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Abstract

Low-light vision remains a fundamental challenge in computer vision due to
severe illumination degradation, which significantly affects the performance of
downstream tasks such as detection and segmentation. While recent state-of-the-art
methods have improved performance through invariant feature learning modules,
they still fall short due to incomplete modeling of low-light conditions. Therefore,
we revisit low-light image formation and extend the classical Lambertian model to
better characterize low-light conditions. By shifting our analysis to the frequency
domain, we theoretically prove that the frequency-domain channel ratio can be
leveraged to extract illumination-invariant features via a structured filtering process.
We then propose a novel and end-to-end trainable module named Frequency-
domain Radial Basis Network (FRBNet), which integrates the frequency-domain
channel ratio operation with a learnable frequency domain filter for the overall
illumination-invariant feature enhancement. As a plug-and-play module, FRBNet
can be integrated into existing networks for low-light downstream tasks without
modifying loss functions. Extensive experiments across various downstream tasks
demonstrate that FRBNet achieves superior performance, including +2.2 mAP for
dark object detection and +2.9 mloU for nighttime segmentation. Code is available
at: https://github.com/Sing-Forevet/FRBNet.

1 Introduction

In recent years, computer vision tasks such as object detection [28] and semantic segmentation [39]
have achieved remarkable progress, driven by advances in deep learning techniques [19} 54} 157] and
the availability of large-scale annotated datasets [33} 114,169, [7]. The models underlying these tasks
are typically trained on well-lit, high-quality images [37} 48], which often suffer from significant
performance degradation when employed under low-light conditions. Moreover, available real-world
low-light datasets [40) [73] remain relatively small in scale, hindering effective low-light network
training.

To deal with low-light vision tasks, there are several mainstream methods: (1) Image enhancement
methods, (2) Synthetic data training, (3) Multi-task learning strategies, and (4) Plug-and-play modules,
as illustrated in Fig. |1|(a). Image enhancement aims to restore visual quality before feeding images
into downstream models. It can enhance visibility for humans but may not guarantee machine
perception performance [64]. Synthetic data methods[/1} [13]] address low-light data scarcity via image
signal processes and other techniques, such as Dark ISP[10], but face high costs, limited diversity,
and realism gaps. Multi-task learning jointly optimizes multiple objectives via complex loss functions
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Figure 1: (a) Illustrative examples of four adaptation paradigms for low-light vision tasks, and
(b) Comparison between synthetic low-light data (top) and real-world low-light data (bottom),
demonstrating the higher complexity of real-world scenarios with localized light sources and non-
uniform illumination patterns that synthetic methods struggle to accurately simulate.

but faces optimization challenges on large solution spaces. Unlike these, plug-and-play paradigms to
enhance illumination-invariant features, such as DENet [46]] and PE-YOLO [74], gain attention for
their high applicability and flexibility to adapt to various basic network architectures.

For plug-and-play paradigms, FeatEnHancer[21] improves low-light vision tasks via a hierarchical
feature enhancement module. Subsequently, YOLA[S]] employs zero-mean convolution to extract
illumination-invariant features and achieves competitive performance. However, these methods lack
a complete modeling of low-light images in the real world, some of which are based on incomplete
assumptions such as the basic Lambertian model[29]]. In addition, these spatial-domain convolution-
based methods fall short in global perception due to fixed receptive fields.

Therefore, we revisit the imaging formation model and propose a plug-and-play module, termed
Frequency-domain Radial Basis Network (FRBNet), for diverse low-light downstream tasks. Specifi-
cally, inspired by the Phong illumination model[45], we theoretically extend the classical Lambertian
formulation[29]] and construct an extended generalized low-light model. Due to the limitations of the
spatial-domain channel ratio, we propose a frequency-domain channel ratio and a learnable frequency-
domain filter based on optimized radial basis functions for illumination-invariant feature extraction.
Modulated by a zero-Direct Current (zero-DC) Gaussian frequency window and orientation angle,
this filter forms an overall lightweight plug-and-play module for frequency suppression and structure
filtering. Extensive experiments on four representative low-light vision tasks: object detection, face
detection, semantic segmentation, and instance segmentation demonstrate that FRBNet significantly
surpasses baselines and achieves superior performance.

The main contributions of this paper can be summarized as follows.

* We theoretically extend the Lambertian model for real-world low-light conditions and then
formulate the novel Frequency-domain Channel Ratio (FCR) for illumination-invariant
feature enhancement. To the best of our knowledge, this is the first work that operates the
channel ratio for illumination-invariant features in the frequency domain.

* We design a Learnable Frequency-domain Filter (LFF) with a zero-DC frequency window
and an improved radial basis filter for robust feature extraction. This filter can process unde-
sired frequency components adaptively by frequency suppression and angular modulation.

* Based on the theoretical analysis, we propose a lightweight plug-and-play module called
Frequency-domain Radial Basis Network (FRBNet) which can be seamlessly integrated into
various low-light vision tasks. It provides a frequency-domain illumination-invariant feature
enhancement paradigm through the inter-relationships of channels constructed by FCR
and the effective filtering by LFF. Comprehensive evaluations demonstrate that FRBNet
outperforms existing state-of-the-art methods on various low-light vision downstream tasks.



2 Related work

2.1 Lowe-light vision for downstream tasks

Beyond direct image enhancement approaches[34, 62, [77} 49, 72| [31]], recent research has explored
alternative strategies for improving downstream vision tasks in low-light conditions. Several works
leverage synthetic data generation to address the scarcity of real low-light datasets. DAINet [[13]]
simulates low-light conditions through image signal processing to achieve zero-shot adaptation
of detectors. WARLearn [1]] uses unlabeled synthetic data to enhance representation learning for
adverse weather robustness. Similarly, BrightVO [59]] generates synthetic low-light data through
CARLA [12] simulation to train brightness-guided Transformers for visual odometry tasks. Another
paradigm involves joint enhancement and detection via multi-task learning[[10} |9, 24} 27]]. Recent
benchmarks like RealUnify [S3]] explore if cross-task unified vision models consistently benefit
performance. End-to-end optimization methods directly target downstream task performance rather
than intermediate image quality [[74,[38]]. DENet [46]] and FeatEnHancer [21] focus on feature-level
enhancement through learnable modules integrated into detection networks. Subsequently, YOLA [3]
extracts illumination-invariant features through channel-wise operations, directly improving detection
performance in low-light conditions. We share the philosophy of end-to-end optimization; however,
we note that existing approaches often overlook the complexity of real-world low-light scenarios,
such as local light sources and uneven reflections, which are explicitly considered in our design.

