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ABSTRACT

Unsupervised Domain Adaptation (DA) consists of adapting a model trained on
a labeled source domain to perform well on an unlabeled target domain with
some data distribution shift. While many methods have been proposed in the
literature, fair and realistic evaluation remains an open question, particularly due to
methodological difficulties in selecting hyperparameters in the unsupervised setting.
With DA-Bench, we propose a framework to evaluate DA methods on diverse
modalities, beyond computer vision task that have been largely explored in the
literature. We present a complete and fair evaluation of existing shallow algorithms,
including reweighting, mapping, and subspace alignment. Realistic hyperparameter
selection is performed with nested cross-validation and various unsupervised model
selection scores, on both simulated datasets with controlled shifts and real-world
datasets across diverse modalities, such as images, text, biomedical, and tabular
data. Our benchmark highlights the importance of realistic validation and provides
practical guidance for real-life applications, with key insights into the choice and
impact of model selection approaches. DA-Bench is open-source, reproducible,
and can be easily extended with novel DA methods, datasets, and model selection
criteria without requiring re-evaluating competitors.

1 INTRODUCTION

Given some training –or source– data, supervised learning consists in estimating a function that makes
good predictions on target data. However, performance often drops when the source distribution used
for training differs from the target distribution used for testing. This shift can be due, for instance,
to the collection process or non-stationarity in the data, and is ubiquitous in real-life settings. It has
been observed in various application fields, including tabular data (Gardner et al., 2023), clinical
data (Harutyunyan et al., 2019), or computer vision (Ganin et al., 2016b).

Domain adaptation. Unsupervised Domain Adaptation (DA) addresses this problem by adapting a
model trained on a labeled source dataset –or domain– so that it performs well on an unlabeled target
domain, assuming some distribution shifts between the two (Ben-David et al., 2006; Quinonero-
Candela et al., 2008; Redko et al., 2022). As illustrated in Figure 1, source and target distributions
can exhibit various types of shifts (Moreno-Torres et al., 2012): changes in feature distributions
(covariate shift), class proportions (target shift), conditional distributions (conditional shift), or in
distributions in particular subspaces (subspace shift). Depending on the type of shift, existing DA
methods attempt to align the source distribution closer to the target using reweighting (Sugiyama
& Müller, 2005; Shimodaira, 2000), mapping (Sun et al., 2017; Courty et al., 2017b), or dimension
reduction (Pan et al., 2011; Fernando et al., 2013) methods. More recently, it has been proposed to
mitigate shifts in a feature space learned by deep learning (Ganin et al., 2016b; Sun & Saenko, 2016;
Long et al., 2015a; Damodaran et al., 2018b), primarily focusing on computer vision applications.
Regardless of the core algorithm used to address the domain shift, hyperparameters must be tuned
for optimal performance. Indeed, a critical challenge in applying DA methods to real-world cases is
selecting the appropriate method and tuning its hyperparameters, especially given the unknown shift
type and the absence of labels in the target domain.
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Figure 1: Illustration of the different data shifts and assumptions studied in the DA literature and
used in the simulated datasets used in the numerical experiments. The colors indicate the classes,
with solid colors representing target and transparent colors representing source in the target data plot.

Model selection in DA settings. Without distribution shifts, classical model selection strategies
–including hyperparameter optimization– rely on evaluating the generalization error with an indepen-
dent labeled validation set. However, in DA, validating the hyperparameters in a supervised manner
on the target domains is impossible due to the lack of labels. While it is possible to validate the
hyperparameters on the source domain, it generally leads to a suboptimal model selection because of
the distribution shift. In the literature, this problem is often raised but not always addressed. Some
papers choose not to validate the parameters (Pan et al., 2011), while others validate on the source
domain (Sun et al., 2017) or propose custom cross-validation methods (Sugiyama et al., 2007b). Few
papers focus specifically on DA model selection criteria, which we will call scorers in this paper.
These scorers are used to select the methods’ hyperparameters, and mainly consists of reweighting
methods on source (Sugiyama et al., 2007a; You et al., 2019), prediction entropy (Morerio et al.,
2017; Saito et al., 2021) or circular validation (Bruzzone & Marconcini, 2010a). One of the goals of
our benchmark is to evaluate these approaches in diverse and realistic scenarios.

Benchmarks of DA. As machine learning continues to flourish, new methods constantly emerge,
making it essential to develop benchmarks that facilitate fair comparisons (Hutson, 2018; Pineau
et al., 2019; Mattson et al., 2020; Moreau et al., 2022). In DA and related fields, several benchmarks
have been proposed. Numerous papers focus on Out-of-distribution (OOD) datasets for different
modalities: computer vision, text, graphs (Koh et al., 2021; Sagawa et al., 2022), time-series (Gagnon-
Audet et al., 2023), AI-aided drug discovery (Ji et al., 2023) or tabular dataset (Gardner et al., 2023).
Due to the type of data considered, existing benchmarks are mainly focused on Deep DA methods
(Musgrave et al., 2021; Wang, 2018; Jiang et al., 2022; Fawaz et al., 2023), offering an incomplete
evaluation of DA literature. Moreover, only a few benchmarks propose a comparison of Deep
unsupervised DA methods with realistic parameters selection, on computer vision (Hu et al., 2023;
Musgrave et al., 2021) and time series (Fawaz et al., 2023) data. Those benchmarks have shown the
importance of validating with unsupervised scores and reveal that Deep DA methods achieve much
lower performance in realistic scenarios.

Contributions. In the following, we propose DA-Bench, an ambitious and fully reproducible
benchmark with the following features: 1. A set of 4 simulated and 8 real-life datasets with different
modalities (computer vision, NLP, tabular, biomedical) totaling 51 realistic shift scenarios, 2. A wide
range of 20 Shallow DA methods designed to handle different types of shifts, 3. An evaluation of 3
deep DA methods on 4 real-world datasets from the computer vision and biomedical modalities, 4. A
realistic model selection procedure using 5 different unsupervised scorers with nested cross-validation
for hyperparameter selection, 5. An open-source implementation and publicly available datasets, easy
to extend for new DA methods and datasets without the need to re-run the whole experiment.
In addition, we provide a detailed analysis of the results and derive guidelines for practitioners to
select the best methods depending on the type of shifts, and the best scorer to perform unsupervised
model selection. In particular, the effects of model selection and the scorer’s choice on the final
performances are highlighted, showing a clear gap between the unsupervised realistic scorers versus
using target labels for supervised validation.

