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ABSTRACT

Previous works have established solid foundations for neural set functions, com-
plete with architectures which preserve the necessary properties for operating on
sets, such as invariance to permutations of the set elements. Subsequent work has
highlighted the utility of Mini-Batch Consistency (MBC), the ability to sequentially
process any permutation of a set partition scheme (e.g. streaming chunks of data)
while guaranteeing the same output as processing the whole set at once. Currently,
there exists a division between MBC and non-MBC architectures. We propose
a framework which converts an arbitrary non-MBC model to one which satisfies
MBC. In doing so, we allow all set functions to universally be considered in an
MBC setting (UMBC). Additionally, we explore a set-based Monte Carlo dropout
strategy which applies dropout to entire set elements. We validate UMBC with
theoretical proofs, unit tests, and also provide qualitative/quantitative experiments
on Gaussian data, clean and corrupted point cloud classification, and amortized
clustering on ImageNet. Additionally, we investigate the probabilistic calibra-
tion of set-functions under test-time distributional shifts. Our results demonstrate
the utility of UMBC, and we further discover that our dropout strategy improves
uncertainty calibration.

1 INTRODUCTION

Set encoding functions (Zaheer et al., 2017; Bruno et al., 2021; Lee et al., 2019; Kim, 2021) have
become a broad research topic in recent publications. This popularity can be partly attributed to
natural set structures in data such as point clouds or even datasets themselves. Given a set of
cardinality N , one may desire to group the elements (clustering), identify them (classification), or
find likely elements to complete the set (completion/extension). A key difference from vanilla neural
networks, is that neural set functions must be able to handle dynamic set cardinalities for each input
set. Additionally, sets are considered unordered, so the function must make consistent predictions for
any permutation of set elements.

Deep Sets (Zaheer et al., 2017) is a canonical work providing an investigation of the requirements
and proposal of valid neural set function architectures. Deep Sets utilizes traditional, permutation
equivariant (Property 3.2) linear and convolutional neural network layers in conjunction with per-
mutation invariant (Property 3.1) set-pooling functions (e.g. {min, max, sum, mean}) in order to
satisfy the necessary conditions and perform inference on sets. The Set Transformer (Lee et al., 2019)
utilizes powerful multi-headed self-attention (Vaswani et al., 2017) to construct multiple set-capable
transformer blocks, as well as an attentive pooling function. Though powerful, these works never
explicitly considered the case where it may be required to process a set in multiple partitions at test
time, which can happen for a variety of reasons including device resource constraints, prohibitively
large or even infinite test set sizes, and streaming data conditions.

The MBC property of set functions was identified by Bruno et al. (2021) who also proposed the Slot
Set Encoder (SSE), a specific version of a cross-attentive pooling mechanism which satisfies MBC,
guaranteeing it will produce a consistent output for all possible piecewise processing of set partitions.
The introduction of the MBC property naturally leads to the rise of a new dimension in the taxonomy
of set functions, namely those which satisfy MBC and those which do not. The SSE is an example of
one valid MBC architecture which comes at the cost of eliminating powerful self-attentive models
such as the Set Transformer. Self-attention can be the best choice for tasks which require leveraging
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Figure 2: (◦,+,×,□□□) correspond to classes in the input set. Ellipses are the model’s clustering prediction.
In streaming settings, models must process the stream without storing streamed inputs. a-b: The Set
Transformer delivers poor likelihood on different set streams. c-d: Set Transformer with a UMBC module
becomes an MBC function, yielding better likelihood, and consistent predictions regardless of the data stream.
For a description of streaming settings, see Section 5; additional streams are shown in Figure 8.
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Figure 3: Non-MBC set functions (1 & 2) are not MBC when sequentially processing random set partitions.
MBC set functions (3) are MBC, but with limited valid architectures. Universal MBC (4) (UMBC) allows
leveraging MBC+non-MBC set functions, widening the field of available MBC architectures.
pairwise relationships between set elements such as clustering (as we show later in results in Figure 4
and Table 2) where the Set Transformer outperforms SSE).
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Figure 1: σ2 between encoded fea-
tures of 100 random mini-batched
set partitions. Set Transformer (not
MBC) produces variance in the out-
put. UMBC+Set Transformer pro-
duces consistent output for all 100
random mini-batched partitions.

Models such as the Set Transformer cannot make MBC guarantees
when updating pooled set representations, as self-attention blocks
require all N elements in a single pass, and therefore do not satisfy
MBC (i.e. processing separate pieces of a set yields a different
output than processing the whole set at once). Naively using such
non-MBC set functions in an MBC setting can cause a severe
degradation in performance, as depicted in Figures 2a and 2b
where the Set Transformer exhibits poor likelihood and inconsis-
tent clustering predictions. With the addition of a UMBC module
UMBC+Set Transformer inherits an MBC guarantee, yielding con-
sistent results, and much higher likelihoods (Figures 2c and 2d)
(See Section 5 and Appendix B for details of the experiment). The
quantitative effect of MBC vs non-MBC encoding on a pooled set
representation can be seen in Figure 1 which shows the variance
between pooled representations of 100 random partitions of the
same set. (See Appendix C for details).

In this work, we propose, and verify both theoretically and empirically that there exists a uni-
versal method for converting arbitrary non-MBC set functions into MBC functions, providing
MBC guarantees for mini-batch processing of random set partitions. This allows for any set en-
coder to be used in an MBC setting where it may have previously failed (e.g.streaming data).
This result has large implications for all current and future set functions which are not na-
tively MBC, which can now be used in a wider variety of settings and under more restrictive
conditions. Animations, code, and tests can be found in the supplementary file and also at:
https://github.com/anonymous-subm1t/umbc

Our contributions in this work are as follows:

• In Theorem 4.1 we show that any arbitrary non-MBC set encoder can become MBC,
guaranteeing that mini-batch processing of sets of any cardinality at test-time will give the
same result as processing the full set at once.
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• We show that in tasks where non-MBC set functions outperform previous MBC functions,
adding UMBC produces the strongest MBC model (Figure 4), highlighting the novelty and
utility of UMBC.

• With Proposition 4.1, we loosen the constraints on the MBC attention activation functions
proposed by (Bruno et al., 2021) (which only uses a sigmoid) by showing a wide variety of
functions can be used (e.g. traditional attention softmax (Vaswani et al., 2017)).

• We explore an interesting MBC Monte Carlo dropout approach made possible by our UMBC
module which delivers improvements in calibration for both in-distribution (Figure 7) and
corrupted test sets (Figure 6) while still maintaining MBC guarantees.

2 RELATED WORK

Table 1: The MBC status of various set functions
and the types of functions they contain.

Model MBC Cross-Attn., Self-Attn.