2.2 Frequency-domain analysis in low-light image processing

Frequency-domain analysis has proven effective in low-light image enhancement [78}, 23| 135] by sep-
arating illumination from structural details through spectral decomposition. Typically, low-frequency
components represent global illumination and smooth variations, while high-frequency captures edges
and textures [60]. FourLLIE [58] utilizes amplitude information to enhance brightness and recover
details in a two-stage framework. Similarly, Frequency-Aware Network [52] selectively adjusts
low-frequency components while preserving high-frequency details. Li et al.[32] employ frequency
decomposition to guide hybrid representations for joint image denoising and enhancement. In the
realm of generative models, FourierDiff[42] embeds Fourier priors into diffusion models for zero-
shot enhancement and deblurring, while FCDiffusion [18]] enables controllable generation through
frequency band filtering. Beyond enhancement, FreqMamba [[79] integrates frequency analysis with
the Mamba architecture for effective image deraining. However, most existing frequency-domain
approaches mainly operate at the pixel level by modifying low-frequency illumination components
while preserving high-frequency details. In contrast, our method is the first to leverage channel
ratio representations for extracting illumination-invariant features directly in the frequency domain,
shifting the focus from pixel-level enhancement to feature-level learning.

3 Theoretical Analysis of Method Design

3.1 Extended generalized low-light model

The classical Lambertian image formation model [29, I51] characterizes low-light scenarios through
the diffuse reflection assumption [8], expressing an image I at pixel location (x, y) as:

IC(:Ev y) = m[ﬁ(xa y)v f(fﬂ, y)] ’ (pc(.T, y) : ,OC(fL', y) (D
Here, C € {R, G, B} denotes the RGB color channel. 7 and I represent the surface normal and light

direction, respectively. m/[-, -] is the interaction function, ¢ denotes the illumination component, pc
denotes the intrinsic reflectance component.

The Lambertian model assumes purely diffuse reflection, where light is scattered uniformly across the
surface. However, real-world low-light images (Fig. [I(b)) frequently contain complex and spatially
localized light sources, including streetlights, vehicle headlights, and neon signs. These sources
contradict the idealized diffuse reflection assumption underlying the Lambertian model.

Motivated by the additive decomposition in the Phong illumination model [45]( for details), we
introduce an extended version of the Lambertian model adapted to real-world low-light scenes by
reinterpreting the localized light sources as non-uniform highlights, which can be expressed as:

-

[C(Ivy) = m[ﬁ('xa y)7 l(x’ y)] : @C(x’y) : pC(Ivy) + SC('I’ y)? 2



where S¢ represents a spatially irregular highlight component that can be further defined as:

Sc(z,y) = Ho(x,y) - mli(z,y), U(z,y)] - ec(@,y) - pc(z,y), ©)
with H¢ denoting the relative strength of highlight interference. For notational simplicity, we define

—

De(z,y) = m[i(z,y), l(x,y)] - pc(z,y) - pc(x,y) as the standard diffuse reflection component.
Substituting this into Eq. (2 and rearranging terms, we obtain a more concise expression:

Io(x,y) = De(x,y) + Sc(z,y) = Do(z,y) - (1 + He(z, y)). Q)
3.2 Frequency-domain channel ratio

Leveraging channel ratios (CR) to isolate illumination-invariant features has proven effective for
low-light visual tasks [44, 17, 15]. Taking the channel ratio between the red channel R and the green
channel GG as an example, the log-transformed formulation, according to our extended generalized
low-light model, can be obtained as:

Ir LPR'pR'(14‘HR)>
CR =1 — | =1
fe =08 (IG) o8 <90G pc - (1+ Hg)

=logyr —log g +log pr —log pe + log(1 + Hr) — log(1 + Hg).
As shown in Eq. (3)), the nonlinear residual from the highlight term disrupts the clean separation of
illumination and reflectance, limiting the effectiveness of spatial-domain channel ratio methods. To
overcome these limitations, we shift our analysis to the frequency domain, where illumination and
reflectance components naturally occupy different frequency bands [60], enabling more effective
separation of illumination-invariant features. Drawing inspiration from prior works on spatial-domain
channel ratios [44} (17, 5], we innovatively propose the Frequency-domain Channel Ratio (FCR) as:

&)

Ir
FCRRg = Fllog(—
ne = Fllog(7)] ©
= Fllog pr — log pg| + Fllog pr — log pe] + Fllog(1l + Hg) —log(1l + Hg)],
where F -] represents the Fourier transform operator. To handle the non-linear residual term A =
Fllog(1 + Hg) — log(1 + Hg)], we apply a first-order Taylor expansion. Given that significant
contributions in the data are usually sparse and localized, we assume that Ho € [0, 1) has a relatively
small magnitude, allowing us to approximate log(1 + H¢) as Ho + O(HZ).

Under the aforementioned assumption, by neglecting higher-order terms, we can obtain a linearized
approximation of A as follows:

A= F[Hp — He) = Hr — He, @)
where H i and H ¢ denote the frequency-domain representations of Hr and H, respectively. To

investigate the spectral characteristics of the residual term A, we decompose it into its amplitude and
phase components:

AZHR—HGZGR~6i9R—ag~ei9G, ®)
where ap, ag represent the amplitude terms, and 6, ¢ denote the phase components. To charac-
terize the phase relationship between channels, we introduce the frequency correlation coefficient
Corpa = ei(0c—0r) (derived from see [S6]), which quantifies the angular displacement between
channel responses in the frequency domain. This allows us to reformulate A as:

A = e . (aR —ag- ei(ec_eﬂ)> =% . (ag — ag - Corga), 9

This factorization reveals that the residual term is structured as a phase-modulated component, where
e'%% serves as the carrier phase and (ag — ag - Corrg) encodes the amplitude discrepancy modulated
by the inter-channel phase correlation.

Finally, the ultimate formulation of the frequency-domain channel ratio can be summarized as:

FCRpe = Fllog pr — log pc| + Fllog pr — log pg] + € (ar — ag - Corrg).  (10)

illumination reflectance high-lit residual

Leveraging on the inherent properties of the spectral separation and phase-modulated structure
of residual terms, we design specialized filtering strategies that aim to robustly extract invariant
illumination features, thus enhancing the reliability and effectiveness of feature extraction under
varying lighting conditions.
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Figure 2: The overall pipeline of our proposed FRBNet. It performs illumination-invariant feature
enhancement process in frequency domain using a core learnable filter for downstream low-light
vision tasks.

Our theoretical analysis presented in Section [3.2]reveals that illumination interference predominantly
accumulates within the low-frequency components of the signal. In contrast, the residual interference
manifests as direction-dependent patterns, which are distinctly characterized by phase modulation.
Thus, illumination-invariant features in real-world low-light images can be enhanced by suppress-
ing fluctuating illumination interference and high-lit residual terms. To this end, we propose the
Frequency-domain Radial Basis Network, which is a lightweight plug-and-play module as illustrated
in Fig.[2] In this section, we will first introduce the whole illumination-invariant feature enhancement
process based on frequency-domain channel ratio, and then provide a detailed description of the core
learnable frequency-domain filter.

