
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NESTOR: A NESTED MOE-BASED NEURAL OPERA-
TOR FOR LARGE-SCALE PDE PRE-TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural operators have emerged as an efficient paradigm for solving PDEs, over-
coming the limitations of traditional numerical methods and significantly improv-
ing computational efficiency. However, due to the diversity and complexity of
PDE systems, existing neural operators typically rely on a single network archi-
tecture, which limits their capacity to fully capture heterogeneous features and
complex system dependencies. This constraint poses a bottleneck for large-scale
PDE pre-training based on neural operators. To address these challenges, we pro-
pose a large-scale PDE pre-trained neural operator based on a nested Mixture-of-
Experts (MoE) framework. In particular, the image-level MoE is designed to cap-
ture global dependencies, while the token-level Sub-MoE focuses on local depen-
dencies. Our model can selectively activate the most suitable expert networks for
a given input, thereby enhancing generalization and transferability. We conduct
large-scale pre-training on twelve PDE datasets from diverse sources and success-
fully transfer the model to downstream tasks. Extensive experiments demonstrate
the effectiveness of our approach.

1 INTRODUCTION

Partial differential equations (PDEs) have broad applications in science and engineering, includ-
ing physics and fluid mechanics Karniadakis et al. (2021) Debnath (2005). Existing studies can
be roughly divided into two categories: traditional numerical methods and data-driven methods.
Traditional methods, such as FEM Norrie & De Vries (2014) and FDM LeVeque (2007), approx-
imate PDE solutions by discretizing the spatial domain, resulting in complex procedures and high
computational costs. Neural operators aim to learn infinite-dimensional mappings between func-
tion spaces Li (2021), enabling fast inference while maintaining reasonable accuracy, significantly
reducing computational costs, and overcoming the limitations of traditional methods. However,
neural operators typically rely on large amounts of training data, which are often obtained through
costly experiments and numerical simulations, severely limiting their application in wider scenarios.

Recently, large-scale pre-training Bengio (2012) offers a new research paradigm to address this
problem. Unlike traditional methods, it involves initially training models on large-scale datasets,
enabling them to acquire generalizable knowledge across different PDEs and tasks, thereby estab-
lishing a unified modeling framework. For specific downstream tasks, only a small amount of data
is required for fine-tuning to obtain highly accurate solutions. This paradigm not only enhances
model generalization and effectively mitigates overfitting but also significantly reduces the training
cost and time for downstream tasks. Large-scale pre-training has been widely applied in fields such
as computer vision and natural language processing Dosovitskiy et al. (2020) Devlin et al. (2019),
where its superior performance has been well validated in practice.

In the field of neural operators Lu et al. (2019) Li et al. (2020), research on large-scale pre-training
for PDEs has begun to take shape Hao et al. (2024). However, PDE systems are highly complex,
not only involving multiple types of equations but also containing physical fields with intricate
spatio-temporal dependencies and regional similarities, resulting in complex data distributions and
highly diverse tasks. Existing approaches typically use a single network architecture. Although such
models can capture general knowledge of equations, they are limited in representing the specific
characteristics of different types of PDE and the regional correlations within the physical fields of
each equation, as shown in Fig. 1. If a model can finely learn the unique properties of a particular

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Router

...

(a) Single Network (b) Our Nested MoE Network

Router

Token

Expert 1

Token

Expert n
...

Image Expert 1

Router

Token

Expert 1

Token

Expert n
...

Image Expert n

 Diversity & Complexity

of PDE Data

Outputs

S
in

g
le

 N
et

w
o

rk
S

in
g

le
 N

et
w

o
rk

N
es

te
d

 M
o
E

 N
et

w
o
rk

N
es

te
d

 M
o
E

 N
et

w
o
rk

Token Level

Expert for

PDFs'

Complexity

Token Level

Expert for

PDFs'

Complexity

Image Level

Expert for

PDFs'

Diversity

Image Level

Expert for

PDFs'

Diversity

Router

...

(a) Single Network (b) Our Nested MoE Network

Router

Token

Expert 1

Token

Expert n
...

Image Expert 1

Router

Token

Expert 1

Token

Expert n
...

Image Expert n

 Diversity & Complexity

of PDE Data

Outputs

S
in

g
le

 N
et

w
o

rk
S

in
g

le
 N

et
w

o
rk

N
es

te
d

 M
o
E

 N
et

w
o
rk

N
es

te
d

 M
o
E

 N
et

w
o
rk

Token Level

Expert for

PDFs'

Complexity

Token Level

Expert for

PDFs'

Complexity

Image Level

Expert for

PDFs'

Diversity

Image Level

Expert for

PDFs'

Diversity

Figure 1: Comparison of two different network architectures. (a) Traditional single-network ar-
chitecture; (b) our proposed nested MoE architecture, where image-level MoE experts learn global
diversity across different PDE types, while token-level Sub-MoE experts capture complex local fea-
tures within equations.

class of equations and effectively identify both local and global correlations in physical fields, its
generalization and cross-task transfer performance can be significantly enhanced. In recent years,
the Mixture-of-Experts (MoE) framework Jacobs et al. (1991) has attracted significant attention due
to its advantages in increasing model capacity while maintaining computational efficiency. Through
a routing mechanism Jacobs et al. (1991), the MoE selectively activates certain expert networks,
choosing the most suitable experts for each input, providing a new research idea for large-scale pre-
training of PDE neural operators. However, although single-layer MoE models can capture feature
differences between equation types, they still face limitations in modeling diversity and complexity
within physical fields of the same type of equations.