Deep Sets (Zaheer et al., 2017) ✓ ✗ ✗
SSE (Bruno et al., 2021) ✓ ✓ ✗
Set Transformer (Lee et al., 2019) ✗ ✓ ✓

UMBC+Set Transformer ✓ ✓ ✓

Processing, pooling, and making a predictions
for set structured data has been an active topic
since the introduction of DeepSets (Zaheer et al.,
2017). Attention has also been shown to be pow-
erful in these tasks (Lee et al., 2019), as simple
independent row-wise operations may fail to
capture pairwise interactions between set ele-
ments. Subsequent works have drawn connec-

tions between set attention and optimal transport (Mialon et al., 2020), and subsequently expectation
maximization (Kim, 2021). Likewise, efficient versions of set-attention have been proposed which
incorporate cross attention with low dimensional self-attention in an iterative process (Jaegle et al.,
2021). Outside of attention, other approaches to set pooling functions include featurewise sorting
(Zhang et al., 2019), and canonical orderings (Murphy et al., 2018) to tackle the problems posed by
the required permutation invariance.

Bruno et al. (2021), provide an especially important lens through which to view our work. Prior to the
proposal of the MBC property, previous works never explicitly considered the MBC setting, which
will likely become important with the ever increasing scales of models and data (Brown et al., 2020).
Indeed most set functions do not satisfy Property 3.3 (e.g. (Lee et al., 2019; Kim, 2021; Mialon et al.,
2020; Jaegle et al., 2021; Zhang et al., 2019; Murphy et al., 2018)). Our work builds on the concepts
established by Bruno et al. (2021), and ensures that all set functions proposed in the future can be
considered in MBC settings by incorporating UMBC.

Several prior works (Ovadia et al., 2019; Guo et al., 2017) highlight the problem of uncertainty
quantification and probabilistic calibration, which can be crucial for tasks such as autonomous driving
(Chen et al., 2017) and medical diagnoses (Zhou et al., 2021) where decisions can impact human
well being. Guo et al. (2017), proposed quantifying uncertainty with the expected calibration error
(ECE) metric measuring the mismatch between accuracy and confidence. Ovadia et al. (2019) used
corrupted datasets such as ImageNet-C (Hendrycks & Dietterich, 2019) to survey the landscape of
neural network calibration. We take a similar approach for set functions with ModelNet40-C (Ren
et al., 2022) in our experiments. Guo et al. (2017); Ovadia et al. (2019) analyze calibration in variants
of deep convolutional models, while Minderer et al. (2021) evaluate the calibration of large Vision
Transformers. To our knowledge, our work is the first to analyze set function calibration specifically,
as most other works focus on general purpose classifiers.

3 PRELIMINARIES ON SET FUNCTIONS

For our setting, we define a neural set function f : X 7→ Y with a set-structured input space X
and output space Y . f operates on sets X = {xi}Ni=1 with each set element xi ∈ Rd. A dataset of
set-structured data D = {(Xi, Yi)}Mi=1 consists of input sets Xi and output sets Yi, the mapping of
which can be learned by f via stochastic gradient descent. Importantly, an input Xi is a set and f
must process any set, therefore any element of the powerset P(Xi) also represents a possible input.

Deep Sets (Zaheer et al., 2017) provided a crucial groundwork for neural set functions, formalizing
the requirements of permutation equivariant (Property 3.2) architectures and invariant (Property 3.1)
pooling mechanisms necessary for feature extraction, pooling, and predictions on sets. Following
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these requirements, a function can assign a (possibly different) output for each valid subset Xj ∈
P(Xi), although the prediction should be invariant to permutations of the elements within Xj .

Property 3.1 (Permutation Invariance). A function f : P(X ) 7→ Y acting on sets is permutation
invariant to the order of objects in the set iff for any permutation function π : f(x1, . . . ,xn) =
f(xπ(1), . . . ,xπ(N))

Permutation invariant layers are commonly referred to as set pooling functions, and generally have a
fixed size output given any permutation or cardinality of the input set. Such a permutation invariant
function can also be called a Set to Vector function, as it produces a vector of a fixed size given a
variable sized input.

Definition 3.1 (Set 2 Vector Function). A Set to Vector Function (S2V) f : {x} 7→ Rd′
is a set

function satisfying Property 3.1, which projects a set {xi ∈ Rd}Ni=1 to one or more vectors zi ∈ Rd′
.

Additionally, Zaheer et al. (2017) prescribes that prior to any permutation invariant pooling, any
composition of permutation equivariant layers may be used for feature extraction. Common linear
and convolutional neural network layers are valid permutation equivariant functions when considering
a batch of inputs as a set. For the remainder we assume f contains both equivariant and invariant
layers.

Property 3.2 (Permutation Equivariance). A function f : P(X ) 7→ Y acting on sets is per-
mutation equivariant to the order of objects in the set iff for any permutation function π :
f([xπ(1), . . . ,xπ(N)])

⊤ = [fπ(1)(x1), . . . , fπ(n)(xN )]⊤

Lee et al. (2019) identified that self-attention layers (Vaswani et al., 2017) satisfy Property 3.2 and
thus can be used as equivariant feature extractors for set functions, creating the Set Transformer.
Set Attention Blocks (SAB) are defined as SAB(X,X) = Attention(X,X) = softmax(XqX

⊤
k )Xv

(i.e. Self-Attention (Vaswani et al., 2017)). Additionally, the permutation invariant pooling layer of
the Set Transformer, Pooling by Multihead Attention (PMA), performs cross-attention between a
learnable seed parameter S ∈ RK×d and the input set, PMA(X) = SAB(S,X) ∈ RK×d.

Bruno et al. (2021) identified the MBC property, proposing the MBC Slot Set Encoder (SSE), adding
a new dimension to Property 3.1 from Zaheer et al. (2017). Instead of merely requiring that f(X) be
invariant to permutations of the indices i of xi ∈ X , the MBC property also requires that sequential
processing of partitions, with partition indices p for xi,p ∈ X is also permutation invariant.

Property 3.3 (Mini-Batch Consistency (MBC)). Let X = {xi}Ni=1 be a set with each element
xi ∈ Rd. Let X be partitioned such that X =

⋃|P |
j=1 XPj

and f : {x} 7→ Rd′
be a S2V function.

Given an aggregation function g : {f(Xj)}|P |
j=1 7→ Rd′

, g and f are Mini-Batch Consistent iff the
following holds for any permutation of any random partition scheme,

g
(
f(XP1

), . . . , f(XPn
)
)
= f(X)

The f function of an SSE (Bruno et al., 2021) layer uses cross-attention with slots S ∈ RK×d as
queries, and partitions Xj∈P as keys and values. An SSE then utilizes an elementwise attention
matrix activation which does not depend on the other N − 1 elements within the set. SSE proposes a
sigmoid activation σ in the attention matrix A = σ(SX⊤) which is then normalized over the slot
dimension K (Bruno et al., 2021; Locatello et al., 2020) such that A′

i,j = Ai,j/
∑K

i=1 Ai,j . With
Xj ∈ R|Xj |×d, and σ̂ being the slot-normalized sigmoid,

Attention1(S,X) = σ̂(SX⊤)X =

P∑
j=1

σ̂(SX⊤
j )Xj , (1)

where the sum is over the partition cells, thereby consistently guaranteeing the same output
given any partition scheme and satisfying Property 3.3. The MBC aggregation function g ∈
{min,max,mean, sum} (Bruno et al., 2021) is represented by the sum on the RHS of Equation (1).

