
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PROVING OLYMPIAD INEQUALITIES BY SYNERGIZING
LLMS AND SYMBOLIC REASONING

Anonymous authors
Paper under double-blind review

Problem (Chen, 2014): If a, b, c are positive reals and a2 + b2 + c2 = 1, then

1

a2 + 2
+

1

b2 + 2
+

1

c2 + 2
≤ 1

6ab+ c2
+

1

6bc+ a2
+

1

6ca+ b2
. (1)

Figure 1: We prove inequality problems in math Olympiads that involve a finite number of real vari-
ables, hypotheses, and one conclusion. Both the hypotheses and the conclusion consist of constants,
variables, algebraic operations (e.g., addition, multiplication), and transcendental functions like exp.

ABSTRACT

Large language models (LLMs) can prove mathematical theorems formally by
generating proof steps (a.k.a. tactics) within a proof system. However, the space
of possible tactics is vast and complex, while the available training data for formal
proofs is limited, posing a significant challenge to LLM-based tactic generation.
To address this, we introduce a neuro-symbolic tactic generator that synergizes the
mathematical intuition learned by LLMs with domain-specific insights encoded by
symbolic methods. The key aspect of this integration is identifying which parts of
mathematical reasoning are best suited to LLMs and which to symbolic methods.
While the high-level idea of neuro-symbolic integration is broadly applicable to
various mathematical problems, in this paper, we focus specifically on Olympiad
inequalities (Figure 1). We analyze how humans solve these problems and distill
the techniques into two types of tactics: (1) scaling, handled by symbolic methods,
and (2) rewriting, handled by LLMs. In addition, we combine symbolic tools with
LLMs to prune and rank the proof goals for efficient proof search. We evaluate
our framework on 161 challenging inequalities from multiple mathematics com-
petitions, achieving state-of-the-art performance and significantly outperforming
existing LLM and symbolic approaches without requiring additional training data.

1 INTRODUCTION

Automated theorem proving has been a long-standing goal in AI (Newell & Simon, 1956). Recent
research explores leveraging large language models (LLMs) to generate formal proofs that can be
verified in formal proof systems like Lean (de Moura et al., 2015), opening a new avenue to theo-
rem proving (Li et al., 2024). This promising approach has already led to tools that assist human
mathematicians (Song et al., 2024) and the first AI that achieves silver-medal performance in the
International Mathematical Olympiad (IMO) (AlphaProof and AlphaGeometry teams, 2024).

While LLM-based proof generation shows great promise across various mathematical domains, its
performance is constrained by the scarcity of formal proof data. More importantly, it remains an
open problem whether LLMs can perform precise and complex symbolic manipulations (Hammond
& Leake, 2023). To address these limitations, mechanical symbolic reasoning is still essential. Un-
like LLMs, symbolic methods leverage domain-specific knowledge to achieve greater efficiency and
generalization without relying on extensive training data (Wu, 2008; Heule et al., 2016). Integrating
LLMs with symbolic methods presents a promising strategy for tactic generation and theorem prov-
ing. This raises a key question: Which aspects of mathematical reasoning are best suited to LLMs,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Current inequality problem

𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤ 𝒂𝟐 + 𝒃𝟐+ 𝒄𝟐
Given 𝑎, 𝑏, 𝑐 three reals, prove that

C A

A B

C B

1. (𝟐𝒂𝟐 + 𝒃𝟐)(𝟐𝒄𝟐 +𝒃𝟐) ≤ 𝒂𝟐 +𝒃𝟐 + 𝒄𝟐

2. 𝟑𝒂𝒃 + 𝟑𝒃𝒄 + 𝟑𝒄𝒂 ≤ 𝒂 + 𝒃 + 𝒄 𝟐

…

𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂 ≤ 𝒂 + 𝒃 𝟐 − 𝟐𝒂𝒃 + 𝒄𝟐

𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤ 𝟑 𝒂𝟐𝒃𝟐𝒄𝟐𝟑

…

𝐱 ∧ 𝐲 ∨ 𝐳
∀∃⊨
𝐚𝟐 = 𝟏

𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤ 𝟑 𝒂𝟐𝒃𝟐𝒄𝟐𝟑

(𝟐𝒂𝟐 +𝒃𝟐)(𝟐𝒄𝟐 +𝒃𝟐) ≤ 𝒂𝟐 +𝒃𝟐 + 𝒄𝟐
… …

Scaling

𝟑𝒂𝒃+ 𝟑𝒃𝒄 + 𝟑𝒄𝒂 ≤ 𝒂 + 𝒃 + 𝒄 𝟐

𝒂 𝒃 − 𝒂 + 𝒃 𝒄 − 𝒃 + 𝒄 𝒂 − 𝒄 ≤ 𝟎
… …

Rewriting

Tactic generation & pruning

Symbolic enumerating and pruning

LLM-generated transformation

Goal filtering & ranking

Symbolic filtering

New inequality problem

(𝟐𝒂𝟐 + 𝒃𝟐)(𝟐𝒄𝟐+ 𝒃𝟐) ≤ 𝒂𝟐 + 𝒃𝟐+ 𝒄𝟐
Given 𝑎, 𝑏, 𝑐 three reals, prove that

LLM ranking

…

…

…

Inequality sequence (Proof)

(𝟐𝒂𝟐 + 𝒃𝟐)(𝟐𝒄𝟐+ 𝒃𝟐) ≤ 𝒂𝟐 + 𝒃𝟐+ 𝒄𝟐

Given 𝑎, 𝑏, 𝑐 three reals, prove that

𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤ 𝒂𝟐 + 𝒃𝟐+ 𝒄𝟐

1. scale Cauchy_Schwarz_3vars

𝟐𝒂𝟐+ 𝒃𝟐+ 𝟐𝒄𝟐 + 𝒃𝟐

𝟐 ≤ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

2. scale AM_GM_2vars

𝒂𝟐 + 𝒃𝟐+ 𝒄𝟐 	 ≤ 𝒂𝟐+ 𝒃𝟐+ 𝒄𝟐
3. llm_simplify

QED!

Figure 2: An overview of our neuro-symbolic inequality prover LIPS. By integrating both LLMs
and symbolic methods in an iterative process of tactic generation and goal selection, it can generate
human-readable and formally verifiable proofs in Lean for Olympiad-level inequality problems.

and which to symbolic methods? By exploring this question, we aim to combine the strengths of
both approaches effectively. Since symbolic methods are inherently domain-specific, we focus on a
concrete domain: inequalities, which offers an ideal balance between feasibility and practicality.

Mathematical Inequalities. Inequalities arise from various branches of mathematics (Hardy et al.,
1952). Their proofs often rely on a relatively small set of fundamental techniques, yet these tech-
niques can be applied in remarkably intricate and nuanced ways. In this paper, we further con-
strain our scope to elementary algebraic inequalities (exemplified in Figure 1), which were prevalent
in mathematics competitions (Manfrino et al., 2010), e.g., Problem 2 in IMO 2000. Additionally,
these inequalities are closely related to quantifier-free real arithmetic in satisfiability modulo theories
(SMT) (Barrett & Tinelli, 2018), which have numerous practical applications in formal verification.

Even this restricted class of inequalities poses significant challenges that surpass the capabilities of
current symbolic or neural provers. Symbolic methods (Yang, 1999; Uray, 2020) partition the vari-
able space (e.g., R3 for three variables) into a finite number of cells, which are then exhaustively
enumerated. These approaches suffer from combinatorial explosion and quickly become compu-
tationally infeasible for competition-level problems. Furthermore, due to their enumerative nature,
these methods are black boxes that cannot produce human-readable proofs. On the other hand, neural
approaches (Wu et al., 2020; Wei et al., 2024) fine-tune language models to generate formal proofs
by predicting tactics or evaluating subgoals during proof search. However, due to data scarcity and
difficulties in generalization, they frequently underperform on certain types of problems.

Our Approach. We introduce LIPS (LLM-based inequality prover with symbolic reasoning),
a neuro-symbolic framework that synergistically combines LLMs with domain-specific symbolic
techniques, as illustrated in Figure 2. Specifically, we analyze common proving strategies used by
humans in inequality proofs and categorize them into two types of tactics: scaling and rewriting.
Scaling tactics apply existing lemmas (e.g., the Cauchy-Schwarz inequality) to scale a subterm in
the current goal. The set of lemmas is finite, and each lemma can be applied only in a limited
number of ways. Therefore, we can enumerate all possible scaling tactics using symbolic tools like
SymPy (Meurer et al., 2017). However, not all scaling tactics are useful for the current goal; over-
scaling may render the goal invalid. We filter out such invalid scaling tactics by using symbolic tools
such as SMT solvers to check for counterexamples of the resulting goals. Rewriting tactics, on the
other hand, transform a term into an equivalent form (e.g., subtracting 2ab from both sides of the
current goal). Any term can be rewritten in infinite ways, making exhaustive enumeration impos-
sible. To address this, we use LLMs to generate rewriting tactics by designing a series of prompts
for different rewriting formats. By leveraging the mathematical intuition embedded in LLMs, we
implicitly prune the infinite tactic space, sampling the most promising equivalent transformations.

Scaling and rewriting the current goal leads to a set of subgoals with new inequalities to prove.
Efficient proof search requires prioritizing the most promising subgoals for further exploration. To
this end, we employ two strategies: symbolic filtering and neural ranking. In symbolic filtering,
we define two heuristic measures based on inequalities’ homogeneity and decoupling properties,
which are used to filter out unpromising subgoals. In neural ranking, the remaining subgoals are fed
into an LLM, which compares and ranks them using chain-of-thought prompting (Wei et al., 2022).
After filtering and ranking, we end up with a small number of ranked subgoals. We then iteratively

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

generate and apply new tactics, filter and rank the resulting subgoals, until the final goal becomes
trivially provable, resulting in a proof that is both human-readable and formally verified by Lean.

We evaluate our framework LIPS on 161 challenging inequalities collected from three problem
sets (Chen, 2014; Tung, 2012; Wei et al., 2024). The experimental results show that LIPS consis-
tently achieves state-of-the-art performance and significantly outperforms existing neural and sym-
bolic methods in both effectiveness and speed. Remarkably, out of 61 inequality problems sourced
from various math Olympiad competitions, LIPS successfully proves 56 within 90 minutes, whereas
the previous best approach solves only 41 problems and fails to generate human-readable proofs.

