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Abstract001

Large language models (LLMs) have made002
significant advances in the field of natural003
language processing, but they still face chal-004
lenges such as continuous decision-making,005
lack of long-term memory, and limited context006
windows in dynamic environments. To address007
these issues, this paper proposes an innovative008
framework—Self-evolving Agents with Reflec-009
tive and Memory-augmented Abilities (SAGE).010
The SAGE framework comprises three agents:011
the User, the Assistant, and the Checker. By inte-012
grating iterative feedback, reflective mechanisms,013
and a memory optimization mechanism based on014
the Ebbinghaus forgetting curve, it significantly015
enhances the agents’ capabilities in handling016
multi-tasking and long-span information. The017
agents, through self-evolution, can adaptively018
adjust strategies, optimize information storage019
and transmission, and effectively reduce020
cognitive load. We evaluate the performance of021
the SAGE framework on AgentBench(Liu et al.,022
2023b) and long text tasks. Experimental results023
show that SAGE significantly improves model024
performance, achieving a 2.26X improvement025
on closed-source models and an improvement026
ranging from 57.7% to 100% on open-source027
models, with particularly notable effects on028
smaller models.Our datasets are available029
at https://anonymous.4open.science/r/SAGE-030
FD7D/031

1 Introduction032

In recent years, large language models (LLMs) have033

made significant progress in the field of natural lan-034

guage processing, demonstrating powerful perfor-035

mance in tasks such as dialogue and text genera-036

tion(Brown et al., 2020). However, these models still037

face several challenges: (1) Agents need to continu-038

ously make decisions in changing environments and039

adapt to new situations and tasks. (2) Agents lack 040

long-term memory mechanisms, which is increas- 041

ingly evident in situations requiring sustained interac- 042

tion with the environment(Graves et al., 2016). The 043

limited context window also hinders the model’s abil- 044

ity to handle information over long time spans(Rae 045

et al., 2019). 046

To address these challenges, researchers have pro- 047

posed methods such as meta-learning and multi-task 048

learning to enhance the transferability and adapt- 049

ability of LLM agents. Regarding the issue of 050

limited memory storage, previous research such as 051

MemGPT(Packer et al., 2024) adopts a first-in, first- 052

out (FIFO) queue to forget content, while Memo- 053

ryBank(Zhong et al., 2023) establishes a forgetting 054

curve based on the insertion time of each item. How- 055

ever, these methods are typically tailored to specific 056

tasks or scenarios, lacking a general framework to 057

systematically improve the performance of LLM 058

agents in complex real-world settings. 059

Recently, some innovative projects like AutoGPT1 060

and BabyAGI2 have started leveraging LLMs as core 061

controllers, driving the development of agents capa- 062

ble of tackling complex real-world challenges. Nev- 063

ertheless, existing multi-agent frameworks also face 064

certain drawbacks when handling complex tasks, 065

such as frequent communication and information 066

overload issues. Communication between agents 067

heavily relies on memory to maintain context, and 068

as the interaction history accumulates, the computa- 069

tional resource demands and inference latency signif- 070

icantly increase. These challenges severely impede 071

the efficient deployment and application of agents in 072

real-world scenarios. 073

1https://github.com/Significant-Gravitas/AutoGPT
2https://github.com/yoheinakajima/babyagi
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Figure 1: An illustration of the SAGE