1We omit the scaling of QK⊤ by 1√
d

for brevity throughout this text, but include the scaling in our code.
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4 BUILDING A UNIVERSALLY MBC SET FUNCTION

An important insight is that the SSE acts as a S2V function, creating an encoded set representation
for subsequent processing. However, a S2V function which outputs K vectors zi ∈ Rd′

, as stated
in Definition 3.1 can be re-interpreted as outputting a set of cardinality K with each element zi ∈ Rd′

.
Therefore, by using a S2V function with K > 1 as the base module f , we can view the S2V function
as a function which takes a set of cardinality N and maps it to a set of cardinality K. Therefore, a
downstream non-MBC module Property 3.3 need only be satisfied up until an invariant S2V pooling
function.

Theorem 4.1. Let f∗ be a set function satisfying either Property 3.2 or Property 3.1, and (g, f) be
functions satisfying Property 3.3, which together form the functional composition F = f∗ ◦ g ◦ f .
For F to satisfy Property 3.3, it is sufficient to require the representation Z = g

(
f(X1), . . . , f(Xp)

)
as input to f∗ to satisfy Property 3.3.

Proof. Assume that g ◦ f satisfies Property 3.3 and the composition F does not satisfy Property 3.3.
g ◦ f updates Z as new partitions Xj arrive, yielding an MBC input to f∗, and therefore the same
output of F for any permutation of a random partition of X , contradicting the statement that F does
not satisfy Property 3.3.

Algorithm 1 Universal MBC Module with set func-
tion f∗ and slots S ∈ RK×d′

.

1: Input: Partitioned Set X = {X1, . . . , Xp}
2: Output: Ŝ ∈ RK̂×d′

3: Set: Z← 0
4: for i = 1 to p do
5: // to satisfy MBC, g=+ and f=Attention
6: Z ← Z+Attention(S,Xi) (Equation (3))
7: end for
8: return f∗(Z)

Put simply, Theorem 4.1 states that every mod-
ule f∗ coming after a module which satisfies
Property 3.3 will continue to satisfy Property 3.3,
even though f∗ itself may not satisfy Prop-
erty 3.3. With this established, we can therefore
use Theorem 4.1 to build a universally MBC set
function.

Maintaining attention normalization over N
We now turn to the question of whether or not
the constrained attention operation (i.e. avoiding
normalization over N in the attention activation) described for SSE is in fact necessary in order to
satisfy Property 3.3.

Proposition 4.1. By factorizing a normalization constant which depends on all N set elements from
the attention matrix2, normalization over N can be performed across mini-batched partitions while
still satisfying Property 3.3.

Proof. With ϕ as an elementwise activation function applied to the attention matrix, and ϕ̂ represent-
ing the same function with normalization over N elements (i.e. like the traditional softmax in dot
product attention),

Attention(S,X) = ϕ̂(SX⊤)X = diag(ζ)−1ϕ(SX⊤)X (2)

Where diag(ζ) is a diagonal matrix containing the normalization constants ζk =
∑N

i=1 ϕ(x
⊤
i sk)

where N is the set cardinality and sk is a single slot. Outside ϕ(.), the final multiplication is
associative, so we may simply evaluate ϕ(SX⊤)X , keeping a vector ζ with the incrementally
updated normalization constants (e.g. the sum of the rows of exp(SX⊤) for a softmax function).
Factoring the attention in this way, we can update ζ and ϕ(SX⊤)X at the arrival of every partition
Xj , normalize over N , and still satisfy Property 3.3.

Attention(S,X) = diag(ζ)−1 exp(SX⊤)X = diag
( P∑

j=1

ζj

)−1 P∑
j=1

exp(SX⊤
j )Xj (3)

Interestingly, in our ablation study (Figure 5), we find the softmax most effective, which requires
the normalization over N as described above. For a note about about the numerical stability of the
softmax calculated this way, see Appendix F.

2We consider the dot product attention kernel, but any valid attention kernel function may be used.
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Monte Carlo Slot Dropout As outlined in Section 4, our UMBC framework projects a set of
cardinality N to a fixed cardinality K. In doing so, there is a unique opportunity where we can treat
each slot index {i}Ki=1 as a Bernoulli random variable, dropping it with probability p (i.e. dropout
(Hinton et al., 2012; Gal & Ghahramani, 2016) on the K set elements). This can be done while still
satisfying Property 3.3, as any dropout noise would be placed after the S2V function and thus be
considered part of f∗. Uniquely, a UMBC module can then perform Monte Carlo (MC) dropout (Gal
& Ghahramani, 2016) on a streaming set, while never seeing the entire set at once. Dropping slot
indices strictly decreases the cardinality of the set which is input to f∗. During training, this strategy
could be useful for faster training, due to reduced set size for f∗ (see Figure 18 for example), for
regularization (Table 8 and Appendix J), or achieving a test-time ensemble of predictions by MC
integration (Figure 7) as done by Gal & Ghahramani (2016). Specifically, for test time MC integration,
considering m as a binary vector which selects the indices of set elements for processing by f∗,
that is, f∗(f(X),m) = f∗({zi ∈ f(X) : mi = 1}), we perform the following approximation with
dropout rate parameter p and sample size S.

p(y|X) =

∫
p(y|X,m)p(m)dm ≈ 1

S

S∑
i=1

f∗(f(X),m), mi ∼ Bernoulli(p) (4)

Parallel UMBC Heads. We may also consider L multiple parallel UMBC set projections layers,
with each layer fi projecting the input of cardinality N to cardinality K to form an input to f∗

of cardinality LK. Specifically f∗(
⋃L

i=1 fi(X)). Each fi would have independent multiheaded
attention, allowing for independent representations of the same input set. Theorem 4.1 requires
projecting a set of cardinality N to a set of cardinality K, which may be seen as a bottleneck.
Therefore parallel UMBC blocks could be used to add more expressiveness and reduce the overall
effect of the UMBC bottleneck.

5 EXPERIMENTS

Metrics & Setup In the streaming settings of Figures 2 and 8 we placed arbitrarily hard MBC
constraints (i.e. streaming settings described in Appendix B.1) to show how failure can occur in a
non-MBC model. However, it is unclear how to attempt to fairly compare against non-MBC models
on MBC tasks. Additionally, the UMBC property has been proven both theoretically (Theorem 4.1)
and empirically (Figures 1, 2 and 8) Thus, in the following experiments, our aim is to evaluate the
overall effect of the composition f∗(UMBC(.)), with the understanding that MBC models such as
DeepSets and SSE extend to MBC settings while non-MBC models could be forced to perform in
arbitrarily extreme MBC settings (like a single point stream).

We perform an ablation study on the components of UMBC, amortized clustering on Mixtures of
Gaussians (MoG) and ImageNet-1K, as well as ModelNet40 point cloud classification. Additionally,
we analyze the calibration of popular set-functions on ModelNet40-C, which has not been examined
in any prior work to our knowledge. We report accuracy, negative log likelihood (NLL), expected
calibration error (ECE) (Guo et al., 2017), and Adjusted Rand Index (ARI) (Hubert & Arabie, 1985;
Vinh et al., 2010). Standard settings of all UMBC models follow those shown in Table 6 unless
otherwise specified. All models are trained over 5 different random initializations, with one standard
deviation error bars. We use open source code baseline code by Zaheer et al. (2017); Lee et al. (2019);
Kim (2021) where applicable.

