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Abstract

We study the estimation of distributional treatment effects in randomized experi-
ments with imperfect compliance. When participants do not adhere to their assigned
treatments, we leverage treatment assignment as an instrumental variable to identify
the local distributional treatment effect—the difference in outcome distributions
between treatment and control groups for the subpopulation of compliers. We pro-
pose a regression-adjusted estimator based on a distribution regression framework
with Neyman-orthogonal moment conditions, enabling robustness and flexibility
with high-dimensional covariates. Our approach accommodates continuous, dis-
crete, and mixed discrete-continuous outcomes, and applies under a broad class
of covariate-adaptive randomization schemes, including stratified block designs
and simple random sampling. We derive the estimator’s asymptotic distribution
and show that it achieves the semiparametric efficiency bound. Simulation results
demonstrate favorable finite-sample performance, and we demonstrate the method’s
practical relevance in an application to the Oregon Health Insurance Experiment.

1 Introduction

Randomized experiments are a cornerstone of causal inference, widely employed in both academic
research (Duflo et al., 2007) and industry settings (Kohavi et al., 2020). In practice, however, subjects
often deviate from their assigned treatments, leading to imperfect compliance. When compliance is
not guaranteed, estimating the causal effect for the entire population is generally not possible, without
imposing additional assumptions. However, a standard approach to address this issue is to use the
random assignment as an instrumental variable (IV). This strategy allows for identification of the
causal effect of treatment for the subset of individuals who comply with their assignment—known as
the local average treatment effect (LATE) (Imbens and Angrist, 1994)—without requiring assumptions
about how individuals self-select into treatment.

To improve covariate balance between treatment and control groups, researchers often use covariate-
adaptive randomization (CAR), which stratifies individuals based on key covariates before assigning
treatments within each stratum. The CAR framework includes various designs, such as stratified
block randomization and Efron’s biased coin design (Imbens and Rubin, 2015), with simple random
sampling as a special case.
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While much of the literature focuses on estimating the average effects, this summary measure can
obscure important heterogeneity in treatment responses. In this paper, we study the estimation of
distributional treatment effects in randomized experiments with covariate-adaptive randomization
and noncompliance, focusing on the local distributional treatment effect (LDTE)—defined as the
difference in counterfactual outcome distributions for compliers across treatment arms. By examining
the entire distribution of outcomes, rather than just the mean, we aim to provide a more nuanced
understanding of how treatments affect different segments of the population.

We propose a regression-adjusted estimator for LDTEs that leverages auxiliary covariates beyond
stratum indicators to improve efficiency. Our setup accommodates heterogeneous assignment prob-
abilities and heterogeneous treatment effects. Estimation proceeds via a distribution regression
framework combined with Neyman-orthogonal moment conditions (Chernozhukov et al., 2018,
2022), which provide robustness to first-order estimation errors in high-dimensional or complex nui-
sance components. These nuisance functions—conditional distribution functions given pre-treatment
covariates—are estimated using flexible machine learning methods, including random forests, neural
networks, and gradient boosting. Incorporating cross-fitting further strengthens robustness against
estimation errors.

Despite the growing body of work on CAR and noncompliance in experimental settings, methods
that estimate distributional treatment effects in the presence of both CAR and noncompliance remain
scarce. For instance, Jiang et al. (2023) address quantile treatment effects under full compliance, and
Jiang et al. (2024) study average treatment effects under CAR with imperfect compliance. However, to
our knowledge, there are no existing methods that integrate regression adjustment and IV techniques
for estimating full outcome distributions under CAR and noncompliance. This paper addresses that
gap and makes the following contributions:

1. We develop a regression-adjusted estimator for distributional treatment effects under CAR
with noncompliance, applicable to continuous, discrete, and mixed discrete-continuous
outcomes.

2. We derive the asymptotic distribution of the estimator under CAR, generalizing beyond the
traditional i.i.d. framework in causal inference.

3. We establish the semiparametric efficiency bound for the LDTE under CAR and show that
our estimator attains this bound.

4. We validate our approach through simulation studies and an empirical application to the
Oregon Health Insurance Experiment, where only 58% of subjects complied with their
treatment assignment.

The remainder of the paper is structured as follows. Section 2 reviews related literature. Section 3
describes the problem setup and identification strategy. Section 4 introduces the proposed estimation
method. Section 5 presents the asymptotic properties of our estimator. Section 6 reports simulation
and empirical results. Section 7 concludes. The Appendix includes notation, technical proofs, and
additional experimental details.

2 Related Literature

Distributional treatment effects Distributional and quantile treatment effects provide a more
comprehensive view of treatment impacts beyond average effects. The concept of QTE was first
introduced by Doksum (1974) and Lehmann and D’Abrera (1975), and has since inspired a broad
literature developing estimation and inference methods for distributional effects across econometrics,
statistics, and machine learning. Notable contributions include Heckman et al. (1997); Imbens
and Rubin (1997); Koenker (2005); Bitler et al. (2006); Athey and Imbens (2006); Firpo (2007);
Chernozhukov et al. (2013); Koenker et al. (2017); Belloni et al. (2017); Callaway et al. (2018);
Callaway and Li (2019); Chernozhukov et al. (2019); Ge et al. (2020); Park et al. (2021); Zhou et al.
(2022); Gunsilius (2023); Kallus and Oprescu (2023), among others. Most of this work focuses on
conditional distributional and quantile treatment effects. In contrast, Oka et al. (2025), Byambadalai
et al. (2024), and Hirata et al. (2025) examine unconditional distributional effects, though their
analyses are restricted to settings with simple random sampling and full compliance. Byambadalai
et al. (2025) also examine unconditional distributional effects under covariate-adaptive randomization,
but their framework likewise assumes full compliance.
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Instrumental variables estimation of distributional causal effects Instrumental variables have
a long-standing role in identifying causal effects in the presence of confounding, either by relying
on additional structural assumptions (Haavelmo, 1943; Angrist et al., 1996) or by enabling partial
identification under weaker conditions (Manski, 1990; Balke and Pearl, 1997). A key development
in the estimation of distributional effects is the instrumental variable quantile regression (IVQR)
framework, which estimates quantile functions across the outcome distribution under the rank
similarity assumption (Chernozhukov and Hansen, 2004, 2005, 2006; Kaido and Wüthrich, 2021). An
alternative approach by Abadie et al. (2002) focuses on local QTEs for the complier subpopulation,
under the monotonicity assumption—a setting also considered in our work. Frölich and Melly
(2013) similarly estimate unconditional QTEs under endogeneity, assuming monotonicity. Wüthrich
(2020) provide a detailed comparison between IVQR and local QTE models. Additionally, Abadie
(2002) introduce a Kolmogorov–Smirnov-type test for comparing complier outcome distributions in
randomized experiments. Other contributions addressing distributional and quantile causal effects
using IV methods under assumptions different from ours include Chernozhukov et al. (2007);
Horowitz and Lee (2007); Briseño Sanchez et al. (2020); Kook and Pfister (2024); Kallus et al.
(2024); Chernozhukov et al. (2024), among others.

Regression adjustment under covariate-adaptive randomization Regression adjustment using
pre-treatment covariates to improve precision in average treatment effect (ATE) estimation has been
extensively studied under simple random sampling (Fisher, 1932; Cochran, 1977; Yang and Tsiatis,
2001; Rosenbaum, 2002; Freedman, 2008b,a; Tsiatis et al., 2008; Rosenblum and Van Der Laan,
2010; Lin, 2013; Berk et al., 2013; Ding et al., 2019). Recent work extends this to covariate-adaptive
randomization. Cytrynbaum (2024) derive optimal linear adjustments for stratified designs, and Rafi
(2023) characterize the semiparametric efficiency bound for ATE estimation. Other contributions
include covariate adjustment in matched-pair designs (Bai et al., 2024), general form of adjustment in
biostatistics (Bannick et al., 2023; Tu et al., 2023), and methods for parameters defined by estimating
equations (Wang et al., 2023). While most of these focus on ATEs under full compliance, Jiang et al.
(2023) study regression adjustment for the QTE, and Jiang et al. (2024) extend these ideas to the local
ATE with imperfect compliance. Our work builds on this rich literature by targeting distributional
causal effects under covariate-adaptive randomization and noncompliance.

Semiparametric estimation Our work builds on the semiparametric estimation literature, which
focuses on estimating low-dimensional parameters in the presence of possibly infinite-dimensional
nuisance components. Foundational contributions include Robinson (1988); Bickel et al. (1993);
Newey (1994); Robins and Rotnitzky (1995), with more recent developments in high-dimensional
and machine learning settings by Chernozhukov et al. (2018); Ichimura and Newey (2022), among
others. We formulate our estimation problem using Neyman-orthogonal moment conditions (Neyman,
1959; Chernozhukov et al., 2022), which provide robustness to errors in the estimation of nuisance
components.

3 Setup and Notation

We consider a randomized experiment with binary treatment employing covariate-adaptive random-
ization, where imperfect compliance creates a discrepancy between treatment assignment and actual
treatment receipt. Let Y denote the observed outcome of interest, Z ∈ {0, 1} the random assignment,
and D ∈ {0, 1} the actual treatment received. Within the potential outcome framework (Rubin, 1974;
Imbens and Rubin, 2015), we define Y (1) and Y (0) as potential outcomes under treatment status
D = 1 and D = 0, respectively. Similarly, D(1) and D(0) represent potential treatment statuses
under assignment Z = 1 and Z = 0. In this setup, random assignment Z serves as an instrumental
variable affecting treatment D, which subsequently influences outcome Y . The exclusion restriction
holds, as instrument Z affects outcome Y only through treatment D. Hence, we can write the
observed outcome and treatment as

Y = D · Y (1) + (1−D) · Y (0) and D = Z ·D(1) + (1− Z) ·D(0). (1)

Furthermore, we consider a covariate-adaptive randomization (CAR) setup in which each participant
is assigned to a stratum S ∈ S := {1, . . . , S}, with additional covariates X ∈ X ⊂ Rdx available.
Strata are typically constructed based on certain baseline covariates, and we allow S and X be
dependent. We let πz(s) := P (Z = z | S = s) ∈ (0, 1) be the target assignment probability for
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treatment z ∈ {0, 1} in stratum s and let p(s) := P (S = s) > 0 be the stratum size. Figure 1 depicts
the relationship between the variables.

