re-
sults are shown in Tab. 2. The results show that our method outperforms all existing methods across
multiple surrogate models, which supports the soundness of our work.
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Table 2: Attack success rate (%) across twelve models on the adversarial examples crafted on a
surrogate model (labeled “Sur.”).

Sur. Attack Res18 Res50 Res101 NeXt Den VGG Incv3 ViT-S ViT-B PiT Vis. Swin Mean
In

ce
pt

io
nV

3
MI-FGSM 47.3 30.0 28.1 28.5 44.5 47.9 97.9 23.1 13.7 16.9 24.3 28.8 35.9
DEM 77.2 57.1 55.5 57.6 78.8 76.0 99.0 47.4 30.6 35.5 47.7 49.2 59.3
SIA 87.9 69.2 65.4 69.0 85.9 83.6 99.9 49.1 34.7 46.5 58.9 61.5 67.6
ANDA 66.1 50.1 48.4 49.8 69.5 66.0 99.7 38.1 27.2 31.8 42.9 45.6 52.9
BSR 87.7 71.9 67.5 70.6 87.0 85.6 99.8 51.1 37.0 48.7 62.8 65.6 69.6
DeCowA 78.7 57.8 57.3 61.1 78.5 78.8 98.0 47.4 32.1 38.9 49.6 54.7 61.1
L2T 83.9 70.6 67.8 70.4 84.6 80.7 98.9 52.4 37.3 49.2 56.6 61.6 67.8
OPS 96.2 83.6 85.1 85.5 95.9 91.9 99.9 77.3 59.9 65.4 77.9 80.7 83.3
Ours 98.2 92.3 91.8 93.3 98.1 98.0 100.0 82.9 71.0 77.3 87.3 87.8 89.8

D
en

se
N

et
12

1

MI-FGSM 74.9 61.5 50.9 55.2 99.9 68.5 58.0 31.6 20.6 27.9 41.4 44.3 52.9
DEM 98.0 91.0 85.8 89.1 99.9 94.4 94.2 63.7 48.8 52.8 75.4 70.2 80.3
SIA 98.6 95.6 92.2 94.9 100.0 97.6 91.9 64.6 48.3 67.5 84.6 81.7 84.8
ANDA 93.4 86.2 81.0 83.6 99.9 89.8 82.6 53.7 40.8 55.3 71.0 69.8 75.6
BSR 98.6 95.0 89.6 93.1 100.0 97.1 88.2 62.6 49.1 66.3 83.5 79.8 83.6
DeCowA 98.5 92.5 89.0 91.4 100.0 96.4 93.8 73.3 57.7 70.3 83.4 80.6 85.6
L2T 98.8 95.0 92.9 94.2 100.0 97.7 94.4 74.6 59.1 73.3 85.6 85.7 87.6
OPS 99.9 98.2 98.5 98.3 100.0 98.7 99.2 90.6 79.8 86.0 94.7 93.4 94.8
Ours 100.0 99.9 99.7 99.7 100.0 99.8 99.7 94.0 85.2 91.0 97.4 96.6 96.9

R
es

N
et

18

MI-FGSM 100.0 49.3 42.2 45.7 73.8 74.4 55.6 27.6 16.7 23.0 32.6 40.1 48.4
DEM 100.0 82.5 76.8 81.8 97.5 95.1 92.1 58.7 39.1 46.0 66.3 65.9 75.2
SIA 100.0 91.9 87.6 89.7 99.2 98.6 91.5 62.7 43.9 58.5 77.3 77.0 81.5
ANDA 100.0 80.5 74.7 78.6 96.6 94.8 85.6 53.1 38.6 49.5 66.1 68.8 73.9
BSR 100.0 90.5 86.0 88.4 98.8 98.7 90.3 60.8 43.0 57.9 77.3 75.9 80.6
DeCowA 100.0 89.0 85.0 88.3 98.5 98.4 94.4 72.3 56.5 63.7 80.5 79.8 83.9
L2T 100.0 91.5 87.6 91.6 98.6 98.8 94.8 67.4 51.0 64.7 78.8 81.2 83.8
OPS 100.0 97.2 96.9 97.1 99.9 99.6 99.0 91.4 77.1 81.5 93.0 91.7 93.7
Ours 100.0 98.6 98.1 98.7 100.0 99.9 99.2 90.6 76.5 83.9 94.8 93.6 94.5

V
iT

-S

MI-FGSM 51.4 33.6 30.3 33.8 48.9 54.7 45.0 100.0 69.2 37.4 42.6 54.1 50.1
DEM 88.8 81.4 79.7 81.9 89.2 88.0 90.3 99.9 95.2 88.1 88.1 90.4 88.4
SIA 86.2 80.3 76.4 78.3 87.4 85.8 80.6 100.0 95.7 84.9 86.0 90.3 86.0
ANDA 70.7 60.8 57.4 60.8 73.3 71.0 67.4 100.0 89.1 67.5 69.7 77.1 72.1
BSR 87.6 82.4 82.0 83.6 89.0 87.1 84.0 100.0 94.8 90.6 88.1 91.1 88.4
DeCowA 86.0 75.7 73.8 77.5 97.1 85.3 84.2 98.8 87.2 83.4 83.6 85.9 84.9
L2T 88.5 81.1 78.0 80.8 88.0 87.1 86.7 99.2 92.8 84.5 84.5 89.6 86.7
OPS 96.1 91.1 93.0 92.8 96.6 94.2 97.2 99.7 97.0 95.0 95.2 96.0 95.3
Ours 98.1 95.7 96.0 97.3 98.5 97.6 98.3 100.0 98.9 98.1 98.3 98.8 98.0