To address these challenges, we innovatively incorporate the MoE architecture into our model
design, constructing a NESTed MoE-based neural OperatoR for large-scale PDE pre-training
(NESTOR). Specifically, we first design a series of image-level MoE experts to learn the global
diversity of a class of PDEs and adaptively activate the most suitable expert through image-level
routing to process inputs of similar PDE types. Within each image-level expert, multiple token-level
sub-MoE experts are set up to further capture the complex local dependencies of the physical field
in the equation, and selectively activate the most suitable experts through token-level routing for
processing. This nested MoE architecture solves the problems of PDE diversity and complexity
from two levels. Through pre-training on large-scale PDE datasets, this architecture is successfully
transferred to downstream tasks, providing an efficient solution for complex PDE problems. The
main contributions of this work can be summarized as follows:

• Proposed a nested MoE framework. We design a novel nested MoE architecture that inte-
grates image-level MoE and token-level MoE within a unified framework, enabling cross-
level expert collaboration.

• Designed an image-level routing mechanism. We develop an image-level routing mech-
anism that selects appropriate expert networks based on the global characteristics of the
data, providing a holistic perspective.

• Comprehensive validation on large-scale PDE datasets. We apply the proposed framework
to large-scale pre-training and downstream tasks across multiple PDE datasets, demonstrat-
ing significant advantages in cross-task generalization and transferability.

2 RELATED WORKS

2.1 NEURAL OPERATORS

Neural operators are designed to learn mesh-free, function-space-to-function-space infinite-
dimensional mappings from inputs to solution functions Lu et al. (2019). They effectively overcome
the dependence of traditional numerical solvers on mesh discretization, improving computational

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

speed and reducing costs. Moreover, for repeated problems, a neural operator only needs to be
trained once, without retraining for each new PDE instance, making it an efficient paradigm for PDE
solving. To successfully apply neural operators to PDE problems, researchers have proposed sev-
eral effective model architectures. For example, DeepONet Lu et al. (2019) adopts a branch–trunk
architecture to realize operator learning. The Fourier Neural Operator (FNO) Li et al. (2020) lever-
ages Fourier transforms to capture non-local dependencies, thus enabling efficient PDE solutions.
The Galerkin Transformer Cao (2021) integrates self-attention mechanisms with Galerkin projection
for operator learning. GNOT Hao et al. (2023) combines graph neural operators with Transformers,
achieving efficient modeling on irregular meshes. MPP McCabe et al. (2023) is a Transformer-based
autoregressive pre-training architecture. DPOT Hao et al. (2024) employs autoregressive denoising
pre-training combined with Fourier attention to predict a wide range of PDE problems. Despite the
significant progress made by neural operators, their performance still has room for improvement due
to the limitations imposed by the diversity of data and tasks.

2.2 MIXTURE OF EXPERTS

The Mixture of Experts (MoE) framework is a method that expands model capacity while avoiding
a significant increase in computational cost. Its core idea is to select a subset of experts among
multiple expert networks through a gating mechanism Jacobs et al. (1991). With the development
of MoE, it has been widely applied in natural language processing, computer vision, and other
domains. GShard Lepikhin et al. (2020) was the first to introduce the MoE structure into Trans-
former models, enabling efficient large-scale distributed training. Switch Transformer Fedus et al.
(2022) scaled large language model parameters to the trillion level, significantly improving both
model capacity and efficiency. V-MoE Riquelme et al. (2021) applied MoE to vision Transform-
ers and demonstrated its potential for enhancing efficiency and performance in tasks such as image
recognition. Existing work primarily focuses on homogeneous experts, while research on hetero-
geneous Wang et al. (2024) experts is relatively limited. Homogeneous experts refer to all experts
using the same network architecture, which offers simplicity in implementation, stable convergence,
and ease of load balancing. However, having identical architectures limits expert diversity and, to
some extent, constrains the performance of MoE. Heterogeneous expert MoE allows different ex-
perts to adopt different network architectures, avoiding redundancy in the features learned by the
experts and significantly enhancing the model’s expressive power and efficiency.

2.3 PRE-TRAINING

Pre-training Bengio (2012) refers to the process of training a model on large-scale datasets to learn
general knowledge that can be transferred to a variety of downstream tasks. It can significantly
reduce the training cost of downstream tasks while improving generalizability. The pre-training
paradigm has achieved outstanding success in natural language processing, demonstrating strong
cross-task transferability, as exemplified by models such as BERT Devlin et al. (2019) and GPT Rad-
ford et al. (2018). In computer vision, pre-training has also been widely adopted, with notable ex-
amples including the Vision Transformer (ViT) Dosovitskiy et al. (2020) and CLIP Radford et al.
(2021). With the development of large-scale pre-training models, this approach has gradually been
introduced into the field of PDE neural operators. Existing explorations include MPP McCabe
et al. (2023), which proposes a Transformer-based autoregressive pre-training framework capable
of learning unified serialized representations across various PDE datasets and allowing cross-task
modeling through transfer. DPOT Hao et al. (2024) employs an autoregressive denoising strategy
combined with Fourier attention to achieve efficient pre-training across multiple types of PDE prob-
lems, demonstrating cross-equation generalization at the operator level. Although these studies have
successfully applied pre-training techniques to PDE neural operators, they still exhibit notable lim-
itations in comprehensively capturing PDE systems. Therefore, there remains substantial room for
further exploration of large-scale pre-training in the PDE neural operator domain.