2 INEQUALITY THEOREM PROVING

In this section, we briefly review the existing neural and symbolic methods for inequality proving. In
a nutshell, symbolic methods are mechanical, completing proofs through an exhaustive exploration
of the problem space; neural methods are heuristic, using LLMs to search and construct proof steps
within a vast tactic space. Each approach offers distinct advantages and faces unique challenges.

2.1 SYMBOLIC METHODS

Consider a set of polynomial inequalities Φi ▷◁ 0, i = 1, . . . ,m, where ▷◁∈ {≤, <,≥, >,=, ̸=},
and each polynomial is of n variables expressed as Φi(x1, . . . , xn) :=

∑
ai1,...,in · xi1

1 xi2
2 · · ·xin

n ,
cylindrical algebraic decomposition (CAD) (Arnon et al., 1984; Caviness & Johnson, 2012; Kre-
mer, 2020) divides the underlying space Rn into multiple connected semi-algebraic sets, known as
cells. Within each cell, the sign of every polynomial remains constant (positive, negative, or zero).
Figure 6(a) illustrates this process with an example of CAD producing cells for two intersecting
unit circles. By exploiting this sign invariance, we can determine the satisfiability of inequalities by
enumerating and checking all the cells, rather than searching the entire infinite space Rn.

CAD and its variants have been extensively utilized in modern SMT solvers (Jovanović & De Moura,
2013; Kremer et al., 2022; Uncu et al., 2023). For inequality theorem proving, CAD transforms the
problem into an enumeration task, exhaustively examining all cells to assess whether the inequality
can be satisfied. While it is capable, CAD’s performance remains unsatisfactory for several reasons.
Firstly, CAD’s heuristic strategies are primarily designed to efficiently find counterexamples rather
than to optimize the proof search process. Secondly, CAD’s proving mechanism fails to generate
explicit and interpretable reasoning paths, hindering both automatic verification by existing interac-
tive theorem provers and human interpretation of the proofs. Additionally, CAD suffers from double
exponential computational complexity relative to the number of variables n (Davenport & Heintz,
1988), causing its efficiency to decrease significantly as the number of variables increases. Notably,
when dealing with nonlinear inequalities involving fractions or radical expressions, auxiliary vari-
ables are always introduced to eliminate these terms (e.g., converting

√
x1 +

√
x2 + x2

3 = 0 into
{x4 + x5 + x2

3 = 0, x2
4 = x1, x

2
5 = x2}). Although this transformation successfully rewrites the

inequality into polynomial form, it drastically degrades the performance of CAD.

2.2 NEURAL METHODS

In contrast to symbolic methods based on CAD, some approaches leverage neural networks to pre-
dict tactics within an interactive theorem prover, generating human-like, step-by-step formal proofs.
Specifically, these inequality proofs are typically structured in a top-down sequential manner, where
each tactic either transforms the current goal into a new subgoal or directly completes the proof (see
Figure 6(b)). Figure 6(c) provides an example proof of the inequality ab+ bc+ ca ≤ a2 + b2 + c2.

Among existing work, INT (Wu et al., 2021) designs a theorem generator for elementary-level in-
equalities by randomly sampling axioms from a fixed set. It trains a Transformer (Vaswani, 2017)
model to predict tactics and utilizes another value network with the Monte Carlo Tree Search to
complete proofs. Similarly, AIPS (Wei et al., 2024) implements a synthetic generator that can pro-
duce IMO-level inequalities and trains a language model to score each inequality expression in a
curriculum manner, performing a best-first search to solve these problems. However, their inequal-
ity generators have some restrictions—either limited in difficulty or constrained by specific forms

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

like cyclic symmetry. Moreover, these approaches mainly rely on fine-tuning models on large-scale
datasets, making them highly dependent on the quantity and diversity of the training data.

3 TACTIC GENERATION & PRUNING

Compared to general theorem proving, the tactics used in inequality proofs are more well-structured:
they can all be categorized into two types, namely scaling and rewriting (Lee, 2004; Ikenaga, 2018).
Scaling refines the given inequality using a known inequality lemma, such as the arithmetic and geo-
metric means (AM-GM) inequality, while rewriting transforms the given inequality using equivalent
transformations, such as multiplying both sides of the inequality by two.

This categorization arises from their unique characteristics. First, scaling tactics rely on a finite
set of lemmas, whereas rewriting tactics pertain to a set of equivalent operations that is inherently
infinite in size. This fundamental difference leads to varying strategies for tactic generation. Second,
scaling tactics involve non-equivalent transformations and may not preserve the provability of the
inequality, unlike rewriting tactics, which are based on equivalent transformations. Therefore, the
pruning strategies for these two tactics also differ: scaling tactics can be pruned based on the validity
of the deduction, while the evaluation of rewriting tactics requires some algebraic intuition.

In the following, we consider the inequality problem in Figure 1 as a running example. To the best
of our knowledge, the proof for this problem is not readily available online, and neither the most
advanced LLMs (e.g., OpenAI o1-preview) nor existing CAD solvers can solve this inequality.

3.1 SCALING TACTICS

Given an inequality lemma, we first enumerate all possible values of its arguments (e.g., determining
u and v in the two-variable AM-GM inequality u2 + v2 ≥ 2uv). Although this step can be directly
implemented using the SymPy pattern match function (Meurer et al., 2017), it introduces a
challenge due to the potentially large number of possible patterns. In our running example, there are
a total of 162 possible pattern matches for the two-variable AM-GM inequality, including cases like
{u := a2, v :=

√
2}, {u := 1, v := 1

a2+2}.

Since scaling tactics refine the inequality goal, they may produce potentially incorrect subgoals
(i.e., unprovable statements). For instance, applying the AM-GM inequality with the pattern {u :=

a2, v :=
√
2} would transform the original inequality (1) into

1

2
√
2a

+
1

2
√
2b

+
1

2
√
2c

≤ 1

6ab+ c2
+

1

6bc+ a2
+

1

6ca+ b2
. (2)

However, this inequality does not hold when a = b = c =
√
3
3 . Specifically, out of the 162 possible

patterns for applying the AM-GM inequality in our running example, only six (i.e., {u := a, v := b}
and its symmetric or cyclical versions) yield correct deductions. Therefore, we propose using CAD
to identify counterexamples in the new inequality goals and eliminate the scaling tactics that produce
them. Moreover, since most scaling tactics are incorrect and thus induce counterexamples, CAD can
efficiently detect and discard them using well-established heuristic strategies.

To further enhance the efficacy and efficiency of scaling tactic pruning, we propose several additional
methods to complement CAD in searching for counterexamples:

Quick Check via Test Cases. When CAD identifies a counterexample for a scaling tactic, we store
it as a “test case”. For any subsequent scaling tactic, we will perform a quick check using this test
case before invoking CAD to determine if the counterexample invalidates the tactic.

Incorporation of Numerical Optimization. Since most inequality problems are differentiable, we
also use gradient-based optimization as an effective alternative when CAD fails. Specifically, we
rewrite the inequality f(x) ≤ g(x) into minx[g(x) − f(x)], and then integrate Newton’s method
with simulated annealing to solve it (Fu & Su, 2016; Ma et al., 2019; Ni et al., 2023).

Utilization of Prior Knowledge. Additionally, prior knowledge can be leveraged in scaling tactic
pruning when the specific form of an inequality problem is known. For example, the inequalities

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

generated and evaluated by AIPS (Wei et al., 2024) are cyclically symmetric and sufficiently tight to
achieve equality. Consequently, AIPS verifies the consistency of equality conditions across multiple
tactics and discards subgoals that either violate these conditions or do not conform to the desired
form. However, to accommodate a broader range of inequalities, our current framework does not
incorporate such priors, even though this information could efficiently prune scaling tactics.

3.2 REWRITING TACTICS

Returning to the running example, after pruning scaling tactics, only a few tactics are applicable.
We may choose to apply the two-variable AM-GM inequality (with pattern {u := a, v := b} and its
cyclical versions) and derive a new proof goal from the initial goal (1), formulated as

1

a2 + 2
+

1

b2 + 2
+

1

c2 + 2
≤ 1

3a2 + 3b2 + c2
+

1

3b2 + 3c2 + a2
+

1

3a2 + 3c2 + b2
. (3)

To solve the current proof goal, some equivalent transformations are required. For example, one
may replace the term 1

3a2+3b2+c2 with 1
3−2c2 using the assumption a2 + b2 + c2 = 1, which makes

the proof goal clearer. However, such transformation insights are inherently creative rather than
mechanical and cannot be readily derived through brute-force methods. Consequently, relying solely
on symbolic pattern matching tends to be highly ineffective. Moreover, the argument space for
rewriting tactics is typically infinite. For example, the assumption a2 + b2 + c2 = 1 can be inserted
at almost any point within the inequality, significantly broadening the scope of rewriting tactics.

To generate and prune the rewriting tactics, we propose directly prompting an LLM to generate
candidates. Specifically, for different operations (e.g., rearrangement, simplification, denominator
cancellation, etc.), we design tailored prompts that guide the LLM to transform the current proof
goal into an appropriate form. The details of these prompts can be referred to Appendix C. In this
setting, tactic pruning is implicitly performed by leveraging the algebraic intuition of LLMs, thereby
effectively reducing the space of possible rewriting tactics.

Besides these neural-guided transformation tactics, we incorporate two additional symbolic-based
transformation tactics, i.e., the sum-of-squares (Chen, 2013) and tangent line (Li, 2005) tricks. The
sum-of-squares trick attempts to rewrite the current expression into a summation of non-negative
terms, which is quite useful in cases where the inequality proof requires intricate calculations rather
than ingenious manipulations (e.g., proving 2x2 + 2xy − 3x+ y2 + 9

4 ≥ 0). The tangent line trick
is also a potent technique, particularly in competition-level inequality proving, which simplifies the
problem by converting the multivariable inequality into a new single-variable problem.

