

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 NESTOR: A NESTED MOE-BASED NEURAL OPERATOR FOR LARGE-SCALE PDE PRE-TRAINING

Anonymous authors

Paper under double-blind review

ABSTRACT

Neural operators have emerged as an efficient paradigm for solving PDEs, overcoming the limitations of traditional numerical methods and significantly improving computational efficiency. However, due to the diversity and complexity of PDE systems, existing neural operators typically rely on a single network architecture, which limits their capacity to fully capture heterogeneous features and complex system dependencies. This constraint poses a bottleneck for large-scale PDE pre-training based on neural operators. To address these challenges, we propose a large-scale PDE pre-trained neural operator based on a nested Mixture-of-Experts (MoE) framework. In particular, the image-level MoE is designed to capture global dependencies, while the token-level Sub-MoE focuses on local dependencies. Our model can selectively activate the most suitable expert networks for a given input, thereby enhancing generalization and transferability. We conduct large-scale pre-training on twelve PDE datasets from diverse sources and successfully transfer the model to downstream tasks. Extensive experiments demonstrate the effectiveness of our approach.

1 INTRODUCTION

Partial differential equations (PDEs) have broad applications in science and engineering, including physics and fluid mechanics Karniadakis et al. (2021) Debnath (2005). Existing studies can be roughly divided into two categories: traditional numerical methods and data-driven methods. Traditional methods, such as FEM Norrie & De Vries (2014) and FDM LeVeque (2007), approximate PDE solutions by discretizing the spatial domain, resulting in complex procedures and high computational costs. Neural operators aim to learn infinite-dimensional mappings between function spaces Li (2021), enabling fast inference while maintaining reasonable accuracy, significantly reducing computational costs, and overcoming the limitations of traditional methods. However, neural operators typically rely on large amounts of training data, which are often obtained through costly experiments and numerical simulations, severely limiting their application in wider scenarios.

Recently, large-scale pre-training Bengio (2012) offers a new research paradigm to address this problem. Unlike traditional methods, it involves initially training models on large-scale datasets, enabling them to acquire generalizable knowledge across different PDEs and tasks, thereby establishing a unified modeling framework. For specific downstream tasks, only a small amount of data is required for fine-tuning to obtain highly accurate solutions. This paradigm not only enhances model generalization and effectively mitigates overfitting but also significantly reduces the training cost and time for downstream tasks. Large-scale pre-training has been widely applied in fields such as computer vision and natural language processing Dosovitskiy et al. (2020) Devlin et al. (2019), where its superior performance has been well validated in practice.

In the field of neural operators Lu et al. (2019) Li et al. (2020), research on large-scale pre-training for PDEs has begun to take shape Hao et al. (2024). However, PDE systems are highly complex, not only involving multiple types of equations but also containing physical fields with intricate spatio-temporal dependencies and regional similarities, resulting in complex data distributions and highly diverse tasks. Existing approaches typically use a single network architecture. Although such models can capture general knowledge of equations, they are limited in representing the specific characteristics of different types of PDE and the regional correlations within the physical fields of each equation, as shown in Fig. 1. If a model can finely learn the unique properties of a particular

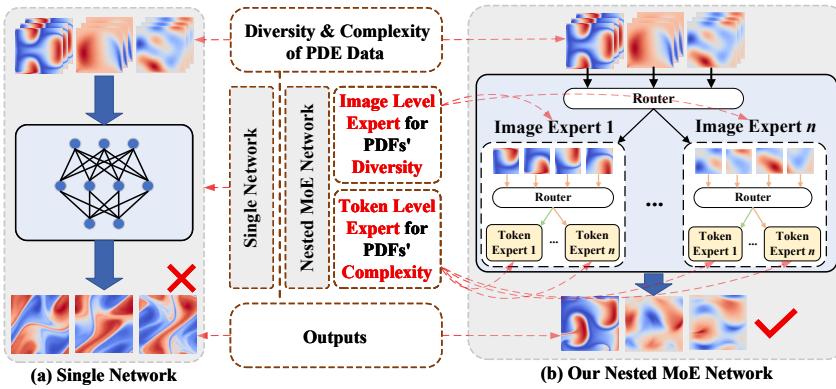


Figure 1: Comparison of two different network architectures. (a) Traditional single-network architecture; (b) our proposed nested MoE architecture, where image-level MoE experts learn global diversity across different PDE types, while token-level Sub-MoE experts capture complex local features within equations.

class of equations and effectively identify both local and global correlations in physical fields, its generalization and cross-task transfer performance can be significantly enhanced. In recent years, the Mixture-of-Experts (MoE) framework Jacobs et al. (1991) has attracted significant attention due to its advantages in increasing model capacity while maintaining computational efficiency. Through a routing mechanism Jacobs et al. (1991), the MoE selectively activates certain expert networks, choosing the most suitable experts for each input, providing a new research idea for large-scale pre-training of PDE neural operators. However, although single-layer MoE models can capture feature differences between equation types, they still face limitations in modeling diversity and complexity within physical fields of the same type of equations.

To address these challenges, we innovatively incorporate the MoE architecture into our model design, constructing a **NESTed MoE-based neural OperatoR** for large-scale PDE pre-training (**NESTOR**). Specifically, we first design a series of image-level MoE experts to learn the global diversity of a class of PDEs and adaptively activate the most suitable expert through image-level routing to process inputs of similar PDE types. Within each image-level expert, multiple token-level sub-MoE experts are set up to further capture the complex local dependencies of the physical field in the equation, and selectively activate the most suitable experts through token-level routing for processing. This nested MoE architecture solves the problems of PDE diversity and complexity from two levels. Through pre-training on large-scale PDE datasets, this architecture is successfully transferred to downstream tasks, providing an efficient solution for complex PDE problems. The main contributions of this work can be summarized as follows:

- Proposed a nested MoE framework. We design a novel nested MoE architecture that integrates image-level MoE and token-level MoE within a unified framework, enabling cross-level expert collaboration.
- Designed an image-level routing mechanism. We develop an image-level routing mechanism that selects appropriate expert networks based on the global characteristics of the data, providing a holistic perspective.
- Comprehensive validation on large-scale PDE datasets. We apply the proposed framework to large-scale pre-training and downstream tasks across multiple PDE datasets, demonstrating significant advantages in cross-task generalization and transferability.

2 RELATED WORKS

2.1 NEURAL OPERATORS

Neural operators are designed to learn mesh-free, function-space-to-function-space infinite-dimensional mappings from inputs to solution functions Lu et al. (2019). They effectively overcome the dependence of traditional numerical solvers on mesh discretization, improving computational

108 speed and reducing costs. Moreover, for repeated problems, a neural operator only needs to be
 109 trained once, without retraining for each new PDE instance, making it an efficient paradigm for PDE
 110 solving. To successfully apply neural operators to PDE problems, researchers have proposed several
 111 effective model architectures. For example, DeepONet Lu et al. (2019) adopts a branch–trunk
 112 architecture to realize operator learning. The Fourier Neural Operator (FNO) Li et al. (2020) lever-
 113 ages Fourier transforms to capture non-local dependencies, thus enabling efficient PDE solutions.
 114 The Galerkin Transformer Cao (2021) integrates self-attention mechanisms with Galerkin projection
 115 for operator learning. GNOT Hao et al. (2023) combines graph neural operators with Transformers,
 116 achieving efficient modeling on irregular meshes. MPP McCabe et al. (2023) is a Transformer-based
 117 autoregressive pre-training architecture. DPOT Hao et al. (2024) employs autoregressive denoising
 118 pre-training combined with Fourier attention to predict a wide range of PDE problems. Despite the
 119 significant progress made by neural operators, their performance still has room for improvement due
 120 to the limitations imposed by the diversity of data and tasks.