4.1 INlumination-invariant feature enhancement process in the frequency domain

To enhance illumination-invariant features, the proposed FRBNet first converts the operation of
channel ratio to the frequency domain. Inter-channel relationships are exploited in the frequency
domain according to the FCR function presented in Section[3.2} Define the input image in the spatial
domain as I(z, y), for each channel pair, FCR is implemented by the frequency-domain logarithmic
difference with learnable frequency parameters (u, v) as:

dif % (u, v) = Fllog Ir(z,y)] — Fllog Ia(z, y)]
dif“? (u, v) = Fllog I (z,y)] — Fllog I (z,y)] (11)
dif P2 (u, v) = Fllog Iz(z,y)] — Fllog Ir(z,y)].

Next, a Learnable Frequency-domain Filter, defined as LF'F, is designed to reduce the impact of
illumination and high-lit residual terms in low-light images on robust feature extraction for each
channel pair, which is composed of a zero-DC frequency window and an improved radial basis filter.
The frequency response feature F;,, (u, v) can be expressed as:

EECG(u,0) = LFFEY (u,v) - dif ¢ (u, v)

FS&B(u,v) = LFF9B(u,v) - dif5 (u, v) (12)

inv

EBE(y,v) = LFFPR(u,v) - dif B (u, v).

inv
Then, the filtered spectral features are transformed back to the spatial domain. The resulting features
of all channel pairs (R & G, G & B, B & R) are concatenated as:

Fin(z,y) = Cat (F~ [ (u,0)| s F 7 [ERP (wo) s FH [FRM (o)), (13)
where F~! represents the inverse Fourier transform and Cat represents the concatenation operation.
To further combine the enhanced illumination invariant features from the frequency domain with the
spatial-domain features from the original image, a common fuse module referring to [S]] is employed
for integration as:

Fou = Conv {CB [Cat (CB[Fin(z,y)]; CB[I(z,y)])]}, (14)



where Conv is a convolution while CB is a Convolution followed by a Batch Normalization (BN).
Finally, the output feature F; is fed into the downstream task network.

4.2 Learnable frequency-domain filter

The core of our approach is the Learnable Frequency-domain Filter (LF'F') that adaptively processes
spectral components. This filter consists of two complementary elements: a zero-DC frequency
window Wy that attenuates low-frequency illumination and an improved radial basis filter H(u, v)
that encodes both spectral distance and directional information, which can be formulated as:

LFF (u,v) = Wg - H(u, v). (15)

Zero-DC Frequency Window. To suppress undesired illumination while preserving structural
information, a Gaussian window is employed centered at the origin of the frequency plane as:

2
We(u,v) = exp <_r(u,2v)> ;o r(u,v) = Vu? + 02 (16)

Ow

where o, is a learnable bandwidth parameter, and r(u, v) denotes the normalized radial frequency
coordinate. To eliminate the DC component, W (0, 0) is explicitly set to 0, which ensures the filter
to remove global brightness offsets while retaining mid- to high-frequency information for local
structural cues.

Improved Radial Basis Filter. To construct a spectrally adaptive and directionally selective filter, we
employ a set of learnable radial basis functions (RBFs) combined with angular modulation. RBFs can
capture frequency-magnitude selectivity, whereas angular terms can introduce orientation sensitivity
to enable anisotropic filtering in the Fourier domain. Define a set of K radial basis functions ¢(u, v)
centered at predefined frequency radii py, € [0, 1] as:

dr(u,v) = exp (—W),k:u,z.-- K] (17)
207},

where r(u, v) is the normalized radial frequency as defined earlier, and o, is a learnable bandwidth
parameter shared across all bases. With learnable coefficients ay, of the weighted linear combination,
the final radial response is:

K
O(u,v) =Y ar- o(u,v),k=[1,2,-+ K] (18)
k=1

Furthermore, referring to the phase-oriented residual structure in Section [3.2] the interference term
exhibits dominant orientation components. The radial response is further modulated by an angular
term constructed from sinusoidal harmonics of orientation angle to capture directional selectivity as:

N v
M(u,v) =1+ X- Z [cos(nB(u,v)) + sin(nf(u,v))], O(u,v) = arctan (u—l—e) , (19

n=1

where IV is the number of angular frequencies and A controls the modulation strength. The final
frequency-domain radial basis filter response is given by:

H(u,v) = ®(u,v) - M(u,v). (20)

By integrating angular harmonics, the improved radial basis filter is both spectrally localized and di-
rectionally responsive, enabling to alignment or suppression of such oriented residuals in a data-driven
manner, which is crucial for isolating illumination-invariant features while attenuating structured
interference.

5 Experiments

We conduct extensive experiments to evaluate the effectiveness of the proposed plug-and-play FRB-
Net on low-light vision tasks of detection and segmentation. Specifically, we adopt ExDark[40],



DarkFace[73]], ACDC-night[50], and LIS[4]] datasets for dark object detection, face detection, night-
time semantic segmentation, and dark instance segmentation tasks, respectively. Experiments are
implemented based on the MMDetection [2] and MMSegmentation [6] toolboxes by PyTorch and
trained on a NVIDIA RTX 4090 GPU. We select several recent representative methods for compre-
hensive comparison in each task. For fair comparisons, the number of radial basis functions K is set
to 10 and the angular modulation strength A is set to 0.1. Standard metrics including Recall, mAP,
and mIoU are adopted for evaluation. More details for each task can be found in Appendix

5.1 Low-light detection tasks

Settings. We evaluate FRBNet on low-light detection tasks using two representative detectors:
YOLOV3 [47] and TOOD [16]. Both detectors are initialized with COCO-pretrained weights and
fine-tuned with FRBNet as a plug-in frontend on low-light datasets. We select representative methods
from four paradigms for comparison: enhancement-based approaches, synthetic data training, multi-
task learning, and plug-and-play modules. Following the experimental setup of YOLA [5], we set
the momentum and weight decay of the SGD optimizer for the detection model to 0.9 and 0.0005,
respectively. The learning rate is 0.001. For ExDark, all input images are resized to 608 x 608, and
both detectors are trained for 24 epochs. For DarkFace, YOLOvV3 maintains 608 x 608 and is trained
for 20 epochs, while TOOD uses a higher resolution of 1500 x 1000 and is trained for 12 epochs.

Results of Object Detection. On the ExDark dataset, FRBNet consistently improves performance
over baseline detectors and achieves the best mAP (see Table[I)). Specifically, our method attains
90.6% Recall and 74.9% mAP with YOLOV3, surpassing the previous state-of-the-art YOLA by
0.4 mAP. When integrated into TOOD, FRBNet further boosts performance to 93.2% Recall and
75.3% mAP, outperforming all enhancement-based and multi-task approaches. For a fair comparison,
part of the experimental results from YOLA [5]. These results demonstrate the effectiveness of our
frequency-domain design in preserving structural cues under illumination degradation.