Amortized clustering We consider amortized clustering on a similar Gaussian dataset as Lee et al.
(2019) (See Appendix B for dataset details). Figures 2 and 8 contain a qualitative example of the
task as well as a demonstration of how non-MBC models fail when used in an MBC setting. The
task objective is to maximize the likelihood (Equation (5)) of a set with K Gaussian components
by predicting the component prior, mean, and covariance of each mixture component f(X) =
{π(X), {µj(X),Σj(X)}Kj=1},

log p(X; θ) =

N∑
i=1

log

K∑
j=1

πjN (xi;µj ,Σj) (5)

We show the effect train/test set sizes in the full batch setting in Figure 4. Interestingly, the best
performing MBC models (Figures 4e and 4f) are UMBC+(Diff. EM, Set Transformer), Intuitively,
this happens because the other MBC models (DeepSets and SSE) are not able to leverage pairwise
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Figure 4: Among models which satisfy Property 3.3 (c,d,e,f) UMBC+Set Transformer Shows
the top performance. c-b show unmodified functions. e and f show UMBC augmented functions.
UMBC+Set Transformer allows the power of a transformer to be used in an MBC setting. The legend
in the top left figure applies to all plots. This experiment showcases the same task as seen in Figure 2

relationships between set elements. In UMBC, everything after the first function f can be arbitrarily
complex, allowing f∗ to leverage self-attention. Crucially, this task requires a global view of
relationships between points in order to predict cluster parameters. Therefore, it is intuitive to see
why f∗’s utilizing self-attention or expectation maximization perform better than simple f∗’s (such
as row-wise linear layers in Deepsets). Note that this is the same task as depicted in Figures 2 and 8,
which shows how the better bottom line performance of the vanilla Set Transformer in Figure 4
evaporates in the MBC setting. Table 2: Amortized Clustering on ImageNet fea-

tures extracted with a pre-trained ResNet50.

Model MBC NLL ↓ ARI ↑
Empirical - 1028.22±1.24 44.09±0.11

Deep Sets (Zaheer et al., 2017) ✓ 531.44±0.15 6.18±0.08
SSE (Bruno et al., 2021) ✓ 520.29±0.63 22.91±1.85
Diff. EM3(Kim, 2021) ✗ 524.74±0.38 13.22±0.16
Set Transformer (Lee et al., 2019) ✗ 512.59±0.33 17.13±3.67

UMBC+Diff. EM ✓ 518.56±0.92 13.04±0.45
UMBC+Set Transformer ✓ 503.89±0.87 23.68±1.85

We extended the amortized clustering to
ImageNet-1K (Deng et al., 2009), using features
extracted from a pretrained ResNet50 (He et al.,
2016) model (See details in Appendix E). Re-
sults are shown in Table 2. The Empirical model
in Table 2 is the NLL and ARI obtained using
the actual prior, empirical mean, and diagonal
covariance of each class cluster. In this task,
UMBC+Set Transformer outperforms all other
models. To account for UMBC’s added parameters, we included UMBC on the baseline MBC models
in Table 7, and UMBC+Set Transformer still shows the top performance. These results show that as
UMBC may act as a bottleneck, there is no guarantee that the bottleneck will always negatively effect
the performance of the underlying model.

Table 3: Valid UMBC attention activation functions. K norm.
and N norm. refer to the the normalization constant over the
slots K and instances N 4, respectively.

function (σ) K norm. N norm. name reference

sigmoid(xi) sum - slot-sigmoid (Bruno et al., 2021)

exp(xi) sum sum slot-softmax (Locatello et al., 2020)

exp(xi) - sum softmax (Lee et al., 2019)

exp(xi) x−maxi(x) sum slot-exp -

sigmoid(xi) - sum sigmoid -

SSE’s Connection to PMA’s With
the introduction of Proposition 4.1,
it is easy to see that the only differ-
ence between an SSE and a PMA is
the choice of the attention activation
function. Indeed any deterministic
elementwise function which 1) maps
the pre-activation attention matrix to
strictly positive values, and 2) has an

3Diff. EM showed some instability on the ImageNet clustering task and failed to converge for one run.
Therefore variance is reported on 4/5 runs.

4In cases where there is both a K norm and an N norm, the K norm is performed first.
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Figure 5: Ablation study, analyzing the effects of different settings within the UMBC module. These
experiments were performed on the MoG dataset with the UMBC+Set Transformer model.

Table 4: Point cloud classification (ModelNet40). Models are trained on a set size of 1000 randomly
sampled points, and evaluated on 100, 1000, and 2048 (max) test set sizes. bold entries denote the
best performance between models with and without UMBC. Models in the top row are for reference.

Accuracy ↑ NLL ↓ ECE ↓
Model MBC 100 1000 2048 100 1000 2048 100 1000 2048

Deep Sets (Zaheer et al., 2017) ✓ 65.37±1.07 88.35±0.32 88.72±0.21 1.57±0.03 0.40±0.01 0.40±0.01 17.38±0.95 4.21±0.27 4.02±0.16
SSE (Bruno et al., 2021) ✓ 71.09±0.51 87.85±0.39 87.92±0.42 1.42±0.10 0.52±0.05 0.51±0.06 16.69±1.11 5.93±1.06 5.88±1.17

Diff-EM (Kim, 2021) ✗ 62.67±1.21 86.08±0.12 86.86±0.36 2.40±0.11 0.71±0.02 0.69±0.03 22.16±0.93 5.15±0.11 4.96±0.28
UMBC+Diff-EM ✓ 67.07±1.67 86.22±1.23 86.37±1.03 1.61±0.12 0.58±0.06 0.57±0.05 13.97±1.51 4.32±1.37 4.38±1.27
Set Transformer (Lee et al., 2019) ✗ 74.21±1.67 87.81±0.44 88.17±0.32 1.76±0.08 0.79±0.08 0.78±0.08 17.12±0.46 7.48±0.62 7.37±0.54
UMBC+Set Transformer ✓ 71.18±1.52 86.56±0.49 86.77±0.29 1.23±0.15 0.53±0.03 0.51±0.03 10.37±2.24 2.60±0.19 2.35±0.24

optional normalization constant over N which can be factored as in Proposition 4.1 is valid and will
satisfy Property 3.3. With this in mind, we identify five functions, and explore their effects in Table 3
and Figure 5.

Ablation Study Using the mixture of Gaussians dataset for amortized clustering, we analyze
components of UMBC+Set Transformer in Figure 5. Of the five activation functions identified as
valid in Section 4 we found that the softmax used in traditional attention performs the best. In
agreement with Bruno et al. (2021), we find that treating the slots as a Gaussian random variable, and
learning them with reparameterization (outlined in Appendix H) leads to better overall results. We
also find that layernorm on the post attention linear layer, residual connections on the slots before
the FF layer (like the PMA of Lee et al. (2019)) to be beneficial. Increasing the number of slots
(cardinality of input to f∗), helped to a point and then showed a decrease in performance, likely due
to overparameterization. We used these settings to inform our base settings given in Table 6.