Pre-Experiment Post-Experiment

X

Covariates

S

Stratum

Z

Assignment

Instrument

D

Received Treatment

Y

Outcome

Figure 1: The relationship between the variables. Solid arrows (−→) represent direct causal pathways,
while dashed arrows (99K) denote conditioning or derivation relationships rather than direct causality.

We observe a data {(Yi, Di, Zi, Si, Xi)}ni=1 with a sample size of n. For each stratum s ∈ S,
let n(s) :=

∑n
i=1 1l{Si=s} denote the number of observations in stratum s, and nz(s) :=∑n

i=1 1l{Zi=z,Si=s} represent the number of observations receiving assignment z ∈ {0, 1} in stratum
s. Here, 1l{·} denotes the indicator function, which equals 1 if the condition inside is true and 0
otherwise. Then, define the following empirical estimates: π̂z(s) := nz(s)/n(s) the estimated target
assignment and p̂(s) := n(s)/n the proportion of observations falling in stratum s. We impose the
following assumptions on the data generating process and the treatment assignment mechanism.

Assumption 3.1 (Data generating process and treatment assignment). We have

(i)
{(
Yi(0), Yi(1), Di(0), Di(1), Si, Xi

)}n
i=1

are independent and identically distributed

(ii)
{(
Yi(0), Yi(1), Di(0), Di(1), Xi

)}n
i=1 |= {Zi}ni=1 | {Si}ni=1,

(iii) π̂z(s) = πz(s) + op(1) for every s ∈ S and z ∈ {0, 1}.

(iv) P
(
Di(1) ≥ Di(0)

)
= 1.

Assumption 3.1 (i) allows for cross-sectional dependence among treatment statuses {Zi}ni=1, thereby
accomodating many covariate-adaptive randomization schemes. Assumption 3.1 (ii) states that the
assignment is independent of potential outcomes, potential treatment choices and pre-treatment
covariates conditional on strata. Assumption 3.1 (iii) states the assignment probabilities converge to
the target assignment probabilities as sample size increases.

Common randomization schemes satisfying Assumption 3.1 (i) to (iii) include simple random
sampling, stratified block randomization, biased-coin design (Efron, 1971), and adaptive biased-coin
design (Wei, 1978). Assumption 3.1 (iv) says that there are no defiers in the population. This
assumption is also called the monotonicity assumption in the literature, and is the key assumption that
allows for the identification of the causal effect within a specific subpopulation, known as compliers.

To clarify this, we introduce the four treatment compliance types as defined by Angrist et al. (1996).
Never-takers consistently avoid the treatment, withD(1) = 0 andD(0) = 0. Defiers exhibit behavior
opposite to the intended assignment, receiving the treatment when not encouraged (D(0) = 1) and
avoiding it when encouraged (D(1) = 0). Compliers follow the assigned treatment status, such
that D(1) = 1 and D(0) = 0. Always-takers are individuals who receive the treatment regardless
of the instrument assignment, i.e., D(1) = 1 and D(0) = 1. Note that these types are not directly
observable by the researcher.

We are interested in the distributional effects of receiving the treatment. To that end, let the distribution
function of potential outcomes be denoted by

FY (d)(y) := P
(
Y (d) ≤ y

)
for d ∈ {0, 1}, y ∈ Y. (2)

Analogous to the local average treatment effect (LATE) of Imbens and Angrist (1994), we define
the local distributional treatment effect (LDTE) as the difference in the distribution functions of the
potential outcomes among compliers:
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for y ∈ Y . Here, compliers (i.e., those with D(1) > D(0)) refer to individuals who receive the
treatment if and only if they are assigned to it. The following lemma demonstrates that, under
Assumption 3.1, a random assignment can be used to identify the distributional causal effect of
receiving the treatment for this subgroup.

Lemma 3.2 (Local distributional treatment effect). Suppose Assumptions 3.1 holds. Then, the local
distributional treatment effect can be expressed as, for y ∈ Y ,

β(y) =

∑S
s=1 p(s) · (E[1l{Y≤y} | Z = 1, S = s]− E[1l{Y≤y} | Z = 0, S = s])∑S

s=1 p(s) · (E[D | Z = 1, S = s]− E[D | Z = 0, S = s])
. (3)

Our formulation in (3) builds upon and extends the approach of Abadie (2002) to accommodate
covariate-adaptive randomization through stratum-specific weights. Both the numerator and the
denominator are written as weighted averages across strata indexed by s, with weights given by the
distribution p(s).

The numerator in (3) can be interpreted as the intent-to-treat (ITT) distributional effect—that is,
the difference in the distribution functions of the outcome Y between treatment and control groups
defined by the random assignment Z. Importantly, this reflects the effect of being assigned to
treatment, not of actually receiving treatment. The denominator in (3) represents the first stage of
the instrumental variable approach. It captures the effect of the assignment Z on the probability of
receiving the treatment D, conditional on stratum S = s, and then averages this across strata. The
first stage quantifies the degree of compliance with the assignment and ensures that the instrument is
relevant (i.e., affects treatment uptake). A non-zero first stage is necessary for the IV estimator to
be well-defined and to identify the treatment effect for compliers. Thus, the LDTE is obtained by
scaling the ITT distributional effect by the strength of the first stage. Notably, the denominator is
constant in y, so the variation in β(y) across values of y ∈ Y reflects changes in the distribution of
outcomes, not in the compliance rate.

Lastly, we also define the local probability treatment effect (LPTE)

LPTE(yj) := P
(
yj−1 < Y (1) ≤ yj | D(1) > D(0)

)
− P

(
yj−1 < Y (0) ≤ yj | D(1) > D(0)

)
,

for each j = 1, . . . , J , where YJ := {y1, · · · , yJ} ⊂ Y and y0 = −∞. The LPTE measures
treatment-induced changes in the probability mass of the outcome distribution within each interval
(yj−1, yj ], effectively comparing the “histograms” of potential outcomes for compliers. The theoreti-
cal results developed for the LDTE extend directly to the LPTE by substituting the indicator functions
1l{Y (d)≤yj} with 1l{yj−1<Y (d)≤yj} for d ∈ {0, 1} in all relevant expressions.

4 Estimation

We propose a regression-adjusted LDTE estimator for {β(y)}y∈Y incorporating the additional
covariates Xi. For notational convenience, we define the following terms. The conditional probability
of treatment given the instrument, stratum, and covariates:

ηz(s, x) := E[D | Z = z, S = s,X = x]. (4)

The conditional distribution function of Y given the instrument, stratum, and covariates:

µz(y, s, x) := E[1l{Y≤y} | Z = z, S = s,X = x] for y ∈ Y. (5)

The estimators for these quantities are denoted by µ̂z(y, s, x) and η̂z(s, x), respectively. Since Xi

may be a continuous variable, the estimation of µ̂z(y, s, x) and η̂z(s, x) relies on nonparametric
methods, such as logistic regression, random forests, and other flexible machine learning (ML)
approaches. In covariate-adaptive randomized experiments, the target assignment probability for
treatment z ∈ {0, 1} for a given stratum s, denoted by πz(s), is typically known in advance or can be
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consistently estimated using its sample analog, defined as π̂z(s) = nz(s)/n(s). Then, our proposed
estimator for the LDTE for y ∈ Y is given by

β̂(y) :=
1
n

∑n
i=1(Ξ

Y
1,i(y)− ΞY

0,i(y))
1
n

∑n
i=1(Ξ

D
1,i − ΞD

0,i)
, (6)

where

ΞY
z,i(y) =

1l{Zi=z} ·
(
1l{Yi≤y} − µ̂z(y, Si, Xi)

)
π̂z(Si)

+ µ̂z(y, Si, Xi), (7)

ΞD
z,i =

1l{Zi=z} ·
(
Di − η̂z(Si, Xi)

)
π̂z(Si)

+ η̂z(Si, Xi), for z = 0, 1. (8)

The estimator presented in (6) follows the structure of the well-known augmented inverse propensity
weighting (AIPW) estimator, which relies on a doubly robust moment condition (Robins et al.,
1994; Robins and Rotnitzky, 1995). This moment condition satisfies the Neyman orthogonality
property (Chernozhukov et al., 2018, 2022), ensuring that the estimator is first-order insensitive to
the estimation errors of the nuisance functions (µz(·), ηz(·)). To further improve robustness, we
incorporate cross-fitting with L folds (L > 1) as proposed by Chernozhukov et al. (2018). The
complete estimation procedure is detailed in Algorithm 1. Setting the adjustment terms µ̂z(·) and
η̂z(·) to zero yields the empirical (unadjusted) estimator for the LDTE, obtained by replacing each
component in (3) with its sample analog.