In this paper, we propose an innovative framework,074

Self-evolving Agents with reflective and memory-075

augmented abilities (SAGE). By enhancing agents’076

self-adjustment capabilities through reflection, they077

can more effectively utilize historical information078

and make efficient decisions when faced with com-079

plex and dynamic tasks. From the perspective of080

self-evolution, we introduce a memory optimiza-081

tion mechanism based on the Ebbinghaus forget-082

ting curv(Ebbinghaus, 1885). This mechanism helps083

agents selectively retain key information, optimize084

information storage and transmission, reduce unnec-085

essary cognitive load, and enhance agents’ capabil-086

ities in interaction tasks with the environment. Ex-087

perimental results show that our approach achieves088

significant improvements across various benchmarks,089

particularly excelling in smaller models. Specifi-090

cally, on AgentBench, the performance of powerful091

LLMs like GPT-3.5 and GPT-4 is enhanced by up092

to 2.26X. For open-source models, performance im-093

provements range from 57.7% to 100%. In tasks094

such as multi-source question answering and code095

generation, our approach achieves state-of-the-art096

results(Etezadi and Shamsfard, 2023).097

The main contributions of our work are as follows:098

• We propose a novel framework, SAGE, which099

introduces a reflection mechanism to enhance100

the self-adjustment capabilities of agents. With- 101

out any additional training, this enables agents 102

to more effectively utilize historical information 103

and make efficient decisions when faced with 104

complex and dynamic tasks. 105

• We introduce a memory optimization mecha- 106

nism based on the Ebbinghaus forgetting curve. 107

This helps agents selectively retain key informa- 108

tion, reducing the issue of information overload 109

in multi-agent systems. 110

• SAGE achieves improvements over strong base- 111

lines in multiple challenging real-world tasks 112

and achieves state-of-the-art results on bench- 113

marks. This framework can be extended to other 114

LLMs, with particularly notable improvements 115

in smaller models. 116

2 Related work 117

2.1 Self-Improvement of Reasoning and 118

Decision-Making 119

A lot of research is focused on making large lan- 120

guage models (LLMs) better at improving them- 121

selves. Some researchers are working on using 122

carefully crafted prompts to help models learn how 123

to get better, although this usually only works for 124

one-off tasks. Others are tweaking how models get 125
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Figure 2: The illustration of an example HotpotQA with SAGE. Please refer to the appendix B for more examples.

feedback during tasks, which helps them get bet-126

ter at thinking things through(Huang et al., 2022).127

There’s also work on using strategies like random128

beam searches(Meister et al., 2022) to help models129

make smarter decisions and assess their own work.130

Most current methods rely on quick, one-off tweaks131

and learning strategies that need lots of resources132

and hands-on tech help(Tian et al., 2024). This paper133

introduces a self-reflection mechanism, showing that134

LLMs can keep getting better and produce higher135

quality work across different tasks, all without need-136

ing extra training(Zhang et al., 2024a; Cheng et al.,137

2024; Jeong et al., 2024).138

2.2 Memory Mechanism for LLM-based Agents139

In LLM-based agents, the memory module is a crit-140

ical component responsible for storing, processing,141

and retrieving task-related information. This mem-142

ory plays a pivotal role in how the agent accumulates143

knowledge, handles historical experiences, and sup-144

ports its decision-making processes. To enhance145

the self-evolution capabilities of these agents, re-146

searchers are focused on designing and optimizing147

these memory modules(Raffel et al., 2020). Past re-148

search has covered various designs and implementa-149

tions of memory modules. This includes integrating150

information from different trials to boost reasoning151

abilities or storing information in natural language152

to enhance the module’s interpretability and user-153

friendliness(Wada et al., 2019). While there has been154

progress, further improvements in self-adjustment 155

capabilities and memory management efficiency are 156

still needed to better address complex problems in 157

real-world applications. Our proposed memory opti- 158

mization mechanism is designed to help agents better 159

manage and adapt to dynamic and complex task en- 160

vironments(Kynoch et al., 2023; Singh et al., 2024; 161

Zhang et al., 2024b). 162

3 Method 163

In this section, we detail the proposed Self-Adjusting 164

Generative Environment (SAGE) framework. The 165

SAGE framework aims to enhance the iterative im- 166

provement and memory management capabilities 167

of agents through three main components: iterative 168

feedback, reflection, and MemorySyntax. First, in 169

the iterative feedback process, the assistant (A) con- 170

tinuously optimizes its output based on feedback 171

from a checker (C). Second, the reflection mech- 172

anism enables the assistant to analyze experiences 173

of task success and failure and store these experi- 174

ences in memory to make better decisions in future 175

tasks. Finally, the MemorySyntax method combines 176

Ebbinghaus’s forgetting curve and linguistic knowl- 177

edge to optimize the assistant’s memory and external 178

storage management, allowing it to effectively pro- 179

cess and retain important information. Next, we will 180

detail the specific implementation and workflow of 181

these components. 182
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3.1 Iterative Feedback183