121 2.2 MIXTURE OF EXPERTS

123 The Mixture of Experts (MoE) framework is a method that expands model capacity while avoiding
 124 a significant increase in computational cost. Its core idea is to select a subset of experts among
 125 multiple expert networks through a gating mechanism Jacobs et al. (1991). With the development
 126 of MoE, it has been widely applied in natural language processing, computer vision, and other
 127 domains. GShard Lepikhin et al. (2020) was the first to introduce the MoE structure into Trans-
 128 former models, enabling efficient large-scale distributed training. Switch Transformer Fedus et al.
 129 (2022) scaled large language model parameters to the trillion level, significantly improving both
 130 model capacity and efficiency. V-MoE Riquelme et al. (2021) applied MoE to vision Transfor-
 131 mers and demonstrated its potential for enhancing efficiency and performance in tasks such as image
 132 recognition. Existing work primarily focuses on homogeneous experts, while research on hetero-
 133 geneous Wang et al. (2024) experts is relatively limited. Homogeneous experts refer to all experts
 134 using the same network architecture, which offers simplicity in implementation, stable convergence,
 135 and ease of load balancing. However, having identical architectures limits expert diversity and, to
 136 some extent, constrains the performance of MoE. Heterogeneous expert MoE allows different ex-
 137 perts to adopt different network architectures, avoiding redundancy in the features learned by the
 138 experts and significantly enhancing the model’s expressive power and efficiency.

139 2.3 PRE-TRAINING

140 Pre-training Bengio (2012) refers to the process of training a model on large-scale datasets to learn
 141 general knowledge that can be transferred to a variety of downstream tasks. It can significantly
 142 reduce the training cost of downstream tasks while improving generalizability. The pre-training
 143 paradigm has achieved outstanding success in natural language processing, demonstrating strong
 144 cross-task transferability, as exemplified by models such as BERT Devlin et al. (2019) and GPT Rad-
 145 ford et al. (2018). In computer vision, pre-training has also been widely adopted, with notable ex-
 146 amples including the Vision Transformer (ViT) Dosovitskiy et al. (2020) and CLIP Radford et al.
 147 (2021). With the development of large-scale pre-training models, this approach has gradually been
 148 introduced into the field of PDE neural operators. Existing explorations include MPP McCabe
 149 et al. (2023), which proposes a Transformer-based autoregressive pre-training framework capable
 150 of learning unified serialized representations across various PDE datasets and allowing cross-task
 151 modeling through transfer. DPOT Hao et al. (2024) employs an autoregressive denoising strategy
 152 combined with Fourier attention to achieve efficient pre-training across multiple types of PDE prob-
 153 lems, demonstrating cross-equation generalization at the operator level. Although these studies have
 154 successfully applied pre-training techniques to PDE neural operators, they still exhibit notable lim-
 155 itations in comprehensively capturing PDE systems. Therefore, there remains substantial room for
 156 further exploration of large-scale pre-training in the PDE neural operator domain.

157 3 PROPOSED METHOD

159 Our NESTOR model aims to address the PDEs’ diversity and complexity from image and token
 160 levels. This section starts with an overview of the proposed NESTOR model. Then we provide a
 161 detailed description of each part of the model. Finally, the loss function is presented.

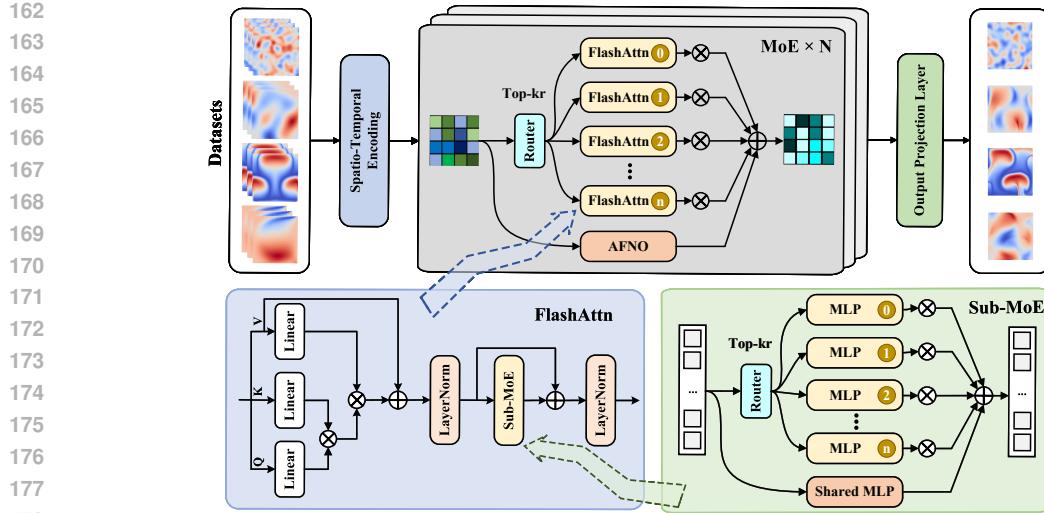


Figure 2: Overview architecture. We trained on twelve mixed PDE datasets, predicting the next frame based on the preceding frames. We designed a nested MoE architecture: (1) the top shows the overall model architecture; (2) the bottom right illustrates the nested Sub-MoE architecture; and (3) the bottom left depicts the improved FlashAttention architecture.

3.1 OVERVIEW

In this paper, we consider the general form of a parameterized partial differential equation defined on the spatial region $\Omega \subset \mathbb{R}^n$ and the time interval $[0, T]$,

$$\frac{\partial u}{\partial t} - \mathcal{F}(u, \nabla u, \nabla^2 u, \dots; \theta) = 0, \quad (1)$$

$$\begin{cases} u(x, 0) = u_0(x), & x \in \Omega, \\ \mathcal{B}[u](x, t) = g(x, t), & (x, t) \in \partial\Omega \times (0, T), \end{cases}$$

where u is the unknown solution function, representing the state of the system; \mathcal{F} is the PDE spatial derivative operator, which describes the dynamics or evolution law of the system and depends on the current solution u , its spatial derivative, and parameter θ ; θ is the external condition or physical parameter that controls the properties of the equation; $u(x, 0)$ is the initial condition; $\mathcal{B}[u](x, t)$ is the boundary condition.

On this basis, we define a solution operator \mathcal{F} and construct the following mapping

$$\mathcal{F} : u_{t+1} = \mathcal{F}_T(u_{t-T+1:t}; \theta), \quad (2)$$

where θ represents the system parameters. Based on given conditions and parameters, the operator \mathcal{F} can take the most recent T frames as input and predict the next frame from the previous T frames, thereby predicting the evolution of different system states.

When dealing with complex, high-dimensional continuous partial differential equations, Transformers struggle to effectively represent kernel integral operators Guibas et al. (2021). Meanwhile, traditional neural operators have difficulty fully capturing diverse data features and complex system dependencies. To address these challenges, we propose a nested MoE framework, as illustrated in Fig. 2. The model first maps the PDE inputs into a series of latent representations. These latent representations are then processed by the MoE module, where a learned gating mechanism assigns them to different experts, enabling each expert to learn distinct features of the inputs. The proposed network architecture adaptively captures multi-scale features of multiphysics fields, demonstrating strong transferability and cross-task generalization capability.