Algorithm 1 ML Regression-Adjusted LDTE Estimator with Cross-Fitting
1: Input: Data {(Yi, Di, Zi, Xi, Si)}ni=1 partitioned into L folds; supervised learning model M
2: Step 1: Model training and prediction
3: for all (level y ∈ Y , fold ℓ ∈ {1, ..., L}, stratum s ∈ S, instrument z ∈ {0, 1}) do
4: Train model M on data with instrument Zi = z in stratum Si = s, excluding fold ℓ
5: Obtain predictions µ̂z(y, Si, Xi) and η̂z(Si, Xi) for observations in fold ℓ with Si = s
6: end for
7: Step 2: Treatment effect estimation
8: for all y ∈ Y do
9: Compute β̂(y) according to equation (6)

10: end for
11: Output: Regression-adjusted estimator {β̂(y)}y∈Y

5 Asymptotic Properties

In this section, we derive the asymptotic distribution of our proposed estimator, which enables
statistical inference and the construction of confidence intervals. Additionally, we establish the
semiparametric efficiency bound for the LDTE and demonstrate that the regression-adjusted estimator
achieves this bound under the specified assumptions. We begin by introducing some additional
notation to formalize our results. Let ℓ∞(Y) be the space of uniformly bounded functions mapping
an arbitrary index set Y to the real line.

Assumption 5.1. We have (i) For z ∈ {0, 1} and s ∈ S , define Iz(s) := {i ∈ [n] : Zi = z, Si = s},
δYz (y, s,Xi) := µ̂z(y, s,Xi) − µz(y, s,Xi), and δDz (s,Xi) := η̂z(s,Xi) − ηz(s,Xi). Then, for
z ∈ {0, 1}, we have

sup
y∈Y,s∈S

∣∣∣∣
∑

i∈I1(s)
δYz (y, s,Xi)

n1(s)
−
∑

i∈I0(s)
δYz (y, s,Xi)

n0(s)

∣∣∣∣ = op(n
−1/2), (9)

max
s∈S

∣∣∣∣
∑

i∈I1(s)
δDz (s,Xi)

n1(s)
−
∑

i∈I0(s)
δDz (s,Xi)

n0(s)

∣∣∣∣ = op(n
−1/2). (10)
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(ii) For z ∈ {0, 1}, let Fz = {µz(y, s, x) : y ∈ Y} with an envelope Fz(s, x). Then,
maxs∈S E[|Fz(Si, Xi)|q|Si = s] < ∞ for q > 2 and there exist fixed constants (α, v) > 0
such that

sup
Q
N (ε||Fz||Q,2,Fz, L2(Q)) ≤

(α
ε

)v
, ∀ε ∈ (0, 1], (11)

where N(·) denotes the covering number and the supremum is taken over all finitely discrete
probability measures Q.

Assumption 5.1(i) provides a high-level condition on the estimation of µ̂z(y, s,Xi) and η̂z(s,Xi).
Assumptions 5.1(ii) impose mild regularity condition on µz(y, s,Xi). Specifically, it holds automati-
cally when Y is a finite set. We now present the weak convergence of our proposed estimator in the
following theorem, which provides the theoretical foundation for conducting statistical inference.
This asymptotic result enables the construction of confidence intervals using either sample-based
estimates of the asymptotic variance or bootstrap methods. Further details on the inference procedure
are provided in Appendix D.

We define Y (D(z)) := D(z) · Y (1) +
(
1 − D(z)

)
· Y (0). With this notation, the observed

outcome Y can be expressed as Y = Z · Y
(
D(1)

)
+ (1 − Z) · Y

(
D(0)

)
. For z ∈ {0, 1}, let

Y z
i (y) := 1l{Yi(Di(z))≤y} and Ỹ z

i (y) := Y z
i (y) − E[Y z

i (y)|Si]. Also, let D̃i(z) := Di(z) −
E[Di(z)|Si], µ̃z(y, Si, Xi) := µz(y, Si, Xi)−E[µz(y, Si, Xi)|Si] and η̃z(Si, Xi) := ηz(Si, Xi)−
E[ηz(Si, Xi)|Si] for z ∈ {0, 1}. Then, we define

ϕi(y, z) :=

(
1− 1

πz(Si)

)
µ̃z(y, Si, Xi)− µ̃1−z(y, Si, Xi) +

Ỹ z
i (y)

πz(Si)

− β(y)

((
1− 1

πz(Si)

)
η̃z(Si, Xi)− η̃1−z(Si, Xi) +

D̃i(z)

πz(Si)

)
for z ∈ {0, 1}, (12)

and
ξi(y) :=E[Y 1

i (y)− Y 0
i (y)|Si]− E[Y 1

i (y)− Y 0
i (y)]

− β(y) (E[Di(1)−Di(0)|Si]− E[Di(1)−Di(0)]) . (13)

Theorem 5.2 (Asymptotic Distribution). Suppose Assumptions 3.1 and 5.1 hold. Then, in ℓ∞(Y),
uniformly over y ∈ Y , the regression-adjusted estimator defined in Algorithm 1 satisfies

√
n
(
β̂(y)− β(y)

)
⇝ G(y), (14)

where G(y) is a Gaussian process with covariance kernel

Ω(y, y′) :=
Ω0(y, y

′) + Ω1(y, y
′) + Ω2(y, y

′)

E[D(1)−D(0)]2
, (15)

with Ωz(y, y
′) := E[πz(Si)ϕi(y, z)ϕi(y

′, z)] for z ∈ {0, 1} and Ω2(y, y
′) := E[ξi(y)ξi(y′)].

We next derive the semiparametric efficiency bound of the LDTE and show our estimator achieves
this bound in the following theorem. This implies that the asymptotic variance of any regular, root-n
consistent, and asymptotically normal estimator of the LDTE cannot be lower than this bound.

Theorem 5.3 (Semiparametric Efficiency Bound). Under Assumption 3.1, for every y ∈ Y ,

(a) the semiparametric efficiency bound for β(y) is Ω(y), which is defined by

Ω(y) :=
Ω0(y, y) + Ω1(y, y) + Ω2(y, y)

E[D(1)−D(0)]2
, (16)

where Ω0(·), Ω1(·) and Ω2(·) are defined in Theorem 5.2.

(b) furthermore if Assumption 5.1 also holds, then the regression-adjusted estimator β̂(y) attains
the semiparametric efficiency bound.

As a corollary to the theorem above, the asymptotic variance of the regression-adjusted estimator
with known nuisance functions is lower than that of the empirical (unadjusted) estimator, in which
the adjustment terms are set to zero.
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6 Experiments

6.1 Simulation Study

Figure 2: Simulation results for LDTE estimators under a nonlinear, high-dimensional design
(n = 1000). RMSE, average 95% CI length, and empirical coverage are shown across quantiles
{0.1, . . . , 0.9} based on 1000 replications. Three estimators are compared: unadjusted, linearly
adjusted, and ML-adjusted (gradient boosting with 2-fold cross-fitting). Both adjusted estimators
improve RMSE and CI length; the unadjusted estimator attains near-nominal coverage, while ML
adjustment slightly over-covers, reflecting conservative inference.

We assess the finite-sample performance of our estimator through a simulation study designed to
reflect a complex, nonlinear data-generating process with high-dimensional covariates and treatment
effect heterogeneity.

The data generating process consists of four strata (S = 4) constructed by partitioning the support of
a covariate Wi ∼ U(0, 1) into S equal-length intervals, where Si indicates the interval containing Wi.
For each unit i, we draw an additional 20-dimensional covariate vector Xi = (X1,i, . . . , X20,i)

⊤

from a multivariate normal distribution N (0, I20×20). The treatment indicator Zi follows a Bernoulli
distribution with probability 0.5 within each stratum, maintaining a constant target proportion of
treated units (Zi = 1) across strata with π1(s) = 0.5 for all s ∈ S . The complete specification of the
data-generating process is given by:

Yi(d) = ad + b(Xi,Wi) + ϵi for d ∈ {0, 1} (17)
Di(0) = 1l{b0+c(Xi,Wi)>c0ϵi}, (18)

Di(1) =

{
1l{b1+c(Xi,Wi)>c1ϵi}, if Di(0) = 0,

1, otherwise,
(19)

where (a1, a0, b1, b0, c1, c0) = (2, 1, 1,−1, 3, 3), and error term ϵi ∼ N (0, 1) with

b(Xi,Wi) = sin(πXi1Xi2) + 2(Xi3 − 0.5)2 +Xi4 + 0.5Xi5 + 0.1Wi, (20)
c(Xi,Wi) = 0.1(Xi1 + log(1 + exp(Xi2)) +Wi). (21)

This design incorporates nonlinear dependencies, integrates deliberately irrelevant covariates, and
preserves the monotonicity assumption by eliminating the possibility of defiers.

We draw a sample of sizes {500, 1000, 5000} from the data-generating process and estimate the
LDTE at quantiles {0.1, ..., 0.9} using three methods with 1000 simulations: an unadjusted estimator,
a linear regression-adjusted estimator, and a machine learning-adjusted estimator based on gradient
boosting. A reference sample of size 106 is used to approximate ground-truth LDTE values. All
adjusted estimators use 2-fold cross-fitting.

Figure 2 reports RMSE, average length and coverage of 95% confidence interval (CI) based on
sample estimates. Both adjusted estimators achieve lower RMSE and shorter CIs than the unadjusted
estimator. The unadjusted estimator achieves nominal 95% coverage for most quantiles, while
ML adjustment exhibits slight over-coverage (up to 0.98–1.00), suggesting conservative intervals
that could be tightened with improved nuisance estimation. Figure 3 shows RMSE reduction (%)
relative to the unadjusted estimator. Linear adjustment yields modest gains (1–10%), while ML
adjustment achieves up to 50% reduction for some quantiles, with performance improving as sample
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size increases. These findings highlight the value of flexible regression adjustment in improving
finite-sample efficiency for distributional causal effect estimation.