During the iterative feedback and improvement184

phase, the assistant (A) in the SAGE framework it-185

eratively receives feedback from the checker (C) to186

refine its output. This process continues until the187

checker deems the assistant’s output correct or the188

iteration limit is reached.189

3.1.1 Initialization Phase190

Role Assignment: The SAGE framework consists191

of three agents: the user (U ), the assistant (A), and192

the checker (C). The user (U ) represents the agent193

that initiates the task and, upon receiving prompt194

PU , assumes the role of task proposer. The assis-195

tant (A) represents the agent that generates text and196

actions based on observations from the environment197

and, upon receiving prompt PA, generates text and198

actions based on these observations. The checker199

(C) is responsible for evaluating the assistant’s out-200

put and providing feedback, assuming this role upon201

receiving prompt PC.202

Task Assignment: The user (U ) assigns a task203

description and a successful instance to the assistant204

(A) as initial input to start the interaction.205

3.1.2 Actual Interaction Phase206

In the actual interaction phase, the assistant generates207

the appropriate output at each time point t based on208

the task description and instance provided by the user.209

Specifically, the assistant generates text and actions210

ot based on the current instruction st and necessary211

information:212

ot ∼ πθ(ot|st, rt, fti) (1)213

where πθ denotes the assistant’s policy, rt represents214

the reward score for task performance, and fti rep-215

resents the feedback provided by the checker at the216

i-th iteration.217

The environment provides feedback rt, including218

possible changes or new information. Subsequently,219

the checker evaluates the assistant’s output ot and220

provides feedback fti. If the assistant’s output for-221

mat is incorrect, the BLEU metric is used to com-222

pare all possible action choices, selecting the closest223

match as the assistant’s action for that step. The224

assistant iteratively adjusts its output based on the225

checker’s feedback fti until the maximum trial num-226

ber N is reached or the checker deems the output 227

correct. 228

3.1.3 Evolutionary Goals and Directions 229

Based on the current iteration feedback, the assistant 230

generates new evolutionary goals: 231

E t+1 = (At+1,Dt+1) (2) 232

where the evolutionary capability At+1 refers to 233

memory optimization mechanisms and the evolu- 234

tionary direction Dt+1 refers to self-adjustment ca- 235

pabilities. The assistant adjusts its policy according 236

to the new evolutionary goals and directions: 237

πθt+1 = ψ(πθt, E t+1) (3) 238

3.2 Memory Management 239

In the SAGE framework, memory is divided into two 240

types: Short-Term Memory (STM) and Long-Term 241

Memory (LTM). 242

Short-Term Memory is used to store information 243

that is immediately relevant to the current task. It 244

is highly volatile and has limited capacity. As the 245

agent processes new information and makes deci- 246

sions, short-term memory is frequently updated. Tra- 247

jectory history is used as short-term memory to help 248

the assistant recall and process information in the 249

short term(Mnih et al., 2015). 250

Long-Term Memory is used to store informa- 251

tion deemed important and useful for future tasks. 252

Compared to short-term memory, long-term mem- 253

ory has a larger capacity and can retain informa- 254

tion for longer periods. The assistant’s generated 255

self-reflections ft are stored in long-term mem- 256

ory(Graves et al., 2016). 257

3.2.1 Reflection 258

The reflection module provides the assistant with a 259

sparse reward signal, such as a binary success state 260

(success/failure), the current trajectory, and its persis- 261

tent memory. The assistant analyzes these inputs and 262

stores the learned lessons in memory to make better 263

decisions in future attempts. The assistant gener- 264

ates self-reflection ft to provide feedback for future 265

attempts, which is more informative than scalar re- 266

wards and is stored in the agent’s memory M . This 267

process can be represented by the following equa- 268

tions: 269
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ft = ref(o1 : t, r1 : t) (4)270