3 PROPOSED METHOD

Our NESTOR model aims to address the PDEs’ diversity and complexity from image and token
levels. This section starts with an overview of the proposed NESTOR model. Then we provide a
detailed description of each part of the model. Finally, the loss function is presented.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Top-kr FlashAttn -11FlashAttn -11

FlashAttn -10FlashAttn -10

FlashAttn -12FlashAttn -12

FlashAttn -1nFlashAttn -1n

AFNOAFNO

Top-kr
MLP -1 1MLP -1 1

MLP -1 0MLP -1 0

MLP -1 2MLP -1 2

MLP -1 nMLP -1 n

Shared MLPShared MLP

Top-kr FlashAttn -11

FlashAttn -10

FlashAttn -12

FlashAttn -1n

AFNO

Top-kr
MLP -1 1

MLP -1 0

MLP -1 2

MLP -1 n

Shared MLP

Top-kr FlashAttn -11FlashAttn -11

FlashAttn -10FlashAttn -10

FlashAttn -12FlashAttn -12

FlashAttn -1nFlashAttn -1n

AFNOAFNO

Top-kr
MLP -1 1MLP -1 1

MLP -1 0MLP -1 0

MLP -1 2MLP -1 2

MLP -1 nMLP -1 n

Shared MLPShared MLP

Top-kr FlashAttn -11

FlashAttn -10

FlashAttn -12

FlashAttn -1n

AFNO

Top-kr
MLP -1 1

MLP -1 0

MLP -1 2

MLP -1 n

Shared MLP

Figure 2: Overview architecture. We trained on twelve mixed PDE datasets, predicting the next
frame based on the preceding frames. We designed a nested MoE architecture: (1) the top shows the
overall model architecture; (2) the bottom right illustrates the nested Sub-MoE architecture; and (3)
the bottom left depicts the improved FlashAttention architecture.

3.1 OVERVIEW

In this paper, we consider the general form of a parameterized partial differential equation defined
on the spatial region Ω ⊂ Rn and the time interval [0, T],

∂u

∂t
−F

(
u,∇u,∇2u, . . . ; θ

)
= 0, (1){

u(x, 0) = u0(x), x ∈ Ω,

B[u](x, t) = g(x, t), (x, t) ∈ ∂Ω× (0, T],

where u is the unknown solution function, representing the state of the system; F is the PDE spatial
derivative operator, which describes the dynamics or evolution law of the system and depends on
the current solution u, its spatial derivative, and parameter θ; θ is the external condition or physical
parameter that controls the properties of the equation; u(x,0) is the initial condition; B[u](x, t) is the
boundary condition.

On this basis, we define a solution operator F and construct the following mapping

F : ut+1 = FT (ut−T+1:t; θ), (2)

where θ represents the system parameters. Based on given conditions and parameters, the operator
F can take the most recent T frames as input and predict the next frame from the previous T frames,
thereby predicting the evolution of different system states.

When dealing with complex, high-dimensional continuous partial differential equations, Transform-
ers struggle to effectively represent kernel integral operators Guibas et al. (2021). Meanwhile, tra-
ditional neural operators have difficulty fully capturing diverse data features and complex system
dependencies. To address these challenges, we propose a nested MoE framework, as illustrated in
Fig. 2. The model first maps the PDE inputs into a series of latent representations. These latent
representations are then processed by the MoE module, where a learned gating mechanism assigns
them to different experts, enabling each expert to learn distinct features of the inputs. The proposed
network architecture adaptively captures multi-scale features of multiphysics fields, demonstrating
strong transferability and cross-task generalization capability.

3.2 SPATIO-TEMPORAL ENCODING

First, the input x ∈ RB×C×H×W is divided into a set of non-overlapping patches Xp ∈
RB×N×C×PH×PW , where B is the batch size, N is the number of patches, and (PH × PW) is

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

the patch size. Each patch is then projected into a D-dimensional space, followed by the addition of
positional encoding Epos:

X = Embedding(Xp) + Epos ∈ RB×N×D, (3)

Subsequently, the obtained representation is rearranged as X ∈ RB×X×Y×T×C , and mapping time
series to a fixed dimension to compress information in the time dimension:

Y =

T∑
t=1

WtXt, Y ∈ RB×X×Y×Cout , (4)

where W ∈ RT×Cout×Cout is a learnable weight matrix.

3.3 NESTED MIXTURE-OF-EXPERTS (NESTOR) ARCHITECTURE

A single type of network architecture is insufficient to fully capture the diverse characteristics of
data. To address this, we introduce a nested MoE architecture at the operator level to enable multi-
scale interactions within the PDE system. This module dynamically allocates the most appropriate
expert network through a routing mechanism, allowing it to simultaneously characterize both local
and global dependencies and effectively capture features in both the time and frequency domains.

3.3.1 ROUTING STRATEGY

In the main MoE module, we adopt an image-level gating mechanism combined with a top-k Shazeer
et al. (2017) routing strategy for expert selection. The detailed process is as follows.

First, given the input feature x ∈ RB×C×H×W , we apply global average pooling to obtain the
image-level representation x̄b ∈ RC , where b = 1, . . . , B. Next, the image-level representation is
fed into a learnable linear layer to produce the raw expert scores:

sb = x̄bW
⊤ + b ∈ RN , (5)

where W ∈ RN×C is the expert weight matrix, b ∈ RN is the bias term, and N denotes the number
of experts. The raw scores are then normalized using the softmax to obtain the routing probabilities

pb = softmax(sb),
N∑
i=1

pb,i = 1. (6)

Finally, according to the top-k routing strategy, the k experts with the highest probabilities are
selected. Let Ib denote the index set of the selected experts. For each selected expert i ∈ Ib, the
final routing weight is defined as:

wb,i =
pb,i∑

j∈Ib pb, j
, i ∈ Ib. (7)

3.3.2 EXPERT DESIGN

1) Shared Expert. In the main MoE module, we select AFNO Guibas et al. (2021) as the shared
expert, which is primarily responsible for capturing cross-task global spatial low-frequency features.
First, the input feature x ∈ RB×C×H×W is Fourier transformed: x̂ = F(x), x̂ ∈ CB×H×W×C ,
where F(·) represents the FFT operation. Next, a complex convolution operation is performed in
the frequency domain

ŷreal = σ
(
x̂realW

(r)
1 − x̂imagW

(i)
1 + b

(r)
1

)
, (8)

