
Published as a Tiny Paper at ICLR 2023

ITERATIVE WEAKLY SUPERVISED LEARNING
FOR NOVEL CLASS OBJECT DETECTION

Dejana Mandić1, Wieland Brendel2, Claudio Michaelis1
1 University of Tübingen, 2 Max Planck Institute for Intelligent Systems, Tübingen
dejana.mandic@student.uni-tuebingen.de

ABSTRACT

Training object detectors for new classes usually requires collecting and labeling
large amounts of data. Our paper introduces a new approach to address this issue -
training novel-class object detectors using a combination of a few labeled images
and weakly labeled data, that is easy to obtain. We propose an iterative fine-tuning
framework that cycles through predicting pseudo-labels, filtering them using weak
labels, and fine-tuning the model on this data. By repeating the process, we can
mostly close the gap to a model trained on 40x more data, thereby offering a new
approach to improving the trade-off between labeling effort and performance.

1 INTRODUCTION

Large-scale object detection datasets with comprehensive annotations have played a crucial role in
advancing the field (Everingham et al., 2010; Lin et al., 2014; Cordts et al., 2016; Kuznetsova et al.,
2020). However, detecting novel classes that are not in these datasets poses a significant challenge
due to the high cost of annotating enough data. Although few-shot object detection methods (Kang
et al., 2019; Huang et al., 2022) try to address this issue, they typically underperform compared to
fully supervised methods. To optimize the trade-off between labeling effort and performance, we
investigate a novel-class detection scenario that improves few-shot detection by combining weakly
(Bilen & Vedaldi, 2016; Wang et al., 2022) and semi-supervised methods (Fang et al., 2021; Xiong
et al., 2021). We propose an iterative fine-tuning framework that leverages a few fully labeled images
and a larger set of weakly labeled images to learn and iteratively refine a detector’s performance
through multiple rounds of training and pseudo-label generation.

2 METHOD

Weak Labels: We consider two types of weak labels: (1) image-level labels, which are widely
available from classification datasets or can easily be acquired in applications by recording addi-
tional images, and (2) point-class pairs, which only require clicking on each object once.
Iterative Fine-tuning: Figure 1 provides an overview of our proposed framework. It has three main
steps: (1) fine-tune a pre-trained model using a small number of fully-labeled images; (2) generate
pseudo-labels for the weakly labeled images by inferring bounding boxes and filtering them using
the weak labels; (3) fine-tune the model using the pseudo-labeled dataset; (4) repeat parts (2) and

Filtered bounding
boxes

Images with weak
labels

Inferred bounding
boxes

Pseudo-label Filter

Weak-labels
tomato

Fully-labeled
image Full-label

Fine-tune

Pseudo-labeled dataset

(1)

(2)

(3)

Fine-tune ModelFully-labeled dataset
inference

(4)

Figure 1: The iterative fine-tuning framework

1

Published as a Tiny Paper at ICLR 2023

(3) for a number of iterations. Note that we update the same model at each step, thus also improving
the predicted pseudo-labels at each step.
Pseudo-label Filter: To filter inferred bounding boxes using weak labels, we build upon the ap-
proach by Wang et al. (2022). Given image-level class labels, we keep all bounding boxes with
class probability higher than a threshold θ. If there is no such bounding box, we keep the one with
the highest probability. Given N point-class pairs for an image, we filter the K predicted bounding
boxes using Hungarian matching and a loss function: L(p, c, b) = γ · (1−P (c))+(1−γ) ·d2(p, b) ·
η(p, b), where γ ∈ [0, 1] is a trade-off, p and c are point and class labels, b is a bounding box, P (c)
is a class probability, d2 is the L2 normalized distance between p and the center of b. We perform
min-max normalization across N × K distances. Finally, η(p, b) is an indicator function that has
value 1 if p is inside b, otherwise equals infinity. Filtering examples are in Appendix A.2.

3 EXPERIMENTS

Datasets: For our experiments, we focus on the detection of tomatoes, which are not part of COCO
(Lin et al., 2014) dataset we used for pretraining. The training and test data comes from Laboro-
Tomato (LT)(Laboro.ai, 2020), a dataset with high-quality annotations for images of tomatoes in
greenhouses. We create our own dataset split using half of the images for testing and the other half
for fully and weakly labeled in distribution (IID) data. Additionally, we utilize tomato images from
OpenImages (OI) (Kuznetsova et al., 2020) for weakly labeled out-of-distribution (OOD) data with
image-level labels. Details of the label generation process are in Appendix A.1
Model: Following Omni-DETR (Wang et al., 2022), we use Deformable-DETR Zhu et al. (2020)
as our model. However, the framework can easily be adapted to other object detection models.
Experiments: We compare training using 10 fully labeled images, with and without adding different
types of weakly labeled data, with training on the full dataset of ∼400 images. We once determine
all hyperparameters (threshold θ, loss trade-off γ, and learning rate), and keep them constant for all
experiments. We use the COCO AP50:95 metric denoted as mAP (Lin et al., 2014).