Figure 3: RMSE reduction (%) of adjusted estimators relative to the unadjusted estimator across
quantiles and sample sizes. Linear adjustment yields modest efficiency gains (1–10%), while ML
adjustment achieves up to 50% reduction, with improvements becoming more pronounced as sample
size increases.

6.2 Real Data Analysis: Oregon Health Insurance Experiment

This subsection analyzes the impact of insurance coverage on emergency department (ED) visits using
data from the Oregon Health Insurance Experiment.1 We replicate the analysis in Finkelstein et al.
(2016) and estimate distributional treatment effects. In 2008, the state of Oregon conducted a lottery
to allocate health insurance to a group of uninsured low-income adults. Treatment assignment in this
experiment was randomized based on household size, making the number of household members a
stratification variable. However, due to imperfect compliance, not all individuals offered coverage
enrolled, while some who were not selected obtained insurance through other means. Table 1 displays
the sample breakdown by assigned and realized treatments, and only 58% of the subjects comply
with their random assignment. For a detailed discussion of the experiment and average treatment
effect estimates of insurance coverage on various other outcomes, see Finkelstein et al. (2012).

Table 1: Sample breakdown by assigned and realized treatments (sample counts and proportions)

Assigned treatment
Realized treatment Z = 0 Z = 1 Total

D = 0 7596 (45%) 6244 (37%) 13840 (82%)
D = 1 910 (5%) 2271 (13%) 3181 (18 %)
Total 8506 (50%) 8515 (50%) 17021 (100%)

Figure 4 displays the distributional and probability treatment effect of insurance coverage on ED
visits. We compute the LDTE and Local Probability Treatment Effect (LPTE) for y ∈ {0, 1, . . . , 15}
accounting for the stratified design and imperfect compliance. For regression adjustment, we use
gradient boosting with 5-fold cross-fitting, with 28 pre-treatment covariates (Xi) including various
variables regarding past emergency department visits. The full list of covariates can be found in the
Appendix.

The top-left panel of Figure 4 displays the empirical LDTE, while the top-right panel presents the
regression-adjusted LDTE. Shaded areas represent 95% confidence bands, constructed using 500
bootstrap replications. In this case, regression adjustment reduces standard errors by approximately
0.5–15%. Similarly, the bottom-left panel shows the empirical LPTE, and the bottom-right panel
shows the regression-adjusted LPTE. Here, the standard errors decrease by about 3.5–26.5% across

1The dataset is publicly available at https://www.nber.org/research/data/oregon-health-insurance-experiment-
data.
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Figure 4: Oregon Health Insurance Experiment: Local Distributional Treatment Effect (LDTE)
and Local Probability Treatment Effect (LPTE) of insurance coverage on number of emergency
department (ED) visits. The left panels depict the empirical probability estimates, while the right
panels present regression-adjusted estimates obtained using gradient boosting with 5-fold cross-fitting.
Shaded regions and error bars represent 95% confidence intervals. Sample size: n = 17,021.

most of the distribution, except at y ∈ {0, 1, 2, 3}, where a slight increase in standard errors is
observed.

The regression-adjusted distributional analysis reveals that the probability of having zero emergency
department visits decreases by 9 percentage points (pp), with a standard error of 4.2 pp. Beyond this,
the only marginally significant effect at the 5% level is an increase of approximately 1.7 pp in the
probability of having five ED visits, with a standard error of 0.8 pp. No other statistically significant
changes are observed across the rest of the distribution, even after applying regression adjustment.

7 Conclusion

We introduced a method for estimating local distributional treatment effects in randomized experi-
ments with covariate-adaptive randomization and imperfect compliance. Our approach combines
instrumental variable techniques with regression adjustment in a distribution regression framework,
leveraging auxiliary covariates and modern machine learning for improved efficiency. The estimator
is asymptotically normal, achieves the semiparametric efficiency bound, and performs well in simu-
lations. We also demonstrated its practical relevance using data from the Oregon Health Insurance
Experiment.

This work has several limitations. It relies on standard IV assumptions such as monotonicity and
the exclusion restriction, and focuses on binary treatments. Performance may vary depending on
the quality of nuisance estimation in finite samples. Future research could extend the framework
to multi-valued or continuous treatments, relax identifying assumptions, and explore dynamic or
longitudinal settings. Furthermore, extending the non-asymptotic frameworks developed by Su et al.
(2023a,b) to a distributional setting represents a promising avenue for future research.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides detailed information on the computational resources used
for each experiment, including the type of compute, memory specifications, and execution
time.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research fully conforms to the NeurIPS Code of Ethics. The study consid-
ers potential societal and environmental impacts, avoids known risks such as discrimination
or misuse, and follows best practices for reproducibility, transparency, and responsible data
handling.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses potential societal impacts, noting that the proposed method
can lead to improved decision-making in applied settings as a positive outcome. It also
acknowledges a potential negative impact, namely that the underlying assumptions of the
method may not hold in all real-world scenarios, which could limit its effectiveness or lead
to unintended consequences.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve the release of models or datasets that pose a high
risk for misuse, such as pretrained language models, generative systems, or scraped data,
and therefore no specific safeguards are necessary.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The Oregon Health Insurance Experiment dataset is publicly available through
the NBER website, and we have appropriately cited the original study in our work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the paper are well documented, with detailed
descriptions of their structure, usage, and limitations. All relevant materials are included as
an anonymized zip file in the supplemental submission.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects,
and therefore no participant instructions, screenshots, or compensation details are applicable.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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Answer: [NA]
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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non-standard component of the core methods in this research? Note that if the LLM is used
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Answer: [NA]
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Appendix
The Appendix is structured as follows. Section A provides a table summarizing the notation. Section
B introduces some definitions. Section C presents all proofs. Section D discusses the construction of
confidence intervals. Section E presents some additional experimental details.

A Summary of Notation

Table 2: Summary of Notation

Xi pre-treatment covariates
Si stratum indicator
Di actual treatment received
Zi treatment assignment
Yi outcome variable
Yi(d) potential outcome for treatment group d ∈ {0, 1}
Di(z) potential treatment choice under assignment z ∈ {0, 1}
p(s) proportion of stratum s ∈ S
πz(s) treatment assignment probability for treatment group z ∈ {0, 1} in

stratum s ∈ S
n sample size
nz(s) number of observations in treatment group z ∈ {0, 1} in stratum s
n(s) number of observations in stratum s ∈ S
p̂(s) n(s)/n, proportion of stratum s ∈ S in the sample
π̂z(s) nz(s)/n(s), estimated treatment assignment probability for treatment

group z ∈ {0, 1} in stratum s ∈ S
FY (d)(y) E[1l{Y (d)≤y}], potential outcome distribution function
µz(y, s, x) E[1l{Y≤y} | Z = z, S = s,X = x], conditional distribution function
ηz(s, x) E[D | Z = z, S = s,X = x], conditional probability of treatment

receipt
[K] {1, . . . ,K} for a positive integer K
∥a∥

√
a⊤a, Euclidean norm of a vector a = (a1, . . . , ap)

⊤ ∈ Rp

∥ · ∥P,q Lq(P ) norm
ℓ∞(Y) space of uniformly bounded functions mapping an arbitrary index set Y

to the real line
⇝ convergence in distribution or law
d
= equality in distribution
Xn = Op(an) limK→∞ limn→∞ P (|Xn| > Kan) = 0 for a sequence an > 0
Xn = op(an) supK>0 limn→∞ P (|Xn| > Kan) = 0 for a sequence an > 0
xn ≲ yn for sequences xn and yn in R, xn ≤ Ayn for a constant A
⌊b⌋ max{k ∈ Z | k ≤ b}, greatest integer less than or equal to b

B Definitions

We first introduce some definitions from empirical process theory that will be used in the proofs. See
also van der Vaart and Wellner (1996) and Chernozhukov et al. (2014) for more details.
Definition B.1 (Covering numbers). The covering number N(ε,F , ∥ · ∥) is the minimal number of
balls {g : ∥g − f∥ < ε} of radius ε needed to cover the set F . The centers of the balls need not
belong to F , but they should have finite norms.
Definition B.2 (Envelope function). An envelope function of a class F is any function x 7→ F (x)
such that |f(x)| ≤ F (x) for every x and f .
Definition B.3 (VC-type class). We say F is of VC-type with coefficients (α, v) and envelope F if
the uniform covering numbers satisfy the following:

sup
Q
N (ε||F ||Q,2,F , L2(Q)) ≤

(α
ε

)v
, ∀ε ∈ (0, 1],

where the supremum is taken over all finitely discrete probability measures.
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C Proofs

C.1 Proof of Lemma 3.2

To prove Lemma 3.2, we introduce additional notation to categorize individuals based on their
compliance type. Table 3 summarizes the four compliance types with respect to the potential
treatment choices. We let C denote the compliance type, and C = c denote the compliers, i.e., those
with D(1) > D(0).

Table 3: Compliance types

D(1) D(0) type

0 0 never-takers
0 1 defiers
1 0 compliers
1 1 always-takers

Proof. Under the monotonicity assumption stated in Assumption 3.1(iv), we can identify the cumula-
tive distribution functions of potential outcomes for the compliers conditional on S as follows:

FY (1)(y | S, C = c) =
E[1l{Y≤y} ·D | Z = 1, S]− E[1l{Y≤y} ·D | Z = 0, S]

E[D | Z = 1, S]− E[D | Z = 0, S]
, (22)

FY (0)(y | S, C = c) =
E[1l{Y≤y} · (1−D) | Z = 1, S]− E[1l{Y≤y} · (1−D) | Z = 0, S]

E[1−D | Z = 1, S]− E[1−D | Z = 0, S]
. (23)

We can then derive the unconditional CDF of the potential outcomes for the compliers by aggregating
over the strata:

FY (1)(y | C = c) =

S∑
s=1

P (S = s | C = c)FY (1)(y | S = s, T = c)

=

S∑
s=1

P (C = c | S = s)

P (C = c)
FY (1)(y | S = s, C = c)

=

∑S
s=1 p(s)(E[1l{Y≤y} ·D | Z = 1, S = s]− E[1l{Y≤y} ·D | Z = 0, S = s])∑S

s=1 p(s)(E[D | Z = 1, S = s]− E[D | Z = 0, S = s])
.