2 DOMAIN ADAPTATION AND MODEL SELECTION WITHOUT TARGET LABELS

In this section, we first discuss the specificities of the unsupervised domain adaptation problem and
introduce several types of data shifts and their corresponding DA methods. Next, we discuss the
different validation strategies used in the literature and the need for realistic scorers to compare DA
methods.
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2.1 DATA SHIFTS AND DA STRATEGIES

Domain Adaptation problem and theory. The theoretical framework of DA is well established
(Ben-David et al., 2006; Quinonero-Candela et al., 2008; Redko et al., 2022). The main results
highlight that the performance discrepancy of an estimator between the source and target domains is
linked to the divergence between both distributions. This has motivated the majority of DA methods
to search for a universal (or domain invariant) predictor by minimizing the divergence between the
two domains through the adaptation of the distributions. This is done in practice by modeling and
estimating the shift between the source and target distributions and then compensating for this shift
before training a predictor.

Data Shifts and DA methods. A wide variety of shifts between the source and target dis-
tributions are possible. They are usually expressed as a relation between the joint distribu-
tions P s(x, y) = P s(x|y)P s

Y(y) = P s(y|x)P s
X (x) in the source domain and P t(x, y) =

P t(x|y)P t
Y(y) = P t(y|x)P t

X (x) in the target domain. We now discuss the main types of shifts and
the strategies proposed in the literature to mitigate them. Figure 1 illustrates these shifts.
In Covariate shift the conditionals probabilities are equal (i.e., P s(y|x) = P t(y|x)), but the feature
marginals change (i.e., P s

X (x) ̸= P t
X (x)). Target shift is similar, but the label marginals change

P s
Y(y) ̸= P t

Y(y) while the conditionals are preserved. For classification problems, it corresponds
to a change in the proportion of the classes between the two domains. Both of those shifts can be
compensated by reweighting methods that assign different weights to the samples of the source
domain to make it closer to the target domain (Sugiyama & Müller, 2005; Shimodaira, 2000).
In Conditional shift, conditional probabilities differ between domain (i.e., P s(x|y) ̸= P t(x|y) or
P s(y|x) ̸= P t(y|x)). This shift is typically harder to compensate for, necessitating explicit modeling
to address it effectively. For instance, several approaches model the shift as a mapping m between the
source and target domain such that P s(y|m(x)) = P t(y|x) (Sun et al., 2017; Courty et al., 2017b).
The estimated mapping is then applied to the source data before training a predictor.
Subspace shift assumes that while probabilities are different between the domains (P s

X (x) ̸= P t
X (x)

and P s(x|y) ̸= P t(x|y)), there exists a subspace Z and a function ϕ : X → Z such that
P s
Z(ϕ(x)) = P t

Z(ϕ(x)) and P s(y|ϕ(x)) = P t(y|ϕ(x)). Note that this means the shift occurs
in the orthogonal complement of Z . This implies that a classifier trained on Z will perform well
across both domains. Subspace methods are specifically designed towards identifying the subspace
Z and the function ϕ, as developed in Pan et al. (2011); Fernando et al. (2013). Note that, as discussed
in the introduction, a natural extension of this idea is to learn an invariant feature space using Deep
learning (Ganin et al., 2016b; Sun & Saenko, 2016).

2.2 DA MODEL SELECTION STRATEGIES

As seen above, DA methods are typically designed to correct a specific type of shift. However, in
real-world scenarios, the nature of the shift is often unknown. This presents a challenge in selecting
the appropriate method and tuning its parameters when facing a new problem. In this section, we
discuss the validation strategies proposed in the literature to compare DA methods, focusing on
realistic scorers that do not use target labels.

Realistic DA scorers. In the literature, few papers propose realistic DA scorers to validate the
parameters of the methods, i.e., unsupervised scorers that do not require target labels. The
Importance Weighted (IW) scorer (Sugiyama et al., 2007a) computes the score as a reweighted
accuracy on labeled sources data. The Deep Embedded Validation (DEV) (You et al., 2019) can be
seen as an IW in the latent space with a variance reduction strategy. DEV was originally proposed
for Deep learning models but can be used on shallow DA methods that compute features from the
data (mapping/subspaces). The Prediction Entropy (PE) scorer (Morerio et al., 2017) measures
the uncertainty associated with model predictions on the target data. Soft Neighborhood Density
(SND) (Saito et al., 2021) also computes an entropy but on a normalized pairwise similarity matrix
between probabilistic predictions on target. The Circular Validation (CircV) scorer (Bruzzone &
Marconcini, 2010a) performs DA by first adapting the model from the source to the target domain and
predicting the target labels. Next, it adapts back from the target to the source using these estimated
labels. Performance is measured as the accuracy between the recovered and true source labels.

The MixVal scorer (Hu et al., 2023) also performs domain adaptation by first adapting the model
from the source to the target domain and predicting the target labels. Then, it generates mixed target
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Label available Label not available

Target validation setSource train set Source validation set Target train set
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Hyperparameters selection
Nested loop
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Figure 2: Visualization of nested cross-validation strategy. Both source and target data are split
into an outer loop and then a nested loop. The nested loop tunes hyperparameters for the domain
adaptation method, while the outer loop trains a final classifier with the best hyperparameters and
evaluates its accuracy on both source and target data. Note: Target sets have no labels during the
nested loop, reflecting unsupervised Domain Adaptation.

samples by probing intra-cluster samples to assess neighborhood density and inter-cluster samples to
examine classification boundaries. The score is the accuracy between the generated targets labels and
their predictions to evaluate the consistency.