3.2 SPATIO-TEMPORAL ENCODING

First, the input $x \in \mathbb{R}^{B \times C \times H \times W}$ is divided into a set of non-overlapping patches $X_p \in \mathbb{R}^{B \times N \times C \times P_H \times P_W}$, where B is the batch size, N is the number of patches, and $(P_H \times P_W)$ is

216 the patch size. Each patch is then projected into a D -dimensional space, followed by the addition of
 217 positional encoding E_{pos} :

$$219 \quad X = \text{Embedding}(X_p) + E_{\text{pos}} \in \mathbb{R}^{B \times N \times D}, \quad (3)$$

220 Subsequently, the obtained representation is rearranged as $X \in \mathbb{R}^{B \times X \times Y \times T \times C}$, and mapping time
 221 series to a fixed dimension to compress information in the time dimension:

$$222 \quad Y = \sum_{t=1}^T W_t X_t, \quad Y \in \mathbb{R}^{B \times X \times Y \times C_{\text{out}}}, \quad (4)$$

225 where $W \in \mathbb{R}^{T \times C_{\text{out}} \times C_{\text{out}}}$ is a learnable weight matrix.

227 3.3 NESTED MIXTURE-OF-EXPERTS (NESTOR) ARCHITECTURE

229 A single type of network architecture is insufficient to fully capture the diverse characteristics of
 230 data. To address this, we introduce a nested MoE architecture at the operator level to enable multi-
 231 scale interactions within the PDE system. This module dynamically allocates the most appropriate
 232 expert network through a routing mechanism, allowing it to simultaneously characterize both local
 233 and global dependencies and effectively capture features in both the time and frequency domains.

234 3.3.1 ROUTING STRATEGY

236 In the main MoE module, we adopt an image-level gating mechanism combined with a top- k Shazeer
 237 et al. (2017) routing strategy for expert selection. The detailed process is as follows.

238 First, given the input feature $x \in \mathbb{R}^{B \times C \times H \times W}$, we apply global average pooling to obtain the
 239 image-level representation $\bar{x}_b \in \mathbb{R}^C$, where $b = 1, \dots, B$. Next, the image-level representation is
 240 fed into a learnable linear layer to produce the raw expert scores:

$$241 \quad s_b = \bar{x}_b W^T + b \in \mathbb{R}^N, \quad (5)$$

243 where $W \in \mathbb{R}^{N \times C}$ is the expert weight matrix, $b \in \mathbb{R}^N$ is the bias term, and N denotes the number
 244 of experts. The raw scores are then normalized using the softmax to obtain the routing probabilities

$$245 \quad p_b = \text{softmax}(s_b), \quad \sum_{i=1}^N p_{b,i} = 1. \quad (6)$$

248 Finally, according to the top- k routing strategy, the k experts with the highest probabilities are
 249 selected. Let \mathcal{I}_b denote the index set of the selected experts. For each selected expert $i \in \mathcal{I}_b$, the
 250 final routing weight is defined as:

$$251 \quad w_{b,i} = \frac{p_{b,i}}{\sum_{j \in \mathcal{I}_b} p_{b,j}}, \quad i \in \mathcal{I}_b. \quad (7)$$

253 3.3.2 EXPERT DESIGN

255 **1) Shared Expert.** In the main MoE module, we select AFNO Guibas et al. (2021) as the shared
 256 expert, which is primarily responsible for capturing cross-task global spatial low-frequency features.
 257 First, the input feature $x \in \mathbb{R}^{B \times C \times H \times W}$ is Fourier transformed: $\hat{x} = \mathcal{F}(x)$, $\hat{x} \in \mathbb{C}^{B \times H \times W \times C}$,
 258 where $\mathcal{F}(\cdot)$ represents the FFT operation. Next, a complex convolution operation is performed in
 259 the frequency domain

$$260 \quad \hat{y}_{\text{real}} = \sigma \left(\hat{x}_{\text{real}} W_1^{(r)} - \hat{x}_{\text{imag}} W_1^{(i)} + b_1^{(r)} \right), \quad (8)$$

$$262 \quad \hat{y}_{\text{imag}} = \sigma \left(\hat{x}_{\text{imag}} W_1^{(r)} + \hat{x}_{\text{real}} W_1^{(i)} + b_1^{(i)} \right), \quad (9)$$

264 where σ is the activation function, $W_1^{(r)}, W_1^{(i)}$ are the learnable matrices for the real and imaginary
 265 parts, respectively, and $b_1^{(r)}, b_1^{(i)}$ are bias terms. Then, an inverse Fourier transform is performed to
 266 return to the spatiotemporal feature representation

$$267 \quad y = \mathcal{F}^{-1}(\hat{y}), \quad (10)$$

269 where $\mathcal{F}^{-1}(\cdot)$ represents the IFFT operation. Finally, a normalization layer, MLP, and residual
 270 connections are combined to obtain the output of the shared expert.

270 **2) Non-shared Expert.** We design FlashAttention Dao et al. (2022) as a non-shared expert, applied
 271 to the image-level features after routing. Here, the standard FFN layer within FlashAttention is
 272 replaced by a Sub-MoE, which is primarily responsible for capturing dependencies among tokens
 273 within an image. First, the input feature $x \in \mathbb{R}^{B \times C \times H \times W}$ is reshaped into a sequence form $x' \in$
 274 $\mathbb{R}^{B \times C \times N}$, where $N = H \times W$. Next, x' is normalized and linearly transformed to obtain the
 275 query (Q), key (K), and value (V) representations. The attention-weighted result is then computed
 276 as $Z = \text{softmax}\left(\frac{QK^\top}{\sqrt{d_k}}\right)V$, which is added to the input residual and further normalized to obtain \tilde{Z} .
 277 Subsequently, \tilde{Z} is passed through a Sub-MoE module for linear transformation:
 278

$$Y = \text{Sub-MoE}(\tilde{Z}). \quad (11)$$

280 Finally, by combining residual connections and normalization layers, we obtain the output of the
 281 non-shared expert.
 282

283 3.3.3 SUB-MoE 284

285 **1) Routing Strategy.** In Sub-MoE, we adopt a token-level gating mechanism Fedus et al. (2022)
 286 combined with a top-k routing strategy for expert selection. Unlike the image-level gating in the
 287 main MoE module, the token-level gating computes expert scores for each token individually, en-
 288 abling a finer-grained expert selection: $s_{b,n} = x_{b,n}W^\top + b$, $s_{b,n} \in \mathbb{R}^M$, where $x_{b,n} \in \mathbb{R}^C$
 289 represents the n th token feature of the b th sample, $W \in \mathbb{R}^{M \times C}$ is the expert weight matrix, $b \in \mathbb{R}^M$
 290 is the bias term, and M is the number of experts. Afterward, the raw scores are normalized, and the
 291 k expert index set $\mathcal{I}_{b,n}$ with the highest scores is selected. Each token is then dynamically assigned
 292 to the selected expert for processing:
 293

$$w_{b,n,i} = \frac{p_{b,n,i}}{\sum_{j \in \mathcal{I}_{b,n}} p_{b,n,j}}, \quad i \in \mathcal{I}_{b,n}. \quad (12)$$

295 where $p_{b,n,i}$ is the normalized score of the n th token in the b th sample for the i th expert, and $w_{b,n,i}$
 296 is the final weight assigned.
 297