M ←M ∪ {ft} (5)271

where ref denotes the reflection function.272

3.2.2 MemorySyntax273

The MemorySyntax method combines the Ebbing-274

haus forgetting curve and linguistic knowledge to275

simulate the memory and forgetting mechanisms276

in the human brain, applying them to the agent’s277

memory and external storage management. Let It278

represent the information received at time t, and279

R(It, τ) represent the retention rate of information280

It after time τ . According to the Ebbinghaus forget-281

ting curve, we have:282

R(It, τ) = e−
τ
S (6)283

where S represents the strength of the information,284

which is related to the importance and complexity of285

the information.286

MemorySyntax optimizes the forgetting mecha-287

nism in the agent’s memory by adjusting sentence288

structure in the order of part-of-speech priority. Let289

It∗ represent the optimized information, then we290

have:291

R(It∗, τ) =

{
e−

τ
S∗ , if It∗ is stored in Ms

e−
τ
S , if It∗ is stored in Ml

(7)292

where S∗ > S indicates that the optimized in-293

formation has a longer retention time in working294

memory (Ms).295

When the importance of information decreases to296

a certain threshold, it transfers from working memory297

(Ms) to long-term memory (Ml) or is completely298

forgotten. We need to update the agent’s memory299

during this process. Let Mt represent the agent’s300

memory state at time t and It∗ represent the opti-301

mized information, then the memory update process302

can be expressed as:303

Mt+ 1 =


Mt ∪ {It∗}, if R(It∗, τ) ≥ θ1
Mt \ {It∗}, if R(It∗, τ) < θ2

Mt, otherwise
(8)304

where θ1 and θ2 represent the thresholds for re- 305

taining information in working memory (Ms) and 306

completely forgetting it, respectively, with θ1 > θ2. 307

When R(It∗, τ) ≥ θ1, it indicates that the infor- 308

mation’s importance is high enough to be retained 309

in working memory (Ms). When R(It∗, τ) < θ2, 310

it indicates that the information’s importance is 311

very low and can be completely forgotten. When 312

θ2 ≤ R(It∗, τ) < θ1, it indicates that the informa- 313

tion’s importance is between the two thresholds and 314

should be transferred to long-term memory (Ml). 315

By this means, we can simulate the memory and 316

forgetting mechanisms in the human brain, enabling 317

the agent to manage its memory and external stor- 318

age resources more effectively. Working memory 319

(Ms) retains the most important and recent informa- 320

tion, long-term memory (Ml) stores some important 321

but infrequently used information, and unimportant 322

information is completely forgotten. This mecha- 323

nism helps alleviate the problem of memory capacity 324

limitations and improves the agent’s performance in 325

tasks that require long-term memory. 326

4 Experiment 327

To demonstrate the capabilities and performance of 328

SAGE in coordinating autonomous agent groups to 329

collaboratively complete tasks, we conduct exten- 330

sive quantitative experiments on benchmark tasks. 331

We use a public benchmark: AgentBench, a multi- 332

dimensional evolutionary benchmark, from which 333

we select six tasks. These tasks evaluate the reason- 334

ing and decision-making abilities of LLMs acting as 335

agents in multi-turn open-ended generation settings. 336

To comprehensively assess the agents’ long-context 337

understanding capabilities, we select four widely 338

adopted tasks in the domain of long text. These tasks 339

reflect the agents’ programming abilities(LCC(Guo 340

et al., 2023), RepoBench-P(Liu et al., 2023a)) and 341

reasoning abilities(HotpotQA3, TriviaQA4). 342

4.1 Evaluation on AgentBench 343

Task Description AgentBench includes scenarios 344

based on CODE (Knowledge Graph, OS, DB), 345

GAME (ALFWorld)(Shridhar et al., 2021), and 346

WEB (WebShop(Yao et al., 2023), Mind2Web(Deng 347

3https://hotpotqa.github.io/
4https://github.com/mandarjoshi90/triviaqa
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Table 1: aseline Performance on AgentBench without SAGE Framework

LLM Type Models VER OS DB KG ALF WS M2W

API
GPT-4(OpenAI, 2023) 0613 42.4 32.0 57.4 78.0 67.1 27.0
GPT-3.5(Ouyang et al., 2022) 0613 31.6 15.7 25.9 17.0 64.1 16.0

OSS

Llama2-7b(Touvron et al., 2023) chat 0.0 0.0 0.0 0.0 4.4 0.0
Codellama-7b(Rozière et al., 2024) instruct 5.7 2.6 0.0 0.0 16.3 0.0
Qwen1.8b(Bai et al., 2023) chat 2.7 1.4 6.8 0.0 6.6 0.6
Qwen-7b(Bai et al., 2023) chat 5.6 4.8 0.0 34.0 0.0 0.0
Chatglm2-6b(Du et al., 2022) v1.1 0.0 0.0 0.0 0.0 0.3 4.9

Table 2: Performance on AgentBench with SAGE Framework

LLM Type Models VER OS DB KG ALF WS M2W

API
Gpt-4 0613 49.7 39.8 63.1 82.0 67.8 32.0
Gpt-3.5 0613 38.3 35.6 37.6 23.0 72.1 28.0

OSS

Llama2-7b chat 8.4 10.2 25.0 5.0 10.4 15.0
Codellama-7b instruct 18.4 19.2 27.0 12.5 40.2 15.0
Qwen1.8b chat 18.7 15.1 45.3 10.5 11.4 13.6
Qwen-7b chat 22.2 18.0 48.0 38.5 13.6 15.0
Chatglm2-6b v1.1 15.2 16.3 17.0 5.0 10.3 14.9