DA validation in the literature. The model selection problem in DA has been widely discussed in
the literature. Yet, this literature constitutes a subfield of DA and has seldom been used to validate
new DA methods. Indeed, there is no consensus on the best validation strategy and many papers do
not properly validate their methods, leading to over-estimated performances. Some authors do not
discuss the validation procedure (Sugiyama & Müller, 2005; Shimodaira, 2000) or consider fixed
hyperparameters (Huang et al., 2006). While some methods rely on custom validation techniques
(Sugiyama et al., 2007b), others use cross-validation, either on the source or the target (Sun et al., 2017;
Courty et al., 2017b), or alternatively other validation strategies proposed in the literature (Courty
et al., 2017a; Bruzzone & Marconcini, 2010a). A complete picture of the model selection procedures
used to validate the methods considered in DA-Bench in their original papers is presented in Table 4
in Appendix A. The goal of DA-Bench is therefore to constitute a dedicated benchmark to compare
scorers from the literature and report performances that can be expected in real use cases for the
considered methods.

3 A REALISTIC BENCHMARK FOR DA

In this section, we present our benchmark framework. First, we introduce the parameter validation
strategies. Then, we present the compared DA methods followed by a description of the datasets used
in the benchmark.

3.1 NESTED CROSS-VALIDATION LOOP AND IMPLEMENTATION

We discuss below the nested cross-validation and the implementation details of the benchmark.

Hyperparameter validation loop. We propose a nested loop cross-validation procedure, depicted in
Figure 2. First, the source and target data are split into multiple outer test and train sets (outer loop in
Figure 2). The test sets are kept to compute the final accuracy for both the source and target domains.
For each split in the outer loop, we use a nested loop to select the DA methods’ parameters. Here,
the training sets are further divided into nested train and validation sets (nested loop in Figure 2).
Note that no labels are available for the target nested train and validation sets in this loop. The target
training set is used to train the DA method, while the target validation set allows to compute the
unsupervised score and select the best model.
For both loops, the data is split randomly 5 times using stratified sampling with an 80%/20% train/test
split, except for Deep DA methods, where only one split is computed for the outer loop due to
computation time. For one given method, we evaluate all the unsupervised scorers discussed earlier,
as well as a supervised scorer that uses target labels, over all the nested splits. After averaging, the
scores over the splits, the best hyperparameters are selected according to each scorer and then used to
train a final classifier on the outer training sets. Although the supervised scorer cannot be used in
practice, it is included in our results to actually evaluate the performance drop due to the absence of
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target labels. To limit complexity and perform a fair comparison of the methods, we set a timeout of
4 hours for performing the nested loop. Additionally, we chose not to use the CircV scorer for Deep
DA methods, as training neural networks twice is computationally expensive.

Base estimators and neural networks. Existing shallow domain adaptation methods typically rely
on either a base estimator trained on the adapted data or an iterative estimation process to adapt this
estimator to the target data. The choice of the base estimator is crucial, as it significantly impacts the
final performance. Before validating the hyperparameters of the DA methods, we determined the best
estimator for each dataset using a grid-search on the source data. We tested multiple hyperparameters
for Logistic Regression, SVM with RBF kernel, and XGBoost (Chen & Guestrin, 2016), selecting
the ones that maximize the average accuracy on the source test sets. Note that for some methods that
specifically require an SVM estimator (i.e., JDOT and DASVM), we only validate SVM as the base
estimator. We validated the base estimator separately from the DA methods parameters to reduce
computational complexity and avoid too complex hyperparameter grids that can compromise the
reliability of DA scorers. For Deep DA methods, we similarly select an appropriate architecture and
experimental setup for training on the source data for each dataset: a two-layer convolutional neural
network for MNIST/USPS, a ResNet50 (He et al., 2016) pretrained on ImageNet (Deng et al., 2009)
for Office31 and Office Home, and a ShallowFBCSPNet (Schirrmeister et al., 2017) for BCI.
These architectures are widely used and well-supported in the literature of computer vision (Musgrave
et al., 2021) and BCI (Schirrmeister et al., 2017). During the nested loop, only the DA parameters for
each method are validated.

Best scorer selection and statistical test. For all methods, we select the best validation scorer as the
one that maximizes the averaged accuracy on the target domains for all real datasets. This provides a
reasonable and actionable choice of scorer for each DA method for practitioners. For all methods and
datasets, we perform a paired Wilcoxon signed-rank test at the 0.05 level to detect significant gain or
drop in performance with respect to the no DA approach, denoted by “Train Src” in the following.
The test is done using the accuracy measures of the DA method with the selected scorer and the Train
Src for all shifts and outer splits, ensuring between 10 and 60 values depending on the dataset. Note
that these statistical tests are not performed on Deep DA methods, as the number of splits is too
limited for meaningful testing.

Python implementation. The benchmark code will be made available on GitHub upon publication
of the paper.1 Our benchmark is implemented following the benchopt framework (Moreau et al.,
2022), which provides standardized ways of organizing and running benchmarks for ML in Python.
This framework facilitates reproducing the benchmark’s results, with tools to install the dependencies,
run the methods in parallel, or cache the results to prevent redundant computations. It also makes it
easy to extend the benchmark with additional datasets and methods, enabling it to evolve to account
for the advances in the field. In the supplementary materials, we provide examples demonstrating how
to add DA methods or datasets to the benchmark. Using this framework, we aim to make DA-Bench
a reference benchmark to evaluate new DA methods in realistic scenarios with valid performance
estimations.

3.2 COMPARED DA METHODS

In this section, we present the different families of domain adaptation methods that we compare in our
benchmark. The shallow methods are grouped into four categories: reweighting methods, mapping
methods, subspace methods, and others. For Deep DA methods, we consider three domain invariant
feature methods. We provide a brief description of each method and the corresponding references.

Reweighting methods. These methods aim to reweight the source data to make it closer to the
target data. The weights are estimated using different methods such as kernel density estimation
(Dens. RW) (Sugiyama & Müller, 2005), Gaussian estimation (Gauss. RW) (Shimodaira, 2000),
discriminative estimation (Discr. RW) (Shimodaira, 2000), or nearest-neighbors (NN RW) (Loog,
2012). Other reweighting estimate weights by minimizing a divergence between the source and
target distributions such as Kullback-Leibler Importance Estimation Procedure (KLIEP) (Sugiyama
et al., 2007b) or Kernel Mean Matching (KMM) (Huang et al., 2006). Finally, we also include the
MMDTarS method (Zhang et al., 2013) that uses a Maximum Mean Discrepancy (MMD) to estimate
the weights under the target shift hypothesis.