298 **2) Sub-Expert Design.** Sub-MoE implements the functionality of the FFN layer in FlashAttention
 299 and is a homogeneous MoE. This means that both shared and unshared experts use the same network
 300 structure, designed as an MLP. Normalized features are fed into the Sub-MoE, where token-level
 301 routing assigns them to the most appropriate expert for processing, extracting fine-grained feature
 302 representations. The computational process is as follows.
 303

$$\text{ExpertMLP}(x) = W_2 \sigma(W_1 x + b_1) + b_2, \quad (13)$$

304 where $W_1 \in \mathbb{R}^{C \times (rC)}$, $W_2 \in \mathbb{R}^{(rC) \times C}$, r is mlp_ratio, $\sigma(\cdot)$ denotes the activation function of
 305 GELU. Specifically, we first perform the first-layer linear transformation on the input feature $h =$
 306 $xW_1 + b_1$. Next, perform a nonlinear activation on h : $a = \text{GELU}(h)$. Finally, a second linear
 307 transformation is performed to obtain the final feature representation: $y = aW_2 + b_2$.
 308

309 3.4 HEAD AND LOSS FUNCTION 310

311 3.4.1 LOAD BALANCING LOSS 312

313 In our nested MoE model, the routing mechanism assigns tokens to the most suitable experts. A bal-
 314 anced distribution of tokens among experts is crucial for MoE performance. When the allocation is
 315 imbalanced, some experts remain idle and fail to learn diverse features, while a few experts become
 316 overloaded, potentially causing memory bottlenecks. This can lead the model to degenerate to using
 317 only a subset of experts, failing to fully leverage the advantages of MoE. To address this issue, we
 318 introduce a load-balancing loss Shazeer et al. (2017) to encourage a more uniform distribution of
 319 tokens across experts. Here, the two load balancing losses are defined following the same pattern:
 320

$$\mathcal{L}_{\text{aux}} = E \sum_{i=1}^E p_i \cdot f_i, \quad p_i = \frac{1}{N} \sum_{j=1}^N P_{ij}, \quad f_i = \frac{n_i}{\sum_{k=1}^E n_k}, \quad (14)$$

322 where p_i is the routing probability of expert i , f_i is the actual token assignment ratio of expert i ,
 323 E is the total number of experts, N is the total number of tokens, P_{ij} is the probability of token j
 being assigned to expert i , and n_i denotes the number of tokens assigned to expert i .
 324

324 3.4.2 MAIN TASK LOSS
325326 For our regression task, we choose \mathcal{L}_2 loss Li et al. (2020) as the main task loss function:

327
$$\mathcal{L}_2 = \frac{\|\hat{y}_i^{(c)} - y_i^{(c)}\|_2}{\|y_i^{(c)}\|_2}, \quad (15)$$

328
329

330 where $y_i^{(c)}$ is the ground-truth of i -th sample at channel c , and $\hat{y}_i^{(c)}$ is the corresponding prediction.331 3.4.3 TOTAL LOSS
332

333 Ultimately, our loss function consists of the main task loss and two load-balancing losses:

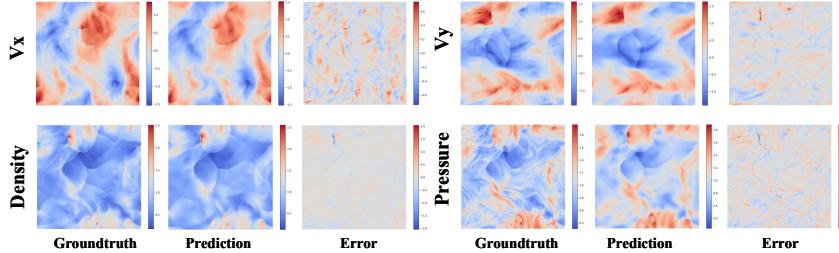
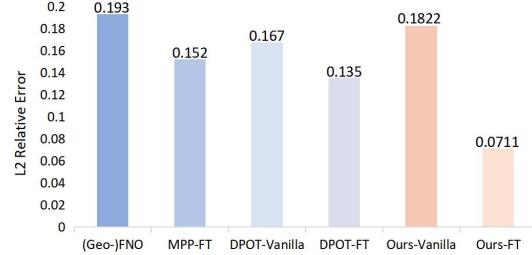
334
$$\mathcal{L} = \mathcal{L}_2 + \alpha \mathcal{L}_{\text{aux1}} + \beta \mathcal{L}_{\text{aux2}}, \quad (16)$$

335

336 where \mathcal{L}_2 denotes the main task's \mathcal{L}_2 loss; $\mathcal{L}_{\text{aux1}}$ is the load balancing loss of the MoE module
337 (image-level routing); $\mathcal{L}_{\text{aux2}}$ is the load balancing loss of the Sub-MoE module (token-level routing);
338 and α and β are hyperparameters that control the contribution of the load balancing losses.339 4 EXPERIMENTS
340341 4.1 DATASETS AND EVALUATION METRIC
342343 **Datasets.** We conducted experiments on a mixed dataset consisting of twelve different data
344 sources and different parameters from FNO Li et al. (2020), PDEBench Takamoto et al. (2022),
345 PDEArena Gupta & Brandstetter (2022), and CFDbench Luo et al. (2023). (1) FNO: A dataset
346 containing three different parameters for the same type of equation. (2) PDEBench: A dataset con-
347 taining four different parameters for the same type of equation. (3) PDEArena: A dataset containing
348 the same equation with and without initial conditions. It is worth noting that, due to certain reasons,
349 the NS and NS-cond datasets are missing 1,300 and 604 samples, respectively. Our model is trained
350 under this reduced-data setting, while the baseline models are trained on the complete datasets. (4)
351 CFDbench: A multi-task PDE dataset obtained by processing the four subtasks uniformly.352 **Evaluation Metrics.** We choose the relative error \mathcal{L}_2 as the evaluation metric, where lower relative
353 error values \mathcal{L}_2 indicate better performance.
354355 4.2 MAIN RESULTS
356357 Table 1 presents the experimental results of our method compared with other models in the pre-
358 training datasets. The first row of the table specifies the types of PDE datasets and parameter settings,
359 while the first column lists the baseline models for comparison. The experiments are divided into
360 two parts: the first is pre-training, where all models are trained from scratch on the datasets; the
361 second is fine-tuning, where models are further trained based on the pre-trained weights.362 In the pre-training stage, our method demonstrates strong performance across 12 PDE datasets,
363 achieving state-of-the-art results on 6 of them. Notably, our model ranks first on 5 out of 6
364 PDEBench datasets, and achieves significantly lower errors than mainstream models on multiple
365 benchmarks. These results clearly validate the effectiveness of our proposed architecture for han-
366 dling complex PDE systems, highlighting its superior performance and generalization ability in
367 cross-task PDE modeling.368 In the fine-tuning stage, we conduct 200 and 500 epochs of fine-tuning on each dataset. The re-
369 sults show that after 500 epochs, our model achieved state-of-the-art performance on 9 out of \mathcal{L}_2
370 tasks, surpassing advanced pre-trained models on the majority of tasks. Compared with training
371 from scratch, fine-tuning on pretrained weights generally leads to better performance; moreover,
372 increasing the number of fine-tuning steps typically yields higher prediction accuracy. These results
373 demonstrate the superior performance of our proposed model on sparse datasets, highlighting its
374 stronger generalization ability and adaptability.375 In summary, our model demonstrates significant advantages in operator learning for PDE tasks.
376 With the aid of fine-tuning strategies, it can rapidly adapt to specific tasks and achieve 10 global best
377 performances across 12 benchmark datasets, highlighting its strong modeling capability in capturing
complex dynamics and multi-scale features, as well as its excellent transferability.