et al., 2023)). Due to page limitations, please refer348

to the appendix Afor detailed information.349

Baselines We evaluate API-based commercial mod-350

els GPT-3.5 and GPT-4. For open-source models, we351

evaluate Llama2, Codellama, Qwen, and ChatGLM2.352

We truncate dialogue history that exceeds the model353

length limit and typically use greedy decoding.354

Results As shown in Table 2, in the AgentBench355

test, our method significantly improves the perfor-356

mance of various models, especially smaller ones.357

Although GPT-3.5 and GPT-4 have already achieved358

high scores in the benchmark tests, their perfor-359

mance has also improved notably with the adoption360

of SAGE, with improvements reaching up to 2.26361

times in the Database task. Llama2-7b has been362

enhanced to a state with certain capabilities, demon-363

strating the significant effect of this method on rela-364

tively weaker models.365

Additionally, CodeLlama-7b and Qwen-1.8B also366

show substantial improvements. Notably, Qwen-367

1.8B, after using our method, performs close to GPT-368

3.5, highlighting its potential as a general agent.369

The originally error-prone Llama2, through feedback370

mechanisms and memory optimization, exhibits a371

significant reduction in basic errors, proving that our 372

method not only activates the agent capabilities of 373

the model but also effectively reduces fundamental 374

errors and logical mistakes in complex tasks. 375

4.2 Evaluation of Long-Context Tasks 376

Task Description We evaluate the agent’s code gen- 377

eration and reasoning abilities on the following four 378

long-text tasks: 379

i. LCC Dataset (Guo et al., 2023) The LCC 380

dataset is derived from the original long code 381

completion dataset. This dataset includes the 382

first few lines of long code as context and the 383

next line of code as the answer. We use Preci- 384

sion, Recall, and F1 as evaluation metrics. 385

ii. RepoBench-P (Liu et al., 2023a) measures the 386

system’s ability to retrieve the most relevant 387

code snippets from other files as cross-file con- 388

text, use both cross-file and within-file context 389

to predict the next line of code, and handle com- 390

plex tasks that combine retrieval and next-line 391

prediction. We also use Precision, Recall, and 392

F1 as evaluation metrics. 393
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Table 3: Comparison of Performance Across Different Methods

LCC RepoBench-P HotpotQA TriviaQA

Precision Recall F1 Precision Recall F1 F1 F1

Reflexion 77.72 81.00 79.28 78.73 81.86 80.25 11.26 11.23
Beam search 78.98 79.32 79.12 78.75 81.02 79.87 10.26 12.13

SAGE 78.76 79.88 79.29 79.27 83.28 81.22 22.06 22.76

Table 4: Ablation study for memory optimization

OS DB KG ALF WS M2W
Qwen-1.8B (w/o memo) 10.4 22.6 6.8 0.0 26.6 5.0
Qwen-1.8B (w memo) 18.7 28.3 45.3 10.5 31.4 25.1

Codellama-7B (w/o memo) 9.7 2.7 0.0 0.0 14.3 5.0
Codellama-7B (w memo) 23.4 41.3 48.0 12.5 58.7 15.0

iii. HotPotQA(Yang et al., 2018) is a dataset based394

on Wikipedia, containing 113k question-answer395

pairs. It challenges the agent to parse content396

and reason over several supporting documents.397

We use answer F1 as the evaluation metric.398

iv. TriviaQA (Joshi et al., 2017)is a reading com-399

prehension dataset containing question-answer400

pairs with evidence paragraphs. We filter out401

paragraphs with fewer than 1,000 words as po-402

tential examples from TriviaQA. We use answer403

F1 as the evaluation metric.404

Comparison Methods: We compared two methods405

that use the Self-refine mechanism: Beam Search and406

Reflexion. Beam Search is a decoding algorithm that407

integrates self-assessment guidance through stochas-408

tic beam search. Reflexion gains experience from409

past trials in a verbal form.410

Evaluation Results:411

Code Completion Task: In the LCC dataset, the412

SAGE agent performs excellently on Precision, Re-413

call, and F1 metrics, showing significant improve-414

ment compared to Beam Search. Specifically, the415

SAGE agent effectively reviews previous predictions,416

uses memory mechanisms to identify and correct er-417

rors, thereby improving the accuracy and consistency418

of code completion, and reducing repetitive and erro-419

neous information. In contrast, while Beam Search420

also employs some self-optimization strategies, it421

often fails to maintain the same level of precision422

and consistency when dealing with complex code423

structures and cross-file context, leading to slightly 424

inferior performance. 425

Reasoning Tasks: In the HotPotQA and TriviaQA 426

datasets, the SAGE agent significantly outperforms 427

Reflexion in F1 scores. The SAGE agent can more 428

effectively integrate and utilize multi-document in- 429

formation when handling complex reasoning tasks 430

and can review and optimize its answers after each 431

reasoning session through the reflection mechanism, 432

ensuring progressive improvement during the an- 433

swering process. Memory optimization enables the 434

agent to maintain mastery of important information 435

over a long period, thus maintaining efficiency and 436

accuracy in complex question-answering tasks. In 437

contrast, although Reflexion(Shinn et al., 2023) re- 438

lies on past trial experience, its self-optimization 439

ability is insufficient when faced with the complex- 440

ity of multi-document reasoning and long contexts, 441

making it difficult to achieve the same performance 442

improvement. 443

Overall, the SAGE agent outperforms Beam 444

Search and Reflexion in various tasks, demonstrating 445

its strong capabilities in complex code generation 446

and reasoning tasks. 447

4.3 Error analysis 448

As shown in Figure 3, the SAGE framework signifi- 449

cantly improves agent performance across multiple 450

tasks, particularly excelling in the WS task. This 451

is mainly attributed to the iterative feedback mecha- 452

nism, which gradually optimizes the assistant’s out- 453

7



Figure 3: Distribution of various execution results across six tasks. (CLE: Exceeded Context Limit, TLE: Surpassed
Task Limit). Task limits exceeded are the main reason for incomplete tasks, pointing to limitations in LLM agents’
reasoning and decision-making within constrained timeframes.