The first equality holds by the law of total expectation. The second equality holds by the Bayes’ law.
The third equality follows from representation of the conditional distribution given in (22) and the
fact that P (C = c | S = s) = E[D | Z = 1, S = s]− E[D | Z = 0, S = s]. We can obtain similar
expressions for FY (0)(y | C = c) using the representation given in (23) as follows:

FY (0)(y | C = c) =

∑S
s=1 p(s)(E[1l{Y≤y} · (1−D) | Z = 1, S = s]− E[1l{Y≤y} · (1−D) | Z = 0, S = s])∑S

s=1 p(s)(E[1−D | Z = 1, S = s]− E[1−D | Z = 0, S = s])
.

Then, the LDTE, the difference between the distribution functions is given by
β(y) : = FY (1)(y | C = c)− FY (0)(y | C = c)

=

∑S
s=1 p(s)(E[1l{Y≤y} ·D | Z = 1, S = s]− E[1l{Y≤y} ·D | Z = 0, S = s])∑S

s=1 p(s)(E[D | Z = 1, S = s]− E[D | Z = 0, S = s])

+

∑S
s=1 p(s)(E[1l{Y≤y} · (1−D) | Z = 1, S = s]− E[1l{Y≤y} · (1−D) | Z = 0, S = s])∑S

s=1 p(s)(E[D | Z = 1, S = s]− E[D | Z = 0, S = s])

=

∑S
s=1 p(s)(E[1l{Y≤y} | Z = 1, S = s]− E[1l{Y≤y} | Z = 0, S = s])∑S

s=1 p(s)(E[D | Z = 1, S = s]− E[D | Z = 0, S = s])
.

This completes the proof.
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C.2 Proof of Theorem 5.2

Proof. Let

B := E[D(1)−D(0)],

T (y) := E[(1l{Y (1)≤y} − 1l{Y (0)≤y})(D(1)−D(0))],

B̂ :=
1

n

n∑
i=1

(ΞD
1,i − ΞD

0,i),

T̂ (y) :=
1

n

n∑
i=1

(ΞY
1,i(y)− ΞY

0,i(y)).

Then, we have

√
n
(
β̂(y)− β(y)

)
=

√
n

(
T̂ (y)

B̂
− T (y)

B

)

=
1

B̂

√
n
(
T̂ (y)− T (y)

)
− T (y)

B̂B

√
n
(
B̂ −B

)
=

1

B̂

[√
n
(
T̂ (y)− T (y)

)
− β(y)

√
n
(
B̂ −B

)]
. (24)

Step 1. First, we start with the linear expansion of
√
n
(
T̂ (y)− T (y)

)
.

√
n(T̂ (y)− T (y)) =

1√
n

n∑
i=1

[
Zi · (1l{Yi≤y} − µ̂1(y, Si, Xi))

π̂1(Si)
−

(1− Zi) · (1l{Yi≤y} − µ̂0(y, Si, Xi))

π̂0(Si)

+ µ̂1(y, Si, Xi)− µ̂0(y, Si, Xi)

]
−

√
nT (y)

=
1√
n

n∑
i=1

[
µ̂1(y, Si, Xi)−

Ziµ̂1(y, Si, Xi))

π̂1(Si)

]
︸ ︷︷ ︸

≡Tn,1

+
1√
n

n∑
i=1

[
(1− Zi)µ̂0(y, Si, Xi)

π̂0(Si)
− µ̂0(y, Si, Xi)

]
︸ ︷︷ ︸

≡Tn,2

+
1√
n

n∑
i=1

Zi · 1l{Yi≤y}

π̂1(Si)
− 1√

n

n∑
i=1

(1− Zi) · 1l{Yi≤y}

1− π̂1(Si)
−
√
nT (y)︸ ︷︷ ︸

≡Tn,3

. (25)

We start with the first term Tn,1 in (25).
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Tn,1 =
1√
n

n∑
i=1

[
µ̂1(y, Si, Xi)−

Ziµ̂1(y, Si, Xi))

π̂1(Si)

]

= − 1√
n

n∑
i=1

Zi − π̂1(Si)

π̂1(Si)
µ̂1(y, Si, Xi)

= − 1√
n

n∑
i=1

Zi − π̂1(Si)

π̂1(Si)

[
µ̂1(y, Si, Xi)− µ1(y, Si, Xi) + µ1(y, Si, Xi)

]

= − 1√
n

n∑
i=1

Zi − π̂1(Si)

π̂1(Si)
δY1 (y, Si, Xi)−

1√
n

n∑
i=1

Zi

π̂1(Si)
µ1(y, Si, Xi) +

1√
n

n∑
i=1

µ1(y, Si, Xi)

= − 1√
n

n∑
i=1

Zi − π̂1(Si)

π̂1(Si)
δY1 (y, Si, Xi)−

1√
n

n∑
i=1

Zi

π̂1(Si)
µ̃1(y, Si, Xi) +

1√
n

n∑
i=1

µ̃1(y, Si, Xi)

=
1√
n

n∑
i=1

(
1− 1

π1(Si)

)
Ziµ̃1(y, Si, Xi) +

1√
n

n∑
i=1

(1− Zi)µ̃1(y, Si, Xi)

+
1√
n

∑
s∈S

(
π̂1(s)− π1(s)

π̂1(s)π1(s)

)( n∑
i=1

Ziµ̃1(y, s,Xi)1l{Si = s}

)
︸ ︷︷ ︸

≡R1,1(y)

− 1√
n

n∑
i=1

Zi − π̂1(Si)

π̂1(Si)
δY1 (y, Si, Xi)︸ ︷︷ ︸

≡R1,2(y)

,

where the second last equality holds because we have

1√
n

n∑
i=1

Zi

π̂1(Si)
E[µ1(y, Si, Xi) | Si] =

1√
n

n∑
i=1

E[µ1(y, Si, Xi) | Si].

Let Bn(s) :=
∑n

i=1(Zi − π1(s)) · 1l{Si = s}. Note that we have π̂1(s)− π1(s) =
Bn(s)
n(s) . For the

first term R1,1(y), we have

sup
y∈Y

∣∣∣∣∣ 1√
n

∑
s∈S

(
π1(s)− π̂1(s)

π̂1(s)π1(s)

)( n∑
i=1

Ziµ̃1(y, s,Xi)1l{Si = s}

)∣∣∣∣∣
≤
∑
s∈S

∣∣∣∣ Bn(s)

n1(s)π1(s)

∣∣∣∣ sup
y∈Y,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

Ziµ̃1(y, s,Xi)1l{Si = s}

∣∣∣∣∣ .
Assumption 5.1 implies that the class {µ̃1(y, s,Xi) : y ∈ Y} is of the VC-type with fixed coefficients
(α, v) and an envelope Fi such that E(|Fi|d|Si = s) <∞ for d > 2. Therefore,

sup
y∈Y,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

Ziµ̃1(y, s,Xi)1l{Si = s}

∣∣∣∣∣ = Op(1).

It is also assumed that π̂1(s) − π1(s) = op(1) and n(s)/n1(s)
p−→ 1/π1(s) < ∞. Therefore, we

have

sup
y∈Y

|R1,1(y)| = op(1).
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Now, consider the term R1,2(y):∣∣∣∣∣ 1√
n

n∑
i=1

Zi − π̂1(Si)

π̂1(Si)
δY1 (y, Si, Xi)

∣∣∣∣∣ =
∣∣∣∣∣ 1√
n

∑
s∈S

n∑
i=1

Zi − π̂1(s)

π̂1(s)
δY1 (y, s,Xi)1l{Si = s}

∣∣∣∣∣
=

1√
n

∣∣∣∣∣∑
s∈S

1

π̂1(s)

n∑
i=1

Ziδ
Y
1 (y, s,Xi)1l{Si = s} −

∑
s∈S

n∑
i=1

δY1 (y, s,Xi)1l{Si = s}

∣∣∣∣∣
=

1√
n

∣∣∣∣∣∣
∑
s∈S

∑
i∈I1(s)

δY1 (y, s,Xi)
n(s)

n1(s)
−
∑
s∈S

∑
i∈I0(s)∪I1(s)

δY1 (y, s,Xi)

∣∣∣∣∣∣
=

1√
n

∣∣∣∣∣∣
∑
s∈S

∑
i∈I1(s)

δY1 (y, s,Xi)
n0(s)

n1(s)
−
∑
s∈S

∑
i∈I0(s)

δY1 (y, s,Xi)

∣∣∣∣∣∣
=

1√
n

∣∣∣∣∣∑
s∈S

n0(s)

[∑
i∈I1(s)

δY1 (y, s,Xi)

n1(s)
−
∑

i∈I0(s)
δY1 (y, s,Xi)

n0(s)

]∣∣∣∣∣
≤ 1√

n

∑
s∈S

n0(s) sup
y∈Y

∣∣∣∣∣
∑

i∈I1(s)
δY1 (y, s,Xi)

n1(s)
−
∑

i∈I0(s)
δY1 (y, s,Xi)

n0(s)

∣∣∣∣∣ = op(1)

where the last equality is due to Assumption 5.1 (i).