1Our code is available in supplementary materials.
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Mapping methods. These methods aim to find a mapping between the source and target data that
minimizes the distribution shift. The Correlation Alignment method (CORAL) (Sun et al., 2017)
aligns the second-order statistics of source and target distributions. The Maximum Mean Discrepancy
(MMD-LS) method (Zhang et al., 2013) minimizes the MMD to estimate an affine Location-Scale
mapping. Finally, the Optimal Transport (OT) mapping methods (Courty et al., 2017b) use the
optimal transport plan to align with a non-linear mapping of the source and target distributions with
exact OT (MapOT), entropic regularization (EntOT), or class-based regularization (ClassRegOT).
Finally, the Linear OT method (Flamary et al., 2020) uses a linear mapping to align the source and
target distributions, assuming Gaussian distributions.

Subspace methods. These methods aim to learn a subspace where the source and target data have
the same distribution. The Transfer Component Analysis (TCA) method (Pan et al., 2011) searches
for a kernel embedding that minimizes the MMD divergence between the domains while preserving
the variance. The Subspace Alignment (SA) method (Fernando et al., 2013) aims to learn a subspace
where the source and target have their covariance matrices aligned. The Transfer Subspace Learning
(TSL) method (Si et al., 2010) aims to learn a subspace using classical supervised loss functions on
the source (e.g., PCA, Fisher LDA) but regularized so that the source and target data have the same
distribution once projected on the subspace. Finally, the Joint Principal Component Analysis (JPCA)
method is a simple baseline that concatenates source and target data before applying a PCA.

Others. We also include other methods that do not fit into the previous categories. The Domain
Adaptation SVM (DASVM) method (Bruzzone & Marconcini, 2010a) is a self-labeling method that
iteratively updates SVM estimators by adding new target samples with predicted labels and removing
source samples. The Joint Distribution Optimal Transport (JDOT) method (Courty et al., 2017a) aims
to learn a target predictor that minimizes an OT loss between the joint source and target distributions.
The Optimal Transport Label Propagation (OTLabelProp) method (Solomon et al., 2014) uses the
optimal transport plan to propagate labels from the source to the target domain.

Deep DA methods. These methods aim to reduce the divergence between the source and target data
distributions within the learned feature space while simultaneously learning a classifier on source data.
The training loss consists in a traditional supervised loss on labeled source data and a second term
measuring the discrepancy between the source and target distributions. The methods implemented in
the Deep DA Benchmark use different discrepancies, such as covariance distance (Sun & Saenko,
2016) for DeepCORAL, adversarial loss (Ganin et al., 2016a) for DANN and optimal transport
distance (Damodaran et al., 2018a) for DeepJDOT. Note that these approaches are not part of the
main shallow DA benchmark but have been added to provide an interesting comparison of DA
performances between shallow and Deep methods on computer vision and biomedical data.

3.3 COMPARED DATASETS

In this section, we present the datasets used in our experiments. We first introduce the synthetic
datasets that implement different known shifts. Then, we describe the real-world datasets from
various modalities and tasks such as Computer Vision (CV), Natural language Processing (NLP),
tabular data, and biosignals.

Simulated datasets. The objective of the simulated datasets is to evaluate the performance of the DA
methods under different types of shifts. Knowing that multiple DA methods have been built to handle
specific shifts, evaluating them with this dataset will demonstrate whether they perform as expected
and if they are properly validated.
The four simulated shifts in 2D, covariate (Cov. shift), target (Tar. shift) conditional (Cond. shift)
and Subspace (Sub. shift) shift are illustrated in Figure 1. The source domain is represented by
two non-linearly separable classes generated from one large and several smaller Gaussian blobs.
In the experiments, the level of noise has been adjusted from Figure 1 to make the problem more
difficult. For the subspace shift scenario, the source domain consists of one class represented by a
large Gaussian blob and another class comprising Gaussian blobs positioned along the sides of the
large one. The target domain is flipped along the diagonal, making the task challenging in the original
space but feasible upon diagonal projection.

Real-word datasets. The real-world datasets used in our benchmark are summarized in Table 1. We
select 8 datasets from different modalities and tasks: Computer Vision (CV) with Office31 (Ko-
niusz et al., 2017), Office Home (Venkateswara et al., 2017), and MNIST/USPS (Liao &
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Table 1: Characteristics of the real-world datasets used in DA-Bench.

Dataset Modality Preprocessing # adapt # classes # samples # features
Office 31
(Koniusz et al., 2017) CV Decaff + PCA

(Donahue et al., 2014) 6 31 470 ± 350 100

Office Home
(Venkateswara et al., 2017) CV ResNet + PCA

(He et al., 2016) 12 65 3897 ± 850 100

MNIST/USPS
(Liao & Carneiro, 2015) CV Vect + PCA 2 10 3000 / 10000 50

20 Newsgroup
(Lang, 1995) NLP

LLM + PCA
(Reimers & Gurevych (2019),

Xiao et al. (2023a))
6 2 3728 ± 174 50

Amazon Review
(McAuley & Leskovec (2013),
McAuley et al. (2015))

NLP
LLM + PCA

(Reimers & Gurevych (2019),
Xiao et al. (2023a))