put through continuous interaction between the as-454

sistant and the checker. Moreover, in the OS and455

DB tasks, CLE and invalid format errors are almost456

completely eliminated, while invalid action errors457

are significantly reduced. This is largely due to the458

reflection mechanism, which helps the assistant learn459

from each task, reducing logical and invalid format460

errors. For detailed data, please refer in the appendix.461

4.4 Ablation Study462

We conduct ablation experiments on the Qwen-1.8B463

and CodeLlama-7B models in AgentBench, with re-464

sults shown in Table 4, testing the effectiveness of465

memory optimization methods. The results show that466

without memory optimization, the Qwen-1.8B model467

performs relatively weakly across various datasets.468

However, once memory optimization methods are469

introduced, the agent’s performance significantly im-470

proves, especially in the KG task, increasing from471

6.8 to 48.0, and in the ALF task, rising from 0.0472

to 10.5. This indicates that the memory optimiza-473

tion mechanism plays an important role in enhancing474

the capability of smaller parameter models in han-475

dling complex tasks.Similarly, for the CodeLlama-476

7B model, performance on some datasets is also477

relatively average without the memory optimization478

mechanism. After optimization, the performance479

significantly improves, particularly in the DB task,480

increasing from 2.7 to 41.3, and in the WS task, ris-481

ing from 14.3 to 58.7. Overall, the CodeLlama-7B482

model performs better than the Qwen-1.8B model483

on most tasks. Specifically, in the DB and WS484

tasks, CodeLlama-7B shows a greater improvement485

after memory optimization, increasing from 2.7 to 486

41.3 and from 14.3 to 58.7, respectively, which is 487

far higher than the corresponding improvements of 488

Qwen-1.8B. This indicates that models with a larger 489

number of parameters exhibit stronger adaptability 490

and processing capabilities when dealing with cer- 491

tain types of data(Liu et al., 2023c; Shulman, 2023; 492

Gambella et al., 2021). 493

5 Conclusion 494

In this paper, we propose the SAGE framework, 495

which significantly enhances agents’ self-adjustment 496

and memory management abilities in complex and 497

dynamic tasks by introducing reflective mechanisms 498

and memory optimization. Experimental results 499

show that the SAGE framework achieves significant 500

performance improvements across various bench- 501

marks, especially in smaller models. In the Agent- 502

Bench test, the SAGE framework not only enhances 503

the performance of strong baseline models like GPT- 504

3.5 and GPT-4 but also significantly improves the per- 505

formance of open-source models. Through feedback 506

mechanisms and memory optimization, the SAGE 507

framework effectively reduces basic errors and logi- 508

cal mistakes in complex tasks. Particularly in smaller 509

models, it enables them to handle complex tasks that 510

they previously could not manage. 511

Limitations 512

Despite the significant improvements achieved by the 513

SAGE framework, several limitations remain. The 514

iterative feedback process can become computation- 515

ally intensive, leading to increased latency and higher 516
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resource consumption, which may not be feasible for517

real-time applications or systems with limited com-518

putational power. Additionally, managing short-term519

and long-term memory introduces complexity and520

overhead, requiring further optimization. The frame-521

work’s performance heavily relies on the quality and522

accuracy of the checker; incorrect feedback can lead523

to suboptimal solutions. While the SAGE framework524

has shown effectiveness on specific benchmark tasks,525

its generalization across a broader range of tasks526

needs validation. It may struggle with tasks involv-527

ing high levels of ambiguity or requiring deep con-528

textual understanding. The MemorySyntax method’s529

thresholds for retaining or forgetting information are530

critical and can affect performance, necessitating531

careful tuning. The use of sparse reward signals may532

not provide sufficient granularity for learning, requir-533

ing more nuanced feedback mechanisms. Finally,534

the evaluation of the SAGE framework has primarily535

been conducted on specific datasets, introducing a536

risk of evaluation bias. Broader, more diverse evalu-537

ations are needed to ensure robustness and general538

applicability. Addressing these limitations will re-539

quire further research and development to refine the540

framework, optimize its components, and validate its541

performance across diverse and complex tasks.542
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A Detailed Dataset Information 790