4 GOAL FILTERING & SELECTION

The application of scaling and rewriting tactics yields a collection of new proof goals. By combining
these newly generated goals with existing unexplored ones, we can derive a candidate set. The next
step is to select the most appropriate goal from this candidate set for subsequent proving. In our
running example, we can derive 16 new proof goals from the current goal (3). Below, we present
three of these new goals, each derived by applying the two-variable AM-GM inequality, the three-
variable Titu inequality, and simplifying using the given assumption a2 + b2 + c2 = 1, respectively:

1

a2 + 2
+

1

b2 + 2
+

1

c2 + 2
≤ 2

√
1

a2 + 3b2 + 3c2
· 1

b2 + 3a2 + 3c2
+

1

c2 + 3a2 + 3b2
; (4)

1

a2 + 2
+

1

b2 + 2
+

1

c2 + 2
≤ 9

7a2 + 7b2 + 7c2
; (5)

1

a2 + 2
+

1

b2 + 2
+

1

c2 + 2
≤ 1

3− 2a2
+

1

3− 2b2
+

1

3− 2c2
. (6)

For effective goal selection in proof search, existing methods often train a language model as a value
function to evaluate and rank each goal in the candidate set. However, limitations in data quantity
and diversity can significantly degrade the performance of these fine-tuned models. For example, the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

largest collected inequality dataset in Lean comprises only 46K samples (Ying et al., 2024), while
the largest synthesized dataset of competition-level inequalities contains merely 191K cyclically
symmetric instances (Wei et al., 2024). Consequently, we opt to directly employ an off-the-shelf
LLM (e.g., GPT-4) without fine-tuning. Furthermore, as more proof goals accumulate, the context
length required for prompting an LLM for goal ranking becomes substantial, potentially leading to
the issue of LLMs being “lost in the middle” (Liu et al., 2024). To address this, we propose dividing
the goal selection pipeline into two stages: symbolic filtering and neural ranking.

4.1 SYMBOLIC FILTERING

Given a series of proof goals, we first eliminate those that are less promising based on carefully
designed symbolic rules. Specifically, we prioritize two key properties: (1) homogeneity, meaning
both sides of the inequality have the same degree (e.g., a2 + b2 ≥ 2ab); and (2) decoupling, which
refers to whether the inequality contains mixed-variable terms (e.g., abc is considered coupled).

Both properties are reasonable criteria for prioritization. Regarding homogeneity, most substitution
and transformation tactics preserve homogeneity. Hence, a homogeneous inequality allows for a
broader range of tactics to be applied, thereby producing more valuable proof goals. For decoupling,
an inequality with fewer coupled terms is not only clearer but also amenable to a greater variety of
techniques, such as the sum-of-squares and tangent line tricks.

To measure decoupling and homogeneity, we first approximate the proof goal by a polynomial in-
equality using Taylor expansion. We then compute the expectation of the number of variables in
each term and the variance of the degree of each term, respectively. Formally, given a polynomial
inequality expressed as Φ(x1, . . . , xn) =

∑k
i=1 ai1,...,in · xi1

1 xi2
2 · · ·xin

n ≤ 0, the decoupling score
(DC) and homogeneity score (HM) are computed as:

DC(Φ) =
1

k

k∑
i=1

(

n∑
j=1

I(ij > 0)), HM(Φ) =
1

k

k∑
i=1

(di −
1

k

k∑
j=1

dj)
2,

where di = i1 + · · ·+ in is the total degree of i-th term.

It is worth noting that the homogeneity score and the decoupling score are not always consistent.
In our running example, the newly generated goals in (4), (5), and (6) achieve homogeneity scores
of 0.56, 0.55, and 0.80, and decoupling scores of 0.44, 0.48, and 0.66, respectively. As a result, we
normalize the scores into [0, 1] and then compute the average score to filter the candidates.

4.2 NEURAL RANKING

Symbolic rules are not universally effective. Hence, we use these rules solely to eliminate unpromis-
ing proof goals, leaving top-k candidates, for final selection by an LLM. Unlike symbolic filtering,
which requires explicit definitions of inequality metrics, we use the chain-of-thought prompting (Wei
et al., 2022; Chu et al., 2023) to query an LLM to rank the proof goals based on their proving diffi-
culty. The detailed prompt for the running example is shown below.

Prompt of neural ranking

I am trying to prove the original inequality: “ If a, b, c are positive reals and a2 + b2 + c2 = 1,
then 1

a2+2 +
1

b2+2 +
1

c2+2 ≤ 1
3a2+3b2+c2 +

1
3b2+3c2+a2 +

1
3a2+3c2+b2 ”, and transform it into the

following inequalities.

(1) 1
a2+2 + 1

b2+2 + 1
c2+2 ≤ 2

√
1

a2+3b2+3c2 · 1
b2+3a2+3c2 + 1

c2+3a2+3b2

(2) 1
a2+2 + 1

b2+2 + 1
c2+2 ≤ 9

7a2+7b2+7c2

(3) 1
a2+2 + 1

b2+2 + 1
c2+2 ≤ 1

3−2a2 + 1
3−2b2 + 1

3−2c2

Your task is to rank the transformation results in a descent order. Note that
1. Please reason step by step;
2. More meaningful transformation, i.e., reduce the proving difficulty, should be ranked higher;
3. Put the index of selected inequality within \\boxed{{}}, e.g., \\boxed{{(1),(2),(3)}}.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Proof success rates (%) of LIPS and baselines on three datasets. The best performance is in
bold. The results show that LIPS consistently achieves superior performance across all datasets.

Dataset # of Problems Neural Provers Symbolic Provers LIPS ∆
DSP MCTS AIPS† CAD‡ MMA‡

ChenNEQ 41 0.0 17.0 - 70.7 68.2 95.1 24.4↑
MO-INT 20 0.0 15.0 50.0 60.0 60.0 80.0 20.0↑
567NEQ 100 0.0 4.0 - 54.0 52.0 68.0 14.0↑

Total 161 0.0 8.6 - 59.0 57.1 76.3 17.3↑
† The code of AIPS has not been publicly available, we only include its originally reported results.
‡ CAD and MMA only output verification results, they cannot produce human-readable proofs.

5 EXPERIMENTS

In this section, we conduct a series of experiments to address the following three research questions:

RQ1: Efficacy – Compared to existing SoTA methods, can LIPS successfully prove more problems?

RQ2: Efficiency – Compared to SoTA methods or alternatives, can LIPS obtain proofs in less time?

RQ3: Scalability – Can LIPS become more effective or efficient by incorporating more scaling
lemmas or employing more powerful LLMs?

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate LIPS on three datasets: ChenNEQ, MO-INT-20, and 567NEQ, respectively.
ChenNEQ comprises 41 Olympiad-level inequalities collected by Chen (2014); MO-INT is a new
competition-level inequality benchmark introduced in AIPS (Wei et al., 2024), featuring 20 prob-
lems sourced from IMO shortlists and various national mathematical Olympiads; 567NEQ consists
of 567 hard inequalities created by Tung (2012) and we randomly selected 100 problems from the
original problem set as the testbed for our framework. To formalize the problems in Lean 4, we
directly translate the LaTeX source code into Lean format using manually defined rules.

Baselines. We compare LIPS with five baselines: DSP (Jiang et al., 2022), CAD (Kremer, 2020),
MMA (Wolfram Research), MCTS (Wu et al., 2020), and AIPS (Wei et al., 2024). DSP consists of
two steps, natural language reasoning generation and proof autoformalization, and we instantiate
the LLM used in each step GPT-4o. MCTS (a.k.a Monte Carlo tree search) has been explored in
previous studies (Wu et al., 2020) and serves as an alternative method for proof goal selection. AIPS
is an inequality prover system based on SymPy, which has demonstrated the capability to prove
competition-level inequalities. CAD integrates a series of CAD-based inequality solvers including
Z3 (De Moura & Bjørner, 2008), CVC5 (Kremer et al., 2022), RC-CAD (Lemaire et al., 2005), and
Bottema (Lu, 1998). MMA, referring to Mathematica, incorporates the CAD algorithm with other
reduction strategies, providing a powerful algebraic system for inequality verification (Wolfram Re-
search, 2020). Further implementation details for the baseline methods are provided in Appendix C.

Implementation. The detailed processes of tactic generation, goal selection, as well as the overall
framework are provided in Appendix B. To construct the tactics, we design a total of 96 scaling
tactics and 16 rewriting tactics, each formalized in Lean 4. The corresponding premises and LLM
prompts are summarized in Appendix C. For counterexample search in scaling tactic pruning, we
integrate four CAD-based solvers (Z3, CVC5, RC-CAD, and Bottema) and implement an optimizer
based on SciPy (Virtanen et al., 2020). In symbolic filtering, we fix the size of filtered goal set to 10,
as it is the largest size that ensures GPT-4’s efficacy. For the LLM involved in transformation tactic
generation and proof goal ranking, we use GPT-4o (version Azure-0501).

5.2 EXPERIMENTS

RQ1 : Efficacy. We evaluate the proof success rates of LIPS and the five comparative methods
across the three datasets. For each proving task, a time limit of 90 minutes is imposed, consis-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1 2 3 4 5 8 9 10 11 13 14 15 16 17 18 19
Index of successfully proved problems

60

70

80

90

100

Ta
ct

ic
 p

ru
ni

ng
 ra

tio
 (%

)
86

78
81

61

84

78

62

87

74

92

85

94

97

60

89

84

89 88

92

85

90

95

75

66

86

92

96
94

97

90

94

90

AIPS LIPS

1 2 3 4 5 8 9 10 11 13 14 15 16 17 18 19
Index of successfully proved problems

0

6

12

18

24

30

36

N
um

be
r o

f i
te

ra
tio

ns

9
7 6

9
6 6 6

16

7
5 6

8

4
7 8

6

22

17
14

24

6

11 11

29

22

8 8

15

5

33

13 14

Oracle LIPS

Figure 3: Tactic pruning ratio (↑) and number of iterations (↓) of LIPS. The results illustrate that
the tactic pruning method of LIPS is very stable, and outperforms the existing method by 7.92% on
average. In addition, the high efficiency of LIPS is derived from accurate goal selection, allowing a
proof to be successfully constructed with a small number of goal selection iterations.

tent with that of AIPS and the standard problem-solving time constraint in the IMO. The overall
results are presented in Table 1. First, we observe that the neural methods (DSP and MCTS) cannot
achieve satisfactory performance. An analysis of DSP’s results reveals that GPT-4o is unable to pro-
vide accurate natural language solutions or generate precise formal proofs in the Lean 4 language,
resulting in a zero success rate. Alternatively, MCTS struggles to effectively identify the correct
reasoning path among numerous proof goals, causing many proving attempts to terminate due to
timeouts. We also evaluate the performance of the latest OpenAI o1-preview model on the MO-INT
dataset. Through manual inspection of the generated natural language answers, we find that none of
problems are correctly solved. Examples of these neural methods are provided in Appendix D.

Symbolic provers outperform neural provers, CAD and MMA achieve overall success rates of 59.0%
and 57.1%, respectively. However, LIPS further surpasses symbolic provers by a significant margin
of 14.0% to 24.4%. Notably, symbolic provers fail to produce any human-readable reasoning path.
In contrast, the proofs generated by LIPS is not only accessible and human-readable, but also have
been successfully verified by the Lean theorem prover. For reference, we include two examples (one
showcasing a successful proof and the other demonstrating a failed attempt) in Appendix D.