12 4 2000 50

Mushrooms
(Dai et al., 2007) Tabular One Hot Encoding 2 2 4062 ± 546 117

Phishing
(Mohammad et al., 2012) Tabular NA 2 2 5527 ± 1734 30

BCI
(Tangermann et al., 2012) Biosignals Cov+TS

(Barachant et al., 2012) 9 4 288 253

Carneiro, 2015), Natural Language Processing (NLP) with 20Newsgroup (Lang, 1995) and
Amazon Review (McAuley et al., 2015), Tabular Data with Mushrooms (Dai et al., 2007) and
Phishing (Mohammad et al., 2012), and Biosignals with BCI Competition IV (Tangermann
et al., 2012). The datasets are chosen to represent a wide range of shifts and to evaluate the perfor-
mance of the methods on different types of data.
Before using shallow DA methods, the datasets are preprocessed with feature extraction to ensure
reasonable performance when trained on each domain. For example, images are embedded using
Deep pre-trained models followed by a PCA (except MNIST/USPS where only PCA is used), and
textual data is embedded using Large Language Models (LLM) (Reimers & Gurevych, 2019; Xiao
et al., 2023a) before applying a PCA. The tabular data are one-hot encoded to transform categorical
data into numerical data. The biosignals from Brain-Computer Interface (BCI) data are embedded
using the state-of-the-art tangent space representation proposed in Barachant et al. (2012). For Deep
DA methods, only 4 datasets are used: Office31, Office Home, MNIST/USPS and BCI. Since
these methods focus on learning feature representations, the data are used in their raw form. The
datasets are split into pairs of source and target domains totaling 51 adaptation tasks in the benchmark.
More details about the datasets and pre-processing are available in Appendix B.

4 BENCHMARK RESULTS

We now present the results of the benchmark. Training and evaluation across all shallow experiments
required 1,215 CPU-hours on a standard Slurm (Yoo et al., 2003) cluster, while the Deep DA
experiments required 244 GPU-hours. We first discuss and compare the performances of the methods
on the different datasets. Then, a detailed study of the unsupervised scorers is provided.

4.1 PERFORMANCE OF THE DA METHODS

Results table. First, we report the realistic performances of the different methods when using
their selected scorer on the different datasets in Table 2. The cells showcasing a significant change
in performance with the Wilcoxon test are highlighted with colors. Blue indicates an increase in
performance, while red indicates a loss. The intensity of the color corresponds to the magnitude of the
gain or loss - the darker the shade, the larger the positive or negative change. Cells with a NA values
indicate that the method was not applicable to the dataset (DASVM is limited to binary classification)
or that the method has reached a timeout. We also report the best scorer and the average rank of
the methods for all real datasets. In addition to Table 2 providing realistic performance estimations
with the best realistic scorer, we also report in Table 20 (Appendix D) the results when using the
non-realistic supervised scorer.

Simulated data with known shifts. DA methods tend to show a significant gain on the shift they
were designed for. It is especially true for mapping methods which greatly outperforms the Train
Src approach under conditional shift (Cond. shift), almost reaching the Train Tgt performance for
EntOT and ClassRegOT. The results also highlight that the mapping methods struggle with target
shift (Tar. shift), which is a well-known limitation of this kind of approach (Redko et al., 2019). On
the contrary, reweighting methods provide robust performance on target shift. Regarding covaratiate
shift (Cov. shift), the improvement with reweighting methods is very limited although reweighting is
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Table 2: Accuracy score for all datasets compared for all the shallow methods for simulated and
real-life datasets. The color indicates the amount of the improvement. A white color means the
method is not statistically different from Train Src (Train on source). Blue indicates that the score
improved with the DA methods, while red indicates a decrease. The darker the color, the more
significant the change.
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Train Src 0.88 0.85 0.66 0.19 0.65 0.56 0.54 0.59 0.7 0.72 0.91 0.55 10.66
Train Tgt 0.92 0.93 0.82 0.98 0.89 0.8 0.96 1.0 0.73 1.0 0.97 0.64 1.55

R
ew

ei
gh

tin
g

Dens. RW 0.88 0.86 0.66 0.18 0.62 0.56 0.54 0.58 0.7 0.71 0.91 0.55 IW 12.20
Disc. RW 0.85 0.83 0.71 0.18 0.63 0.54 0.5 0.6 0.68 0.75 0.91 0.56 CircV 8.75
Gauss. RW 0.89 0.86 0.65 0.21 0.22 0.44 0.11 0.54 0.55 0.51 0.46 0.25 CircV 16.45
KLIEP 0.88 0.86 0.66 0.19 0.65 0.56 0.54 0.6 0.69 0.72 0.91 0.55 CircV 10.56
KMM 0.89 0.85 0.64 0.16 0.64 0.54 0.52 0.7 0.57 0.74 0.91 0.52 CircV 11.74
NN RW 0.89 0.86 0.67 0.15 0.65 0.55 0.54 0.59 0.66 0.71 0.91 0.54 CircV 9.15
MMDTarS 0.88 0.86 0.64 0.2 0.6 0.56 0.54 0.59 0.7 0.74 0.91 0.55 IW 10.81

M
ap

pi
ng

CORAL 0.74 0.7 0.76 0.18 0.65 0.57 0.62 0.73 0.7 0.72 0.92 0.62 CircV 5.08
MapOT 0.72 0.57 0.82 0.02 0.6 0.51 0.61 0.76 0.68 0.63 0.84 0.47 PE 10.21
EntOT 0.71 0.6 0.82 0.12 0.64 0.58 0.6 0.83 0.62 0.75 0.86 0.54 CircV 9.40
ClassRegOT 0.74 0.58 0.81 0.11 NA 0.53 0.62 0.97 0.68 0.82 0.89 0.52 IW 8.25
LinOT 0.73 0.73 0.76 0.18 0.66 0.57 0.64 0.82 0.7 0.76 0.91 0.61 CircV 4.06
MMD-LS 0.78 0.72 0.76 0.56 0.65 0.56 0.55 0.97 0.63 0.85 NA 0.5 MixVal 8.22

Su
bs

pa
ce JPCA 0.88 0.85 0.66 0.15 0.62 0.48 0.51 0.77 0.69 0.78 0.9 0.54 PE 8.98

SA 0.74 0.68 0.8 0.11 0.65 0.57 0.56 0.88 0.67 0.78 0.89 0.53 CircV 7.80
TCA 0.52 0.47 0.51 0.62 0.04 0.02 0.07 0.61 0.61 0.49 0.48 0.26 DEV 17.58
TSL 0.88 0.85 0.66 0.2 0.63 0.48 0.45 0.63 0.69 0.45 0.89 0.26 IW 15.09

O
th

er JDOT 0.72 0.58 0.82 0.13 0.6 0.42 0.59 0.79 0.67 0.65 0.79 0.47 IW 11.42
OTLabelProp 0.72 0.59 0.8 0.07 0.66 0.56 0.62 0.86 0.67 0.64 0.86 0.5 CircV 10.01
DASVM 0.89 0.86 0.65 0.15 NA NA NA 0.87 NA 0.83 0.85 NA MixVal 7.29

specifically designed for this kind of shift. We believe that using a complex base estimator (here an
SVM with an RBF kernel) enables us to train an estimator that works well on both source and target,
reducing the impact of importance weighting as previously highlighted in (Byrd & Lipton, 2019)
for deep neural networks. The results reported in Table 17 of Appendix D reveal that reweighting
methods significantly outperform Train Src when using a linear base classifier.