(1) Operating systems Integrating LLMs into op- 791

erating systems has immense potential for au- 792

tomating and optimizing tasks. This integra- 793

tion requires a secure, user-friendly interface to 794

ensure effective LLM-OS interaction. LLMs 795

must accurately understand the OS context for 796

informed operations, prioritizing safety to pre- 797

vent misuse. Additionally, the system should 798

effectively handle errors and provide clear feed- 799

back to users, enhancing overall interaction and 800

control. Addressing these aspects can transform 801

computer interaction and efficiency across vari- 802

ous industries. 803

(2) Database The ability of LLMs to operate on 804

real databases via SQL is critical due to the im- 805

portance and complexity of database analysis 806

in everyday activities. Previous research has 807

highlighted the effectiveness of LLMs in au- 808

tomating database access, such as with T5QL, a 809

new SQL generation method. Furthermore, fine- 810

tuned LLMs (like GPT-3.5) have demonstrated 811

the ability to extract and link complex scientific 812

information from texts, obtaining structured 813
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knowledge from unstructured text and building814

extensive databases.815

(3) WebShop WebShop is an innovative simulation816

of an e-commerce website environment, featur-817

ing 1.18 million real-world products and 12,087818

crowd-sourced text instructions. It challenges819

agents to navigate various types of webpages820

and perform diverse actions to find, customize,821

and purchase products based on given instruc-822

tions. WebShop’s challenges include under-823

standing compositional instructions, query (re-824

)formulation, dealing with noisy text on web-825

pages, and strategic exploration.826

(4) Knowledge Graphs LLMs’ utilization in con-827

structing and interacting with knowledge graphs828

(KG) presents a promising opportunity to en-829

hance semantic understanding and information830

retrieval. This involves assessing the models’831

ability to generate and interpret complex inter-832

relations within data, facilitating more intuitive833

and context-aware responses. Effective LLM834

performance in this domain could significantly835

improve AI’s reasoning and decision-making836

capabilities based on structured knowledge.837

(5) Mind2Web Mind2Web (M2W) is a dataset de-838

signed for developing web agents capable of839

performing complex tasks on real websites via840

language instructions. It features over 2,000841

tasks across 137 sites from 31 domains. M2W’s842

real web environments and diverse user interac-843

tions make it a crucial platform for advancing844

AI navigation capabilities.845

(6) ALFWorld ALFWorld bridges interactive846

TextWorld environments with embodied tasks847

from the ALFRED dataset, enabling agents848

to learn abstract strategies and apply them to849

real-world tasks. It supports abstract reason-850

ing and concrete execution, allowing agents to851

plan actions in a text-based simulator and exe-852

cute these tasks in a visual environment. This853

approach enhances agent generalization and854

problem-solving skills across various domains,855

such as language understanding and visual nav-856

igation, by leveraging a modular design that857

simplifies research improvements.858
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B Examples859

Cases study on TriviaQA in using GPT with SAGE.

User:
Answer the question based on the given passages. Only give me the answer and do not output any other
words.The following are given passages:
History of canals in Great Britain - London Canal Museum History of canals in Great Britain Home >
History > Canals in Britain In the history of canals, Britain was not a pioneer. The Chinese can claim that
the Grand Canal of China was one of the first, in the tenth century,a. . . . . .
Answer the question based on the given passages. Only give me the answer and do not output any other
words.
Question: Which metal is produced by the Bessemer Process?
Answer:

Assistant:
The content of the file seems to be an HTML document related to the administrative division of Turkey,
including population statistics, charts, and maps. This file contains scripts, metadata, and structured data
typical for a web page.

Checker:
Clear Objectives: When answering user questions, the focus should be on directly addressing the question
without introducing irrelevant information. Document Handling: Before confirming whether the document
content is relevant to the question, detailed aspects of the document should not be directly addressed.

Reflection:
Issue Description: The user wants to understand why the system outputs irrelevant HTML document
content based on user input and seeks detailed feedback and reflection. Reasons for the Error: Misinter-
pretation of Input: The system mistakenly assumed that the user uploaded a file and attempted to read its
content, whereas the user only provided text input. Processing Logic Error: Without clearly determining
the user’s intent, the system directly parsed and outputted file content. User Experience Problems: Irrele-
vant Output: The user expects concise, relevant answers, but the system provided lengthy and irrelevant
HTML content, affecting the user experience. Poor Communication: Failure to accurately understand
and respond to the user’s real needs resulted in off-topic responses In-depth Reflection and Improvement
Suggestions: Clarify User Intent: Accurate Parsing of User Input: Enhance the system’s natural language
processing capabilities to accurately distinguish whether the user uploaded a file or simply provided
text input. User Feedback Mechanism: Implement a user feedback mechanism to promptly adjust the
understanding of user intent. For example, confirm the issue to verify if the user uploaded a file. Optimize
Processing Logic: Layered Processing Flow: In system design, separate file processing logic from text
response logic to avoid misjudgments. For instance, when a user uploads a file, process the file content
separately; when a user inputs text, provide relevant answers directly. Pre-processing Check: Prior to
handling files, perform pre-processing checks to confirm if the file content meets expectations. . . . . . .
LLMs with SAGE response: Steel.