378
379
380
381
382Table 1: The experiments are divided into two parts: one reports the pre-training performance of the model, and the other shows the fine-tuning results on each task. Here, “-200” denotes fine-tuning for 200 epochs, and “-500” for 500 epochs. The evaluation metric is the \mathcal{L}_2 loss. The best result within each part is highlighted in **bold**, while the overall best result is emphasized in **blue bold**.

L2RE Model	FNO- ν			PDEBench CNS- (η, ζ) , DR, SWE									PDEArena		CFDBench
	1e-5	1e-4	1e-3	1,0.1	1,0.01	M1	0.1,0.1	0.1,0.01	M0.1	DR	SWE	NS	NS-cond	-	
Pre-trained															
FNO	0.116	0.0922	0.0156	0.151	0.108	0.130	0.230	0.076	0.153	0.0321	0.0091	0.210	0.384	0.0274	
UNet	0.198	0.119	0.0245	0.334	0.291	0.313	0.569	0.357	0.463	0.0971	0.0521	0.102	0.337	0.209	
FFNO	0.121	0.0503	0.0099	0.0212	0.052	0.0366	0.162	0.0452	0.104	0.0571	0.0116	0.0839	0.602	0.0071	
GK-T	0.134	0.0792	0.0098	0.0341	0.0377	0.0359	0.0274	0.0366	0.0320	0.0359	0.0069	0.0952	0.423	0.0105	
GNOT	0.157	0.0443	0.0125	0.0325	0.0420	0.0373	0.0228	0.0341	0.0285	0.0311	0.0068	0.172	0.325	0.0088	
Oformer	0.1705	0.0645	0.0104	0.0417	0.0625	0.0521	0.0254	0.0205	0.0229	0.0192	0.0072	0.135	0.332	0.0102	
MPP	-	-	-	-	0.0442	-	-	-	0.0312	0.0168	0.0066	-	-	-	
DPOT	0.0976	0.0606	0.00954	0.0173	0.0397	0.0285	0.0132	0.0220	0.0176	0.0321	0.0056	0.125	0.384	0.0095	
Ours	0.1195	0.0951	0.0093	0.0167	0.0373	0.0270	0.0120	0.0202	0.0161	0.0308	0.0052	0.132	0.409	0.0112	
FineTune															
DPOT-FT200	0.0511	0.0431	0.0073	0.0136	0.0238	0.0187	0.0168	0.0145	0.0157	0.0194	0.0028	0.103	0.313	0.0054	
Ours-FT200	0.0581	0.0313	0.0056	0.0139	0.0182	0.0161	0.0155	0.0112	0.0134	0.0198	0.0032	0.0793	0.321	0.0045	
DPOT-FT500	0.0520	0.0367	0.0058	0.0112	0.0195	0.0153	0.0174	0.0138	0.0156	0.0148	0.0024	0.0910	0.280	0.0039	
Ours-FT500	0.0505	0.0217	0.0043	0.0094	0.0134	0.0114	0.0123	0.0083	0.0103	0.0117	0.0026	0.0683	0.285	0.0038	

396
397 4.3 DOWNSTREAM TASKS EXPERIMENTS
398399
400 To evaluate the generalization and transfer-
401 ability of our model, we conducted down-
402 stream experiments on a two-dimensional high-
403 resolution turbulence task. In these exper-
404 iments, we reused most of the parameters from
405 the pre-trained model, including the weights of
406 the MoE modules and the spatio-temporal en-
407 coding. The visualization of the model predic-
408 tions is shown in Fig. 4.409 As illustrated in Fig. 3, most models fine-tuned
410 from pre-trained weights outperform those
411 trained from scratch, which demonstrates the
412 effectiveness of large-scale pre-training. This
413 indicates that the model can acquire generaliz-
414 able PDE knowledge and successfully transfer
415 it to specific downstream tasks. On the two-
416 dimensional high-resolution turbulence task, our
417 model achieves a 47.3% improvement in prediction
418 accuracy, reaching the best performance. These
419 results show that our pre-trained model learns more
420 effective representations and can be successfully transferred to downstream tasks with only limited
421 fine-tuning, highlighting its advantage in capturing PDE-specific features.422
423
424
425
426
427
428
429 Figure 4: Visualization of 2D high-resolution turbulence prediction results. (1) The first column
430 shows the true values, the second column shows the model predictions, and the third column shows
431 the corresponding errors. (2) The predicted physical quantities are horizontal velocity, vertical ve-
432 locity, density field, and pressure field.433
434 Figure 3: Performance comparison of different
435 models on the 2D high-resolution turbulence task.
436 The evaluation metric is the \mathcal{L}_2 relative error,
437 where Vanilla denotes training from scratch,
438 and -FT indicates results after 500 fine-tuning epochs
439 on the downstream task.

432

433 Table 3: Ablation experiments of our proposed model on the PDEBench datasets. “w/o” denotes the
434 removal of the corresponding component.

Method	1,0,1	1,0,01	0,1,0,1	0,1,0,01	DR	SWE	Avg L2	Promotion
Ours	0.0144	0.0355	0.0135	0.0178	0.0282	0.0045	0.0173	-
w/o Sub-MoE	0.0157	0.0393	0.0130	0.0209	0.0245	0.0049	0.0197	0.0024
w/o Load Balance Loss	0.0135	0.0335	0.0109	0.0159	0.0265	0.0062	0.0178	0.0005
FlashAttn + AFNO Sum	0.0149	0.0363	0.0136	0.0178	0.0304	0.0046	0.0196	0.0023

440

441 4.4 SCALING EXPERIMENTS

442

The number of experts in the MoE is a key factor
443 affecting the performance of pre-trained models.
444 We fix the number of experts activated each time,
445 vary the number of unshared experts, and use the
446 average loss \mathcal{L}_2 between datasets as the evalua-
447 tion metric to study the impact of the number of
448 experts on pre-trained model performance. In se-
449 lected datasets, we set three training strategies:
450 Zero-shot, FT-200 (fine-tuning for 200 steps),
451 and FT-500 (fine-tuning for 500 steps). The re-
452 sults, shown in Table 2, show that for specific
453 tasks, fine-tuning the pre-trained model can sig-
454 nificantly improve performance, and more rounds
455 of fine-tuning lead to better results. For complex MoE architectures, more experts are not necessarily
456 better; increasing the number of experts makes optimization more difficult and resource allocation
457 more complex. For different tasks, there exists an optimal range for the number of experts, and
458 choosing the right number is crucial to fully realizing the performance of the MoE model.

459

460 4.5 ABLATION STUDIES

461

To validate the effectiveness of our model, we conducted experiments on six sub-tasks of the
462 PDEBench dataset to assess the impact of different modules on model performance. Using the
463 complete model as the baseline, we systematically performed ablation studies by progressively re-
464 moving or replacing key modules, with the average \mathcal{L}_2 error (Avg. \mathcal{L}_2) serving as the primary
465 comprehensive evaluation metric. The results are shown in Table 3.

466

Impact of Sub-MoE: Removing the Sub-MoE module led to an increase of 0.0024 in the average \mathcal{L}_2
467 error. Among all modules, Sub-MoE contributed most significantly to performance improvement,
468 indicating that it plays an important role in effectively capturing multi-scale and diverse features,
469 thereby fully validating its importance.