V
iT

-B

MI-FGSM 52.8 39.3 33.8 38.8 50.9 57.3 46.4 72.0 97.3 40.5 43.4 54.7 52.3
DEM 85.1 77.8 78.5 78.4 87.4 85.3 86.3 93.7 97.9 86.9 85.2 85.9 85.7
SIA 77.4 75.2 72.8 76.1 80.5 79.0 76.0 90.4 97.3 81.4 81.4 84.5 81.0
ANDA 67.0 60.1 58.9 60.9 70.9 69.1 66.4 84.3 97.7 66.7 68.0 73.1 70.3
BSR 74.9 73.7 71.7 73.2 78.4 75.2 75.3 84.1 93.9 78.2 76.0 79.7 77.9
DeCowA 82.1 74.3 74.1 76.0 81.8 79.1 81.4 86.7 92.2 83.1 82.4 82.6 81.3
L2T 82.9 78.2 76.7 77.9 83.0 82.3 82.0 90.2 95.7 82.2 82.6 85.5 83.3
OPS 94.3 91.8 91.8 92.8 95.5 92.2 94.4 98.0 98.7 95.0 94.9 95.1 94.5
Ours 97.7 96.4 96.8 97.3 98.4 97.4 97.8 98.9 99.7 98.4 98.2 98.2 97.9

5 CONCLUSIONS

This work reveals that: 1) To achieve model transformation-invariance, data transformations estab-
lish multiple projections from transformed inputs to outputs, rather than enabling models to capture
invariant features during training. This suggests introducing the transformations into surrogate mod-
els. 2) Input transformation-based attacks leverage transformations to expand target function space,
thereby improving adversarial transferability. The transform’s ability to expand the function space
may provide guidance across datasets. Also, normalization should be incorporated into the paradigm
of the attacks due to gradient imbalance.
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A APPENDIX

A.1 ABLATION STUDY ON INPUT TRANSFORMATION

By default, the input transformation set Ψ employed by our proposed SimAttack consists of block
shuffle, resize-padding, SSM, random shift, random cropping, and random rotation. We further
demonstrate the impact of adding and removing input transformations on our proposed SimAttack,
as shown in Tabs. 3 and 4. The results supports that the selected transformation is the best setup.

Table 3: Attack success rate (%) across twelve models on the adversarial examples crafted on
ResNet18 by our proposed SimAttack with different transformations. By default, the input transfor-
mation set Ψ employed by our proposed SimAttack consists of block shuffle, resize-padding, SSM,
random shift, random cropping, and random rotation.

Method Res18 Res50 Res101 NeXt Den VGG Incv3 ViT-S ViT-B PiT Vis. Swin Mean

- Random shift 100 97.8 96.7 97.6 100 99.9 98.9 89.2 73.0 81.9 93.1 92.4 93.4

SimAttack (Ours) 100 98.6 98.1 98.7 100 99.9 99.2 90.6 76.5 83.9 94.8 93.6 94.5

+ Gaussian blurring 100 97.4 96.6 97.5 100 99.8 98.5 89.2 73.3 81.3 92.6 90.9 93.1

+ Dropout 100 97.0 95.5 96.8 99.9 99.9 98.5 88.5 71.2 79.8 92.7 90.7 92.5

+ Random scaling 100 96.5 95.7 96.6 99.9 99.4 98.5 87.5 70.8 78.6 92.1 90.2 92.2

+ Random Flip 100 97.4 96.7 97.4 99.9 99.5 98.8 89.2 73.2 80.3 92.3 91.6 93.0
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Table 4: Attack success rate (%) across twelve models on the adversarial examples crafted on ViT-S
by our proposed SimAttack with different transformations. By default, the input transformation set
Ψ employed by our proposed SimAttack consists of block shuffle, resize-padding, SSM, random
shift, random cropping, and random rotation.

Method Res18 Res50 Res101 NeXt Den VGG Incv3 ViT-S ViT-B PiT Vis. Swin Mean

- Random shift 98.2 95.3 96.2 96.7 98.3 97.6 98.5 100 98.8 97.8 98.1 99.0 97.9

SimAttack (Ours) 98.1 95.9 96.1 97.2 98.5 97.6 98.3 100 98.9 98.1 98.4 98.8 98.0

+ Gaussian blurring 97.6 93.3 93.5 95.3 98.5 96.1 97.4 100 98.5 97.6 96.5 98.1 96.9

+ Dropout 97.2 93.0 92.8 94.5 98.1 96.0 97.0 100 98.6 97.1 96.3 98.0 96.6

+ Random scaling 97.2 91.5 92.1 93.1 97.5 95.6 96.3 100 98.3 96.7 95.5 97.2 95.9

+ Random Flip 97.3 92.0 91.8 93.6 97.3 95.8 96.8 100 98.4 96.5 95.7 97.1 96.0

A.2 CASE STUDY ON LLM

We take 5 neural networks (i.e., DenseNet18, InceptionV3, ResNet18, ViT-S and ViT-B) as the sur-
rogate models, respectively, and show the adversarial examples of SimAttack successfully attacking
GPT 4.1, as shown in Figs. 7 and 8. The surrogate models are trained on ImageNet dataset. Overall,
large models still cannot escape the vulnerability of neural networks while people can still distin-
guish the images. In Addition, the results in Row 1 (right) suggests that the two models based on the
transform structure may be more effective than convolutional neural networks (CNNs) in attacking
large language models, since the adversarial examples generated by ViT-S and ViT-B successfully
attack the GPT 4.1 but the ones generated by DenseNet121, InceptionV3 and ResNet18 are unable
to do so.

A.3 THE USE OF LARGE LANGUAGE MODELS

We employ large language models to check for typos and grammatical errors, and utilize the LLMs
to provide suggestions for fixing code bugs.
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Figure 7: Case study on GPT 4.1 examples.
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Figure 8: Case study on GPT 4.1 examples.
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