Results of Dark Face Detection. Consistent with the official experimental setup in UG2+ Challengel
we adopt a 3:1:1 random split of the DarkFace dataset for training, validation, and testing in our
experiments. Table [T] presents FRBNet achieving strong performance across both detectors. It
obtains 75.7% Recall and 57.7% mAP with YOLOvV3, outperforming all previous plug-and-play
and enhancement-based methods. For TOOD, our module improves detection performance to 82.7%
Recall and 65.1% mAP, setting a new state-of-the-art and exceeding the previous best (YOLA) by
2.0% mAP. These gains highlight the generality and robustness of FRBNet across different detectors.

Table 1: Quantitative results of low-light object detection and face detection on ExDark[40]] and
DarkFace[73]. Bold values indicate the best results, while underline values represent the second-best.

ExDark DarkFace
Paradigm Method YOLOv3 TOOD YOLOV3 TOOD
Recall mAP Recall mAP Recall mAP Recall mAP
Baseline 84.6 71.0 91.9 72.5 73.8 54.8 80.9 57.0
SMGI66I(CVPR-23) 82.3 68.5 91.8 71.5 73.4 52.4 80.2 56.3
NeRCol[70](ICCV-23) 834 68.5 91.8 71.8 73.8 53.0 79.4 56.8
Enhancement X .
LightDiff[25](ECCV-24) 84.3 71.3 92.1 72.9 755 574 81.0 58.7
DarkIR[15](CVPR-25) 81.9 68.2 90.9 72.0 74.5 55.9 81.4 60.4
. DAINet*[13](CVPR-24) 86.7 734 - - 74.8 56.9 - -
Synthetic Data -
WARLearn[1J(WACV-25) 85.6 72.4 92.8 73.4 74.5 56.2 80.8 59.4
Multi-task MAET[10](ICCV-21) 85.1 72.5 92.5 74.3 74.7 55.7 80.7 59.6
TAT[O)(BMVC-22) 85.0 72.6 92.9 73.0 73.6 55.5 79.7 583
DENet[46](ACCV-22) 84.2 71.3 92.6 73.5 71.8 52.6 73.6 49.6
Plug-and-play FeatEnHancer[21](/CCV-23) 90.4 71.2 96.4 74.6 74.1 55.2 81.7 60.5
YOLAIS|(NeurIPS-24) 86.1 72.7 93.8 752 74.9 56.3 83.1 63.2
FRBNet(ours) 90.6 74.9 93.2 75.4 75.7 57.7 82.7 65.1

5.2 Low-light segmentation tasks

Settings. We assess the ability of FRBNet to perform low-light segmentation tasks in nighttime
semantic segmentation and dark instance segmentation. For the semantic segmentation task, the input
images of ACDC-Night [50]] are resized to 2048 x 1024. DeepLabV3+ [3] is adopted as the baseline
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with a ResNet-50 [55] backbone, which is initialized with ImageNet-pretrained weights [11]. We
compare our FRBNet with current state-of-the-art methods. Following the experimental protocol of
FeatEnHancer [21]], all methods are trained for 20K iterations. The comparison includes traditional
enhancement-based methods as well as more recent task-oriented approaches. For the instance
segmentation task, the input images of the LIS dataset [4] are resized to 1330 x 800. Mask R-
CNN [22] with a ResNet-50 backbone implemented via the MMDetection framework [2] is employed
as the baseline model. MBLLEN [41]], DarkIR [15]], FeatEnHancer [21]], and YOLA [3] are selected
as comparative models. All models are trained for 24 epochs using the SGD optimizer.

Table 2: Quantitative results of low-light semantic segmentation on the ACDC[50]. The symbol set
{RO,SI,BU,WA FE,PO,TL,ST,VE,TE,SK,PE,CA,TR,BI} represents {road, sidewalk, building, wall,
fence, pole, traffic light, traffic sign, vegetation, terrain, sky, person, car, train, bicycle}.

Method RO SI BU WA FE PO TL TS VE TE SK PE CA TR BI |mloU
Baseline[3] 90.0 614 742 328 344 457 498 312 688 146 804 27.1 621 763 144 508
RetinexNet[63] | 89.4 61.0 70.6 30.1 28.1 424 47.6 257 658 86 773 215 548 674 82 | 465
DRBN[63] 905 615 728 319 325 445 473 272 657 102 765 242 554 711 119 | 482
FIDE[TI] 90.0 60.7 728 324 341 433 479 261 670 137 780 265 57.1 710 124 | 4838
KinD[73] 90.0 61.0 732 319 328 435 427 277 655 133 774 228 551 745 115 48.1
EnGAN[26] 89.7 589 737 328 31.8 447 492 262 673 142 778 250 590 712 7.8 | 486
ZeroDCE[20] 90.6 599 739 326 317 443 462 258 672 146 79.1 247 594 668 139 | 487
SSIENet[76] 89.6 593 725 29.9 317 454 439 245 667 106 783 228 526 711 54 | 469
Xue et al. [68] 932 726 784 438 465 48.1 511 388 686 149 79.1 219 61.6 852 36.1| 558
FeatEnHancer[21] | 93.5 70.6 75.6 41.8 334 513 552 359 685 134 80.6 27.6 61.8 800 51.2| 56.0
YOLA[S] 932 721 793 411 39.1 53.1 604 444 715 47 832 378 668 850 49.2| 587
FRBNet(ours) | 944 755 79.7 460 454 523 649 508 722 95 842 409 70.4 887 493 | 616

Results of Semantic Segmentation. Table 2] summarizes the quantitative results on the ACDC-Night
benchmark. Since the testing set of ACDC-Night contains some extremely rare samples, we report
the quantitative results of IoU on 15 categories, excluding truck, bus, rider, and motorcycle. And the
results of mIoU are adopted directly from the output of MMSegmentation toolbox. From Table 2}
most of the existing enhancement methods yield only marginal improvements. Compared with YOLA
(58.7%), FRBNet further improves to 61.6% mloU, achieving the best result. Notably, FRBNet
delivers consistent gains across multiple key classes in nighttime semantic segmentation, such as
sidewalk (75.5%), building (79.7%), and traffic sign (50.8%). The second line in Fig. a) also
reveals that the visualized results of FRBNet are the most similar to the ground truth.

Results of Instance Segmentation. Following common practice, we evaluate instance segmentation
performance with mAP, mAP5, and mAP75 metrics. As shown in Table [3] FRBNet achieves the
best performance across all metrics on the LIS. It obtains 30.2% mAP, 50.5% mAP5g, and 30.4%
mAP~75, outperforming previous methods by a clear margin.