470

Impact of the load balancing loss: Removing the load balancing loss resulted in an increase of
471 0.0005 in the average \mathcal{L}_2 error. Although its contribution is smaller compared to other modules, it
472 still provides a certain improvement to model performance.

473

Impact of the fusion strategy between AFNO and FlashAttention: Changing the fusion of AFNO
474 and FlashAttention from MoE to simple addition increases the Avg. \mathcal{L}_2 error by 0.0023. This
475 demonstrates that our nested MoE can select the most suitable expert for different inputs, thereby
476 enhancing model performance and generalization ability, and validates the rationality of the design.

477

478 5 CONCLUSION
479

480

This paper proposes a large-scale PDE pre-trained neural operator based on a nested Mixture-of-
481 Experts (MoE) architecture. We design the nested MoE framework, which consists of image-level
482 MoE and token-level MoE, and conduct extensive training on twelve PDE datasets to obtain a uni-
483 versal pre-trained model. Our model successfully transfers to specific tasks and new downstream
484 tasks, achieving state-of-the-art performance on most datasets. Furthermore, this paper explores the
485 suitability and advantages of MoE architectures for large-scale PDE pre-trained neural operators,
introducing MoE into this field for the first time and revealing new potential for solving PDEs.

440 Table 2: The impact of the number of experts on
441 performance.

Setting	Num	FNO	PDEBench	SWE	Avg L2
Zero-shot	2	0.0625	0.0332	0.0057	0.0338
	4	0.0615	0.1974	0.0035	0.0875
	6	0.0635	0.2600	0.0029	0.1088
	12	0.0630	0.2593	0.0030	0.1084
FT-200	2	0.0575	0.0182	0.0024	0.0262
	4	0.0563	0.0150	0.0025	0.0246
	6	0.0577	0.0240	0.0579	0.0466
	12	0.0575	0.1896	0.0025	0.0832
FT-500	2	0.0519	0.0126	0.0022	0.0222
	4	0.0504	0.0114	0.0025	0.0214
	6	0.0512	0.0165	0.0026	0.0234
	12	0.0520	0.0144	0.0025	0.0230

486

6 ETHICS STATEMENT

487
 488 This research adhered to ICLR’s ethical guidelines and did not involve any human subjects or animal experiments. All datasets used adhered to relevant privacy guidelines and were confidential. 489 We took every effort to minimize potential bias and avoid discriminatory results. No personally 490 identifiable information was used, and no experiments were performed that could raise privacy or 491 safety concerns. We are committed to transparency and integrity throughout our research. 492

493

7 REPRODUCIBILITY STATEMENT

494 Details of the training procedure, model configuration, hardware environment, and datasets are provided in Appendices A.2 and A.3. All datasets used are publicly available, and the source code will 495 be released upon acceptance of the paper. 496

500

REFERENCES

501
 502 Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning. In *Proceedings of ICML workshop on unsupervised and transfer learning*, pp. 17–36. JMLR Workshop and Conference Proceedings, 2012.

503
 504 Shuhao Cao. Choose a transformer: Fourier or galerkin. *Advances in neural information processing systems*, 34:24924–24940, 2021.

505
 506 Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory- 507 efficient exact attention with io-awareness. *Advances in neural information processing systems*, 35:16344–16359, 2022.

508
 509 Lokenath Debnath. *Nonlinear partial differential equations for scientists and engineers*. Springer, 510 2005.

511
 512 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep 513 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

514
 515 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas 516 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An 517 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.

518
 519 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter 520 models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39, 521 2022.

522
 523 John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catan- 524 zaro. Adaptive fourier neural operators: Efficient token mixers for transformers. *arXiv preprint arXiv:2111.13587*, 2021.

525
 526 Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde 527 modeling. *arXiv preprint arXiv:2209.15616*, 2022.

528
 529 Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu, Ze Cheng, Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator 530 learning. In *International Conference on Machine Learning*, pp. 12556–12569. PMLR, 2023.

531
 532 Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima Anand- 533 kumar, Jian Song, and Jun Zhu. Dpot: Auto-regressive denoising operator transformer for large- 534 scale pde pre-training. *arXiv preprint arXiv:2403.03542*, 2024.

535
 536 Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of 537 local experts. *Neural computation*, 3(1):79–87, 1991.

540 George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
 541 Physics-informed machine learning. *Nature Reviews Physics*, 3(6):422–440, 2021.
 542

543 Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
 544 Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
 545 computation and automatic sharding. *arXiv preprint arXiv:2006.16668*, 2020.

546 Randall J LeVeque. *Finite difference methods for ordinary and partial differential equations: steady-*
 547 *state and time-dependent problems*. SIAM, 2007.
 548

549 Zongyi Li. Neural operator: Learning maps between function spaces. In *2021 Fall Western Sectional*
 550 *Meeting*. AMS, 2021.
 551

552 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
 553 drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
 554 equations. *arXiv preprint arXiv:2010.08895*, 2020.

555 Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-
 556 tifying differential equations based on the universal approximation theorem of operators. *arXiv*
 557 *preprint arXiv:1910.03193*, 2019.
 558

559 Yining Luo, Yingfa Chen, and Zhen Zhang. Cfdbench: A large-scale benchmark for machine learn-
 560 ing methods in fluid dynamics. *arXiv preprint arXiv:2310.05963*, 2023.
 561

562 Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles
 563 Cranmer, Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois
 564 Lanusse, et al. Multiple physics pretraining for physical surrogate models. *arXiv preprint*
 565 *arXiv:2310.02994*, 2023.
 566

567 Douglas H Norrie and Gerard De Vries. *The finite element method: fundamentals and applications*.
 568 Academic Press, 2014.
 569

570 Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
 571 standing by generative pre-training. 2018.
 572

573 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 574 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 575 models from natural language supervision. In *International conference on machine learning*, pp.
 576 8748–8763. PMLR, 2021.
 577

578 Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
 579 Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
 580 *Advances in Neural Information Processing Systems*, 34:8583–8595, 2021.
 581

582 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
 583 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
 584 *arXiv preprint arXiv:1701.06538*, 2017.
 585

586 Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
 587 Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
 588 learning. *Advances in Neural Information Processing Systems*, 35:1596–1611, 2022.
 589

590 An Wang, Xingwu Sun, Ruobing Xie, Shuai Peng Li, Jiaqi Zhu, Zhen Yang, Pinxue Zhao, JN Han,
 591 Zhanhui Kang, Di Wang, et al. Hmoe: Heterogeneous mixture of experts for language modeling.
 592 *arXiv preprint arXiv:2408.10681*, 2024.
 593

594 **A APPENDIX**595 **A.1 LLM USAGE**

598 During the manuscript writing and revision process, we used a Large Language Model (LLM) to
 599 assist. Specifically, LLM was used to improve the accuracy and readability of the language, and to
 600 help ensure the overall structure and clarity of the paper. This tool primarily assisted with tasks such
 601 as sentence reconstruction, grammatical proofreading, and improving text coherence.

602 **A.2 EXPERIMENTAL DETAILS**

604 **Pre-training.** We pre-trained the model on 8 NVIDIA RTX 4090 GPUs using the Adam optimizer
 605 with an initial learning rate of 1.0×10^{-3} and a cyclic learning rate schedule (cycle), including 200
 606 warm-up epochs. The total training lasted 1000 epochs with a batch size of 32. To mitigate the
 607 effects of varying dataset sizes, training weights were assigned to each dataset. During training, we
 608 used $T = 10$ time steps to predict the next frame, maintaining consistency with the original settings
 609 of most datasets.