ŷimag = σ
(
x̂imagW

(r)
1 + x̂realW

(i)
1 + b

(i)
1

)
, (9)

where σ is the activation function, W (r)
1 ,W

(i)
1 are the learnable matrices for the real and imaginary

parts, respectively, and b
(r)
1 , b

(i)
1 are bias terms. Then, an inverse Fourier transform is performed to

return to the spatiotemporal feature representation

y = F−1(ŷ), (10)

where F−1(·) represents the IFFT operation. Finally, a normalization layer, MLP, and residual
connections are combined to obtain the output of the shared expert.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

2) Non-shared Expert. We design FlashAttention Dao et al. (2022) as a non-shared expert, applied
to the image-level features after routing. Here, the standard FFN layer within FlashAttention is
replaced by a Sub-MoE, which is primarily responsible for capturing dependencies among tokens
within an image. First, the input feature x ∈ RB×C×H×W is reshaped into a sequence form x′ ∈
RB×C×N , where N = H × W . Next, x′ is normalized and linearly transformed to obtain the
query (Q), key (K), and value (V) representations. The attention-weighted result is then computed
as Z = softmax

(
QK⊤
√
dk

)
V , which is added to the input residual and further normalized to obtain Z̃.

Subsequently, Z̃ is passed through a Sub-MoE module for linear transformation:

Y = Sub-MoE(Z̃). (11)

Finally, by combining residual connections and normalization layers, we obtain the output of the
non-shared expert.

3.3.3 SUB-MOE

1) Routing Strategy. In Sub-MoE, we adopt a token-level gating mechanism Fedus et al. (2022)
combined with a top-k routing strategy for expert selection. Unlike the image-level gating in the
main MoE module, the token-level gating computes expert scores for each token individually, en-
abling a finer-grained expert selection: sb,n = xb,nW

⊤ + b, sb,n ∈ RM , where xb,n ∈ RC

represents the nth token feature of the bth sample, W ∈ RM×C is the expert weight matrix, b ∈ RM

is the bias term, and M is the number of experts. Afterward, the raw scores are normalized, and the
k expert index set Ib, n with the highest scores is selected. Each token is then dynamically assigned
to the selected expert for processing:

wb, n, i =
pb,n,i∑

j∈Ib,n pb, n, j
, i ∈ Ib,n. (12)

where pb, n, i is the normalized score of the nth token in the bth sample for the ith expert, and wb,n,i

is the final weight assigned.

2) Sub-Expert Design. Sub-MoE implements the functionality of the FFN layer in FlashAttention
and is a homogeneous MoE. This means that both shared and unshared experts use the same network
structure, designed as an MLP. Normalized features are fed into the Sub-MoE, where token-level
routing assigns them to the most appropriate expert for processing, extracting fine-grained feature
representations. The computational process is as follows.

ExpertMLP(x) = W2 σ(W1x+ b1) + b2, (13)

where W1 ∈ RC×(rC), W2 ∈ R(rC)×C , r is mlp ratio, σ(·) denotes the activation function of
GELU. Specifically, we first perform the first-layer linear transformation on the input feature h =
xW1 + b1. Next, perform a nonlinear activation on h: a = GELU(h). Finally, a second linear
transformation is performed to obtain the final feature representation: y = aW2 + b2.

3.4 HEAD AND LOSS FUNCTION

3.4.1 LOAD BALANCING LOSS

In our nested MoE model, the routing mechanism assigns tokens to the most suitable experts. A bal-
anced distribution of tokens among experts is crucial for MoE performance. When the allocation is
imbalanced, some experts remain idle and fail to learn diverse features, while a few experts become
overloaded, potentially causing memory bottlenecks. This can lead the model to degenerate to using
only a subset of experts, failing to fully leverage the advantages of MoE. To address this issue, we
introduce a load-balancing loss Shazeer et al. (2017) to encourage a more uniform distribution of
tokens across experts. Here, the two load balancing losses are defined following the same pattern:

Laux = E

E∑
i=1

pi · fi, pi =
1

N

N∑
j=1

Pij , fi =
ni∑E

k=1 nk

, (14)

where pi is the routing probability of expert i, fi is the actual token assignment ratio of expert i,
E is the total number of experts, N is the total number of tokens, Pij is the probability of token j
being assigned to expert i, and ni denotes the number of tokens assigned to expert i.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.4.2 MAIN TASK LOSS

For our regression task, we choose L2 loss Li et al. (2020) as the main task loss function:

L2 =

∥∥∥ŷ(c)
i −y

(c)
i

∥∥∥
2∥∥∥y(c)

i

∥∥∥
2

, (15)

where y
(c)
i is the ground-truth of i-th sample at channel c, and ŷ

(c)
i is the corresponding prediction.

3.4.3 TOTAL LOSS

Ultimately, our loss function consists of the main task loss and two load-balancing losses:
L = L2 + αLaux1 + βLaux2, (16)

where L2 denotes the main task’s L2 loss; Laux1 is the load balancing loss of the MoE module
(image-level routing); Laux2 is the load balancing loss of the Sub-MoE module (token-level routing);
and α and β are hyperparameters that control the contribution of the load balancing losses.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRIC

Datasets. We conducted experiments on a mixed dataset consisting of twelve different data
sources and different parameters from FNO Li et al. (2020), PDEBench Takamoto et al. (2022),
PDEArena Gupta & Brandstetter (2022), and CFDBench Luo et al. (2023). (1) FNO: A dataset
containing three different parameters for the same type of equation. (2) PDEBench: A dataset con-
taining four different parameters for the same type of equation. (3) PDEArena: A dataset containing
the same equation with and without initial conditions. It is worth noting that, due to certain reasons,
the NS and NS-cond datasets are missing 1,300 and 604 samples, respectively. Our model is trained
under this reduced-data setting, while the baseline models are trained on the complete datasets. (4)
CFDBench: A multi-task PDE dataset obtained by processing the four subtasks uniformly.