Table 3: Quantitative results of low-light Table 4: Ablation study on the effectiveness of each

instance segmentation on the LIS[4]]. component in FRBNet.
Method mAP  mAPso  mAP7s H(u,v) Wg FCR | ExDark  DarkFace

Mask RCNN[22] 237 415 233 Baseline 710 570
MBLLENJAT] 225 407 223 v s Y

DarkIR[T3] 274 463 275 Ablation Cases
YOLA[3] 249 443 242 ation Cases v v 72.9 625
FeatEnHancer2T] ~ 29.1 48.7 29.7 v v 735 63.7
FRBNet(ours) 30.2 50.5 30.4 FRBNet v v v 74.9 65.1

5.3 Ablation studies

Effectiveness of each component. We evaluate each component of FRBNet with YOLOv3 on
ExDark and TOOD on DarkFace. Specifically, the channel operation in the frequency domain (FCR)
and the two elements of LFF are evaluated. As in Table[d] the proposed FRBNet adopting the whole
LFF and FCR presents superior performance, and FCR plays a more relatively important role.

Efficiency-Performance analysis. Table [5|compares FRBNet with existing methods for the effec-
tive balance of computational efficiency and performance in low-light vision applications. Non-



architectural methods, which enhance performance through preprocessing or pretraining without
modifying the detector structure, show limited performance despite their high computational effi-
ciency. For end-to-end modules, FRBNet achieves the highest detection performance (74.9 mAP on
ExDark using YOLOV3) and segmentation accuracy (61.6 mIoU) at a relatively low computational
cost. FRBNet also demonstrates strong inference speed (89.5 FPS), significantly faster than others
like FeatEnHancer (33.1 FPS), while achieving 3.7 mAP and 5.6 mIoU improvements.

Table 5: Efficiency-Performance trade-off of different low-light vision methods.

Category Metric Non-architectural Methods End-to-End Trained Plug-and-Play Module
KinD[73] [ Zero-DCE[20] [ SMG[66] | MAET[10] || DENet[46] [ FeatEnHancer{21] | YOLA[S] | FRBNet

# Params | 8.2M 79K 17.9M 40M 40K 138K 8K 9K

Efficiency Flops(G) | 50.6 61.7 79.5 55.0 53.1
FPS(img/s)T 95.8 83.8 33.1 81.1 89.5
Performance Det(mAP) 1 69.4 71.1 68.5 72.5 71.3 71.2 72.7 74.9
Seg(mlIoU) 1 48.1 48.7 49.7 - 522 56.0 58.7 61.6

5.4 Visualization

The visualization of experiment results and feature maps on ExDark are presented in Fig. [3] The top
line in Fig. B(a) verifies FRBNet achieves the most accurate detection. In Fig. [3[b), FeatEnHancer
brings color deviation artifacts, and YOLA struggles with fine details in low-light regions. FRBNet
generates more balanced feature representations with better preservation of object boundaries and
structural details, especially in the outlines. From the heatmaps in Fig. [3[c), compared to the
Baseline, our method produces more spatially focused feature responses, particularly around object
contours such as the bicycle frame and the human head, which allows FRBNet to preserve fine object
details and reveal richer gradient variations. Our approach successfully isolates illumination-invariant
features, thereby enhancing robustness for downstream tasks.

Baseline DarkIR FRBNet(Ours) Ground Truth
Baseline FeatEnHancer FRBNet(Ours) Ground Truth

(a) Visualization of comparative results for dark ob]ect detection and nighttime semantic segmentation.

el 3 .
Input FeatEnHancer YOLA FRBNet(Ours)
(b) Visualization of output features from different plug-and-play modules.

- - H"
06
04
02
00
02
o

Input Baseline_backbone FRBNet_backbone FRBNet_heatmap
(¢) Visualization of feature maps at different stages of downstream tasks with or w/o trained FRBNet.

Baseline_heatmap

Figure 3: Qualitative results. (a) Visualization of comparative results for dark object detection on
ExDark (top) and nighttime semantic segmentation on ACDC-Night (bottom). (b)Visualization of
output features from different plug-and-play modules. (c) Visualization of feature maps at different
stages of downstream tasks with or without trained FRBNet.



6 Conclusion

This paper presents FRBNet, a novel frequency-domain framework for extracting illumination-
invariant features in low-light conditions by leveraging learnable radial basis filters with frequency-
channel operations. This plug-and-play module can be seamlessly integrated into existing archi-
tectures and achieves significant performance improvements. Based on extensive experimental
demonstrations, FRBNet can effectively address the limitations of spatial-domain approaches for
low-light downstream tasks. Future research will focus on optimizing the universality of modules
and exploring broader application scenarios to further advance the development of low-light vision.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claims in the abstract and introduction accurately reflect the paper’s
contributions and scope by clearly stating the claims, highlighting the contributions, and
aligning with the experimental results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have discussed the limitations in the Section [6]and Appendix[A.5]of our
paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All the theorems, formulas, and proofs in the paper are well stated and
referenced.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Implementation and experimental details are introduced in Section [5] and
Appendix [A.3]

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided our data and code in supplemental material. Code
is also available in our anonymous repository (https://github.com/Sing-Forevet/
FRBNet.).

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have provided the necessary experimental details in Appendix[A.3]
Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Following previous research studies, we do not include error bars.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have provided the resource details in Section 5]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have conformed in every respect with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed both the potential positive societal impacts and negative
societal impacts in Appendix [A.5]of our paper.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not adopt pretrained language models, image generators, or scraped
datasets.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have credited all the assets we used following their licensing rules, and
will not distribute or repurpose them.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not have potential risks incurred by study participants.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This paper does not describe the usage of LLMs as they were not used in our
core methodology.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Revisiting Imaging Principle of Low-light Vision

Our extension of the Lambertian model draws significant inspiration from the Phong model’s additive
component approach. The Phong lighting model [45]] provides a comprehensive framework for
simulating light-surface interactions through additive component decomposition. This model serves
as the theoretical foundation for our extended Lambertian formulation in the main text, particularly
in our treatment of non-uniform highlights in low-light imagery.

The cornerstone of the Phong model is its decomposition of surface illumination into three distinct
additive components:
I=1,+1,;+I,, 2n

where, I, represents ambient reflection component, ; represents diffuse reflection component, and
I represents specular reflection component.

—
Ambient Diffuse Specular Final

Figure 4: Illustration of Phong Lighting Model Imaging Mechanism

This additive decomposition directly inspired our approach in Eq. [2] of the main text, where we
extended the traditional Lambertian model by adding a spatially irregular highlight component
S, C (Z‘ ) y) .

The standard Phong model was originally developed for controlled lighting environments in computer
graphics rendering. Our approach extends this concept to address the unique challenges of real-world
low-light imagery. While the Phong model assumes idealized light sources and surface properties,
actual low-light scenes contain complex lighting elements like streetlights, vehicle headlights, and
neon signs that create irregular highlight patterns.