RQ2 : Efficiency. Since existing methods are built on different deduction engine, a direct compar-
ison of their proving time could be unfair. Instead, we break down the efficiency evaluation into two
aspects, i.e., the pruning ratio of scaling tactics and the number of iterations in goal selection. Given
that AIPS uses the equality check as the scaling tactic pruning strategy, we compare this approach
with the CAD-based strategy employed in LIPS. Figure 3 provides the result of each problem in the
MO-INT dataset. LIPS outperforms the existing method in 13 out of 20 problems, and achieves an
average improvement of 7.92%.

Furthermore, we count the number of goal selection iterations for each successfully proved problem,
and present the results in Figure 3. Due to the absence of a comparison method, we only include the
oracle (i.e., optimal goal selection) as a reference. We can observe that LIPS performs no more than
33 search loops to successfully obtain a proof, and for 12 out of 16 problems, it exceeds the oracle
by fewer than 10 steps. In addition, LIPS requires an average of 15.75 search loops, which is only
2.17 times that of the oracle (7.25), demonstrating that LIPS’s efficiency also stems from its high
accuracy in generating proving paths.

RQ3 : Scability. We conduct four experiments on the ChenNEQ dataset to explore the scalability
of LIPS’s symbolic and neural components. For the symbolic part, we first examine how expanding
the scaling tactics affects the performance of LIPS. To this end, we randomly select 7 sets of scaling
tactics with varying sizes and plot the performance curve in Figure 4(a). The results show that the
proof success rate consistently increases as more scaling tactics are included, suggesting potential
benefits in further enlarging our scaling tactic library. The second experiment investigates the effect
of different sizes of the filtered set. The corresponding performance curve is shown in Figure 4(b).
We observe that the success rate remains robust (over 85%) with sizes from 8 to 16, but decreases
significantly when the set being either too small or too large.

For the neural part, we explore the performance of LIPS with different LLMs serving in rewriting
tactic generation and neural ranking. We select three alternative LLMs, i.e., Mathstral 7B (Jiang
et al., 2023), LLaMA-3 8B (AI@Meta, 2024), and DeepSeek-chat V2.5 (DeepSeek-AI, 2024). We

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 16 32 48 64 80 96
Various sizes of scaling tactics

0

20

40

60

80

100

Pr
ov

in
g

su
cc

es
s r

at
e

(%
)

0 4 8 12 16 20 24 28 32
Various sizes of filtered set

0

20

40

60

80

100

Pr
ov

in
g

su
cc

es
s r

at
e

(%
)

Figure 4: Performance curves in various sizes of scal-
ing tactics and filtered set. Results show that (1) Ad-
dition of scaling tactics can continuously improve the
proving success rate; (2) The symbolic filtering is very
crucial and the size of filtered set is robust.

Tactic Generation Neural Ranking
Various LLMs in rewriting tactic generation and neural ranking

0

25

50

75

100

Pr
ov

in
g

su
cc

es
s r

at
e

(%
)

51.2

92.7

80.5
87.8

95.1

17.1

73.2
63.4

85.4
95.1

Baseline Mathstral LLaMA-3 Deepseek-chat GPT4-o

Figure 5: Performance of various LLMs as
alternatives. Results illustrate that (1) LLMs
are crucial in rewriting tactic generation and
neural ranking; (2) The more powerful LLM
can achieve higher proving success rate.

also include a baseline method as an ablative study. In rewriting tactic generation, the baseline uses
SymPy simplify function instead of existing LLM-based rewriting tactics. In neural ranking, we
directly use the random selection as the baseline. The proving success rates are provided in Fig-
ure 5. The results demonstrate that all three alternative LLMs exhibit strong mathematical intuition,
achieving performance comparable to GPT-4o in neural ranking. However, there exists a small de-
cline in performance for rewriting tactic generation, which may be due to differences in instruction
following and mathematical reasoning capabilities.

Case study. Besides the running example (1), we provide two additional examples in Appendix E
to illustrate that LIPS can discover new proofs, which are previously unavailable online. Moreover,
we also present two examples in Appendix E to demonstrate that users can verify human-written
proofs by comparing them with the reasoning paths generated by LIPS.

6 RELATED WORK

In this section, we review related work on symbolic methods and LLMs for general mathematical
reasoning and formal theorem proving, extending beyond inequality proving problems.

Symbolic Tools for Mathematical Reasoning. Symbolic tools are essential for performing ex-
act computations and formal reasoning in mathematics. Interactive theorem provers such as Is-
abelle (Paulson, 1994), Coq (Coq, 1996), and Lean (de Moura et al., 2015) enable users to build
verifiable proofs manually, ensuring correctness through rigorous formal logic. These systems have
been instrumental in formalizing and verifying significant mathematical theorems, including the
Four Color Theorem (Gonthier, 2008) and the Kepler Conjecture (Hales et al., 2017). Alternatively,
some symbolic reasoning tools aim to solve mathematical problems without human intervention.
Automated theorem provers like E (Schulz, 2002) and Vampire (Kovács & Voronkov, 2013) are
designed to prove mathematical statements by systematically exploring possible proofs within a
logical framework, particularly excelling in first-order logic. SMT solvers such as Z3 (De Moura &
Bjørner, 2008) and CVC5 (Barbosa et al., 2022) determine the satisfiability of logical formulas with
respect to background theories like arithmetic, bit-vectors, and arrays by integrating logical reason-
ing with theory-specific decision procedures. Computer algebra systems like Mathematica (Wolfram
Research), Maple (Heck & Koepf, 1993), and SymPy (Meurer et al., 2017) manipulate mathemat-
ical expressions symbolically, supporting functionalities such as simplification, differentiation, in-
tegration, and equation solving. Despite their capabilities, these automated solvers struggle with
competitive mathematical problems and often cannot generate human-readable reasoning steps.

Machine Learning for Formal Theorem Proving. There is a longstanding tradition of leverag-
ing machine learning techniques to automate theorem proving (Urban et al., 2008; Gauthier et al.,
2018; Zhang et al., 2021; Piotrowski et al., 2023; Blaauwbroek et al.). Recently, the emergence
of LLMs has opened up new opportunities for advancing mathematical reasoning, especially when
combined with formal proof systems for theorem proving (Li et al., 2024). A line of research (Polu
& Sutskever, 2020; Wu et al., 2021; Han et al., 2022; First et al., 2023; Yang et al., 2023; Xin et al.,
2024a; Wu et al., 2024) fine-tunes pre-trained language models on large-scale formal datasets to
predict the tactics given a proof goal. Alternative approaches (Jiang et al., 2022; Xin et al., 2024b;

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Zhao et al., 2024; Zheng et al., 2024; Thakur et al., 2024) integrate LLMs into structured prompt
frameworks for formal theorem proving, leveraging information such as natural language proofs or
feedback from interactive theorem provers. Some methods (Polu & Sutskever, 2020; Lample et al.,
2022; Polu et al., 2023; Wang et al., 2023; Wei et al., 2024) also train LLMs as value networks to
evaluate each subgoal and guide the proof search to completion. However, these methods primarily
rely on LLMs to prune the search space, and their performance heavily depends on the quality and
diversity of the training data, which may limit their ability to generalize to novel or more complex
mathematical problems. A notable exception and closely related work to ours is AlphaGeome-
try (Trinh et al., 2024), which uses a language model only to predict auxiliary construction rules,
after which its symbolic solver automatically enumerates all inference rules to generate the proof in
a specialized language used in GEX (Chou et al., 2000). Compared to their approach, our neuro-
symbolic framework generates step-by-step proofs in general-purpose formal language Lean and
allows for integrating arbitrary symbolic tools that do not require direct proof generation. Further-
more, our focus on inequality problems spans a much wider range of complex mathematical skills
than plane geometry problems. Our techniques could serve as a solid foundation for broader areas
of mathematical research such as information theory (Dembo et al., 1991), optimization (Nesterov,
2013), and deep learning (Roberts et al., 2022), making it a suitable pathway to more advanced
mathematical problems.

7 LIMITATIONS AND FUTURE WORK

While LIPS has shown significant promise in generating formal proofs for Olympiad inequalities,
several avenues remain open for enhancement and expansion.

Automating the Formalization of Tactics. Our framework currently relies on a set of manually
crafted tactics for scaling and rewriting inequalities, such as various forms of the AM-GM inequality.
This manual effort may impact scalability, given that the effectiveness of our approach is closely tied
to the breadth of available tactics. Future work could focus on automating the discovery, formaliza-
tion, and proof of new tactics to expand the tactic library. Developing methods for automatic tactic
generation would reduce human effort and enhance the framework’s scalability and adaptability.

Enhancing the Reasoning Capabilities of LLMs. We leverage the mathematical insights learned
by LLMs in our framework, and there is potential to further improve their reasoning performance.
One promising direction is to collect or generate additional formal inequality problems and their
corresponding proofs to create a richer dataset for fine-tuning LLMs specifically for this task. Some
existing techniques (Li et al., 2024) may be useful for generating diverse and high-quality problems
to enhance the LLMs’ capabilities in handling inequalities, leading to better overall performance.

Broadening the Application Domain. While our framework currently focuses on Olympiad-level
elementary algebraic inequalities, extending it to more complex problems, such as concentration
inequalities in machine learning theory, presents an exciting avenue for future research. This would
involve improving the symbolic solver to handle inequality structures that consist of infinite vari-
ables and higher-order concepts like expectations or variances. Developing efficient algorithms and
symbolic reasoning methods for these advanced mathematical constructs could significantly broaden
the applicability of our neuro-symbolic paradigm. Extending our approach to other mathematical
domains holds great potential and is a promising direction for future work.

8 CONCLUSION

In this paper, we introduce a neuro-symbolic framework for generating formal proofs that integrates
the mathematical intuition learned by LLMs with domain-specific insights encoded by symbolic
methods, specifically focusing on the domain of Olympiad inequalities. We categorize the tactics
used in inequality proofs into two types: scaling and rewriting. Symbolic methods are employed
to generate and filter scaling tactics by applying a set of lemmas through mechanical symbolic
reasoning. LLMs are leveraged to generate rewriting tactics, implicitly pruning the infinite num-
ber of equivalent transformations to a manageable set. We further combine symbolic tools with
LLMs to prune and rank subgoals, enhancing the efficiency of proof search. Experiments on chal-
lenging inequalities from three problem sets show that our neuro-symbolic inequality prover LIPS

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

significantly outperforms both LLMs and symbolic methods, demonstrating the effectiveness of the
neuro-symbolic integration and laying a solid foundation for its adoption in broader domains.