Real data with unknown shift. The performance of reweighting methods is often close to Train Src
baseline on real datasets. This result can be be due to the violations of the same-support assumption,
which is crucial for reweighting to work effectively (Segovia-Martín et al., 2023) which is likely true
for the three CV datasets. In this case, hyperparameter tuning frequently select configurations leading
to near-uniform weighting, which explain the close performance to Train Src.
The performance of mapping methods is dataset-dependent, potentially due to the number of classes
and presence of target shift. Mapping methods excel on MNIST/USPS and 20NewsGroup which
respectively contain 10 and 2 classes, but failing on Office31 and OfficeHome with 31 and 60 classes.
Additionally, while mapping performs well on the NLP dataset 20NewsGroup, it results in negative
transfer on Amazon Reviews which has target shifts.
It is notable that simple transformations are the best in average across all modalities. Indeed most
methods that significantly outperform Train Src in ranking average across all modalities are LinOT,
CORAL, JPCA, and SA, which all rely on linear transformations such as scaling, linear projection or
rotations. These methods are robust across datasets and modalities, offering effective alignment with
minimal risk of negative DA.

Take-away for DA users. Reweighting methods are best suited for scenarios where the same-support
assumption holds and perform particularly well when paired with regularized hypotheses like linear
models. Even when assumptions are not fully satisfied, reweighting tends to be robust to negative
transfer. Mapping methods are highly effective under moderate numbers of classes and in the absence
of target shift but carry a significant risk of negative transfer if target shift is present. When the type
of distribution shift is uncertain, simpler transformation-based methods like LinOT, CoRAL, JPCA,
and SA provide modest performance improvements while minimizing risks of negative DA, making
them reliable and safe default options.
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Figure 3: Cross-val score as a function of the accuracy for different supervised and unsupervised
scorers. The Pearson correlation coefficient is reported for each scorer by ρ. Each point represents an
inner split with a DA method (color of the points) and a dataset. A good score should correlate with
the target accuracy.

Selected scorer per DA method. We observe that the best scorer differs across methods, Circular
Validation has been selected 10 out of 20 times as the best scorer, followed by Importance Weighting
4 out of 20 times. Table 20 in the supplementary material provides the non-realistic accuracy results
with the supervised scorer. It is worth noting that the supervised scorer generally outperforms the
unsupervised ones, and several methods significantly outperform Train Src in each dataset. It is
crucial to choose the model realistically to avoid producing overly optimistic results, as many data
analysis papers have done (see Table 4).

These results show the methods’ sensitivity to parameter selections and the difficulty of using realistic
scorers. This might also explain why DA methods are not widely used in practice: they are very
difficult to tune and might decrease performances compared with no adaptation.

4.2 STUDY OF VALIDATION SCORERS

We now investigate the performance of the various scorers to select hyperparameters of the DA
method. First, we consider the relationship between the cross-val score and the accuracy for each
inner split. In Figure 3, we plot for each scorer the cross-val score as a function of the accuracy
computed on the test set and report the Pearson correlation coefficient ρ. As expected, the supervised
scorer is highly correlated with the accuracy (ρ = 0.98), as it has access to the target labels. We
observe that SND, DEV, and PE do not provide a good proxy to select hyperparameters that give the
best-performing models (ρ ≤ 0.06). On the contrary, MixVal, IW and CircV are correlated with the
accuracy, ρ = 0.34, ρ = 0.56 and ρ = 0.71 respectively. This is coherent with their selection as the
best scorer in most scenarios in Table 2. Still, while those scorers are well correlated with the target
accuracy, it is important to note that they have a large variance. For instance, a score close to 1 in IW
or CircV corresponds to an accuracy between 0.5 and 1.0.
Furthermore, we provide in Figures 8 and 9, from Appendix D, several visualizations that illustrate the
relationship between the accuracy achieved when using a supervised scorer and the accuracy obtained
when using different unsupervised scorers. We also visualize in Figure 7 the drop in performance
when using the best-unsupervised scorer instead of the supervised scorer. Interestingly some methods
such as KMM, EntOT, and ClassRegOT can lose up to 10% accuracy when using realistic scorers,
which might come from their higher number of parameters or their sensitivity to them.

Our results thus show that most scorers have poor results when evaluated on many datasets. Of the
five methods under consideration, only two achieve satisfactory performance, although incurring large
variance in their results. This shows that proper hyperparameter selection is still an open question,
that needs attention from the research comunity to guide practitioners toward real life applications of
unsupervised DA technics.
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4.3 DEEP DA METHODS Table 3: Accuracy scores for Deep methods on selected real-life
datasets using DA scorers. LinOT is reported as the overall top-
performing shallow method. Green indicates that the score improved
with the DA methods. The darker the color, the more significant the
change.