Evaluation Metrics. We choose the relative error L2 as the evaluation metric, where lower relative
error values L2 indicate better performance.

4.2 MAIN RESULTS

Table 1 presents the experimental results of our method compared with other models in the pre-
training datasets. The first row of the table specifies the types of PDE datasets and parameter settings,
while the first column lists the baseline models for comparison. The experiments are divided into
two parts: the first is pre-training, where all models are trained from scratch on the datasets; the
second is fine-tuning, where models are further trained based on the pre-trained weights.

In the pre-training stage, our method demonstrates strong performance across 12 PDE datasets,
achieving state-of-the-art results on 6 of them. Notably, our model ranks first on 5 out of 6
PDEBench datasets, and achieves significantly lower errors than mainstream models on multiple
benchmarks. These results clearly validate the effectiveness of our proposed architecture for han-
dling complex PDE systems, highlighting its superior performance and generalization ability in
cross-task PDE modeling.

In the fine-tuning stage, we conduct 200 and 500 epochs of fine-tuning on each dataset. The re-
sults show that after 500 epochs, our model achieved state-of-the-art performance on 9 out of L2

tasks, surpassing advanced pre-trained models on the majority of tasks. Compared with training
from scratch, fine-tuning on pretrained weights generally leads to better performance; moreover,
increasing the number of fine-tuning steps typically yields higher prediction accuracy. These results
demonstrate the superior performance of our proposed model on sparse datasets, highlighting its
stronger generalization ability and adaptability.

In summary, our model demonstrates significant advantages in operator learning for PDE tasks.
With the aid of fine-tuning strategies, it can rapidly adapt to specific tasks and achieve 10 global best
performances across 12 benchmark datasets, highlighting its strong modeling capability in capturing
complex dynamics and multi-scale features, as well as its excellent transferability.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: The experiments are divided into two parts: one reports the pre-training performance of the
model, and the other shows the fine-tuning results on each task. Here, “-200” denotes fine-tuning
for 200 epochs, and “-500” for 500 epochs. The evaluation metric is the L2 loss. The best result
within each part is highlighted in bold, while the overall best result is emphasized in blue bold.

L2RE FNO-ν PDEBench CNS-(η, ζ), DR, SWE PDEArena CFDBench
Model 1e-5 1e-4 1e-3 1,0.1 1,0.01 M1 0.1,0.1 0.1,0.01 M0.1 DR SWE NS NS-cond -

Pre-trained
FNO 0.116 0.0922 0.0156 0.151 0.108 0.130 0.230 0.076 0.153 0.0321 0.0091 0.210 0.384 0.0274
UNet 0.198 0.119 0.0245 0.334 0.291 0.313 0.569 0.357 0.463 0.0971 0.0521 0.102 0.337 0.209
FFNO 0.121 0.0503 0.0099 0.0212 0.052 0.0366 0.162 0.0452 0.104 0.0571 0.0116 0.0839 0.602 0.0071
GK-T 0.134 0.0792 0.0098 0.0341 0.0377 0.0359 0.0274 0.0366 0.0320 0.0359 0.0069 0.0952 0.423 0.0105
GNOT 0.157 0.0443 0.0125 0.0325 0.0420 0.0373 0.0228 0.0341 0.0285 0.0311 0.0068 0.172 0.325 0.0088

Oformer 0.1705 0.0645 0.0104 0.0417 0.0625 0.0521 0.0254 0.0205 0.0229 0.0192 0.0072 0.135 0.332 0.0102
MPP - - - - - 0.0442 - - 0.0312 0.0168 0.0066 - - -

DPOT 0.0976 0.0606 0.00954 0.0173 0.0397 0.0285 0.0132 0.0220 0.0176 0.0321 0.0056 0.125 0.384 0.0095
Ours 0.1195 0.0951 0.0093 0.0167 0.0373 0.0270 0.0120 0.0202 0.0161 0.0308 0.0052 0.132 0.409 0.0112

FineTune
DPOT-FT200 0.0511 0.0431 0.0073 0.0136 0.0238 0.0187 0.0168 0.0145 0.0157 0.0194 0.0028 0.103 0.313 0.0054
Ours-FT200 0.0581 0.0313 0.0056 0.0139 0.0182 0.0161 0.0155 0.0112 0.0134 0.0198 0.0032 0.0793 0.321 0.0045

DPOT-FT500 0.0520 0.0367 0.0058 0.0112 0.0195 0.0153 0.0174 0.0138 0.0156 0.0148 0.0024 0.0910 0.280 0.0039
Ours-FT500 0.0505 0.0217 0.0043 0.0094 0.0134 0.0114 0.0123 0.0083 0.0103 0.0117 0.0026 0.0683 0.285 0.0038

4.3 DOWNSTREAM TASKS EXPERIMENTS

Turbulence

(Geo-)FNO 0.193

MPP-FT 0.152

DPOT-Vanilla 0.167

DPOT-FT 0.135

Ours-Vanilla 0.1822

Ours-FT 0.0711

Figure 3: Performance comparison of different
models on the 2D high-resolution turbulence task.
The evaluation metric is the L2 relative error,
where Vanilla denotes training from scratch, and
-FT indicates results after 500 fine-tuning epochs
on the downstream task.

To evaluate the generalization and transfer-
ability of our model, we conducted down-
stream experiments on a two-dimensional high-
resolution turbulence task. In these experi-
ments, we reused most of the parameters from
the pre-trained model, including the weights of
the MoE modules and the spatio-temporal en-
coding. The visualization of the model predic-
tions is shown in Fig. 4.