4 RESULTS

Table 1: Results
images weak IID/ iter-

full weak label type OOD ations mAP
10 - - - - 45.2
10 200 image-level OOD 1 53.9
10 200 image-level IID 1 59.9
10 200 points IID 1 60.6
10 400 points IID 1 61.9
10 400 points IID 2 63.1
10 400 points IID 3 63.2
10 400 points IID 10 60.1
400 - - - - 69.8

Table 1 summarizes our findings. With the full
dataset, Deformable-DETR achieves 69.8%
mAP. With only 10 fully-labeled images, this
drops to only 45.3%. But with weakly labeled
data, this gap can mostly be closed. Simply
adding 200 images with tomatoes from the ex-
isting Open Images dataset improves perfor-
mance to 53.9%. Even better than these out-
of-distribution (OOD) internet images is us-
ing in-distribution (IID) images from Laboro
Tomato. With only 200 image-level labels we
reach 59.9% and with point-class pairs, we
reach 60.6% mAP. With more images (4̃00 in-
stead of 200) and multiple iterations, we reach 63.1%, mostly closing the gap while significantly
reducing annotation effort. We find that the ideal number of iterations is 3. An excessive number of
iterations leads to decreased performance because the model starts overfitting onto its own mistakes.

5 CONCLUSION

We here demonstrate that for a new class, the performance gap between using 400 or only 10 train-
ing images can mostly be closed by adding additional images with easy-to-obtain weak labels. Our
proposed iterative fine-tuning framework provides an effective solution for developing single-class
object detectors in low-data and limited annotation budget regimes. It is especially encouraging
that repeated training iterations improve the accuracy of generated pseudo-labels and overall de-
tector performance. In a next step, our framework could also be used to generate suggestions for
human annotators, thus turning it into a tool to not only detect novel objects but also quickly and
inexpensively label datasets.

2

Published as a Tiny Paper at ICLR 2023

URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2023 Tiny Papers Track.

REFERENCES

Hakan Bilen and Andrea Vedaldi. Weakly supervised deep detection networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 2846–2854, 2016.

G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In CVPR, 2016.

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman.
The Pascal Visual Object Classes (VOC) Challenge. IJCV, 88(2):303–338, 2010.

Shijie Fang, Yuhang Cao, Xinjiang Wang, Kai Chen, Dahua Lin, and Wayne Zhang. Wssod: A
new pipeline for weakly-and semi-supervised object detection. arXiv preprint arXiv:2105.11293,
2021.

Gabriel Huang, Issam Laradji, David Vazquez, Simon Lacoste-Julien, and Pau Rodriguez. A survey
of self-supervised and few-shot object detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022.

Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi Feng, and Trevor Darrell. Few-shot object
detection via feature reweighting. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 8420–8429, 2019.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab
Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov, Tom Duerig, and Vittorio Ferrari.
The open images dataset v4: Unified image classification, object detection, and visual relationship
detection at scale. IJCV, 128(7):1956–1981, 2020.

Laboro.ai. Laboro tomato: Instance segmentation dataset, 2020. URL https://github.com/
laboroai/LaboroTomato.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common Objects in Context. In ECCV,
2014.

Pei Wang, Zhaowei Cai, Hao Yang, Gurumurthy Swaminathan, Nuno Vasconcelos, Bernt Schiele,
and Stefano Soatto. Omni-detr: Omni-supervised object detection with transformers. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9367–9376,
2022.

Wuti Xiong, Yawen Cui, and Li Liu. Semi-supervised few-shot object detection with a teacher-
student network. 2021.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159, 2020.

3

https://github.com/laboroai/LaboroTomato
https://github.com/laboroai/LaboroTomato

Published as a Tiny Paper at ICLR 2023

A APPENDIX

A.1 ADDITIONAL INFORMATION ON OBTAINING DATA

Obtaining image-level labels: Since all images in Laboro Tomato include tomatoes, we can assign
tomato as a label to all images from the dataset. For OpenImages, image-level labels can be obtained
by getting all the object classes occurring in an image.

Obtaining point-class pairs: We sample points for point-class pairs similar to Wang et al. (2022)
but with an improved sampling strategy. Wang et al. (2022) sample the points for the point-class
labels anywhere within the segmentation mask. This way of sampling strongly affects our match-
ing loss function, which is based on L2 distance between the sampled point and the center of the
bounding box, as the probability is very high that the sampled point will lie on the outer part of the
segmentation mask. We want the sampled point to be near the ground truth bounding box center
while allowing some noise to simulate human point annotations.

9

Figure 2: The process of sampling points from instance segmentation masks.

Figure 2 illustrates how we sample the points. The process goes as follows: (1) start from the
ground truth segmentation mask; (2) use erode function from OpenCV library (Bradski, 2000) to
narrow the segmentation mask; (3) sample the point from the narrowed segmentation mask. The
kernel size used in the erode function is dependent on the area of the segmentation mask, so we get
size-proportional narrowing.

Label filtering: The LaboroTomato dataset (Laboro.ai, 2020) contains multiple tomato subclasses,
which were all unified to a single tomato class. OpenImages dataset (Kuznetsova et al., 2020), was
filtered for tomato images in an outdoor environment, which resulted in ∼ 200 images.

A.2 PSEUDO-LABEL FILTERING EXAMPLES

Figure 3 shows examples of the pseudo-label filtering using weak labels and our pseudo-label filter:
(left) image with image-level labels from OpenImages (OOD data); (right) image with point-class
pairs from Laboro Tomato (IID data).

12Data from: Open Images

tomato

Figure 3: Examples of label filtering.

4

	Introduction
	Method
	Experiments
	Results
	Conclusion
	Appendix
	Additional information on obtaining data
	Pseudo-label filtering examples