M
NIS

T/U
SPS

Offi
ce

31

Offi
ce

Hom
e

BCI
Sele

cte
d Sco

rer

Ran
k

Train Src 0.85 0.77 0.58 0.54 6.19
Train Tgt 0.98 0.96 0.83 0.56 2.07
DeepCORAL (Sun & Saenko, 2016) 0.93 0.77 0.59 0.54 MixVal 3.29
DAN (Long et al., 2015b) 0.86 0.75 0.56 0.53 IW 4.76
DANN (Ganin et al., 2016a) 0.9 0.79 0.59 0.41 MixVal 4.98
DeepJDOT (Damodaran et al., 2018b) 0.9 0.82 0.62 0.54 PE 2.92
MCC (Jin et al., 2020) 0.93 0.83 0.66 0.53 MixVal 2.38
MDD (Zhang et al., 2019) 0.87 0.78 0.56 0.4 MixVal 4.96
SPA (Xiao et al., 2023b) 0.91 0.78 0.56 0.41 DEV 5.39
LinOT (Flamary et al., 2020) 0.64 0.6 0.57 0.61 CircV

Although most of the recent
work on domain adaptation
focus on Deep methods for
computer vision tasks, shal-
low methods are competi-
tive in many applications
such as tabular data (Grinsz-
tajn et al., 2022) or datasets
with a relatively small num-
ber of training examples
such as BCI (Chevallier
et al., 2024). Moreover,
shallow methods can also
benefit from recent ad-
vances in Deep learning by
using Deep pre-trained fea-
ture extraction (transfer learning). However, to the best of our knowledge, the literature lacks
quantitative comparison between shallow methods applied on Deep pre-trained feature extraction and
Deep DA methods. To this end, we ran a benchmark using the same pipeline as in Table 2 with three
Domain Invariant Deep DA methods on the CV and BCI datasets.

The results are available in Table 3 with a comparison to the best performing shallow method from
Table 2. One of the most notable and expected difference is on MNIST/USPS. Shallow methods
struggle to achieve good performances, even on Train Tgt, as they rely on PCA for feature extraction.
Deep methods, on the other hand, use CNNs, leading to large accuracy gains on train on Src and
Tgt but also on Deep DA methods. However, it is important to note that while DeepJDOT, DANN
and MCC improve performance on all datasets, they remain far from the train on Tgt accuracies,
partly due to the difficulty in tuning their parameters (see Appendix D.3 with the supervised scorer).
The superior performance of Deep DA methods on CV datasets can be attributed to the relationship
between classification in the DA subspace and the disentanglement of semantic (discriminant) content
from style (domain shift) (Gonzalez-Garcia et al., 2018; Gabbay et al., 2021). Numerous studies
have demonstrated that semantic embeddings can be effectively recovered, supporting the assumption
that a (nonlinear) subspace shift is reasonable for CV tasks. However, for the BCI dataset, where
the amount of data is limited, the performances of Deep DA methods are inferior to some other
shallow methods (i.e., LinOT for example). Finally, a method like DANN, which is often considered
as a baseline in the community, has been shown to be hard to validate and requires setup that
can be difficult to determine across different settings. These results emphasize, that while Deep
invariant DA methods can be effective, they do not consistently yield good results across modalities,
whereas shallow DA methods can achieve similar or superior performances with less effort and fewer
computational resources in low data regimes.

5 CONCLUSION

In this work, we introduced DA-Bench, a extensive benchmark for unsupervised domain adaptation,
carefully evaluating the impact of the model selection criteria and covering diverse modalities:
computer vision, natural language processing, tabular data and biosignals. While being quite
comprehenvise on shallow methods, our results also provide a comparison of three common deep
DA baselines on computer vision and biosignals. Importantly DA-Bench can be easily extended
with new datasets and methods to push further the state-of-the-art. Our findings reveal that few
shallow DA methods consistently perform well across diverse datasets and that model selection
scorers significantly influence their effectiveness. While deep DA methods show similar trends,
they often require more extensive hyperparameter tuning and architectures tailored to each modality.
Notably, they tend to perform significantly better than shallow methods on some modalities, such
as computer vision, while facing challenges on others such as biosignals. For each DA method, we
provide the optimal model selection scorer for unsupervised hyperparameter tuning based on our
experiments.
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Appendix

Reproducibility. The entire code and results of DA-Bench will be open-sourced and available
online. The implementation of the DA methods and scorers is provided along with access to
the simulated and real-world datasets. All the performance tables and figures can be reproduced
effortlessly, and guidelines with minimal working examples are given to add new DA methods and
datasets.

Roadmap. In this appendix, we provide additional information regarding the validation procedure
used in the literature for each DA method implemented in DA-Bench in Section A. We provide a
detailed description of the data and preprocessing used in DA-Bench in Section B. In Section C,
we give minimal working Python examples to add a new DA method and dataset in DA-Bench.
Finally, we provide the detailed benchmark results in Section D. In particular, the results per dataset
can be found in Section D.1. We discuss in Section D.2 the impact of the choice of base estimator
on the performance of DA methods for the simulated datasets. The results of each DA method
with the supervised scorer on all the datasets are given in Table 20 of Section D.3, which parallels
Table 2. A thorough analysis of the effect of using realistic unsupervised scorers is also provided in
Section D.6. Finally, the computational efficiency of each DA method is studied in Section D.7 and
the hyperparameters used for grid search are given in Section D.8. We display the corresponding
table of contents below.
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A MODEL SELECTION IN DOMAIN ADAPTATION

Table 4: Validation procedure in Domain Adaptation methods. NA stands for not applicable and
means that there are no hyperparameters. None means that no validation procedure has been conducted
or that it is not specified in the original paper.

Method Validation Procedure Comment

R
ew

ei
gh

tin
g

Density Reweight
(Sugiyama & Müller, 2005) None Bandwidth fixed

by Silverman method
Discriminative Reweight

(Shimodaira, 2000) NA No hyperparameters

Gaussian Reweight
(Shimodaira, 2000) None Not specified in

(Shimodaira, 2000)

KLIEP
(Sugiyama et al., 2007b) Integrated CV

Likelihood CV
(Sugiyama et al., 2007b)

on target
KMM

(Huang et al., 2006) None Fixed data-dependent
hyperparameters

NN Reweight
(Loog, 2012) None Number of neighbors

fixed to one
MMDTarS

(Zhang et al., 2013) CV Not specified if
done on source or target

M
ap

pi
ng

Coral
(Sun et al., 2017) NA No hyperparameters

OT mapping
(Courty et al., 2017b) CV target/CircCV Unclear in the text

Lin. OT mapping
(Flamary et al., 2020) NA No hyperparameters

MMD-LS
(Zhang et al., 2013) CV Not specified if

done on source or target

Su
bs

p.