Therefore, we have

Tn,1 =
1√
n

n∑
i=1

(
1− 1

π1(Si)

)
Ziµ̃1(y, Si, Xi) +

1√
n

n∑
i=1

(1− Zi)µ̃1(y, Si, Xi) +R1(y),

where supy∈Y R1(y) = op(1).

The linear expansion of Tn,2 can be established in the same manner. As for the third term Tn,3, first
note that

1√
n

n∑
i=1

1l{Zi=z} · 1l{Yi≤y}

π̂z(Si)
=

1√
n

n∑
i=1

1l{Zi=z} · 1l{Yi(Di(z))≤y}

π̂z(Si)
=:

1√
n

n∑
i=1

1l{Zi=z} · Y z
i (y)

π̂z(Si)
.

Then we have

Tn,3 =
1√
n

n∑
i=1

Zi · 1l{Yi≤y}

π̂1(Si)
− 1√

n

n∑
i=1

(1− Zi) · 1l{Yi≤y}

π̂0(Si)
−
√
nT (y)

=

{
1√
n

n∑
i=1

1

π̂1(Si)
Ỹ 1
i (y)Zi −

1√
n

n∑
i=1

1− Zi

π̂0(Si)
Ỹ 0
i (y)

}

+

{
1√
n

n∑
i=1

1

π̂1(Si)
E[Y 1

i (y)|Si]Zi −
1√
n

n∑
i=1

1− Zi

π̂0(Si)
E[Y 0

i (y)|Si]−
√
nT (y)

}
. (26)

First note that

1√
n

n∑
i=1

1

π̂1(Si)
E[Y 1

i (y)|Si]Zi =
1√
n

n∑
i=1

1

π1(Si)
E[Y 1

i (y)|Si]Zi −
1√
n

n∑
i=1

π̂1(Si)− π1(Si)

π̂1(Si)π1(Si)
E[Y 1

i (y)|Si]Zi,
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1√
n

n∑
i=1

1

π1(Si)
E[Y 1

i (y)|Si]Zi =
∑
s∈S

1√
n

n∑
i=1

1

π1(s)
E[Y 1

i (y)|Si = s]Zi1{Si = s}

=
∑
s∈S

1√
n

n∑
i=1

E[Y 1
i (y)|Si = s]

π1(s)
(Zi − π1(s))1{Si = s}

+
∑
s∈S

1√
n

n∑
i=1

1

π1(s)
E[Y 1

i (y)|Si = s]π1(s)1{Si = s}

=
∑
s∈S

E[Y 1(y)|S = s]

π1(s)
√
n

n∑
i=1

(Zi − π1(s))1{Si = s}

+
∑
s∈S

E[Y 1(y)|S = s]√
n

n∑
i=1

1{Si = s}

=
∑
s∈S

E[Y 1(y)|S = s]

π1(s)
√
n

Bn(s) +
∑
s∈S

E[Y 1(y)|S = s]√
n

n(s),

and

1√
n

n∑
i=1

π̂1(Si)− π1(Si)

π̂1(Si)π1(Si)
E[Y 1

i (y)|Si]Zi =
∑
s∈S

1√
n

n∑
i=1

π̂(s)− π1(s)

π̂(s)π1(s)
E[Y 1

i (y)|Si = s]Zi1{Si = s}

=
∑
s∈S

1√
n

n∑
i=1

Bn(s)

n(s)π̂(s)π1(s)
E[Y 1

i (y)|Si = s]Zi1{Si = s}

=
∑
s∈S

Bn(s)E[Y 1(y)|S = s]√
nn(s)π̂(s)π1(s)

n∑
i=1

Zi1{Si = s}

=
∑
s∈S

Bn(s)E[Y 1(y)|S = s]√
nn(s)π̂(s)π1(s)

n1(s)

=
∑
s∈S

Bn(s)E[Y 1(y)|S = s]√
nπ1(s)

.

Therefore, we have

1√
n

n∑
i=1

1

π̂1(Si)
E[Y 1

i (y)|Si]Zi =
∑
s∈S

E[Y 1(y)|S = s]√
n

n(s).

Similarly, we have

1√
n

n∑
i=1

1− Zi

π̂0(Si)
E[Y 0

i (y)|Si] =
∑
s∈S

E[Y 0(y)|S = s]√
n

n(s)
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Then, we have

1√
n

n∑
i=1

1

π̂1(Si)
E[Y 1

i (y)|Si]Zi −
1√
n

n∑
i=1

1− Zi

1− π̂1(Si)
E[Y 0

i (y)|Si]−
√
nT (y)

=
∑
s∈S

E[Y 1(y)|S = s]√
n

n(s)−
∑
s∈S

E[Y 0(y)|S = s]√
n

n(s)−
√
nT (y)

=
∑
s∈S

√
n

(
n(s)

n
− p(s)

)
E[Y 1(y)− Y 0(y)|S = s] +

∑
s∈S

√
np(s)E[Y 1(y)− Y 0(y)|S = s]−

√
nT (y)

=
∑
s∈S

√
n

(
n(s)

n
− p(s)

)
E[Y 1(y)− Y 0(y)|S = s] +

√
nE[Y 1(y)− Y 0(y)]−

√
nT (y)

=
∑
s∈S

n(s)√
n
E[Y 1(y)− Y 0(y)|S = s]−

√
nE[Y 1(y)− Y 0(y)]

=
1√
n

∑
s∈S

n∑
i=1

(
1{Si = s}E[Y 1

i (y)− Y 0
i (y)|Si = s]

)
−
√
nE[Y 1(y)− Y 0(y)]

=
1√
n

n∑
i=1

E[Y 1
i (y)− Y 0

i (y)|Si]−
√
nE[Y 1(y)− Y 0(y)]

=
1√
n

n∑
i=1

(
E[Y 1

i (y)− Y 0
i (y)|Si]− E[Y 1

i (y)− Y 0
i (y)]

)
. (27)

Combining, we have

Tn,3 =

{
1√
n

n∑
i=1

1

π̂1(Si)
Ỹ 1
i (y)Zi −

1√
n

n∑
i=1

1− Zi

1− π̂1(Si)
Ỹ 0
i (y)

}

+

{
1√
n

n∑
i=1

(
E[Y 1

i (y)− Y 0
i (y)|Si]− E[Y 1

i (y)− Y 0
i (y)]

)}

=

{
1√
n

n∑
i=1

1

π1(Si)
Ỹ 1
i (y)Zi −

1√
n

n∑
i=1

1− Zi

π0(Si)
Ỹ 0
i (y)

}

+

{
1√
n

n∑
i=1

(
E[Y 1

i (y)− Y 0
i (y)|Si]− E[Y 1

i (y)− Y 0
i (y)]

)}
+R(3),

where supy∈Y R3(y) = op(1). This is because we have for z ∈ {0, 1},

sup
y∈Y,s∈S

∣∣∣∣∣
(

1

πz(s)
− 1

π̂z(s)

)
1√
n

n∑
i=1

Ỹ z
i (y)1l{Zi = z}1l{Si = s}

∣∣∣∣∣ = op(1)

due to the same argument used in the proofs of Tn,1.

Hence, combining we have

√
n(T̂ (y)− T (y)) =

{
1√
n

n∑
i=1

[(
1− 1

π1(Si)

)
µ̃1(y, Si, Xi)− µ̃0(y, Si, Xi) +

Ỹ 1
i (y)

π1(Si)

]
Zi

+
1√
n

n∑
i=1

[(
1

π0(Si)
− 1

)
µ̃0(y, Si, Xi) + µ̃1(y, Si, Xi)−

Ỹ 0
i

π0(Si)

]
(1− Zi)

}

+

{
1√
n

n∑
i=1

(
E[Y 1

i (y)− Y 0
i (y)|Si]− E[Y 1

i (y)− Y 0
i (y)]

)}
+R(y), (28)

where supy∈Y |R(y)| = op(1).
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Step 2. Using the same arguments, we can show that

√
n(B̂ −B) =

{
1√
n

n∑
i=1

[(
1− 1

π1(Si)

)
η̃1(Si, Xi)− η̃0(Si, Xi) +

D̃i(1)

π1(Si)

]
Zi

+
1√
n

n∑
i=1

[(
1

π0(Si)
− 1

)
η̃0(Si, Xi) + η̃1(Si, Xi)−

D̃i(0)

π0(Si)

]
(1− Zi)

}

+

{
1√
n

n∑
i=1

(
E[Di(1)−Di(0)|Si]− E[Di(1)−Di(0)]

)}
+ op(1). (29)

Step 3. Let Di := {Yi(1), Yi(0), Di(1), Di(0), Xi}. Define, for z ∈ {0, 1},

ϕz(y, Si,Di) :=

(
1− 1

πz(Si)

)
µ̃z(y, Si, Xi)− µ̃1−z(y, Si, Xi) +

Ỹ z
i (y)

πz(Si)

− β(y)

((
1− 1

πz(Si)

)
η̃z(Si, Xi)− η̃1−z(Si, Xi) +

D̃i(z)

πz(Si)

)
, (30)

and

ξi(y) :=E[Y 1
i (y)− Y 0

i (y)|Si]− E[Y 1
i (y)− Y 0

i (y)]

− β(y) (E[Di(1)−Di(0)|Si]− E[Di(1)−Di(0)]) . (31)

Combining (28) and (29) into (24), we obtain the linear expansion for β̂(y) as
√
n
(
β̂(y)− β(y)

)
=

1

B̂

[√
n
(
T̂ (y)− T (y)

)
− β(y)

√
n
(
B̂ −B

)]
=

1

B̂

[
1√
n

n∑
i=1

ϕ1(y, Si,Di)Zi −
1√
n

n∑
i=1

ϕ0(y, Si,Di)(1− Zi) +
1√
n

n∑
i=1

ξi(y)

]
+ I(y)

where supy∈Y |I(y)| = op(1).