The effect of slot dropout at both train time and test time can be seen in Figure 5 (c, and h).
Empirically, on the Gaussian clustering task, we found that using no slot dropout ultimately led to
the best performance, which we think is likely due to the fact that the dataset can sample infinitely
many instances and is therefore extremely resistant to overfitting. Using dropout on the ModelNet40
dataset (Figure 7), which is prone to overfitting, led to increased performance on all metrics.

Point cloud classification We perform set classification experiments ModelNet40 (Wu et al., 2015)
and analyze the robustness of different set encoders to dataset shifts and varying test-time set sizes
using ModelNet40-C (Ren et al., 2022) which contains 15 corruptions at 5 levels of intensity. Our
experiments use the version of ModelNet40 and ModelNet40-C used by Ren et al. (2022) which
contains 2048 points sampled from the original ModelNet40 (Wu et al., 2015) CAD models. Results
are presented in Table 4 and Figure 6. For non-MBC models, augmenting the model with UMBC
only shows a performance decrease for the larger set sizes, likely due to the bottleneck caused by the
projection from cardinality N to K. Interestingly, on set sizes smaller than the model was trained on,
UMBC augmented models show consistently higher accuracy and indicates that UMBC is resilient to
smaller test set sizes. In terms of ECE and NLL, UMBC models outperform all non-MBC baselines.
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Figure 6: Expected Calibration Error on ModelNet40-C which contains 15 corruptions at 5 different
intensity levels. ‘Test’ corresponds to the uncorrupted test set. See Figures 13 and 14 for Accuracy
and NLL and Figures 15 to 17 for results on individual corruptions.

This increase in ECE can be partly attributed to MC sampling slots at test time (shown in Figures 7,
11 and 12) and partly to Slot Dropout at train time (shown in Table 8).
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Figure 7: Performing Monte Carlo Dropout on UMBC+Set Transformer slots leads to increases in
accuracy, NLL, ECE. The top row corresponds to a 0% dropout rate and is constant over dropout
sample sizes. Experiment uses ModelNet40 with test set size of 100. Figures for set sizes 1000 and
2048 can be found in Figures 11 and 12
ModelNet40-C results can be seen in Figure 6. UMBC+ models give strong ECE performance in all
test set sizes, improving over non-MBC baselines, especially for test set size 100 and UMBC+Set
Transformer where the largest miscalibration in baseline models is.

6 CONCLUSION

In this work, we have shown that composing a set function consisting of a MBC base function f , with
an arbitrary set function head f∗, we can make the composition F = f∗ ◦ f universally mini-batch
consistent (UMBC). We have provided proofs in Theorem 4.1, empirical experiments, and unit tests
(included in the supplementary file) which prove our assertions. Likewise we have loosened the
known constraints on the structure of the SSE Proposition 4.1, establishing an equivalency to the
PMA layers of the Set Transformer. We have demonstrated that there are cases where a UMBC
F outperforms previous simpler MBC models, and explored an interesting MBC dropout strategy
made possible by UMBC which leads to improved calibration and NLL. As the field of set-functions
continues to widen, we look forward to seeing future research in the area of MBC set functions.
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7 REPRODUCIBILITY STATEMENT

In addition to the details listed below, all code has been included as supplementary material and at
the following URL where animations can be viewed in any broswer: https://github.com/
anonymous-subm1t/umbc. Further descriptions of the construction of the Mixture of Gaussians
dataset can be found in Appendix B, details on ImageNet clustering can be found in Appendix E,
further training details regarding optimization and model settings can be found in Appendices G
and H respectively.
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A APPENDIX

We will briefly describe the contents of each section of this appendix below:

• Appendix B: Extra information and results related to MoG Amortized Clustering.

• Appendix C: Details of the experiment depicted in Figure 1.

• Appendix D: A note on MBC testing of the Set Transformer.

• Appendix E: Details on ImageNet amortized clustering.

• Appendix F: A note on the UMBC attention softmax stability.

• Appendix G: Training parameters/setup.

• Appendix H: Model hyperparameters/setup.

• Appendix I: Additional ablation study results/discussion.

• Appendix J: Additional results/discussion for ModelNet40 experiments.

• Appendix K Extra results augmenting MBC models with UMBC.

• Appendix L Limitations and Future Work.

• Appendix M Attention Activation Effects on Calibration.

B DETAILS ON THE MIXTURE OF GAUSSIANS AMORTIZED CLUSTERING
EXPERIMENT

We used a modified version of the MoG amortized clustering dataset which was used by Lee et al.
(2019). We modified the experiment, adding random variance into the procedure in order to make a
more difficult dataset. Specifically, to sample a single task for a problem with K classes,

1. Sample set size for the batch N ∼ U(train set size/2, train set size).

2. Sample class priors π ∼ Dirichlet([11, ..., 1K ]).

3. Sample class labels zi ∼ Categorical(π) for i = 1, ..., N .

4. Generate cluster centers µi,j ∼ U(−4, 4) for i = 1, ...,K and j = 1, 2.

5. Generate cluster covariances σij = U(0.3, 0.6) for i = 1, ...,K and j = 1, 2. Then make a
covariance matrix Σi for each class with σi as the diagonal.

6. Sample data xij ∼ N (µi,Σi)

In our MoG experiments, we set K = 4.

The Motivational Example in Figure 2 also used the MoG dataset, and performed MBC testing of the
set transformer corresponding to the procedure outlined in Appendix D

NLL : 14.35

Set Transformer
class stream

2
1
3
0

(a)
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Set Transformer
one each stream

2
1
3
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(b)
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UMBC + Set Transformer
class stream

2
1
3
0

(c)
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UMBC + Set Transformer
one each stream

2
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Figure 8: a-b: The Set Transformer struggles to perform well on different streams of a set. c-d: Our
UMBC Module, UMBC+Set Transformer makes the Set Transformer an MBC function, yielding the
same prediction regardless of the data stream. For a description of streaming settings, see Section 5,
additional streams shown in Figure 2
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B.1 STREAMING SETTINGS

The four total streaming settings in Figures 2 and 8 can be described as:

• single point stream→ streams each point in the set one by one. This causes the most severe
underperformance by the Set Transformer.

• class stream→ streams an entire class at once. The attention modules within Set Trans-
former cannot compare the input class with any other clusters, thereby degrading perfor-
mance of Set Transformer.

• chunk stream→ streams 8 random points at a time from the dataset, Providing limited
information to the Set Transformer’s attention.

• one each stream → streams a set consisting of a single instance from each class. Set
Transformer can see examples of each class, but with a limited sample size, the encoding
fails to make accurate predictions.

C MEASURING THE VARIANCE OF POOLED FEATURES

In Figure 1, we show the direct quantitative effect on the pooled representation when using the
original Set Transformer and with our UMBC module added, UMBC+Set Transformer. The UMBC
model variance is always effectively 0, while the Set Transformer gives different results for different
set partition chunk sizes. The downward slope of the Set Transformer line can be explained by the
fact that as the chunk size gets larger, the pooled representation will become closer to that of the full
set. The procedure for MBC testing of the Set Transformer is outlined in Appendix D.