REFERENCES

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

AlphaProof and AlphaGeometry teams. AI achieves silver-medal standard solving international
mathematical olympiad problems. https://deepmind.google/discover/blog/
ai-solves-imo-problems-at-silver-medal-level/, 2024.

Dennis S Arnon, George E Collins, and Scott McCallum. Cylindrical algebraic decomposition I:
The basic algorithm. SIAM Journal on Computing, 13(4):865–877, 1984.

Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Ab-
dalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, et al. cvc5: A versatile
and industrial-strength SMT solver. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, 2022.

Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. 2018.

Lasse Blaauwbroek, Miroslav Olšák, Jason Rute, Fidel Ivan Schaposnik Massolo, Jelle Piepenbrock,
and Vasily Pestun. Graph2tac: Online representation learning of formal math concepts, 2024.
URL https://arxiv. org/abs/2401.02949.

Bob F Caviness and Jeremy R Johnson. Quantifier elimination and cylindrical algebraic decompo-
sition. Springer Science & Business Media, 2012.

Evan Chen. Supersums of square-weights (SOS), 2013.

Evan Chen. A brief introduction to olympiad inequalities.
https://web.evanchen.cc/handouts/Ineq/en.pdf, 2014.

Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong Zhang. A Deductive Database Approach to
Automated Geometry Theorem Proving and Discovering. Journal of Automated Reasoning, 2000.

Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang Yu, Tao He, Haotian Wang, Weihua Peng,
Ming Liu, Bing Qin, and Ting Liu. A survey of chain of thought reasoning: Advances, frontiers
and future. arXiv preprint arXiv:2309.15402, 2023.

Project Coq. The Coq proof assistant-reference manual. INRIA Rocquencourt and ENS Lyon, ver-
sion, 5, 1996.

James H Davenport and Joos Heintz. Real quantifier elimination is doubly exponential. Journal of
Symbolic Computation, 5(1-2):29–35, 1988.

Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In International conference
on Tools and Algorithms for the Construction and Analysis of Systems, pp. 337–340. Springer,
2008.

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
Lean theorem prover (system description). In International Conference on Automated Deduction
(CADE), 2015.

DeepSeek-AI. DeepSeek-V2: A strong, economical, and efficient mixture-of-experts language
model, 2024.

Amir Dembo, Thomas M Cover, and Joy A Thomas. Information theoretic inequalities. IEEE
Transactions on Information theory, 37(6):1501–1518, 1991.

Emily First, Markus Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-proof generation and
repair with large language models. In ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE), 2023.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhoulai Fu and Zhendong Su. XSat: A fast floating-point satisfiability solver. In International
Conference on Computer Aided Verification (CAV), pp. 187–209. Springer, 2016.

Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. Learning to reason with hol4 tactics. arXiv
preprint arXiv:1804.00595, 2018.

Georges Gonthier. The Four Colour Theorem: Engineering of a Formal Proof. In Proceedings of
the Asian Symposium on Computer Mathematics, 2008.

Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison, Hoang Le Truong,
Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Tat Thang Nguyen, et al. A Formal Proof of
the Kepler Conjecture. In Forum of Mathematics, Pi, 2017.

Kristian J Hammond and David B Leake. Large language models need symbolic AI. In NeSy, pp.
204–209, 2023.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W Ayers, and Stanislas Polu. Proof Artifact Co-
Training for Theorem Proving with Language Models. In International Conference on Learning
Representations (ICLR), 2022.

Godfrey Harold Hardy, John Edensor Littlewood, and George Pólya. Inequalities. 1952.

André Heck and Wolfram Koepf. Introduction to Maple, volume 16. Springer, 1993.

Marijn JH Heule, Oliver Kullmann, and Victor W Marek. Solving and verifying the boolean
Pythagorean triples problem via cube-and-conquer. In International Conference on Theory and
Applications of Satisfiability Testing, 2016.

Bruce Ikenaga. Techniques in proving inequalities, Sep 2018. URL https://sites.
millersville.edu/bikenaga/math-proof/inequalities/inequalities.
html.

Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée
Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs. arXiv preprint arXiv:2210.12283, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Mats Jirstrand. Cylindrical algebraic decomposition-an introduction. Linköping University, 1995.

Dejan Jovanović and Leonardo De Moura. Solving non-linear arithmetic. ACM Communications in
Computer Algebra, 46(3/4):104–105, 2013.

Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. In International
Conference on Computer Aided Verification (CAV), pp. 1–35. Springer, 2013.

Gereon Kremer. Cylindrical algebraic decomposition for nonlinear arithmetic problems. PhD the-
sis, Dissertation, RWTH Aachen University, 2020, 2020.

Gereon Kremer, Andrew Reynolds, Clark Barrett, and Cesare Tinelli. Cooperating techniques for
solving nonlinear real arithmetic in the cvc5 SMT solver (system description). In International
Joint Conference on Automated Reasoning, pp. 95–105. Springer International Publishing Cham,
2022.

Guillaume Lample, Timothee Lacroix, Marie-Anne Lachaux, Aurelien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree Proof Search for Neural Theorem
Proving. In Neural Information Processing Systems (NeurIPS), 2022.

Hojoo Lee. Topics in inequalities-theorems and techniques. Korea Institute for Advanced Study,
Seoul,(http://www. normalesup. org/˜ kortchem/olympiades/Cours/Inegalites/tin2006. pdf), 2004.

12

https://sites.millersville.edu/bikenaga/math-proof/inequalities/inequalities.html
https://sites.millersville.edu/bikenaga/math-proof/inequalities/inequalities.html
https://sites.millersville.edu/bikenaga/math-proof/inequalities/inequalities.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

François Lemaire, M Moreno Maza, and Yuzhen Xie. The regularchains library in maple. ACM
SIGSAM Bulletin, 39(3):96–97, 2005.

Kin-Yin Li. Using tangent lines to prove inequalities. Mathematical Excalibur, 2006:1, 2005.

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, and
Xujie Si. A survey on deep learning for theorem proving. In Conference on Language Modeling
(COLM), 2024.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024.

YANG Lu. Practical automated reasoning on inequalities: Generic programs for inequality prov-
ing and discovering. Proceedings of the Third Asian Technology Confer ence in Mathematics.
Tsukuba, Japan, pp. 24–35, 1998.

Yi-An Ma, Yuansi Chen, Chi Jin, Nicolas Flammarion, and Michael I Jordan. Sampling can be
faster than optimization. Proceedings of the National Academy of Sciences (PNAS), 116(42):
20881–20885, 2019.

Radmila Bulajich Manfrino, José Antonio Gómez Ortega, and Rogelio Valdez Delgado. Inequali-
ties: a mathematical olympiad approach. 2010.

Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čertı́k, Sergey B Kirpichev, Matthew
Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K Moore, Sartaj Singh, et al. SymPy: symbolic
computing in python. PeerJ Computer Science, 3:e103, 2017.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

Allen Newell and Herbert Simon. The logic theory machine–a complex information processing
system. IRE Transactions on information theory, 1956.

Xinpeng Ni, Yulun Wu, and Bican Xia. Solving SMT over non-linear real arithmetic via numer-
ical sampling and symbolic verification. In International Symposium on Dependable Software
Engineering: Theories, Tools, and Applications, pp. 171–188. Springer, 2023.

Lawrence C Paulson. Isabelle: A Generic Theorem Prover. Springer, 1994.

Bartosz Piotrowski, Ramon Fernández Mir, and Edward Ayers. Machine-learned premise selec-
tion for lean. In International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods, pp. 175–186. Springer, 2023.

Stanislas Polu and Ilya Sutskever. Generative Language Modeling for Automated Theorem Proving.
arXiv preprint arXiv:2009.03393, 2020.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya
Sutskever. Formal Mathematics Statement Curriculum Learning. In International Conference
on Learning Representations (ICLR), 2023.

Daniel A Roberts, Sho Yaida, and Boris Hanin. The principles of deep learning theory, volume 46.
Cambridge University Press Cambridge, MA, USA, 2022.

Stephan Schulz. E–a brainiac theorem prover. AI Communications, 15(2-3):111–126, 2002.

Peiyang Song, Kaiyu Yang, and Anima Anandkumar. Towards large language models as copilots
for theorem proving in Lean. arXiv preprint arXiv: Arxiv-2404.12534, 2024.

Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, and Swarat Chaudhuri. An
in-context learning agent for formal theorem-proving. In Conference on Language Modeling
(COLM), 2024.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Nguyen Duy Tung. 567 nice and hard inequality. https://phamtuankhai.wordpress.com/wp-
content/uploads/2012/04/567-bat-dang-thuc-hay.pdf, April 2012.

Ali K Uncu, James H Davenport, and Matthew England. SMT-solving induction proofs of inequal-
ities. arXiv preprint arXiv:2307.16761, 2023.

Marcell János Uray. On proving inequalities by cylindrical algebraic decomposition. In Annales
Universitatis Scientiarum Budapestinensis de Rolando Eotvos Nominatae. Sectio Computatorica,
volume 51, 2020.

Josef Urban, Geoff Sutcliffe, Petr Pudlák, and Jiřı́ Vyskočil. Malarea sg1-machine learner for auto-
mated reasoning with semantic guidance. In International Joint Conference on Automated Rea-
soning, pp. 441–456. Springer, 2008.

A Vaswani. Attention is all you need. In Neural Information Processing Systems (NeurIPS), 2017.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Haiming Wang, Ye Yuan, Zhengying Liu, Jianhao Shen, Yichun Yin, Jing Xiong, Enze Xie, Han
Shi, Yujun Li, Lin Li, et al. DT-Solver: Automated theorem proving with dynamic-tree sampling
guided by proof-level value function. In Annual Meeting of the Association for Computational
Linguistics (ACL), 2023.

Chenrui Wei, Mengzhou Sun, and Wei Wang. Proving olympiad algebraic inequalities without hu-
man demonstrations. In Neural Information Processing Systems (NeurIPS), Datasets and Bench-
marks Track, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In Neural
Information Processing Systems (NeurIPS), 2022.

Wolfram Research. Mathematica, Version 14.1. URL https://www.wolfram.com/
mathematica. Champaign, IL, 2024.