As illustrated in Fig. 3, most models fine-tuned
from pre-trained weights outperform those
trained from scratch, which demonstrates the
effectiveness of large-scale pre-training. This
indicates that the model can acquire generaliz-
able PDE knowledge and successfully transfer
it to specific downstream tasks. On the two-
dimensional high-resolution turbulence task, our model achieves a 47.3% improvement in prediction
accuracy, reaching the best performance. These results show that our pre-trained model learns more
effective representations and can be successfully transferred to downstream tasks with only limited
fine-tuning, highlighting its advantage in capturing PDE-specific features.

V
y

V
x

D
en

si
ty

P
re

ss
u

re

Groundtruth Prediction Error Groundtruth Prediction Error

V
y

V
x

D
en

si
ty

P
re

ss
u

re

Groundtruth Prediction Error Groundtruth Prediction Error

Figure 4: Visualization of 2D high-resolution turbulence prediction results. (1) The first column
shows the true values, the second column shows the model predictions, and the third column shows
the corresponding errors. (2) The predicted physical quantities are horizontal velocity, vertical ve-
locity, density field, and pressure field.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Ablation experiments of our proposed model on the PDEBench datasets. “w/o” denotes the
removal of the corresponding component.

Method 1,0.1 1,0.01 0.1,0.1 0.1,0.01 DR SWE Avg L2 Promotion

Ours 0.0144 0.0355 0.0135 0.0178 0.0282 0.0045 0.0173 -
w/o Sub-MoE 0.0157 0.0393 0.0130 0.0209 0.0245 0.0049 0.0197 0.0024
w/o Load Balance Loss 0.0135 0.0335 0.0109 0.0159 0.0265 0.0062 0.0178 0.0005
FlashAttn + AFNO Sum 0.0149 0.0363 0.0136 0.0178 0.0304 0.0046 0.0196 0.0023

4.4 SCALING EXPERIMENTS Table 2: The impact of the number of experts on
performance.

Setting Num FNO PDEBench SWE Avg L2

Zero-shot
2 0.0625 0.0332 0.0057 0.0338
4 0.0615 0.1974 0.0035 0.0875
6 0.0635 0.2600 0.0029 0.1088
12 0.0630 0.2593 0.0030 0.1084

FT-200
2 0.0575 0.0182 0.0024 0.0262
4 0.0563 0.0150 0.0025 0.0246
6 0.0577 0.0240 0.0579 0.0466
12 0.0575 0.1896 0.0025 0.0832

FT-500
2 0.0519 0.0126 0.0022 0.0222
4 0.0504 0.0114 0.0025 0.0214
6 0.0512 0.0165 0.0026 0.0234
12 0.0520 0.0144 0.0025 0.0230

The number of experts in the MoE is a key factor
affecting the performance of pre-trained models.
We fix the number of experts activated each time,
vary the number of unshared experts, and use the
average loss L2 between datasets as the evalua-
tion metric to study the impact of the number of
experts on pre-trained model performance. In se-
lected datasets, we set three training strategies:
Zero-shot, FT-200 (fine-tuning for 200 steps),
and FT-500 (fine-tuning for 500 steps). The re-
sults, shown in Table 2, show that for specific
tasks, fine-tuning the pre-trained model can sig-
nificantly improve performance, and more rounds
of fine-tuning lead to better results. For complex MoE architectures, more experts are not necessarily
better; increasing the number of experts makes optimization more difficult and resource allocation
more complex. For different tasks, there exists an optimal range for the number of experts, and
choosing the right number is crucial to fully realizing the performance of the MoE model.

4.5 ABLATION STUDIES

To validate the effectiveness of our model, we conducted experiments on six sub-tasks of the
PDEBench dataset to assess the impact of different modules on model performance. Using the
complete model as the baseline, we systematically performed ablation studies by progressively re-
moving or replacing key modules, with the average L2 error (Avg. L2) serving as the primary
comprehensive evaluation metric. The results are shown in Table 3.

Impact of Sub-MoE: Removing the Sub-MoE module led to an increase of 0.0024 in the average L2

error. Among all modules, Sub-MoE contributed most significantly to performance improvement,
indicating that it plays an important role in effectively capturing multi-scale and diverse features,
thereby fully validating its importance.

Impact of the load balancing loss: Removing the load balancing loss resulted in an increase of
0.0005 in the average L2 error. Although its contribution is smaller compared to other modules, it
still provides a certain improvement to model performance.

Impact of the fusion strategy between AFNO and FlashAttention: Changing the fusion of AFNO
and FlashAttention from MoE to simple addition increases the Avg. L2 error by 0.0023. This
demonstrates that our nested MoE can select the most suitable expert for different inputs, thereby
enhancing model performance and generalization ability, and validates the rationality of the design.

5 CONCLUSION

This paper proposes a large-scale PDE pre-trained neural operator based on a nested Mixture-of-
Experts (MoE) architecture. We design the nested MoE framework, which consists of image-level
MoE and token-level MoE, and conduct extensive training on twelve PDE datasets to obtain a uni-
versal pre-trained model. Our model successfully transfers to specific tasks and new downstream
tasks, achieving state-of-the-art performance on most datasets. Furthermore, this paper explores the
suitability and advantages of MoE architectures for large-scale PDE pre-trained neural operators,
introducing MoE into this field for the first time and revealing new potential for solving PDEs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

This research adhered to ICLR’s ethical guidelines and did not involve any human subjects or an-
imal experiments. All datasets used adhered to relevant privacy guidelines and were confidential.
We took every effort to minimize potential bias and avoid discriminatory results. No personally
identifiable information was used, and no experiments were performed that could raise privacy or
safety concerns. We are committed to transparency and integrity throughout our research.

7 REPRODUCIBILITY STATEMENT

Details of the training procedure, model configuration, hardware environment, and datasets are pro-
vided in Appendices A.2 and A.3. All datasets used are publicly available, and the source code will
be released upon acceptance of the paper.