To perform this experiment, we used a randomly initialized model with 128 hidden units, and sampled
a random normal input with a set size of 1024, X ∈ R1×1024×128. We then created 100 random
permutations of the set elements of the input and split each permutation into partitions with various
chunk sizes Ci where the cardinality |Ci| ∈ {2i}6i=1. We then encode the whole set for each chunk
size and report the observed variance between the 100 different random partitions at the various chunk
sizes in Figure 1. Note that the encoded set representation is a vector and Figure 1 shows a scalar
value. To achieve this, we take the feature-wise variance over the 100 encodings and report the mean
over each feature. Specifically, with Z ∈ R100×128 representing all 100 encodings, z = var(Z), with
z ∈ R128. We then achieve the y values in Figure 1 by a simple mean over the feature dimension,

y =
1

128

∑
i

zi (6)

D A NOTE ON MBC TESTING OF THE SET TRANSFORMER

In some illustrative experiments Figures 1 and 2, we apply MBC testing to the Set Transformer to
study the effects of using a non-MBC model in an MBC setting. The Set Transformer does not have a
prescribed way to do this in the original work, so we took the approach of processing each chunk up
until the pooled representation that results from the PMA layer. We then performed a mean pooling
operation over the chunks in the following way, with Z representing the final mini-batch pooled
features,

Z =
1

N

P∑
j=1

PMA(Xj) (7)

E DETAILS ON THE IMAGENET AMORTIZED CLUSTERING EXPERIMENT

For the ImageNet amortized clustering experiment outlined in Section 5, we first extracted the features
up until the last hidden representation and before the final linear classifier layer of the pretrained
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and frozen ResNet50. These features xi ∈ R2048 are of a large dimension which would create
excessively large linear layers for this experiment. Therefore, we projected the features down to a
lower dimension x̂ ∈ R512 using a random orthogonal Gaussian matrix. As this random Gaussian
projection is suitable for random feature kernels (Rahimi & Recht, 2007), it should preserve the
distances between points required for effective clustering with a marginal effect on overall clustering
performance. To validate this assumption, we ran the Empirical model (which computes the empirical
cluster mean and diagonal covariance) on both the original features x and the projected features g(x̂)
and present the results in the table above.

Version ARI

zi ∈ R2048 45.93±0.12
g(zi) ∈ R512 44.09±0.11

To construct the ImageNet dataset, we first initialized and saved the
random Gaussian projection matrix, and proceeded to process the entire
ImageNet1k training set with the saved matrix. From these extracted
and projected features, we chose a fixed 80/20 split for our train/test sets.
Class indices for the train/text sets can be found in the supplementary file.

F NUMERICAL STABILITY OF MBC SOFTMAX ATTENTION ACTIVATION

Numerical stability of the softmax requires that the values are not allowed to overflow. Generally
this is done by subtracting the maximum value from all softmax logits which allows a stable and
equivalent computation.

ex−max(x)∑
x′∈x e

x′−max(x) =
exe−max(x)

e−max(x)
∑

x′∈x e
x′ =

ex∑
x′∈x e

x′ (8)

This poses a problem when using the plain softmax attention activation, as the max(.) in Equation (8)
requires a max over the whole set of N items which is unknowable given the current mini-batch.

Originally, we had devised a special conditional update rule which would maintain the same form as
in Equation (8), by tracking the overall max of each row of the attention matrix and then conditionally
updating either the current A and ζ or the previously stored values from the last processed partition.
Those updates needed to be calculated in the exponential space which cause a propagation of
numerical errors through the network, becoming large enough to interfere with inference. In our
experiments, we found it sufficient to calculate the softmax as a simple exponential activation with
a subsequent sum over N with no consideration for numerical stability. If numerical stability is a
concern, one could also set a hyperparameter λ for the model such that the softmax is calculated with
an exponential function such as ezi−λ, which should provide a reasonable solution.

G TRAINING SPECIFICATION

We use no L2 regularization, except for the ModelNet40 experiments, which use a small weight decay
of 1e − 7. This was a setting taken from previous experiments by Lee et al. (2019); Zaheer et al.
(2017) which used dropout before and after the pooling layers and other regularization strategies such
as gradient clipping to avoid overfitting.

The only experiment which utilized any kind of data augmentations was the ModelNet40 experiments
which used random rotations of the point cloud as is common in the precedent experiments (Zaheer
et al., 2017; Lee et al., 2019; Bruno et al., 2021)

All single runs of all of our experiments were able to fit on a single GPU with 12GB of memory.

Table 5: The hyperparameter setup for all of our experiments involving UMBC modules.

Experiments
Setting MoG ImageNet ModelNet40
Optimizer Adam Adam Adam
Learning Rate 1e-3 1e-3 1e-3
Data Augmentation ✗ ✗ ✓
Epochs 50 50 1000
Iters/Epoch 1000 1000 9840
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H UNIVERSAL MODEL SPECIFICATION

Unless otherwise specified, all universal modules were run with the following model hyperparameter
settings in Table 6. The settings for the MoG dataset apply to those in Figure 4, and Figure 5 studies
the effects of changing individual settings.

Table 6: The hyperparameter setup for all of our experiments involving UMBC modules. The
hyperparameters were chosen as sensible default based on previous architectures in Lee et al. (2019);
Zaheer et al. (2017); Kim (2021)

Experiments
Setting MoG ImageNet ModelNet40
Embedder ✓ ✗ ✓
Hidden dim 128 256 256
Num. Slots Per Parallel UMBC 128 32 64
Slot-type random random random
Slot LayerNorm ✓ ✓ ✓
FF LayerNorm ✓ ✓ ✓
Heads 4 4 4
Slot Dropout Prob. 0% 50% 50%
Attention Activation softmax softmax softmax
Slot Residual ✓ ✓ ✓
UMBC Num. Parallel 1 4 4
Test MC Samples 10 100 10

Multi-Head Attention

Universal MBC Layer 
(UMBC)

FF

Dropout Residual

𝛇-1 A*

Matrix Mult. MBC Sum

Figure 9: The architecture of a UMBC
layer. A∗ represents the unnormalized
attention matrix σ(SX⊤

i )Xi discussed
in Proposition 4.1 and ‘MBC Sum’ rep-
resents the summation in Equation (3)

Slots Different from both Locatello et al. (2020) and
Bruno et al. (2021), we use unique initial slot parameters
for each slot such that the set of slots S ∈ RK×d has a
separate parameter for each ki ∈ K. We do this because
the original Slot Attention in (Locatello et al., 2020) used
a GRU in an inner loop to adapt the single general slot into
specific slots for a given task, forcing them to ‘compete’
to capture different parts of the input. We cannot use a
GRU, as it violates Property 3.3, so we instead let each
slot ki ∈ K learn to adapt to the overall data distribution.
We always used the same dimension of inputs X and slots
S.

Random Slots To initialize the random Gaussian slots,
we use a similar initialization strategy as (Blundell et al.,
2015) and initialize µ ∈ U [−0.2, 0.2] and log σ ∈
U [−5.0,−4.0]. During training, we sample the distribu-
tion with reparameterization sk = µk + σk ∗ ϵk with
ϵk ∼ N (0, Id).