Wolfram Research. Cylindrical Decomposition, 2020. URL https://reference.wolfram.
com/language/ref/CylindricalDecomposition.html.

Wen-tsün Wu. On the decision problem and the mechanization of theorem-proving in elementary
geometry. In Selected Works Of Wen-Tsun Wu, pp. 117–138. World Scientific, 2008.

Yuhuai Wu, Albert Qiaochu Jiang, Jimmy Ba, and Roger Grosse. Int: An inequality benchmark for
evaluating generalization in theorem proving. arXiv preprint arXiv:2007.02924, 2020.

Yuhuai Wu, Albert Q Jiang, Jimmy Ba, and Roger Grosse. INT: An Inequality Benchmark for
Evaluating Generalization in Theorem Proving. In International Conference on Learning Repre-
sentations (ICLR), 2021.

Zijian Wu, Jiayu Wang, Dahua Lin, and Kai Chen. LEAN-GitHub: Compiling github lean reposi-
tories for a versatile lean prover. arXiv preprint arXiv:2407.17227, 2024.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
and Xiaodan Liang. DeepSeek-Prover: Advancing theorem proving in llms through large-scale
synthetic data. arXiv preprint arXiv:2405.14333, 2024a.

Huajian Xin, Haiming Wang, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya
Huang, Jing Xiong, Han Shi, Enze Xie, et al. LEGO-Prover: Neural theorem proving with
growing libraries. In International Conference on Learning Representations (ICLR), 2024b.

14

https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://reference.wolfram.com/language/ref/CylindricalDecomposition.html
https://reference.wolfram.com/language/ref/CylindricalDecomposition.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. LeanDojo: Theorem proving with retrieval-augmented
language models. In Neural Information Processing Systems (NeurIPS), 2023.

Lu Yang. Recent advances in automated theorem proving on inequalities. Journal of Computer
Science and Technology, 14(5):434–446, 1999.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook:
A large-scale lean problem set formalized from natural language math problems. arXiv preprint
arXiv:2406.03847, 2024.

Liao Zhang, Lasse Blaauwbroek, Bartosz Piotrowski, Cezary Kaliszyk, and Josef Urban. Online
machine learning techniques for coq: a comparison. In International Conference on Intelligent
Computer Mathematics, pp. 67–83. Springer, 2021.

Xueliang Zhao, Wenda Li, and Lingpeng Kong. Subgoal-Based Demonstration Learning for Formal
Theorem Proving. In International Conference on Machine Learning (ICML), 2024.

Chuanyang Zheng, Haiming Wang, Enze Xie, Zhengying Liu, Jiankai Sun, Huajian Xin, Jianhao
Shen, Zhenguo Li, and Yu Li. Lyra: Orchestrating dual correction in automated theorem proving.
Transactions on Machine Learning Research (TMLR), 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) An example of CAD

Initial goal (to be proved)

Intermediate goals’

Tactic1

Intermediate goals’’

Tactic2

Final goal (trivial)

Tactic3

(b) Inequality proving process

𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 ≤ 𝑎! 	+	𝑏! 	+	𝑐!

Cauchy-Schwarz

(2a! + 𝑏!)(2𝑐! + 𝑏!) ≤ 𝑎! 	+	𝑏! 	+	𝑐!

(2𝑎! + 𝑏! + 2𝑐! + 𝑏!)/2 ≤ 𝑎! 	+ 	𝑏! 	+	𝑐!

AM-GM

𝑎! 	+	𝑏! 	+ 	𝑐! ≤ 𝑎! 	+ 	𝑏! 	+	𝑐!

Simplification

(c) An example of proof

Figure 6: Figure (a) demonstrates how CAD is performed on two intersecting unit circles, deriving
multiple sign-invariant cells (i.e., colored region). Figure (b) illustrates the process of inequality
proving, which constructs a chain of proof goals by iteratively applying tactics; Figure (c) provides
a corresponding instantiation of proving ab+ bc+ ca ≤ a2 + b2 + c2.

A SYMBOLIC METHODS VS. NEURAL METHODS

Figure 6(a) illustrates how symbolic methods work in proving inequalities. Symbolic methods are
based on the CAD algorithm, which divides the underlying space Rn into multiple connected semi-
algebraic sets. In each cell, the sign of every polynomial remains constant (positive, negative, or
zero). Therefore, we just need sample one point to determine the satisfiability of each cell, rather
than scanning the whole Rn space. One can refer to Caviness & Johnson (2012); Arnon et al. (1984);
Jirstrand (1995) for more details of CAD algorithm.

Figure 6(b) and 6(c) illustrates a commonly used paradigm in inequality proving. In a nutshell, a
theorem prover often starts with the proof goal, then iteratively transform it into a simpler forms
until the final version can be easily confirmed. This approach has two main advantages. First, it
ensures that the resulting proof can be more easily formalized in formal languages such as Lean.
Second, since the hypotheses involved in inequality proofs are often straightforward, scaling and
rewriting the proof goal is typically more efficient.

B PSEUDO CODE OF LIPS

Algorithm (3) outlines the overall process of LIPS proof generation. The detailed steps for tactic
generation and pruning are provided in Algorithm 1, while the specifics for goal filtering and ranking
are described in Algorithm 2.

Algorithm 1 Tactic generation and pruning of LIPS

Input: A proof goal g; A lemma library of scaling tactics Φ and a prompt set of rewriting tactics
Ψ; A language model M .

Output: Tactic set T .
1: Initialize the tactic set T = {}
2: for t in Φ do ▷ Scaling tactic generation
3: Obtain arguments of the tactic t using pattern match on the goal Φ.
4: Check the tactic t (with derived arguments) via the symbolic solvers.
5: if no counterexamples exist then ▷ Tactic pruning & Solver update
6: Add the tactic t into the tactic set T .
7: else
8: Update the symbolic solvers by including newly detected counterexamples.
9: end if

10: end for
11: for t in Ψ do ▷ Rewriting tactic generation & pruning
12: Obtain arguments of the tactic t by prompting the LLM.
13: Add the tactic t (with derived arguments) into the the tactic set T .
14: end for

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 2 Goal filtering and ranking of LIPS

Input: A goal candidate set Ω.
Output: A ranked set Ω′.

1: Initialize a new goal set Ω′ = {}.
2: for g in Ω do ▷ Symbolic goal filtering
3: Compute the homogeneity α and decoupling β for g.
4: Define the average score of the goal g by (α+ β)/2.
5: end for
6: Prompt the LLM to rank the first ten goals in Ω′ ▷ Neural goal ranking
7: Obtain arguments of the tactic t by prompting the LLM.
8: Re-rank the goal set Ω′ according to LLM’s responses.

Algorithm 3 Overall proof generation process of LIPS

Input: A formal inequality problem g0; A lemma library of scaling tactics Φ and a prompt set of
rewriting tactics Ψ; A language model M .

Output: A proof formalized in Lean or timeout.
1: Initialize the candidate goal set Ω = {g0}.
2: for i = 1, . . . , do
3: Select the first goal g in S for exploration.
4: Obtain the tactic set T by applying Algorithm (1) on the current goal g.
5: for t in T do ▷ Tactic application
6: Apply the tactic to the current g in Lean, deriving a new goal g′.
7: Add the new goal g′ into the the candidate goal set Ω.
8: end for
9: Update the goal set Ω by applying Algorithm (2).

10: end for

C ADDITIONAL DETAILS FOR EXPERIMENTS

The experiments were conducted on a Linux server equipped with 4 Intel(R) Xeon(R) Platinum
8280L CPU @ 2.80GHz. The server ran Ubuntu 22.04 with GNU/Linux kernel 6.5.0-1015-azure.
Each proving task was performed within a docker sandbox, utilizing 204 assigned CPU cores.

Neural provers. For DSP, we directly use the official code, and adapt it to Lean language and
GPT-4o (version Azure-05-01). MCTS is implemented based on classic upper confidence bounds
applied to trees algorithm (Kocsis & Szepesvári, 2006). The value function is defined as f(ϕ) =

vϕ + C
√
log(Nϕ)/nϕ, where nϕ is the number of the proof goal ϕ is selected and explored, Nϕ

represents the number of ϕ’s parent represents selected and explored, and C is a hyperparameter
set to C =

√
2. For the average reward vϕ of the proof goal ϕ, we use the same heuristic function

as Wei et al. (2024), which calculates the maximum depth of the expression trees on both sides.

Symbolic provers. For CAD, we utilize a portfolio including a suite of solvers, i.e., Z3, CVC5,
RC-CAD, and Bottema. It will claim the problem is successfully proved if any one of four tools
outputs unsat, and vice vica. Among four tools, Z3 and CVC5 are two popular SMT solvers; RC-
CAD refers to the CylindricalAlgebraicDecompose function in Maple 2024 RegularChain package;1
Bottema is a CAD-based inequality prover developed by Yang (1999).2 As to MMA, we integrate
two commands, i.e., Reduce and FindInstance in Wolfram-Mathematica (version 13.0.1), and
apply the same peripheral logic with CAD.

LIPS. In our framework, the symbolic solver employed for pruning scaling tactics also consists
of solvers Z3, CVC5, RC-CAD, and Bottema, complemented by a numerical optimizer grounded
in SciPy (Virtanen et al., 2020). The time limit of searching counterexamples is set to 5 seconds.
Scaling tactics encompasses a comprehensive array of inequality lemma, including AM-GM, AM-
HM, Cauchy-Schwarz, Power Mean, Chebyshev, Muirhead, Jensen, Titu, Schur, Holder inequalities,

1
https://www.maplesoft.com/support/help/maple/view.aspx?path=RegularChains

2
https://faculty.uestc.edu.cn/huangfangjian/en/article/167349/content/2378.htm

17

https://www.maplesoft.com/support/help/maple/view.aspx?path=RegularChains
https://faculty.uestc.edu.cn/huangfangjian/en/article/167349/content/2378.htm

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

theorem NEQ_AM_GM_left_2vars (u v k l right : R) (hk : k ≥ 0) (h : k *
(u ˆ 2 + v ˆ 2) / 2 + l ≤ right) : k * (u * v) + l ≤ right := by

suffices (u - v) ˆ 2 ≥ 0 by nlinarith
positivity

theorem NEQ_AM_GM_right_2vars (u v k l left : R) (hk : k ≥ 0) (h : left
≤ 2 * k * (u * v) + l) : left ≤ k * (u ˆ 2 + v ˆ 2) + l := by

suffices (u - v) ˆ 2 ≥ 0 by nlinarith
positivity

Figure 7: Two examples of AM-GM inequality encoded as scaling tactics

Prompts of Rewriting Tactics Generation (Simplification)

Task
Your task is to use the condition {condition}, rearrange and rewrite the expression given by user
into an absolutely different form.
Notice
1. Please reason step by step
2. Only four operators, add, sub, multiply, and division, can be used, and should NOT introduce
new variables
3. Put the final results within \\boxed{{}}, e.g., \\boxed{{x + 1/y - z}}
Response
User:
{problem}
Assistant:

Prompts of Rewriting Tactics Generation (Others)

Task
You should rewrite the inequality given by the user according to the rule {rule}
Notice
1. Please reason step by step
2. Follow the given example, and output the result for given inequality
3. Put the final results within \\boxed{{}}, e.g., \\boxed{{x + 1/y - z}}
Example
User:
{example problem}
Assistant:
{example answer}
Response
User:
{problem}
Assistant:

Figure 8: Prompts of simplification and other operations used for generating rewriting tactics

as well as a selection of valuable inequalities contributed by Lászió Kozma.3 To facilitate their
application in Lean 4, we have developed multiple variations of each inequality, accounting for
different numbers of variables and directions. Figure 7 illustrate our scaling tactics using two-
variable AM-GM inequality.