Step 4. Denote

φn,1(y) :=
1√
n

n∑
i=1

ϕ1(y, Si,Di)Zi −
1√
n

n∑
i=1

ϕ0(y, Si,Di)(1− Zi),

φn,2(y) :=
1√
n

n∑
i=1

ξi(y)

Uniformly over y ∈ Y , we show that

(φn,1(y), φn,2(y))⇝ (G1(y),G2(y)),

where (G1(y),G2(y)) are two independent Gaussian processes with covariance kernels Ω0(y, y
′) +

Ω1(y, y
′) and Ω2(y, y

′), respectively, such that

Ωz(y, y
′) = E[πz(Si)ϕz(y, Si,Di)ϕz(y

′, Si,Di)], z ∈ {0, 1},
Ω2(y, y

′) = E[ξi(y)ξi(y′)].

The following argument follows the argument provided in the proof of Bugni et al. (2018, Lemma
B.2). Note that under Assumption 3.1 (i), conditional on {Zi, Si}ni=1, the distribution of φn,1(y)
is the same as the distribution of the same quantity with units ordered by strata s ∈ S and then
ordered by Zi = 1 first and Zi = 0 second within strata. Let {Ds

i }ni=1 be a sequence of i.i.d. random
variables with marginal distributions equal to the distribution of Di|Si = s. Then we have

φn,1(y)|{Zi, Si}ni=1
d
= φ̃n,1(y)|{Zi, Si}ni=1
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where

φ̃n,1(y) :=
∑
s∈S

1√
n

N(s)+n1(s)∑
i=N(s)+1

ϕ1(y, s,Ds
i )−

∑
s∈S

1√
n

N(s)+n(s)∑
i=N(s)+n1(s)+1

ϕ0(y, s,Ds
i ).

As φn,2(y) is a function of {Zi, Si}ni=1, we have

(φn,1(y), φn,2(y))
d
= (φ̃n,1(y), φn,2(y)).

Next, define

φ⋆
n,1(y) :=

∑
s∈S

1√
n

⌊n(F (s)+π1(s)p(s)⌋∑
i=⌊nF (s)⌋+1

ϕ1(y, s,Ds
i )−

∑
s∈S

1√
n

⌊n(F (s)+p(s))⌋∑
i=⌊n(F (s)+π1(s)p(s)⌋+1

ϕ0(y, s,Ds
i ).

Note φ⋆
n,1(y) is a function of {Ds

i }i∈[n],s∈S , which is independent of {Zi, Si}ni=1 by construction.
Therefore,

φ⋆
n,1(y) |= φn,2(y).

Note that

N(s)

n

p−→ F (s),
n1(s)

n

p−→ π1(s)p(s), and
n(s)

n

p−→ p(s).

We shall show that

sup
y∈Y

|φ̃n,1(y)− φ⋆
n,1(y)| = op(1) and φ⋆

n,1(y)⇝ G1(y).

We fix (s, z) ∈ S × {0, 1} in the remainder of the proof. Define

Γn(s, t, ϕz) :=
1√
n

n∑
i=1

1l{i ≤ ⌊nt⌋} · ϕz
(
y, s,Ds

i

)
,

for t ∈ (0, 1]. The function ϕz(y, s,Ds
i ) defined in equation (30) can be decomposed as a weighted

sum of bounded random functions indexed by y ∈ Y with bounded weight functions. More precisely,
the class F :=

{
ϕz
(
y, s,Ds

i

)
: y ∈ Y

}
consists of functions from the following function classes:

F1 := {y 7→ Ỹ z
i (y)} and F2 := {y 7→ µ̃z(y, s,Xi)}. We can show that the class F1 is Donsker,

for instance, by using the bounded, monotone property as established in Theorem 2.7.5 of van der
Vaart and Wellner (1996). Also, under Assumption 5.1(ii), Theorem 2.5.2 of van der Vaart and
Wellner (1996) yields that F2 is Donsker. Since all the random weights are uniformly bounded,
Corollary 2.10.13 of van der Vaart and Wellner (1996) shows that F is Donsker. Also, the class
{t 7→ 1l{i ≤ ⌊nt⌋} is VC class and hence Donsker. Since Theorem 2.10.6 of van der Vaart and
Wellner (1996) shows that products of uniformly bounded Donsker classes are Donsker, we conclude
that the indexed process {Γn(s, t, ϕz) : t ∈ (0, 1], ϕz ∈ F} is Donsker. Hence, the result follows.

Next, for a given y, by the triangular array central limit theorem,

φ⋆
n,1(y)⇝ N(0,Ω0(y, y) + Ω1(y, y)),

where

Ω0(y, y) + Ω1(y, y) = lim
n→∞

∑
s∈S

(⌊n(F (s) + π1(s)p(s))⌋ − ⌊nF (s)⌋)
n

E[ϕ21(y, s,Ds
i )]

+ lim
n→∞

∑
s∈S

(⌊n(F (s) + p(s))⌋ − ⌊n(F (s) + p(s)π1(s))⌋)
n

E[ϕ20(y, s,Ds
i )]

=
∑
s∈S

p(s)E[π1(s)ϕ21(y, Si,Di) + π0(s)ϕ
2
0(y, Si,Di)|Si = s]

= E[π1(Si)ϕ
2
1(y, Si,Di)] + E[π0(Si)ϕ

2
0(y, Si,Di)].
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The finite dimensional convergence follows from the Cramér-Wold device. In particular, the covari-
ance kernel is given by

Ω0(y, y
′) + Ω1(y, y

′) =E[π1(Si)ϕ1(y, Si,Di)ϕ1(y
′, Si,Di)] + E[π0(Si)ϕ0(y, Si,Di)ϕ0(y

′, Si,Di)].

This concludes the proof of finite-dimensional convergence of φ⋆
n,1(y).

Finally, since {µz(y, s, x)(y) : y ∈ Y} is of the VC-type with fixed coefficients (α, v) and a constant
envelope function, {ξi(y) : y ∈ Y} is a Donsker class and we have

φn,2(y)⇝ G2(y),

where G2(y) is a Gaussian process with covariance kernel Ω2(y, y
′) = E[ξi(y)ξi(y′)]. This completes

the proof of Step 4.

Step 5. Therefore, uniformly over y ∈ Y , we have
√
n
(
β̂(y)− β(y)

)
⇝ G(y),

where G(y) is a Gaussian process with covariance kernel

Ω(y, y′) =
{
E[π1(Si)ϕ1(y, Si,Di, )ϕ1(y

′, Si,Di)] + E[π0(Si)ϕ0(y, Si,Di)ϕ0(y
′, Si,Di)]

+ E[ξi(y)ξi(y′)]
}
/
{
E[D(1)−D(0)]2

}
.

C.3 Proof of Theorem 5.3: Semiparametric Efficiency Bound

Proof. Part (a). We follow the approach used in Hahn (1998) and calculate the semiparametric
efficiency bound of the LDTE, β(y) for a given y ∈ Y . First, we characterize the tangent space. To
that end, the joint density of the observed variables (Y,D,Z,X, S) can be written as:

f(y, d, z, x, s) =f(y | d, z, x, s)f(d | z, x, s)f(z | x, s)f(x | s)f(s)
=f(y | d, z, x, s){ηz(x, s)d · (1− ηz(x, s))

1−d}{π1(s)z · (π0(s))1−z}f(x | s)f(s),
where ηz(x, s) := P (D = 1|Z = z,X = x, S = s) and π1(s) = P (Z = 1|X = x, S = s) for all
x ∈ X .

Consider a regular parametric submodel indexed by θ:

f(y, d, z, x, s; θ) =f11(y | x, s; θ)dzf10(y | x, s; θ)d(1−z)f01(y | x, s; θ)(1−d)zf00(y | x, s; θ)(1−d)(1−z)

{ηz(x, s; θ)d · (1− ηz(x, s; θ))
1−d}{π1(s; θ)z · (π0(s; θ))1−z}f(x | s; θ)f(s; θ),

where fdz(y | x, s; θ) := f(y | d, z, x, s; θ). When the parameter takes the true value, θ = θ0,
f(y, d, z, x, s; θ0) = f(y, d, z, x, s).

The corresponding score of f(y, d, z, x, s; θ) is given by

s(y, d, z, x, s; θ) :=
∂ ln f(y, d, z, x, s; θ)

∂θ

= dzḟ11(y | x, s; θ) + d(1− z)ḟ10(y | x, s; θ)
+ (1− d)zḟ01(y | x, s; θ) + (1− d)(1− z)ḟ00(y | x, s; θ)

+
d− ηz(x, s; θ)

1− ηz(x, s; θ)
η̇z(x, s; θ) +

z − π1(s; θ)

π0(s; θ)
π̇(s; θ) + ḟ(x, s; θ) + ḟ(s; θ),

where ḟ denotes a derivative of the log, i.e, ḟ(x; θ) = ∂ ln f(x;θ)
∂θ .

At the true value, the expectation of the score equals zero. The tangent space of the model is the set
of functions that are mean zero and satisfy the additive structure of the score:

T =


dza11(y | x, s) + d(1− z)a10(y | x, s)
+ (1− d)za01(y | x, s) + (1− d)(1− z)a00(y | x, s)
+ (d− ηz(x, s))aη(x, z, s) + (z − π1(s))aπ(s) + ax(x, s) + as(s)

 , (32)
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where adz(y|x, s), ax(x, s) and as(s) are mean-zero functions and aη(x, z, s) and aπ1(s) are square-
integrable functions.