To account for these complexities, we adapt the Phong model’s additive principle by introducing
a spatially varying highlight term H¢ (2, y) that modulates the base diffuse reflection. This modi-
fication preserves the fundamental additive relationship between components while providing the
flexibility needed to represent the non-uniform highlight distributions characteristic of natural low-
light environments. By building upon the Phong model’s decomposition approach rather than strictly
adhering to its original formulation, our extended Lambertian model can more accurately represent
the complex illumination patterns found in real-world low-light imagery.

Figure [ illustrates the Phong model’s imaging mechanism, visually demonstrating how the three
components (ambient, diffuse, and specular) combine additively to create the final rendered image.
This decomposition serves as the theoretical foundation for our treatment of complex lighting in
low-light scenes described in the main text.

A.2 Derivation of Frequency Correlation Coefficient

The characterization of inter-channel relationships in the frequency domain is crucial for understand-
ing how highlight interference manifests across different color channels. While our previous analysis
identified the presence of phase-modulated residual components, we need a precise mathematical
formulation to quantify this directional phenomenon. To this end, we introduce the frequency cor-
relation coefficient C'or g that captures the angular displacement between channel responses. The
following derivation formalizes this relationship in the frequency domain, providing the mathematical
basis for our angular-modulated filtering approach. Given an image I (x,y), where C € R, G, B
denotes the color channel, we define its two-dimensional Discrete Fourier Transform (DFT) as:

w—1h-1

1 o um vy
IC'(U?v) = ]:[IC(:Eﬂy)} = m Z ZIC(‘T>y)€_12ﬂ(7+T)7 (22)
z=0 y=0
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where h and w denote the height and width of the image, and Z¢ (u, v) represents the complex Fourier
coefficient at frequency component (u,v). Each Fourier coefficient encodes both magnitude and
phase information, which can be separated using the complex exponential representation:

Ze(u,v) = |Ic(u,v)|ei¢0(“’“), (23)

where |Z¢(u, v)| denotes the magnitude and ¢¢ (u, v) represents the phase at frequency (u, v). To
further characterize the structural consistency between color channels in the frequency domain, we
follow the derivation of complex correlation coefficients based on amplitude and phase analysis [56].
For clarity, let us denote the magnitude as a¢c = |Z¢(u, v)| and the phase as pc = ¢¢(u, v) for each
channel C. We can then express the Fourier coefficient as:

Tco(u,v) = ac cos(pe) +iacsin(pe) = ac - €€ (24)

The magnitude of this complex coefficient can be verified as:

[Zo(u,v)] = /a2 (cos?(pe) +sin(pc) = ac (25)

For two frequency responses at the same spatial frequency (u,v) from distinct channels, e.g.,
Zr(u,v) = age*® and Zg(u,v) = age’<, we define the complex correlation coefficient as:
Tr(u,v) - Ze(u,v)

Corgrg(u,v) = |Zr(u,v)| - | Zg(u, v)|’ o

where Z(u, v) is the complex conjugate of Z; (u, v), computed as Z, (u, v) = age™ P<. Expanding
this equation:

aReipR . aGe—iPG

Corgre(u,v) = P 27)
_ aRaGei(pR*PG) (28)
aAROG
— eilpr—pc) (29)
= = (30)

where Ap = pr — p represents the phase difference between the R and G channels at frequency
(u,v). This elegant formulation reveals a fundamental insight: the correlation between channels at
each frequency location is directly encoded by their phase difference Ap. The correlation coefficient
Corre(u,v) has unit magnitude but carries critical directional information:

* When Ap = 0, Corge(u,v) = 1, it indicates perfect phase alignment between channels.

* When Ap = m, Corgra(u,v) = —1, it reveals exactly opposite phases.
* When Ap = £7, Corga(u,v) = =i, it corresponds to orthogonal phase relationships.

The correlation coefficient can also be expressed in terms of its real and imaginary components:
Corpra(u,v) = cos(Ap) + isin(Ap). 3D

This phase-based correlation measure provides crucial insights into the directional patterns of highlight
interference across color channels. In our extended Lambertian model with highlight interference,
these phase differences encode the angular displacement of interference patterns, which cannot be
captured by simple magnitude-based analysis. By incorporating this correlation coefficient into our
frequency-domain filter design, we enable directionally-aware processing that adapts to the specific
phase relationships induced by complex lighting conditions. This theoretical foundation directly
informs our angular-modulated filtering approach, allowing us to effectively isolate illumination-
invariant features even in the presence of highly directional highlight interference.

A.3 Implementation Details

Statistics of the Datasets Table [6| summarizes the statistics of our employed datasets. These datasets
cover a wide range of low-light vision tasks, including object detection, face detection, semantic
segmentation, and instance segmentation. ExDark[40] is one of the most widely used benchmarks for
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dark object detection, featuring diverse scenes and object categories under extremely low-light condi-
tions. Dark Face[[73]] focuses on the challenging task of face detection in dark environments, providing
densely annotated facial regions. ACDC-Night[50] targets nighttime semantic segmentation, with a
particular emphasis on road scenes, making it valuable for autonomous driving applications. LIS[4]
is a recently proposed dataset designed for low-light instance segmentation, offering fine-grained
annotations in real-world dark scenarios. The combination of these datasets enables a comprehensive
evaluation across different low-light vision tasks. # Class is the number of classes, whereas #Train
and #Val denote the number of training and validation samples for each dataset, respectively.

Table 6: Statistics of the datasets

Dataset Task # Class # Train # Val
ExDark[40] Dark object detection 12 3000 1800
Dark Face|73] Dark face detection 1 3600 1200
ADCD-Night[50] Nighttime semantic segmentation 15 400 106
LIS[4] Low-light instance segmentation 8 1561 669

FRBNet on Dark Object Detection. For all experiments, we adopt the official implementations of
YOLOvV3 and TOOD detectors with standardized training protocols. The YOLOvV3 detector uses a
Darknet-53 backbone pre-trained on ImageNet, while TOOD employs a ResNet-50 backbone with
FPN. Both models are trained for 24 epochs using the SGD optimizer with momentum 0.9 and weight
decay Se-4. The learning rate begins at 0.001 with a linear warm-up for the first 1000 iterations. We
apply standard data augmentation techniques, including random expansion, minimum IoU random
cropping, random resizing, random flipping, and photometric distortion. For testing, images are
resized to 608x608 maintaining the aspect ratio. We use a batch size of 8 on a single GPU.

! ..

i 7

Baseline DarkIR FeatEnHancer YOLA FRBNet(Ours) GT

Figure 5: Qualitative comparisons of dark object detection methods on ExDark dataset.