For rewriting tactics, we design 16 relevant operations, i.e., simplification w/o assumptions, sim-
plification w/ assumptions, completing the square, variable substitution, expression expansion, ex-
pression rearrangement, expression multiplication, cancellation of denominators/numerators, can-
cellation of powers, extraction/cancellation of common factors, separation/reduction of fractions,

3
https://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf

18

https://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

sum-of-squares trick, and tangent line trick. Except for sum-of-squares trick and tangent line trick
implemented based on SymPy, we use two prompt template for these operations, shown in Figure 8.
For each operation, we repeatedly query the LLM three times to cover more rewriting tactics. We
use low-temperature setting of GPT-4o in rewriting tactic generation and neural ranking (T=0.1,
top p=1.0, max token=2048).

D ADDITIONAL EXPERIMENTAL RESULTS

A Failed Case of DSP

Prompt: Draft an informal solution similar to below. The informal solution will be used to sketch a
formal Lean proof. Here are some examples:
Example:
Informal:
(* ### Problem {Problem-1} ### Solution {Solution-1} *)
Informal:
(* ### Problem {Problem-2} ### Solution {Solution-2} *)
Informal:
(* ### Problem
if a, b, c are positive real numbers, then

a

b
+

b

c
+

c

a
≥
√

a2 + 1

b2 + 1
+

√
b2 + 1

c2 + 1
+

√
c2 + 1

a2 + 1
.

Informal solution:
Solution
We will use the AM-GM inequality which states that for non-negative real numbers x and y, the
arithmetic mean is greater than or equal to the geometric mean: x+y

2
≥ √

xy.
First, let’s consider the terms on the left-hand side one by one and apply AM-GM to each term along
with its corresponding term on the right-hand side.

For the term a
b

and its corresponding term
√

a2+1
b2+1

, we apply AM-GM to a
b

and a
b
· 1

a2+1

b2+1

= b2+1
a

:

a
b
+ b2+1

a

2
≥
√

a

b
· b

2 + 1

a
=

√
a2 + 1

b2 + 1
.

Repeating this process for b
c

with
√

b2+1
c2+1

and c
a

with
√

c2+1
a2+1

, we obtain:

b
c
+ c2+1

b

2
≥
√

b2 + 1

c2 + 1
,

and
c
a
+ a2+1

c

2
≥
√

c2 + 1

a2 + 1
.

Adding these three inequalities together, we get:

1

2

(
a

b
+

b

c
+

c

a
+

b2 + 1

a
+

c2 + 1

b
+

a2 + 1

c

)
≥
√

a2 + 1

b2 + 1
+

√
b2 + 1

c2 + 1
+

√
c2 + 1

a2 + 1
.

Notice that the left-hand side contains the terms a
b
+ b

c
+ c

a
and additional terms. Since b2+1

a
+

c2+1
b

+ a2+1
c

> 0 (because all terms are positive), we can drop these additional terms to strengthen
the inequality:

a

b
+

b

c
+

c

a
≥
√

a2 + 1

b2 + 1
+

√
b2 + 1

c2 + 1
+

√
c2 + 1

a2 + 1
.

Thus, we have shown that the original inequality holds for any positive real numbers a, b, c.*)

Prompt: Translate the informal solution into a sketch of the formal Lean 4 proof. Add ‘sug-
gest tactics’ in the sketch whenever possible. ‘suggest tactics‘ will be used to call the automated
theorem prover. Here are some examples:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Example:
Informal: (* ### Problem {informal problem} ### Solution {informal solution}
Formal: {formal problem}
Informal: (* ### Problem {informal problem} ### Solution {informal solution}
Formal:
Formal solution:

import Mathlib.Data.Real.Basic
import Mathlib.Tactic.Linarith
import Mathlib.Tactic.SuggestTactics

theorem inequality_amgm (a b c : R) (ha : 0 < a) (hb : 0 < b) (hc
: 0 < c) :

(a / b) + (b / c) + (c / a) ≥
(sqrt ((aˆ2 + 1) / (bˆ2 + 1))) + (sqrt ((bˆ2 + 1) / (cˆ2 +
1))) + (sqrt ((cˆ2 + 1) / (aˆ2 + 1))) :=

by
-- Apply the Arithmetic Mean-Geometric Mean Inequality (AM-GM)
have am_gm_ab := real.am_gm (a / b) ((bˆ2 + 1) / a),
have am_gm_bc := real.am_gm (b / c) ((cˆ2 + 1) / b),
have am_gm_ca := real.am_gm (c / a) ((aˆ2 + 1) / c),

-- The AM-GM inequality gives us the following:
-- am_gm_ab : (a / b + (bˆ2 + 1) / a) / 2 ≥ sqrt ((a / b) *
((bˆ2 + 1) / a))

-- am_gm_bc : (b / c + (cˆ2 + 1) / b) / 2 ≥ sqrt ((b / c) *
((cˆ2 + 1) / b))

-- am_gm_ca : (c / a + (aˆ2 + 1) / c) / 2 ≥ sqrt ((c / a) *
((aˆ2 + 1) / c))

-- Now, we sum the three inequalities:
linarith [am_gm_ab, am_gm_bc, am_gm_ca],

-- Simplify the right-hand side to match the terms of the
original inequality

-- ‘suggest_tactics‘ could assist in automating algebraic
simplifications here:

suggest_tactics,

-- Conclude the proof using positivity of additional terms
-- Positivity of terms like (bˆ2 + 1) / a and others should be
straightforward

have pos_terms : (bˆ2 + 1) / a + (cˆ2 + 1) / b + (aˆ2 + 1) / c >
0,

{ apply add_pos, -- breaking it down into multiple positive parts
all_goals { apply div_pos; linarith } },

-- Dropping the additional positive terms from the left-hand
side to strengthen the inequality

linarith [pos_terms],

Explanation of the Steps:
1) Initial Setup and Imports: We start by importing necessary modules from Mathlib, such as basic
real number operations and the linarith tactic for linear arithmetic.
2) Statement of the Theorem: The theorem inequality amgm is stated for three positive real numbers
a, b, and c. The assumptions ha, hb, and hc enforce the positivity conditions.
3)
4)
Conclusion
This sketch outlines the formal structure of the proof and highlights where automation can assist.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A Failed Case of OpenAI o1-preview

Prompt: Please solve the following problem: For a > 0, b > 0, c > 0, d > 0 such that a · b+ b · c+
c · d+ d · a = 1, show that:

a3

b+ c+ d
+

b3

c+ d+ a
+

c3

d+ a+ b
+

d3

a+ b+ c
≥ 1

3

Informal solution:
To solve this problem, we aim to show that for positive real numbers a, b, c, d satisfying ab + bc +
cd+ da = 1, the inequality

a3

b+ c+ d
+

b3

c+ d+ a
+

c3

d+ a+ b
+

d3

a+ b+ c
≥ 1

3

holds true.
Step 1: Simplify the Inequality. First, note that

b+ c+ d = (a+ b+ c+ d)− a = S − a,

where S = a+ b+ c+ d. Thus, the inequality can be rewritten as:∑
cyclic

a3

S − a
≥ 1

3
.

Step 2: Analyze the Function. Consider the function

f(x) =
x3

S − x
for x ∈ (0, S).

We will investigate the convexity of this function to apply Jensen’s inequality.
Compute the second derivative:

f ′′(x) =
2S2 + 2Sx+ x2

(S − x)3
> 0 for x ∈ (0, S).

This shows that f(x) is convex on (0, S).
Step 3: Apply Jensen’s Inequality. Since f(x) is convex, Jensen’s inequality states that:

1

4

4∑
i=1

f(ai) ≥ f

(
1

4

4∑
i=1

ai

)
= f

(
S

4

)
Compute f

(
S
4

)
:

f

(
S

4

)
=

(
S
4

)3
S − S

4

=

(
S
4

)3
3S
4

=
S2

48

Therefore, the sum becomes: ∑
cyclic

a3

S − a
≥ 4 · S

2

48
=

S2

12

Step 4: Relate S to the Given Condition. From the given condition ab+ bc+ cd+ da = 1, and using
the Cauchy-Schwarz inequality:

(ab+ bc+ cd+ da) ≤ 1

2

(
a2 + b2 + c2 + d2

)
But since ab+ bc+ cd+ da = 1, we get:

a2 + b2 + c2 + d2 ≥ 2

Also, note that

S2 = (a+ b+ c+ d)2 ≥ 4(a2 + b2 + c2 + d2) ≥ 8, so S2 ≥ 8.

Therefore: ∑
cyclic

a3

S − a
≥ S2

12
≥ 8

12
=

2

3

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

But this contradicts the desired inequality, suggesting a miscalculation.
Step 5: Test the Equality Case. Consider a = b = c = d = 1

2
. Then:

ab+ bc+ cd+ da = 4

(
1

2
· 1
2

)
= 1

Compute the left-hand side:

∑
cyclic

a3

b+ c+ d
= 4 ·

(
1
2

)3
3
2

= 4 ·
1
8
3
2

= 4 · 1
8
· 2
3
=

1

3

This shows that equality holds when a = b = c = d = 1
2

.
Step 6: Conclude the Proof Since the function f(x) = x3

S−x
is convex, the minimum of the sum occurs

when all variables are equal, i.e., a = b = c = d. Therefore, the inequality holds true:

a3

b+ c+ d
+

b3

c+ d+ a
+

c3

d+ a+ b
+

d3

a+ b+ c
≥ 1

3
.