REFERENCES

Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning. In Pro-
ceedings of ICML workshop on unsupervised and transfer learning, pp. 17–36. JMLR Workshop
and Conference Proceedings, 2012.

Shuhao Cao. Choose a transformer: Fourier or galerkin. Advances in neural information processing
systems, 34:24924–24940, 2021.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344–16359, 2022.

Lokenath Debnath. Nonlinear partial differential equations for scientists and engineers. Springer,
2005.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catan-
zaro. Adaptive fourier neural operators: Efficient token mixers for transformers. arXiv preprint
arXiv:2111.13587, 2021.

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde
modeling. arXiv preprint arXiv:2209.15616, 2022.

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu,
Ze Cheng, Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator
learning. In International Conference on Machine Learning, pp. 12556–12569. PMLR, 2023.

Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima Anand-
kumar, Jian Song, and Jun Zhu. Dpot: Auto-regressive denoising operator transformer for large-
scale pde pre-training. arXiv preprint arXiv:2403.03542, 2024.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Randall J LeVeque. Finite difference methods for ordinary and partial differential equations: steady-
state and time-dependent problems. SIAM, 2007.

Zongyi Li. Neural operator: Learning maps between function spaces. In 2021 Fall Western Sectional
Meeting. AMS, 2021.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Yining Luo, Yingfa Chen, and Zhen Zhang. Cfdbench: A large-scale benchmark for machine learn-
ing methods in fluid dynamics. arXiv preprint arXiv:2310.05963, 2023.

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles
Cranmer, Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois
Lanusse, et al. Multiple physics pretraining for physical surrogate models. arXiv preprint
arXiv:2310.02994, 2023.

Douglas H Norrie and Gerard De Vries. The finite element method: fundamentals and applications.
Academic Press, 2014.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Advances in Neural Information Processing Systems, 34:8583–8595, 2021.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
learning. Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

An Wang, Xingwu Sun, Ruobing Xie, Shuaipeng Li, Jiaqi Zhu, Zhen Yang, Pinxue Zhao, JN Han,
Zhanhui Kang, Di Wang, et al. Hmoe: Heterogeneous mixture of experts for language modeling.
arXiv preprint arXiv:2408.10681, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LLM USAGE

During the manuscript writing and revision process, we used a Large Language Model (LLM) to
assist. Specifically, LLM was used to improve the accuracy and readability of the language, and to
help ensure the overall structure and clarity of the paper. This tool primarily assisted with tasks such
as sentence reconstruction, grammatical proofreading, and improving text coherence.

A.2 EXPERIMENTAL DETAILS

Pre-training. We pre-trained the model on 8 NVIDIA RTX 4090 GPUs using the Adam optimizer
with an initial learning rate of 1.0× 10−3 and a cyclic learning rate schedule (cycle), including 200
warm-up epochs. The total training lasted 1000 epochs with a batch size of 32. To mitigate the
effects of varying dataset sizes, training weights were assigned to each dataset. During training, we
used T = 10 time steps to predict the next frame, maintaining consistency with the original settings
of most datasets.

Fine-tuning. In the fine-tuning stage, we loaded the pre-trained weights and performed 200-epoch
and 500-epoch fine-tuning on each subset. The key module of the model is the nested MoE layer,
whose parameters are shared across different frequency components along the channel dimension,
enabling cross-level expert collaboration.

A.3 DETAILED INFORMATION OF DATASETS

We list the configurations of the PDE datasets used for pre-training along with detailed descriptions
of the governing partial differential equations:

Table 4: Train and test set sizes of the PDE datasets used for pre-training.

FNO-ν PDEBench CNS-(η, ζ), DR, SWE PDEArena CFDBench
1e-5 1e-4 1e-3 1,0.1 1,0.01 0.1,0.1 0.1,0.01 DR SWE NS NS-cond -

Train set size 100 9800 1000 9000 9000 9000 9000 900 900 5200 2496 9000
Test set size 200 200 200 1000 1000 1000 1000 100 100 1300 600 1000

• FNO-v: This dataset focuses on the temporal evolution of the two-dimensional incompressible
fluid vorticity field w(x, t), where (x, t) ∈ [0, 1]2 × [0, T]. The dynamics are governed by the
two-dimensional Navier–Stokes equations in the vorticity–streamfunction formulation:

∂tw + u · ∇w = ν∆w + f(x), ∇ · u = 0, (17)

where u denotes the velocity field, ν is the viscosity coefficient, ∆ represents the Laplace operator,
and f(x) denotes the external forcing term. By varying the viscosity ν, the dataset provides fluid
dynamics simulations under different flow regimes, enabling the study of how viscosity influences
the evolution of vortex structures.

• PDEBench-CMS: This dataset focuses on the numerical simulation of compressible fluid mechan-
ics (CMS). The goal is to predict the temporal evolution of the velocity field u(x, t), the pressure
field p(x, t), and the density field ρ(x, t) over the spatio-temporal domain (x, t) ∈ [0, 1]2 × [0, 1].
The data are generated based on the governing equations of compressible fluid dynamics, which
consist of the conservation of mass, momentum, and energy: Mass conservation (continuity equa-
tion):

∂tρ+∇ · (ρu) = 0, (18)
ρ (∂tu+ u · ∇u) = −∇p+ η∆u+

(
ζ + η

3

)
∇(∇ · u), (19)

∂t

(
3
2p+

ρu2

2

)
= −∇ ·

[(
ε+ p+ ρu2

2

)
u− u · σ′

]
, (20)

where η denotes the shear viscosity coefficient and ζ the bulk viscosity coefficient.ε is the energy
density and σ′ is the stress tensor.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