Ground truth
Steel.
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Cases study on LCC in using GPT with SAGE.

User:
import networkx as nx import pickle from Queue import PriorityQueue import copy import random import
string import sys class MultiDiGraphEdgeKey(nx.MultiDiGraph): . . . . . .

Assistant:
You will be given the history of a past experience where you were given a task and failed to complete
it. Reflect on the strategy and actions taken. Devise a concise, new plan of action that accounts for your
previous mistakes. Here are two examples: Example 1: If you failed to remember to lock the door, plan to
double-check the door each time. Example2: If you missed a deadline, plan to set reminders earlier. . . . . .

Checker:

The given code is a part of the Camerini algorithm, which is used for ranking edges in a directed graph.
This algorithm is particularly useful for problems involving the identification of optimal or near-optimal
substructures, like arborescences or spanning trees, in complex networks. The algorithm has two main
phases:
Collapsing Phase: This phase identifies and collapses cycles in the graph, creating supernodes. This
simplification helps in managing cycles more efficiently and prepares the graph for the expansion phase.
Expanding Phase: After collapsing cycles into supernodes, this phase expands the supernodes back into
their original structure, resulting in a ranked arborescence, where the edges are sorted or prioritized based
on certain criteria. . . . . . .

LLMs with SAGE response:
Z.addedge(eu, ev, **data.copy()) self. init(graph, Y, Z) A = best(root) self.init(graph) e , d = self.next(A,
Y, Z) w = self.getgraphscore(A) - d if d != float(’inf’) else float(’inf’) P.put((-w, e, A, Y, Z)) solu-
tions.append(A) return solutions
def bestbranching(self, root): return self.best(root)
def bestarborescencenorooted(self, root): return self.best(root)
def bestarborescencerooted(self, root): return self.best(root)
def getgraphscore(self, graph): return sum(data[self.attr] for u, v, data in graph.edges(data=True))
def findroots(self, graph): roots = [node for node, degree in graph.indegree() if degree == 0] return roots
. . . . . .
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Cases study on Repobench-P in using GPT with SAGE.

User :

Please complete the code given below.
{src//kademlia//operation//KadRefreshOperation.java
public class KadRefreshOperation implements Operation
private final KadServer server;
private final KademliaNode localNode;
private final KademliaDHT dht;
private final KadConfiguration config;
public KadRefreshOperation......

Assistant:
To devise a new plan of action, let’s analyze the previous mistakes and come up with a solution: Mis-
take 1: In the KadRefreshOperation class, the execute() method calls the BucketRefreshOperation and
ContentRefreshOperation without any error handling or exception handling. This can lead to unexpected
errors and failures. Solution: Add proper error handling and exception handling in the execute() method
of the KadRefreshOperation class. This will ensure that any errors or exceptions are properly handled and
the execution can continue smoothly. . . . . .

Checker:
In the ‘KadRefreshOperation‘ class, there is no error handling when the ‘execute()‘ method calls ‘Buck-
etRefreshOperation‘ and ‘ContentRefreshOperation‘. Analysis: If ‘BucketRefreshOperation‘ or ‘Con-
tentRefreshOperation‘ throws an exception, the entire ‘execute()‘ method will fail, potentially causing
the interruption of the entire system’s refresh operation. In the ‘StoreOperation‘ class, the ‘execute()‘
method does not handle the case of existing content in the DHT. Analysis: The ‘execute()‘ method always
returns 1 as the number of storage nodes, which is clearly incorrect. The correct number of nodes should
be returned based on whether the content already exists in the DHT. Solution: Before storing the content,
check if it already exists. If it does, return 0; otherwise, store the content and return the actual number of
storage nodes.
. . . . . .

LLMs with SAGE response:
private final transient KademliaRoutingTable routingTable; private final transient KadConfiguration config;
private final transient MessageFactory messageFactory;
/* Scheduled refresh operation */ private final Timer refreshTimer;
/** * Initialize the Kademlia system * * @param ownerId The ID for this owner * @param nodeId
The ID for this node * @param inetAddress The address for this node * @param port The port for this
node * @param config Configuration for the Kad system * * @throws java.io.IOException */ public
JKademliaNode(String ownerId, KademliaId nodeId, InetAddress inetAddress, int port, KadConfiguration
config) throws IOException { this.ownerId = ownerId; this.config = config;
/* Initialize the Node */ this.localNode = new Node(nodeId, inetAddress, port);
/* Initialize the Server */ this.server = new KadServer(localNode.getNodeId(), config);
. . . . . .
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