Embedder We found it useful to place a single layer
embedding function at the base of UMBC modules which
consists of a single linear layer and a ReLU activation
function. We used this embedder in all experiments except
the ImageNet amortized clustering, as the ResNet feature
extractor acted as the embedding function in this case.

I ADDITIONAL ABLATION RESULTS

In addition to the results in Figure 5, we also did an exper-
iment looking at the effect of the number of attention heads in the UMBC layer in Figure 10. This
result was uninformative, but we choose to use a stock setting of 4 attention heads in our experiment
as was common in the experiments performed by Lee et al. (2019).

J ADDITIONAL MODELNET/MODELNET-C RESULTS
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Figure 10: Ablation study on the num-
bers of attention heads in UMBC layers

Table 8 shows extra results from the ModelNet point
cloud classification task. In this table, we include results
for ‘UMBC+SSE’ and ‘UMBC+Deep Sets’ for complete-
ness. While there is a slight decrease in accuracy for both
‘UMBC+SSE’ and ‘UMBC+Deep Sets,’ UMBC improves
SSE in terms of NLL and ECE while lowering the perfor-
mance of Deep Sets. This seems to generally agree with
the results in Figure 4, indicating that it is likely unhelpful
to add a UMBC f to an already MBC f∗, and instead the
model f∗ should be chosen according to the given task
first, and then UMBC considered if MBC treatment will
be necessary.
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Figure 11: Performing Monte Carlo Dropout on UMBC+Set Transformer slots leads to increases in
accuracy, NLL, ECE. The top row corresponds to a 0% dropout rate and is constant over dropout
sample sizes. Experiment uses ModelNet40 with test set size of 1000.

5 10 25 50 100
Samples

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Dr
op

ou
t R

at
e

86.69 86.69 86.69 86.69 86.69

86.67 86.74 86.75 86.73 86.74

86.68 86.69 86.71 86.77 86.79

86.73 86.77 86.78 86.72 86.74

86.87 86.88 86.86 86.73 86.76

86.84 86.74 86.86 86.82 86.87

Accuracy 

86.70

86.75

86.80

86.85

5 10 25 50 100
Samples

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Dr
op

ou
t R

at
e

0.54 0.54 0.54 0.54 0.54

0.54 0.54 0.54 0.54 0.53

0.53 0.53 0.53 0.53 0.53

0.53 0.53 0.52 0.52 0.52

0.52 0.52 0.52 0.51 0.51

0.52 0.51 0.51 0.50 0.50

NLL 

0.50

0.51

0.52

0.53

0.54

5 10 25 50 100
Samples

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Dr
op

ou
t R

at
e

2.88 2.88 2.88 2.88 2.88

2.73 2.85 2.84 2.75 2.78

2.75 2.73 2.74 2.64 2.71

2.63 2.61 2.47 2.46 2.56

2.68 2.72 2.34 2.47 2.38

2.63 2.42 2.37 2.52 2.37

ECE 

2.4

2.5

2.6

2.7

2.8

Figure 12: Performing Monte Carlo Dropout on UMBC+Set Transformer slots leads to increases in
accuracy, NLL, ECE. The top row corresponds to a 0% dropout rate and is constant over dropout
sample sizes. Experiment uses ModelNet40 with test set size of 2048.

ModelNet40 is prone to overfitting, and previous experiments in Deep Sets (Zaheer et al., 2017)
and Set Transformer (Lee et al., 2019) have used Dropout layers both before and after the pooling
function in their encoders. To evaluate the regularization effect of our dropout strategy, the last block
of Table 8 includes UMBC models trained without dropout. Training without dropout generally
lowers test set performance in all metric categories.

For examples of the corrupted point clouds, we refer the reader to the original work which proposed
ModelNet40-C (Ren et al., 2022). In Figures 13 and 14 we provide additional boxplots for accuracy
and NLL metrics which correspond to the ECE metric reported in Figure 6. In Figures 15 to 17 we
provide individual boxplots for each individual corruption on accuracy, ECE, and NLL respectively.
The aggregate of all of these datapoints forms the boxplots seen in Figures 6, 13 and 14. Size is
reduced to avoid excessive page length. Best viewed on screen with a high zoom.
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Figure 13: Accuracy across all corruptions in the ModelNet40-C dataset. This figure corresponds to
the ECE results presented in Figures 6 and 14
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Figure 14: NLL across all corruptions in the ModelNet40-C dataset. This figure corresponds to the
ECE results presented in Figures 6 and 13

K ADDING THE UMBC MODULE TO EXISTING MBC FUNCTIONS

L LIMITATIONS & FUTURE WORK

UMBC is a bottleneck UMBC projects the input set to a fixed size, and can therefore be a
bottleneck, causing possible loss of information from the input set. An interesting line of research
could be an exploration of methods to maximize mutual information between the input set of
cardinality N and the projected set of cardinality K, or an exploration of other forms which a UMBC
may take, we look forward to seeing future research in this area.
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Figure 15: Accuracy boxplots for individual ModelNet-C test results. Size is minimized to avoid
excessive page length. Best viewed on screen with high zoom
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Figure 16: ECE boxplots for individual ModelNet-C test results. Size is minimized to avoid excessive
page length. Best viewed on screen with high zoom
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Figure 17: NLL boxplots for individual ModelNet-C test results. Size is minimized to avoid excessive
page length. Best viewed on screen with high zoom
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Figure 18: Because of the model structure, higher slot dropout rates correspond to faster training
times, and smaller set sizes as input to the subsequent set encoder modules. A dropout rate of
p = 0.5 in the function f will, in expectation, deliver a set size of K/2 to the subsequent function
f∗. This figure was generated from a UMBC+Set Transformer model with 128 hidden units and
input x ∈ R32×200×d. The plotted line shows mean and standard deviation for 250 iterations at each
p ∈ [1, 99]. As a safeguard against unstable training, we ensure that at least one slot remains after
dropout is applied.

Table 7: Amortized Clustering on ImageNet features extracted with a pre-trained ResNet50.

Model NLL ↓ ARI ↑
Empirical 1028.22±1.24 44.09±0.11
Deep Sets 531.44±0.15 6.18±0.08
SSE 520.29±0.63 22.91±1.85
Set Transformer 512.59±0.33 17.13±3.67
UMBC+Deep Sets 532.87±0.69 6.22±0.18
UMBC+SSE 544.67±3.64 16.59±1.26
UMBC+Set Transformer 503.89±0.87 23.68±1.85

Train/Test Set Size Variability In Figure 4, Deep Sets shows the tightest grouping between
training set sizes, although giving the lowest overall performance, indicating that more complicated
set functions which make pairwise comparisons may be less robust to varying training set sizes,
which may provide an interesting topic of future research.

Bayesian Slots In our experiments, we used a similar random slot parameter initialization as
Blundell et al. (2015). Following Bruno et al. (2021), we use no Bayesian prior on these random
slots, so the increased performance of random slots is likely due to randomness aiding in exploration
of the parameter space rather than learning a proper Bayesian posterior. Future work could explore
the effects of incorporating a prior distribution over slots or slot dropout rates (e.g. Concrete Dropout
(Gal et al., 2017)). This could lead to further increases in robustness to corruptions and varying set
sizes.