Table [5] and [6] present comprehensive quantitative comparisons on the ExDark dataset using YOLOv3
and TOOD detectors, respectively. We evaluate detection performance across all 12 object categories,
reporting both category-specific Average Precision (AP) and overall mean Average Precision (mAP5).
FRBNet demonstrates particularly strong improvements on challenging categories such as "Bottle"
(+2.6% over YOLA with YOLOV3), "Bus" (+1.8% over DAINet with YOLOv3), and "Chair" (+2.3%
over DAINet with YOLOv3). These categories typically involve smaller objects or objects with
challenging contrast profiles in low-light conditions, suggesting that our frequency-domain processing
effectively preserves discriminative features for these difficult cases. Figure 5] presents qualitative
comparisons of detection results from various methods on challenging ExDark samples. As shown
in the visualization, our FRBNet achieves more accurate object localization and higher detection
confidence compared to the baseline, DarkIR, FeatEnHancer, and YOLA methods.

FRBNet on Dark Face Detection. We continue with YOLOv3 and TOOD as base detectors, largely
following the experimental setup from YOLAS]. Since the UG2+ Challenge concluded in 2024,
we adopted a standard random split with a 3:1:1 ratio for training, validation, and testing. Our
implementation is based on the MMDetection framework with customized data pipelines. For
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Table 7: Quantitative comparisons of the ExDark[40] dataset based on YOLOV3 detector.

Method Bicycle Boat Bottle Bus Car Cat Chair Cup Dog Motorbike People Table | mAP5q
Baseline [47] 79.8 721 709 828 795 644 676 706 795 624 717 442 71.0
MBLLEN [4]]] 715 725 702 807 80.6 650 652 706 779 64.9 713 418 70.3
KIND [75] 802 744 715 810 803 622 613 675 758 62.1 759 409 69.4
Zero-DCE [20] 81.8 746 70.1 863 795 610 662 71.7 784 62.9 713 431 71.1
EnlightenGAN [26] | 81.1 742 698 833 783 633 655 693 753 62.5 76.7 410 70.0
RUAS [36] 764 692 627 773 749 590 643 648 73.1 55.8 715 388 65.7
SCI [43] 803 742 736 828 784 644 658 713 78.1 62.7 782 424 71.0
NeRCo [70] 80.8 736 663 813 756 628 625 677 756 61.8 751  39.0 68.5
SMG [66] 781 721 658 816 783 637 645 676 763 57.4 737 424 68.5
LightDiff [25] 81.7 741 733 852 802 625 673 714 747 63.5 758  46.1 71.3
DarkIR [15) 785 733 660 849 768 594 629 651 743 62.0 737 419 68.2
DENet [46] 81.1 750 739 871 797 635 663 69.6 763 61.4 767 449 713
PENet [74] 765 719 674 842 780 599 646 667 74.8 62.5 739 451 68.8
MAET [10] 815 737 740 882 809 688 669 71.8 793 60.2 788 463 72.5
FeatEnHancer[21] 797 759 733 875 812 620 649 679 757 64.2 76.6 453 712
DAINet [13] 81.1 777 741 894 804 686 693 7I.1 815 65.3 786 451 73.5
YOLA (5] 824 740 727 854 810 672 665 715 81.8 65.2 786 457 727
FRBNet(our) 843 756 753 898 820 68.6 71.6 748 82.6 65.8 81.0 465 74.9

Table 8: Quantitative comparisons of the ExDark[40] dataset based on TOOD detector.

Method Bicycle Boat Bottle Bus Car Cat Chair Cup Dog Motorbike People Table | mAP5q
Baseline [16] 80.6 758 71.1 881 768 704 668 692 854 61.5 76.1 48.2 72.5
MBLLEN [41] 80.8 778 728 893 787 735 675 694 852 62.9 77.3 47.2 73.5
KIND [75] 81.7 777 703 884 781 69.7 672 678 84.1 61.6 76.6 478 72.6
Zero-DCE [20] 81.8 790 729 896 779 719 685 69.8 84.8 62.9 78.0 495 73.9
EnlightenGAN [26] 80.7 776 704 888 769 706 679 687 844 62.2 71.5 49.6 73.0
RUAS [36]| 78.4 743 674 851 724 677 613 652 779 56.1 734 470 69.4
SCI [43] 81.3 78.1 71.6 894 776 71.1 680 709 85.0 63.0 772 492 735
NeRCo [70] 78.8 756 708 87.6 757 69.1 668 69.5 825 59.9 76.0 493 71.8
SMG [66] 78.2 759 699 873 751 713 665 672 842 60.1 75.1 46.7 71.5
LightDiff [25] 81.1 778 744 895 792 720 676 709 86.1 62.5 772 49.0 72.9
DarkIR [15] 78.4 78.0 704 887 760 708 679 665 83.7 59.5 752 49.0 72.0
DENet [46] 80.9 782 709 883 715 716 672 703 873 62.0 71.3 49.9 73.5
PENet [74] 76.0 723 667 844 722 654 633 658 79.1 53.1 71.0 446 67.8
MAET [10] 80.5 773 740 90.1 783 734 69.6 70.7 86.6 64.4 776 485 74.3
FeatEnHancer[21] 836 774 748 89.6 793 726 682 725 855 63.8 78.0  49.6 74.6
YOLA [5] 83.9 787 753 888 79.0 734 699 719 86.8 66.3 783  49.8 752
FRBNet(our) 832 789 765 912 80.7 741 699 72.6 84.6 64.6 78.6  49.8 75.4

training, we apply data augmentation including random expansion (ratio range 1-2), minimum
IoU random cropping (IoU thresholds from 0.4 to 0.9), random resizing between (750x500) and
(1500x1000) with preserved aspect ratio, and random horizontal flipping with 0.5 probability. During
testing, images are resized to 1500x1000 while maintaining aspect ratio. We train YOLOV3 for
20 epochs and TOOD for 12 epochs using the SGD optimizer. Since DarkFace contains only face
annotations, we configure the detectors for single-class detection.

Figure[6] presents qualitative comparisons of face detection results on challenging DarkFace samples.
As shown, enhancement-based methods like LightDiffusion and DarkIR improve image visibility
but often introduce artifacts or over-enhancement that can lead to false positives. FeatEnHancer,
YOLA, and our FRBNet all maintain the original low-light appearance while accurately detecting
faces. Notably, our method achieves more precise bounding box localization and higher detection
confidence scores, particularly for faces in extremely dark regions.

FRBNet on Nighttime Semantic Segmentation. We further evaluate our approach on nighttime
semantic segmentation using the ACDC-Night dataset to demonstrate the versatility of FRBNet
across different low-light vision tasks. For semantic segmentation experiments, we adopt the MMSeg-
mentation framework with DeepLabV3+ architecture, employing a ResNet-50 backbone initialized
with ImageNet pre-trained weights. This configuration allows for direct comparison with previous
state-of-the-art methods on nighttime segmentation. During training, images are resized to 2048x1024
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Figure 6: Qualitative comparisons of dark face detection methods on DarkFace dataset.

resolution, and we use a batch size of 4. The network is optimized using SGD with a base learning
rate of 0.01 and weight decay of 0.0005, following a 20K iteration training schedule.