• PDEBench-SWE: The dataset is derived from PDEBench and focuses on the numerical simulation
of the Shallow Water Equations (SWE). The objective is to predict the water depth field h(x, t) over
the spatiotemporal domain (x, t) ∈ [−1, 1]2 × [0, 5]. The SWE is a set of approximate governing
equations widely used in ocean dynamics, flood modeling, and geomorphological evolution studies.
The governing equations are given as follows:

∂th+∇ · (hu) = 0, (21)

∂t(hu) +∇ ·
(
1
2hu

2 + 1
2grh

2
)
= −grh∇b, (22)

• PDEBench-DR: The dataset is derived from PDEBench and focuses on the numerical simulation
of diffusion–reaction (DR) systems. The objective is to predict the density field u(x, t) over the
spatiotemporal domain (x, t) ∈ [−2.5, 2.5]2 × [0, 1]. The governing equation is given by:

∂tu = D∇2u+R(u), (23)

where D is the diffusion coefficient and R(u) denotes the nonlinear reaction term.

• PDEArena-NS1/2: The dataset is derived from PDEArena and focuses on the numerical simu-
lation of incompressible Navier–Stokes (NS) flows. The objective is to predict the velocity field
u(x, t), pressure field p(x, t), and density field ρ(x, t) over the spatiotemporal domain (x, t) ∈
[0, 32]2 × [0, 24]. The governing equations are given as follows:

∂tv = −v · ∇v + µ∇2v −∇p+ f, (24)

∇ · v = 0, (25)
where v denotes the velocity field, µ is the viscosity coefficient, p is the pressure, and f represents
external forcing.

• CFDBench: The dataset is derived from CFDBench and focuses on the numerical simulation of
incompressible or weakly compressible flows in irregular geometries. The objective is to predict
the velocity field u(x, t) and the pressure field p(x, t) over domains with complex boundaries. The
governing equations are given as follows:

∂t(ρu) +∇ · (ρu2) = −∇p+∇ · µ(∇u+∇u⊤), (26)

∇ · (ρu) = 0, (27)
where ρ is the fluid density, u is the velocity field, p is the pressure, and µ denotes the viscosity
coefficient.

A.4 VISUALIZATION

For each specific subtask, we first load the model weights pretrained on large-scale PDE datasets,
and then fine-tune the model for each subtask to fully leverage the general features and structural
information learned during pretraining. During fine-tuning, the model can adapt to the data dis-
tribution and equation characteristics of different subtasks, thereby improving prediction accuracy
and generalization capability. The visualization of the prediction results is shown in the figure. For
each data series, we select one representative equation to illustrate the model’s performance across
different tasks. These visualizations allow us to observe the model’s ability to capture spatiotempo-
ral trends, local details, and global patterns, and facilitate comparison with other baseline methods,
thereby demonstrating the effectiveness and advantages of pretrained weights in downstream tasks.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Vx

Ground truth Prediction Error

Vx

Ground truth Prediction Error

Vx

Ground truth Prediction Error

Vx

Ground truth Prediction Error

Figure 5: FNO series of result visualizations. (1) The first column shows the true value, the second
column shows the model prediction value, and the third column shows the corresponding error. (2)
Each row is the predicted physical quantity.

Vx

Vy

Ground truth Prediction Error

Vx

Vy

Ground truth Prediction Error

Vx

Vy

Ground truth Prediction Error

Vx

Vy

Ground truth Prediction Error

Figure 6: PDEBench series of result visualizations. (1) The first column shows the true value, the
second column shows the model prediction value, and the third column shows the corresponding
error. (2) Each row is the predicted physical quantity.

Vx

Vy

Ground truth Prediction Error

Vx

Vy

Ground truth Prediction Error

Vx

Vy

Ground truth Prediction Error

Vx

Vy

Ground truth Prediction Error

Figure 7: DR series of result visualizations. (1) The first column shows the true value, the second
column shows the model prediction value, and the third column shows the corresponding error. (2)
Each row is the predicted physical quantity.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Vx

Ground truth Prediction Error

Vx

Ground truth Prediction Error

Vx

Ground truth Prediction Error

Vx

Ground truth Prediction Error

Figure 8: SWE series of result visualizations. (1) The first column shows the true value, the second
column shows the model prediction value, and the third column shows the corresponding error. (2)
Each row is the predicted physical quantity.

Vx

Vy

Ground truth Prediction Error

Vx

Vy

Ground truth Prediction Error

Vx

Vy

Ground truth Prediction Error

Vx

Vy

Ground truth Prediction Error

Figure 9: PDEArena series of result visualizations. (1) The first column shows the true value, the
second column shows the model prediction value, and the third column shows the corresponding
error. (2) Each row is the predicted physical quantity.

Vx

Vy

Ground truth Prediction Error

Vx

Vy

Ground truth Prediction Error

Vx

Vy

Ground truth Prediction Error

Vx

Vy

Ground truth Prediction Error

Figure 10: CFDBench series of result visualizations. (1) The first column shows the true value, the
second column shows the model prediction value, and the third column shows the corresponding
error. (2) Each row is the predicted physical quantity.

15

	Introduction
	Related Works
	Neural Operators
	Mixture of Experts
	Pre-training

	Proposed Method
	Overview
	Spatio-Temporal Encoding
	Nested Mixture-of-Experts (Nestor) Architecture
	Routing strategy
	Expert design
	Sub-MoE

	Head and Loss Function
	Load Balancing Loss
	Main Task Loss
	Total Loss

	Experiments
	Datasets and Evaluation Metric
	Main Results
	Downstream Tasks Experiments
	Scaling Experiments
	Ablation Studies

	Conclusion
	ETHICS STATEMENT
	REPRODUCIBILITY STATEMENT
	appendix
	LLM USAGE
	Experimental Details
	Detailed Information of Datasets
	Visualization