Large Train-Time Set Sizes The setting we have considered is one where the train-time set size is
known and the test-time setting presents severely constrained computataional resources or extremely
large set sizes which require processing the set in chunks. An open problem, however, is how to
handle larger-than-memory set sizes at train time, as backpropagation requires memory allocation for
each element in the sets. We look forward to seeing future research which may tackle this problem,
and allow for training with extremely large set sizes.

M ATTENTION ACTIVATIONS & CALIBRATION

To test the effect of training with different attention activation functions on calibration, we train
and evaluate the UMBC+Set Transformer model on all corruptions of ModelNet40-C in Figures 19
to 21, and individual corruptions in Figures 22 to 24. Besides the change in attention activation, each
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Table 8: Point cloud classification on ModelNet40. All models are trained on a set size of 1000
randomly sampled points, and evaluated on 100, 1000, and 2048 (max) test set sizes. UMBC models
in the second block are trained and tested with our slot dropout technique outlined in Section 4.
Models in the first block are trained without Slot Dropout, and use all available slots output from f at
both train and test time

Accuracy ↑ NLL ↓ ECE ↓
Model 100 1000 2048 100 1000 2048 100 1000 2048
UMBC+Deep Sets (No Dropout train) 69.96±0.64 87.50±0.21 87.58±0.16 1.82±0.06 0.66±0.02 0.64±0.02 21.25±0.54 8.59±0.32 8.51±0.26
UMBC+SSE (No Dropout train) 68.80±1.00 84.81±1.17 84.89±1.39 1.19±0.06 0.55±0.04 0.54±0.04 11.80±2.07 3.05±0.64 3.02±0.82
UMBC+Set Transformer (No Dropout train) 71.52±0.75 86.56±0.47 86.61±0.45 1.50±0.43 0.63±0.14 0.62±0.15 13.36±4.66 4.22±2.04 4.28±2.09
UMBC+Deep Sets 71.53±1.03 87.52±0.25 87.74±0.45 1.48±0.09 0.61±0.03 0.62±0.03 16.39±1.52 7.53±0.38 7.49±0.50
UMBC+SSE 71.03±0.73 86.19±0.62 86.36±0.46 1.11±0.09 0.50±0.01 0.49±0.01 9.67±2.03 2.42±0.77 2.37±1.10
UMBC+Set Transformer 71.18±1.52 86.56±0.49 86.77±0.29 1.23±0.15 0.53±0.03 0.51±0.03 10.37±2.24 2.60±0.19 2.35±0.24

model was trained with the same settings as the UMBC+Set Transformer from the corresponding
experiments in Figures 6, 13 and 14. Surprisingly, we find the slot-softmax, originally used by
Locatello et al. (2020) delivers strong performance in terms of NLL and ECE, although it gives
slightly lower accuracy on the natural, uncorrupted test set.
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Figure 19: Accuracy across all corruptions on the ModelNet40-C dataset for UMBC+Set Transformer
with different attention activation functions. This figure corresponds to the results presented in
Figures 20 and 21
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Figure 20: NLL across all corruptions on the ModelNet40-C dataset for UMBC+Set Transformer with
different attention activation functions. This figure corresponds to the results presented in Figures 19
and 21
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Figure 21: ECE across all corruptions on the ModelNet40-C dataset for UMBC+Set Transformer with
different attention activation functions. This figure corresponds to the results presented in Figures 19
and 20

23



Under review as a conference paper at ICLR 2023

Test 1 2 3 4 5
Corruption Intensity (occlusion, Test Set Size: 100)

0.2

0.4

0.6

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (occlusion, Test Set Size: 1000)

0.4

0.6

0.8

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (occlusion, Test Set Size: 2048)

0.4

0.6

0.8

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (rotation, Test Set Size: 100)

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (rotation, Test Set Size: 1000)

0.4

0.6

0.8

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (rotation, Test Set Size: 2048)

0.4

0.6

0.8

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (shear, Test Set Size: 100)

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (shear, Test Set Size: 1000)

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (shear, Test Set Size: 2048)

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (uniform, Test Set Size: 100)

0.5

0.6

0.7

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (uniform, Test Set Size: 1000)

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (uniform, Test Set Size: 2048)

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (upsampling, Test Set Size: 100)

0.5

0.6

0.7

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (upsampling, Test Set Size: 1000)

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (upsampling, Test Set Size: 2048)

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (lidar, Test Set Size: 100)

0.2

0.4

0.6

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (lidar, Test Set Size: 1000)

0.4

0.6

0.8

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (lidar, Test Set Size: 2048)

0.4

0.6

0.8

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (impulse, Test Set Size: 100)

0.5

0.6

0.7

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (impulse, Test Set Size: 1000)

0.6

0.7

0.8

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (impulse, Test Set Size: 2048)

0.6

0.7

0.8

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (gaussian, Test Set Size: 100)

0.625

0.650

0.675

0.700

0.725

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (gaussian, Test Set Size: 1000)

0.80

0.82

0.84

0.86

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (gaussian, Test Set Size: 2048)

0.80

0.82

0.84

0.86
Ac

cu
ra

cy
Method

softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (distortion rbf, Test Set Size: 100)

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (distortion rbf, Test Set Size: 1000)

0.6

0.7

0.8

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (distortion rbf, Test Set Size: 2048)

0.6

0.7

0.8

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (distortion, Test Set Size: 100)

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (distortion, Test Set Size: 1000)

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (distortion, Test Set Size: 2048)

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (distortion rbf inv, Test Set Size: 100)

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (distortion rbf inv, Test Set Size: 1000)

0.6

0.7

0.8

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (distortion rbf inv, Test Set Size: 2048)

0.6

0.7

0.8

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (density, Test Set Size: 100)

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (density, Test Set Size: 1000)

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (density, Test Set Size: 2048)

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (density inc, Test Set Size: 100)

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (density inc, Test Set Size: 1000)

0.78

0.80

0.82

0.84

0.86

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (density inc, Test Set Size: 2048)

0.78

0.80

0.82

0.84

0.86

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (cutout, Test Set Size: 100)

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (cutout, Test Set Size: 1000)

0.750

0.775

0.800

0.825

0.850

0.875

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (cutout, Test Set Size: 2048)

0.750

0.775

0.800

0.825

0.850

0.875

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (background, Test Set Size: 100)

0.2

0.4

0.6

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (background, Test Set Size: 1000)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Test 1 2 3 4 5
Corruption Intensity (background, Test Set Size: 2048)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Method
softmax
slot-sigmoid
sigmoid

slot-softmax
slot-exp

Figure 22: Accuracy boxplots for individual ModelNet-C tests with UMBC+Set Transformer and
different attention activation functions. Size is minimized to avoid excessive page length. Best viewed
on screen with high zoom
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Figure 23: NLL boxplots for individual ModelNet-C tests with UMBC+Set Transformer and different
attention activation functions. Size is minimized to avoid excessive page length. Best viewed on
screen with high zoom
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Figure 24: ECE boxplots for individual ModelNet-C tests with UMBC+Set Transformer and different
attention activation functions. Size is minimized to avoid excessive page length. Best viewed on
screen with high zoom
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