The semiparametric variance bound of β(y) is given by the variance of the projection of a function
ψ(Y,D,Z,X, S) onto the tangent space T . This function must have mean zero, finite second order
moment and satisfy the following condition for all regular parametric submodels:

∂β(y;Fθ)

∂θ

∣∣∣
θ=θ0

= E[ψ(Y,D,Z,X, S) · s(Y,D,Z,X, S)]
∣∣∣
θ=θ0

. (33)

If ψ itself already lies in the tangent space, the variance bound is given by E[ψ2].

Now, the LDTE is

β(y) = FY (1)|C=c(y)− FY (0)|C=c(y).

Following Lemma 3.2, it follows that

FY (1)|C=c(y) =

{∫∫
(FY |D=1,Z=1,X=x,S=s(y) · η1(x, s)− FY |D=1,Z=0,X=x,S=s(y) · η0(x, s))f(x|s)f(s)dxds

}
/PC

FY (0)|C=c(y) = −
{∫∫

(FY |D=0,Z=1,X=x,S=s(y) · η1(x, s)− FY |D=0,Z=0,X=x,S=s(y) · η0(x, s))f(x|s)f(s)dxds
}
/PC

where PC =
∫∫

(η1(x, s)− η0(x, s))f(x|s)f(s)dxds.
We first need to calculate the derivative evaluated at true θ0:

∂β(y;Fθ)

∂θ
|θ=θ0 =

∂

∂θ
FY (1)|C=c(y; θ0)−

∂

∂θ
FY (0)|C=c(y; θ0).

We have,

∂

∂θ
FY (1)|C=c(y; θ0)

=
1

PC

∂

∂θ

{∫∫
(FY |D=1,Z=1,X=x,S=s(y) · η1(x, s)− FY |D=1,Z=0,X=x,S=s(y) · η0(x, s))f(x|s)f(s)dxds

}
−
{∫∫

(FY |D=1,Z=1,X=x,S=s(y) · η1(x, s)− FY |D=1,Z=0,X=x,S=s(y) · η0(x, s))f(x|s)f(s)dxds
}
∂PC(θ0)

∂θ
.

Similarly, we have

∂

∂θ
FY (0)|C=c(y; θ0)

= − 1

PC

∂

∂θ

{∫∫
(FY |D=0,Z=1,X=x,S=s(y) · η1(x, s)− FY |D=0,Z=0,X=x,S=s(y) · η0(x, s))f(x|s)f(s)dxds

}
+

{∫∫
(FY |D=0,Z=1,X=x,S=s(y) · η1(x, s)− FY |D=0,Z=0,X=x,S=s(y) · η0(x, s))f(x|s)f(s)dxds

}
∂PC(θ0)

∂θ
.

We choose ψ(Y,D,Z,X, S) as

ψ(Y,D,Z,X, S)

=

{
Z

π1(S)
·
(
1l{Y≤y} − µ1(y, S,X)

)
− 1− Z

π0(S)
·
(
1l{Y≤y} − µ0(y, S,X)

)
+ µ1(y, S,X)− µ0(y, S,X)

}
/{

Z

π1(S)
· (D − η1(S,X))− 1− Z

π0(S)
· (D − η0(S,X)) + η1(S,X)− η0(S,X)

}
− β(y).
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Then, notice that ψ satisfies (33) and that ψ lies in the tangent space T given in (32). Since ψ lies in
the tangent space, the variance bound is given by the expected square of ψ:
Ω(y) := E

[
ψ(Y,D,Z,X, S)2

]
= E

[({
Z

π1(S)
·
(
1l{Y≤y} − µ1(y, S,X)

)
− 1− Z

π0(S)
·
(
1l{Y≤y} − µ0(y, S,X)

)
+ µ1(y, S,X)− µ0(y, S,X)

}
/

{
Z

π1(S)
· (D − η1(S,X))− 1− Z

π0(S)
· (D − η0(S,X)) + η1(S,X)− η0(S,X)

}
− β(y)

)2]
=
{
E[π1(Si)ϕ1(y, Si,Di, )ϕ1(y

′, Si,Di)] + E[π0(Si)ϕ0(y, Si,Di)ϕ0(y
′, Si,Di)]

+ E[ξi(y)ξi(y′)]
}
/
{
E[D(1)−D(0)]2

}
This concludes the proof of part (a).

Next, for part (b), under Assumption 5.1, the regression-adjusted estimator defined in Algorithm 1
satisfies the following asymptotic distribution for any given y ∈ Y:

√
n
(
β̂(y)− β(y)

)
⇝ N (0,Ω(y)),

where Ω(y) is the semiparametric efficiency bound derived in part (a). This completes the proof of
part (b).

D Inference

We consider two approaches to estimate the standard errors and construct confidence intervals for
the regression-adjusted LDTE, β̂(y), at a given threshold y ∈ Y . Using the asymptotic distribution
derived in Theorem 5.2, we can construct a (1− α)× 100% confidence interval for β̂(y) based on a
consistent estimator: {

β̂(y)± Φ−1(1− α/2)×
√
Ω̂(y)/

√
n

}
,

where Φ is the standard normal distribution function. For a 95% confidence interval, Φ−1(1−α/2) =
1.96. The consistent estimator Ω̂(y) is given by

Ω̂(y) :=

1
n

∑n
i=1

[
Ziϕ̂

2
1(y, Si,Di) + (1− Zi)ϕ̂

2
0(y, Si,Di) + ξ̂2i (y)

]
(
1
n

∑n
i=1(Ξ

D
1,i − ΞD

0,i)
)2 , where

ϕ̂1(y, s,Di) := ϕ̃1(y, s,Di)−
1

n1(s)

∑
j∈I1(s)

ϕ̃1(y, s,Dj),

ϕ̂0(y, s,Di) := ϕ̃0(y, s,Di)−
1

n0(s)

∑
j∈I0(s)

ϕ̃0(y, s,Dj),

ξ̂i(y) :=
1

n1(s)

∑
i∈I1(s)

(1l{Yi≤y} − β̂(y)Di)−
1

n0(s)

∑
i∈I0(s)

(1l{Yi≤y} − β̂(y)Di),

ϕ̃1(y, s,Di) :=

[(
1− 1

π̂1(s)

)
µ̂1(y, s,Xi)− µ̂0(y, s,Xi) +

1l{Yi≤y}

π̂1(s)

]
− β̂(y)

[(
1− 1

π̂1(s)

)
η̂1(s,Xi)− η̂0(s,Xi) +

Di

π̂1(s)

]
, and

ϕ̃0(y, s,Di) :=

[(
1

π̂0(s)
− 1

)
µ̂0(y, s,Xi) + µ̂1(y, s,Xi)−

1l{Yi≤y}

π̂0(s)

]
− β̂(y)

[(
1

π̂0(s)
− 1

)
η̂0(s,Xi) + η̂1(s,Xi)−

Di

π̂0(s)

]
.
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Second, an alternative method for inference is empirical bootstrap. The procedure is summarized in
Algorithm 2.

Algorithm 2 Bootstrap confidence intervals for regression-adjusted LDTE
Input: Original sample {(Yi, Di, Zi, Si, Xi)}ni=1
Output: (1− α)× 100% confidence intervals for the regression-adjusted LDTE

1. For each bootstrap iteration b = 1, . . . , B:
2. Draw a bootstrap sample of size n with replacement:

{(Y b
i , D

b
i , Z

b
i , S

b
i , X

b
i )}ni=1 from {(Yi, Di, Zi, Si, Xi)}ni=1

3. Compute regression-adjusted LDTE β̂(y) given the conditional
distribution estimator based on the original sample

4. Calculate standard errors Σ̂(y) as the standard deviation of the bootstrapped LDTEs {β̂(y)}Bb=1,
5. Construct the confidence band:{

β̂(y)± Φ−1(1− α/2)× Σ̂(y) : y ∈ Y
}
,

where Φ is the standard normal distribution function.

E Additional experimental details

All experiments are run on a Macbook Pro with 36 GB memory and the Apple M3 Pro chip. The code
is publicly available at https://github.com/CyberAgentAILab/ldte, and the method can be implemented
using the Python library dte-adj (https://pypi.org/project/dte-adj/).

Table 4: Pre-treatment covariates included in regression adjustment in Oregon Health Insurance
Experiment

Variable

Number of ED visits pre-randomization
Number of ED visits resulting in a hospitalization, pre-randomization
Number of Outpatient ED visits, pre-randomization
Number of weekday daytime ED visits, pre-randomization
Number of weekend or nighttime ED visits, pre-randomization
Number of emergent, non-preventable ED visits, pre-randomization
Number of emergent, preventable ED visits, pre-randomization
Number of primary care treatable ED visits, pre-randomization
Number of non-emergent ED visits, pre-randomization
Number of unclassified ED visits, pre-randomization
Number of ED visits for chronic conditions, pre-randomization
Number of ED visits for injury, pre-randomization
Number of ED visits for skin conditions, pre-randomization
Number of ED visits for abdominal pain, pre-randomization
Number of ED visits for back pain, pre-randomization
Number of ED visits for chest pain, pre-randomization
Number of ED visits for headache, pre-randomization
Number of ED visits for mood disorders, pre-randomization
Number of ED visits for psych conditions/substance abuse, pre-randomization
Number of ED visits for a high uninsured volume hospital, pre-randomization
Number of ED visits for a low uninsured volume hospital, pre-randomization
Sum of total charges, pre-randomization
Age
Gender
Health (last 12 months)
Education (highest completed)
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