610 **Fine-tuning.** In the fine-tuning stage, we loaded the pre-trained weights and performed 200-epoch
 611 and 500-epoch fine-tuning on each subset. The key module of the model is the nested MoE layer,
 612 whose parameters are shared across different frequency components along the channel dimension,
 613 enabling cross-level expert collaboration.

615 **A.3 DETAILED INFORMATION OF DATASETS**

617 We list the configurations of the PDE datasets used for pre-training along with detailed descriptions
 618 of the governing partial differential equations:

620 Table 4: Train and test set sizes of the PDE datasets used for pre-training.

	FNO- ν			PDEBench CNS-(η, ζ), DR, SWE					PDEArena		CFDBench	
	1e-5	1e-4	1e-3	1,0.1	1,0.01	0.1,0.1	0.1,0.01	DR	SWE	NS	NS-cond	-
Train set size	100	9800	1000	9000	9000	9000	9000	900	900	5200	2496	9000
Test set size	200	200	200	1000	1000	1000	1000	100	100	1300	600	1000

628 • **FNO- ν :** This dataset focuses on the temporal evolution of the two-dimensional incompressible
 629 fluid vorticity field $w(x, t)$, where $(x, t) \in [0, 1]^2 \times [0, T]$. The dynamics are governed by the
 630 two-dimensional Navier–Stokes equations in the vorticity–streamfunction formulation:

$$631 \quad \partial_t w + u \cdot \nabla w = \nu \Delta w + f(x), \quad \nabla \cdot u = 0, \quad (17)$$

633 where u denotes the velocity field, ν is the viscosity coefficient, Δ represents the Laplace operator,
 634 and $f(x)$ denotes the external forcing term. By varying the viscosity ν , the dataset provides fluid
 635 dynamics simulations under different flow regimes, enabling the study of how viscosity influences
 636 the evolution of vortex structures.

637 • **PDEBench-CMS:** This dataset focuses on the numerical simulation of compressible fluid mechanics
 638 (CMS). The goal is to predict the temporal evolution of the velocity field $u(x, t)$, the pressure
 639 field $p(x, t)$, and the density field $\rho(x, t)$ over the spatio-temporal domain $(x, t) \in [0, 1]^2 \times [0, 1]$.
 640 The data are generated based on the governing equations of compressible fluid dynamics, which
 641 consist of the conservation of mass, momentum, and energy: **Mass conservation (continuity equa-**
642 tion):

$$643 \quad \partial_t \rho + \nabla \cdot (\rho u) = 0, \quad (18)$$

$$644 \quad \rho (\partial_t u + u \cdot \nabla u) = -\nabla p + \eta \Delta u + (\zeta + \frac{\eta}{3}) \nabla (\nabla \cdot u), \quad (19)$$

$$645 \quad \partial_t \left(\frac{3}{2} p + \frac{\rho u^2}{2} \right) = -\nabla \cdot \left[\left(\varepsilon + p + \frac{\rho u^2}{2} \right) u - u \cdot \sigma' \right], \quad (20)$$

647 where η denotes the shear viscosity coefficient and ζ the bulk viscosity coefficient. ε is the energy
 648 density and σ' is the stress tensor.

648 • **PDEBench-SWE**: The dataset is derived from PDEBench and focuses on the numerical simulation
 649 of the Shallow Water Equations (SWE). The objective is to predict the water depth field $h(x, t)$ over
 650 the spatiotemporal domain $(x, t) \in [-1, 1]^2 \times [0, 5]$. The SWE is a set of approximate governing
 651 equations widely used in ocean dynamics, flood modeling, and geomorphological evolution studies.
 652 The governing equations are given as follows:

653
$$\partial_t h + \nabla \cdot (hu) = 0, \quad (21)$$

655
$$\partial_t(hu) + \nabla \cdot \left(\frac{1}{2}hu^2 + \frac{1}{2}grh^2 \right) = -grh\nabla b, \quad (22)$$

657 • **PDEBench-DR**: The dataset is derived from PDEBench and focuses on the numerical simulation
 658 of diffusion–reaction (DR) systems. The objective is to predict the density field $u(x, t)$ over the
 659 spatiotemporal domain $(x, t) \in [-2.5, 2.5]^2 \times [0, 1]$. The governing equation is given by:

660
$$\partial_t u = D\nabla^2 u + R(u), \quad (23)$$

662 where D is the diffusion coefficient and $R(u)$ denotes the nonlinear reaction term.

663 • **PDEArena-NS1/2**: The dataset is derived from PDEArena and focuses on the numerical simulation
 664 of incompressible Navier–Stokes (NS) flows. The objective is to predict the velocity field
 665 $u(x, t)$, pressure field $p(x, t)$, and density field $\rho(x, t)$ over the spatiotemporal domain $(x, t) \in$
 666 $[0, 32]^2 \times [0, 24]$. The governing equations are given as follows:

667
$$\partial_t v = -v \cdot \nabla v + \mu \nabla^2 v - \nabla p + f, \quad (24)$$

669
$$\nabla \cdot v = 0, \quad (25)$$

670 where v denotes the velocity field, μ is the viscosity coefficient, p is the pressure, and f represents
 671 external forcing.

672 • **CFDBench**: The dataset is derived from CFDBench and focuses on the numerical simulation of
 673 incompressible or weakly compressible flows in irregular geometries. The objective is to predict
 674 the velocity field $u(x, t)$ and the pressure field $p(x, t)$ over domains with complex boundaries. The
 675 governing equations are given as follows:

677
$$\partial_t(\rho u) + \nabla \cdot (\rho u^2) = -\nabla p + \nabla \cdot \mu(\nabla u + \nabla u^\top), \quad (26)$$

678
$$\nabla \cdot (\rho u) = 0, \quad (27)$$

680 where ρ is the fluid density, u is the velocity field, p is the pressure, and μ denotes the viscosity
 681 coefficient.

682 A.4 VISUALIZATION

684 For each specific subtask, we first load the model weights pretrained on large-scale PDE datasets,
 685 and then fine-tune the model for each subtask to fully leverage the general features and structural
 686 information learned during pretraining. During fine-tuning, the model can adapt to the data dis-
 687 tribution and equation characteristics of different subtasks, thereby improving prediction accuracy
 688 and generalization capability. The visualization of the prediction results is shown in the figure. For
 689 each data series, we select one representative equation to illustrate the model’s performance across
 690 different tasks. These visualizations allow us to observe the model’s ability to capture spatiotem-
 691 poral trends, local details, and global patterns, and facilitate comparison with other baseline methods,
 692 thereby demonstrating the effectiveness and advantages of pretrained weights in downstream tasks.

693
 694
 695
 696
 697
 698
 699
 700
 701

702

703

704

705

706

707

708

709

710

711

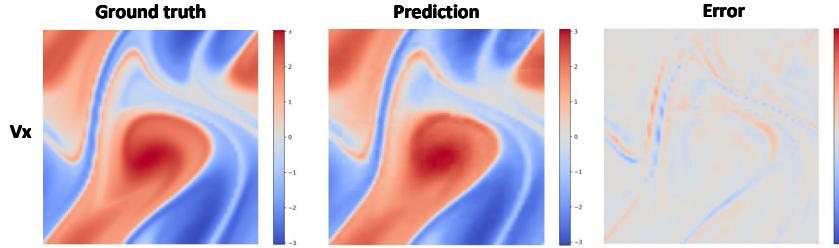


Figure 5: FNO series of result visualizations. (1) The first column shows the true value, the second column shows the model prediction value, and the third column shows the corresponding error. (2) Each row is the predicted physical quantity.