Input Baseline FeatEnHancer YOLA FRBNet(Ours) GT

Figure 7: Qualitative comparisons of semantic segmentation methods on ACDC-Night dataset.
Figure[7] presents qualitative comparisons of segmentation results on the ACDC-Night dataset. The
visualization reveals significant differences in segmentation quality across methods. The baseline

method struggles with class boundaries in low-light conditions, producing fragmented and incon-
sistent segments, particularly visible in the second and third rows. FeatEnHancer improves overall
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Figure 8: Qualitative comparisons of instance segmentation methods on LIS dataset.

segmentation but still misclassifies certain regions, especially in areas with strong light sources or
deep shadows. YOLA produces more coherent results but exhibits some boundary inaccuracies
and class confusion in complex scenes. In contrast, our FRBNet generates segmentation maps that
more closely align with ground truth, maintaining consistent class boundaries even in extremely dark
regions. This is especially evident in challenging scenarios like road boundaries under street lighting,
distant buildings in minimal ambient light, and complex urban scenes with mixed lighting sources.

FRBNet on Low-light Instance Segmentation. To further evaluate the versatility of our approach
across a wider range of low-light vision tasks, we conduct experiments on the Low-light Instance
Segmentation dataset, which requires both object detection and instance-level segmentation in
challenging illumination conditions. We employ Mask R-CNN with ResNet-50 backbone as our base
architecture, implemented using the MMDetection framework. During training, images are resized
to 1333x800 while maintaining aspect ratio, and standard random horizontal flipping is applied
with a probability of 0.5. We train all models with a batch size of 8 using SGD optimizer with
an initial learning rate of 0.01, momentum of 0.9, and weight decay of 0.0001. The learning rate
schedule consists of a linear warm-up phase for the first 1000 iterations, followed by a multi-step
decay, reducing the learning rate by a factor of 0.1 at epoch 18. All models are trained for 24 epochs
with mixed precision training enabled.

Table 9: Quantitative comparisons of the Low-light Instance Segmentation[4] dataset based on Mask
RCNN.

Method mAP*¢9  AP:Y AP0 mAPPo* Angz APl;gr
Baseline [22] 23.7 41.5 233 29.2 52.9 29.3
MBLLEN [41]] 22.5 40.7 22.3 28.5 52.0 28.4
Zero-DCE [20] 25.1 44.5 24.6 30.3 55.3 294
DENet [46] 16.1 31.0 15.4 19.5 40.0 15.7
DarkIR [15] 27.4 46.3 27.5 32.7 56.7 34.4
YOLA [3] 24.9 44.8 24.2 30.7 56.4 29.3
FeatEnHancer [21]] 290.1 48.7 29.7 34.0 57.6 35.3
FRBNet(Ours) 30.2 50.5 30.4 36.9 61.2 38.4

Beyond the segmentation results already analyzed in the main text, this dataset also contains bounding
box annotations for detection. Therefore, we conducted additional experiments and found: FRBNet
shows even larger gains, achieving 36.9% AP"** compared to 34.0% for FeatEnHancer and 32.7%
for DarkIR. This indicates a 2.9-point improvement over the previous state-of-the-art. Notably,
our approach demonstrates the most substantial improvement at AP%2% (38.4% vs. 35.3%), which
requires more precise localization, highlighting the effectiveness of our frequency-domain features
for accurate object boundary delineation.
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A4 Extended Experiments

To further demonstrate the flexibility and task-level generalization of our frequency-domain feature
enhancer, we additionally conducted experiments on two more tasks:

FRBNet on Low-light Image Classification. We adopt the official implementation of the low-
light image classifier, using ResNet-101 as the backbone and following the standardized training
protocols prescribed for the CODaN|[30]] dataset. For comparison, we include the Baseline model,
FeatEnhancer [21]], and YOLA [5] as representative prior approaches. The reported accuracies in
TabldI0]demonstrate that our method consistently outperforms all competitors, achieving the highest
classification accuracy among the evaluated methods. This performance gain can be attributed to
our frequency-domain design, which effectively preserves discriminative cues under challenging
low-light conditions.

FRBNet on Low-light Video Action Recognition. Furthermore, we conduct experiments on low-
light video action recognition using the ARID dataset [67], implemented within the MMAction2
framework and employing the TSN [61] architecture with a ResNet-50 backbone. We evaluate model
performance using both Top-1 and Top-5 accuracy metrics, as reported in TabldIT] our method
achieves substantial improvements over both the Baseline and YOLA [3], registering the highest
scores across all metrics.

Table 10: Quantitative comparisons of the Low-  Table 11: Quantitative comparisons of the Low-

light Image Classification. light Video Action Recognition.
Method Acc Method Top-1 Top-5
Baseline [5.] 86.8 Baseline 4265 96.27
FeatEnHancer [21] 82.0
FRBNet(Ours) 88.2 FRBNet(Ours) 44.84 96.53

To further examine the effectiveness of our proposed FRBNet, we conducted additional ablation
experiments by replacing the learnable frequency-domain filter with standard convolutional layers.
Specifically, we implemented 3x3, 5x5, and 7x7 convolution kernels and evaluated these variants
on the ExDark and DarkFace datasets using YOLOV3. As reported in the Table our method
consistently and significantly outperforms all convolution-based counterparts across different kernel
sizes. This observation aligns with our original motivation: while standard convolutions exhibit spatial
shift-invariance, they are inherently limited in capturing structured dependencies within the frequency
domain. In contrast, our approach employs a radial basis function (RBF) network to construct a
spectrally selective and directionally modulated filter, enabling the preservation and enhancement of
localized frequency cues under real-world low-light conditions. Such spectral-directional adaptability
is particularly crucial for effectively handling the non-uniform illumination of low-light imagery.

Table 12: Additional ablation experiments on FCR with convolution layers of varying kernel sizes.

Method ExDark DarkFace

Recall mAP Recall mAP
Our 90.6 74.9 75.7 57.7
Conv 3x3 84.6 72.7 72.4 553
Conv 5x5 85.4 73.0 73.7 54.8
Conv 7x7  85.3 72.3 72.6 54.6

A.5 Discussion

Limitations. Although FRBNet has demonstrated impressive performance in various low-light visual
tasks, there still exist limitations. Due to the current design of FRBNet mainly addresses image
degradation issues related to illumination, FRBNet may show less effective performance in low-light
scenes with more complex degradation conditions, such as motion blur. This problem may be solved
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by introducing all-in-one modules or forming models that consider more potential types of image
degradation, which is a direction of our future work.

Broader Impacts. Our work contributes to enhancing visual perception systems in low-light environ-
ments, with potential applications in safety-critical domains like autonomous driving, surveillance,
and emergency response. However, improved low-light vision perception also raises privacy concerns,
as it might enable surveillance in previously invisible lighting conditions. We encourage responsible
deployment of these technologies with appropriate privacy safeguards and regulatory compliance.
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