A Failed Case of LIPS

Problem (USAMO 2004): Let a, b, c be positive reals. Prove that

(a+ b+ c)3 ≤ (a5 − a2 + 3) ∗ (b5 − b2 + 3) ∗ (c5 − c2 + 3)

Formal solution:
theorem Problem_3dP5 {a b c : R} (ha : a > 0) (hb : b > 0) (hc : c

> 0) : (a + b + c) ˆ 3 ≤ (a ˆ 5 - a ˆ 2 + 3) * (b ˆ 5 - b ˆ 2 +
3) * (c ˆ 5 - c ˆ 2 + 3) := by

scale NEQ_Cauchy_Schwarz_left_sqrt_3vars (u1 := 1) (u2 := 1) (u3
:= 1) (v1 := a) (v2 := b) (v3 := c) . . .

scale NEQ_weighted_AM_GM_left_3vars (u := a + b + c) (v := 3) (w
:= aˆ2 + bˆ2 + cˆ2) (i1 := 1) (i2 := 1/2) (i3 := 1/2) . . .

llm_frac_reduce . . .
llm_cancel_denom . . .
scale NEQ_Cauchy_Schwarz_sqrt_left_2vars (u1 := 1) (u2 := 1) (v1
:= a) (v2 := a) . . .

llm_simplify . . .
llm_rearrange . . .
llm_simplify . . .
llm_rearrange . . .
llm_simplify . . .
llm_rearrange . . .
llm_frac_apart . . .
llm_simplify . . .
llm_rearrange . . .
llm_frac_apart . . .
llm_simplify . . .
llm_simplify . . .
llm_rearrange . . .
llm_simplify . . .
llm_rearrange . . .
llm_simplify . . .
llm_factor . . . = 4*sqrt (2)*sqrt (bˆ2 + cˆ2)*(3 + aˆ2 + bˆ2 + cˆ2
+ 2*a + 2*b + 2*c)ˆ2 + (1 + a)ˆ2*(3 + aˆ2 + bˆ2 + cˆ2 + 2*a +
2*b + 2*c)ˆ2 - (64*(3 + aˆ5 - aˆ2)*(3 + bˆ5 - bˆ2)*(3 + cˆ5 -
cˆ2))

FAIL(TIMEOUT)!

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A Successful Case of LIPS

Problem (Evan Chen): If a, b, c are positive reals and a2 + b2 + c2 = 1, then

1

a2 + 2
+

1

b2 + 2
+

1

c2 + 2
≤ 1

6ab+ c2
+

1

6bc+ a2
+

1

6ca+ b2
.

Formal solution:
theorem Problem_2d4e1 {a b c : R} (ha : a > 0) (hb : b > 0) (hc :

c > 0) (h : a ˆ 2 + b ˆ 2 + c ˆ 2 = 1) : 1 / (a ˆ 2 + 2) + 1 /
(b ˆ 2 + 2) + 1 / (c ˆ 2 + 2) ≤ 1 / (6 * a * b + c ˆ 2) + 1 /
(6 * b * c + a ˆ 2) + 1 / (6 * c * a + b ˆ 2) := by

scale NEQ_AM_GM_div_square_right_2vars (u := b) (v := c) . . .
scale NEQ_AM_GM_div_square_right_2vars (u := b) (v := a) . . .
scale NEQ_AM_GM_div_square_right_2vars (u := a) (v := c) . . .
llm_simplify . . .
llm_simplify . . .
llm_rearrange . . .
sym_tangent_line . . .
llm_simplify . . . = 27/49 - (27*aˆ2/49) - (27*bˆ2/49) - (27*cˆ2/49)
try close
SUCCESS!

E SOME MORE CASES OF LIPS

A Different Proof Generated by LIPS (1)

Problem: Let a, b, c be three positive reals. Prove that if abc = 1, then

a2 + b2 + c2 ≥ a+ b+ c

Source: https://web.evanchen.cc/handouts/Ineq/en.pdf

Formal solution:
theorem Example_1d7 {a b c : R} (h : a * b * c = 1) : a + b + c ≤

a ˆ 2 + b ˆ 2 + c ˆ 2 := by
scale NEQ_AM_GM_left_square_2vars (u := 1) (v := a) . . .
scale NEQ_AM_GM_left_square_2vars (u := 1) (v := c) . . .
scale NEQ_AM_GM_left_square_2vars (u := 1) (v := b) . . .
llm_rearrange . . .
llm_simplify . . . = 3/2 - aˆ2/2 - bˆ2/2 - cˆ2/2
llm_rearrange (left := 3/2) (right := aˆ2/2 + bˆ2/2 + cˆ2/2)
scale NEQ_AM_GM_right_normal_3vars (u := aˆ2/2) (v := bˆ2/2) . . .
llm_simplify . . . = (a*b*c)ˆ2 / 8
llm_simplify . . . = 1 / 8
try close

Note: At first glance, “AM-GM alone is hopeless here, because whenever we apply AM-
GM, the left and right hand sides of the inequality all have the same degree”. However, LIPS

find a proof by using 1× a ≤ a2+1
2 , 1× b ≤ b2+1

2 , 1× c ≤ c2+1
2 .

23

https://web.evanchen.cc/handouts/Ineq/en.pdf

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

A Different Proof Generated by LIPS (2)

Problem (JMO 2012): Let a, b, c be positive reals. Prove that

a3 + 5b3

3a+ b
+

b3 + 5c3

3b+ c
+

c3 + 5a3

3c+ a
≥ 3

2
(a2 + b2 + c2).

Source: https://artofproblemsolving.com/community/c5h476722p2669114

Formal solution:
theorem Problem_3de6’’ {a b c : R} (ha : a > 0) (hb : b > 0) (hc :

c > 0) : (3 / 2) * (a ˆ 2 + b ˆ 2 + c ˆ 2) ≤ (a ˆ 3 + 5 * b ˆ
3) / (3 * a + b) + (b ˆ 3 + 5 * c ˆ 3) / (3 * b + c) + (c ˆ 3 +
5 * a ˆ 3) / (3 * c + a) := by

llm_cancel_factor . . .
scale NEQ_Muirhead2_onestep_right_3vars (u := a) (v := b) . . .
scale NEQ_Muirhead1_left_3vars (u := c) (v := a) (w := b) . . .
scale NEQ_Muirhead1_left_3vars (u := a) (v := b) (w := c) . . .
scale NEQ_Muirhead2_onestep_left_3vars (u := a) (v := b) . . .
llm_cancel_factor . . .
scale NEQ_Muirhead2_onestep_right_3vars (u := a) (v := b) . . .
llm_simplify . . .
scale NEQ_Muirhead2_left_3vars (u := c) (v := b) (w := a) . . .

Note: A completely mechanical proof, achieved by iteratively applying Muirhead inequality
six times after canceling the denominator

LIPS Checks Existing Answers (1)

Problem (Japan 1997): Prove that

(b+ c− a)
2

(b+ c)
2
+ a2

+
(c+ a− b)

2

(c+ a)
2
+ b2

+
(a+ b− c)

2

(a+ b)
2
+ c2

≥ 3

5

Source: https://artofproblemsolving.com/community/c6h146p537

Informal solution No.1 (provided by AoPS community):
Solution:
Let :
P = (b+c−a)2

(b+c)2+a2 + (c+a−b)2

(c+a)2+b2
+ (a+b−c)2

(a+b)2+c2

By Cauchy Swarchz inequality, we have

(a2 + b2 + c2 + (a+ b)2 + (b+ c)2 + (c+ a)2)(P) ≥ (a+ b+ c)2

(3(a2 + b2 + c2) + 2(ab+ bc+ ca))(P) ≥ (a+ b+ c)2

(3(a+ b+ c)2 − 4(ab+ bc+ ca))(P) ≥ (a+ b+ c)2

Hence,
P ≥ (a+b+c)2

3(a+b+c)2−4(ab+bc+ca)2

but we know that (a+ b+ c)2 ≥ 3(ab+ bc+ ca),
P ≥ 3(ab+bc+ca)

9(ab+bc+ca)−4(ab+bc+ca) =
3
5

...
Note: the proof is correct if all variables are assumed to be positive. However, without this
assumption, applying Cauchy-Schwarz is incorrect, and a counterexample is successfully
found by our symbolic solver [c := 8.0, a := 1/8, b := (−1.0)].
This problem is proved by LIPS using llm simplification and tangent line trick tactics.

24

https://artofproblemsolving.com/community/c5h476722p2669114
https://artofproblemsolving.com/community/c6h146p537

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

LIPS Checks Existing Answers (2)

Problem (Japan 1997): Prove that

(b+ c− a)
2

(b+ c)
2
+ a2

+
(c+ a− b)

2

(c+ a)
2
+ b2

+
(a+ b− c)

2

(a+ b)
2
+ c2

≥ 3

5

Source: https://artofproblemsolving.com/community/c6h146p537

Informal solution No.2 (provided by AoPS community):
....
don’t use so much of mathematics on that simple problem..
:P :D here’s the solution using TITU’s lemma..
The lemma-
if x, y, a, b are reals and x, y > 0 then a2

x + b2

y ≥ (a+b2

(x+y)

simply applying the lemma on the lhs twice
we get
LHS ≥ (a+b+c)2

3(a2+b2+c2)+2(ab+bc+ca)

by AM-GM
(a+ b+ c)

2 ≥ 3(ab+ bc+ ca) and 3(a2 + b2 + c2) + 2(ab+ bc+ ca) ≥ 5(ab+ bc+ ca)
...
Note: it appears that the issue arises from the inequality being in the wrong direction. Ac-
tually, the problem is unprovable when applying the Titu’s lemma (a counterexample found
by our symbolic solver: [b = 1.0, a = 1.0, c = 0.5])

25

https://artofproblemsolving.com/community/c6h146p537

	Introduction
	Inequality Theorem Proving
	Symbolic Methods
	Neural Methods

	Tactic Generation & Pruning
	Scaling Tactics
	Rewriting Tactics

	Goal Filtering & Selection
	Symbolic Filtering
	Neural Ranking

	Experiments
	Experimental Setup
	Experiments

	Related Work
	Limitations and Future Work
	Conclusion
	Symbolic methods vs. Neural methods
	Pseudo code of Lips
	Additional details for experiments
	Additional Experimental Results
	Some more cases of Lips