712

713

714

715

716

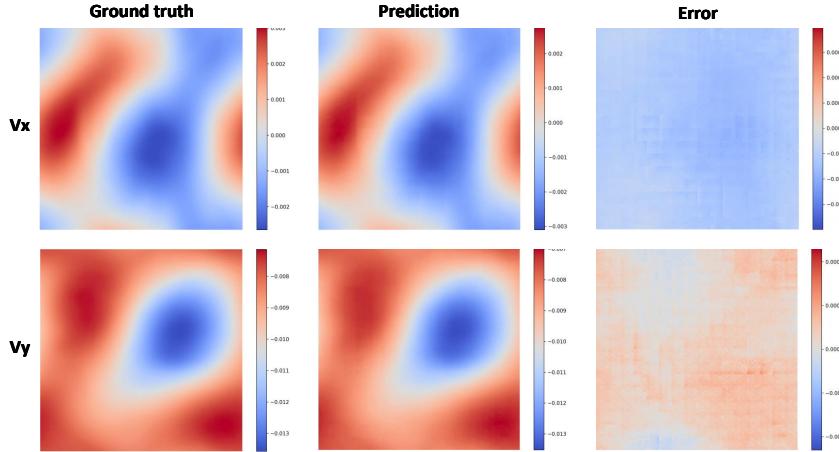


Figure 6: PDEBench series of result visualizations. (1) The first column shows the true value, the second column shows the model prediction value, and the third column shows the corresponding error. (2) Each row is the predicted physical quantity.

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

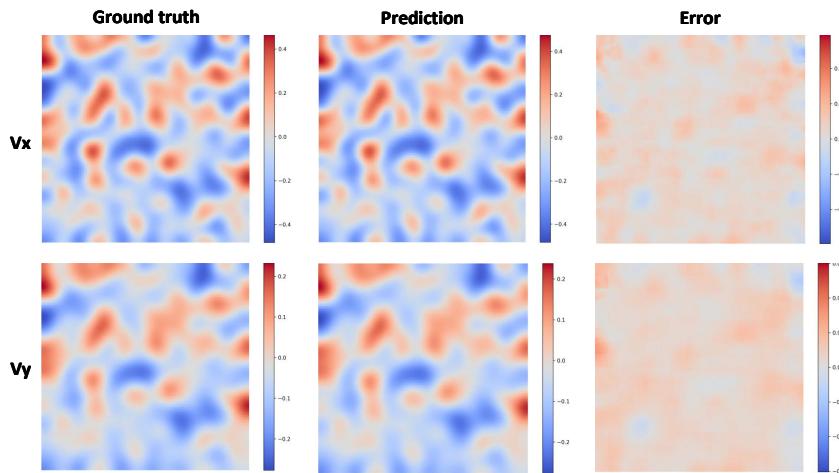


Figure 7: DR series of result visualizations. (1) The first column shows the true value, the second column shows the model prediction value, and the third column shows the corresponding error. (2) Each row is the predicted physical quantity.

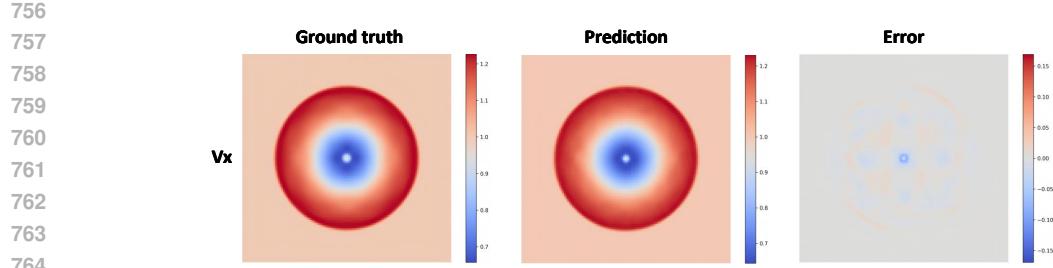


Figure 8: SWE series of result visualizations. (1) The first column shows the true value, the second column shows the model prediction value, and the third column shows the corresponding error. (2) Each row is the predicted physical quantity.

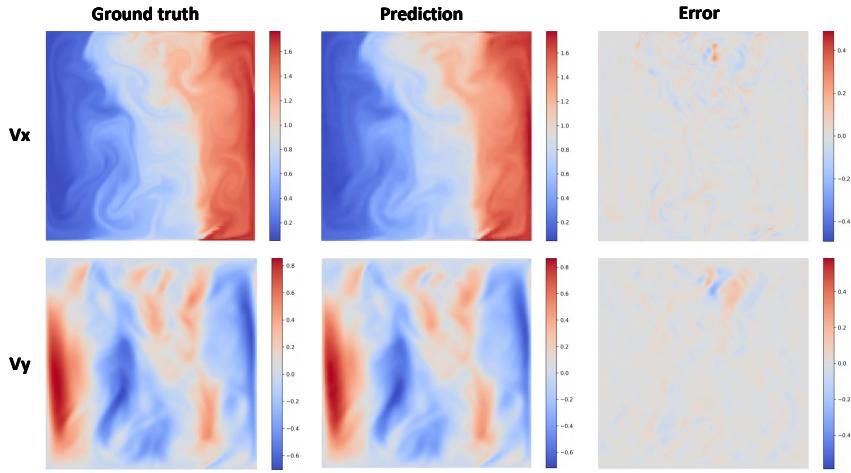
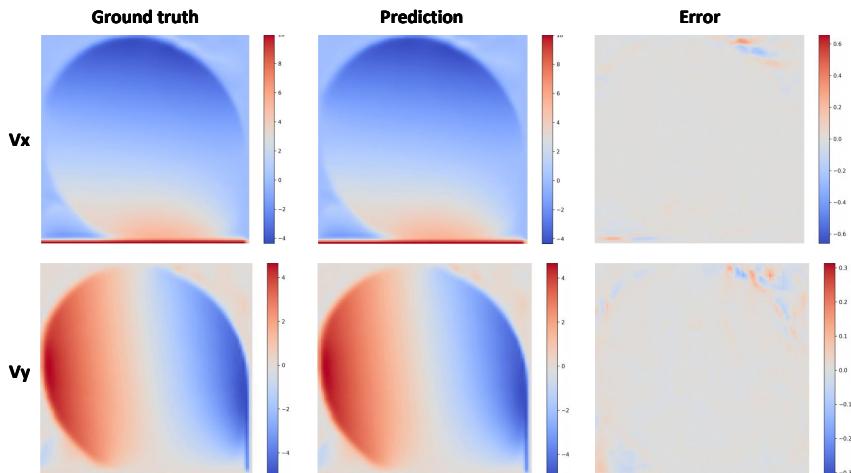


Figure 9: PDEArena series of result visualizations. (1) The first column shows the true value, the second column shows the model prediction value, and the third column shows the corresponding error. (2) Each row is the predicted physical quantity.



807
808
809

Figure 10: CFDBench series of result visualizations. (1) The first column shows the true value, the second column shows the model prediction value, and the third column shows the corresponding error. (2) Each row is the predicted physical quantity.