SA
(Fernando et al., 2013) 2-fold CV on source -

TCA
(Pan et al., 2011) Validation on target Target subset used

to tune parameters
TSL

(Si et al., 2010) None Not specified
in (Si et al., 2010)

O
th

er

JDOT
(Courty et al., 2017a)

Reverse CV
(Zhong et al., 2010) -

OT label prop
(Solomon et al., 2014) NA No hyperparameters

DASVM
(Bruzzone & Marconcini, 2010a)

Circular Validation
(Bruzzone & Marconcini, 2010a) -

In Table 4, we provide additional information on the validation procedures used in the original papers
that proposed the different domain adaptation methods implemented in DA-Bench. The first column
is the name of the method, the second column contains the procedure used to select hyperparameters
and the last column provides additional details. What is striking is that many methods do not conduct
or specify a validation procedure to select the hyperparameters, which limits the performance of
the proposed method on a novel dataset. Several others rely on cross-validation using target data.
However, since target labels are typically unavailable in practical scenarios, this validation approach
is unrealistic. Overall, many methods have been evaluated with unrealistic or not reproducible
validation procedures, making the performance of the proposed methods appear over-optimistic.
A key contribution of our work is the extensive comparison of realistic, unsupervised scorers for
selecting optimal hyperparameters and base estimators in DA methods.

B DATASETS DESCRIPTION AND PREPROCESSING

The simulated dataset proves that DA methods can work well under the proper shift (see Table 2).
However, in real-world applications, we do not have prior knowledge of the type of data shift. Hence,
finding the appropriate domain-adaptation method between reweighting, mapping, and subspace
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methods is a challenging task. In this section, we introduce 8 real-world datasets coming from
different fields. Table 1 summarizes the 8 classification datasets used in this benchmark with the
corresponding data modality, preprocessing, number of source-target pairs (# adapt), number of
classes, samples, and feature dimensions.

Computer Vision. First, three computer vision datasets are proposed: Office31 (Koniusz et al.,
2017), Office Home (Venkateswara et al., 2017), and MNIST/USPS (Liao & Carneiro, 2015). We
create embeddings for Office31 using the Decaff preprocessing method (Donahue et al., 2014) and for
Office Home using a pre-trained ResNet50 (He et al., 2016). These embeddings, as well as vectorized
MNIST/USPS, are dimensionally reduced with a Principal Component Analysis (PCA). These three
datasets encompass 3, 4, and 3 domains, respectively and all pairs of adaptations are used as DA
problems. MNIST/USPS contain clear and blurry images digits, Office31 differentiates between
images captured by various devices, while for OfficeHome, its by image style.

NLP. The second task is Natural Language Processing (NLP). Two datasets are studied: 20News-
group (Lang, 1995) and Amazon Review (McAuley et al., 2015). The 20Newsgroup dataset contains
20.000 documents categorized into 4 categories: talk, rec, comp, and sci. The learning task is to clas-
sify documents across categories. First, the documents are embedded using a Large Language Model
(LLM) (Reimers & Gurevych, 2019; Xiao et al., 2023a), and then PCA is applied for dimensionality
reduction.

For the Amazon Review dataset, the task is to classify comment ratings. This dataset spans four
domains (Books, DVDs, Kitchen, Electronics), and the domain shift results from these varying types
of objects. Similar to the 20Newsgroup dataset, comments are embedded using the same LLM and
then reduced in dimensionality using a PCA.

Tabular data. We propose two tabular datasets. The first one is the Mushroom dataset (Dai et al.,
2007), where the task is to classify whether a mushroom is poisonous or not. The two domains are
separated according to the mushroom’s stalk shape (enlarging vs. tapering). The tabular data are
one-hot-encoded to transform categorical data into numerical data. The second dataset is Phishing
(Mohammad et al., 2012). The classification problem involves determining whether a webpage is
a phishing or a legitimate one. The domains are separated according to the availability of the IP
address. Since the data are already numerical, no preprocessing is done on this dataset.

Biosignals. The last task is BCI Motor Imagery. The dataset used is BCI Competition IV (Tanger-
mann et al., 2012), often used in the literature (Barachant et al., 2012) and availaoble in MOABB
(Aristimunha et al., 2023). The task is to classify four kinds of motor imagery (right hand, left
hand, feet, and tongue) from EEG data. In this dataset, nine subjects are available. The domains are
separated based on session number. For each subject, session 1 is considered as the source domain
and session 2 is considered as the target domain. The data are multivariate signals. To embed the data,
we first compute the covariance and then project this covariance on the Tangent Space as proposed in
Barachant et al. (2012).

C ADDING NEW METHODS AND DATASETS TO DA-BENCH

Using the benchopt framework for this benchmark allows users to easily add novel domain
adaptation (DA) methods and datasets. To that end, users should adhere to the benchopt (Moreau
et al., 2022) conventions. We provide below the guidelines with examples in Python to add a new DA
method and a new dataset to DA-Bench.

C.1 ADDING A NEW DA METHOD

A new DA method can be easily added with the following:

• Create file with a class called Solver that inherits from DASolver and place it in the
solvers folder.

• This class should implement a get_estimator() function, which returns a class inher-
iting from sklearn.BaseEstimator and accepts sample_weight as fit parameter.
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In the benchmark we used the Domain Adaptation toolbox SKADA (Gnassounou et al.,
2024) that provides many DA estimatos with correct interface.

We provide below an example of Python implementation to add a new DA method to DA-Bench.

# Python snippet code to add a DA method
from benchmark_utils.base_solver import DASolver
from sklearn.base import BaseEstimator

class MyDAEstimator(BaseEstimator):
def __init__(self, param1=10, param2='auto'):

self.param1 = param1
self.param2 = param2

def fit(self, X, y, sample_weight=None):
# sample_weight<0 are source samples
# sample_weight>=0 are target samples
# y contains -1 for masked target samples
# Your code here : store stuff in self for later predict
return self

def predict(self, X):
# do prediction on target domain here
return ypred

def predict_proba(self, X):
# do probabilistic prediction on target domain here
return proba

class Solver(DASolver):
name = "My_DA_method"

# Param grid to validate
default_param_grid = {

'param1': [10, 100],
'param2': ['auto', 'manual']

}

def get_estimator(self):
return MyDAEstimator()

C.2 ADDING A NEW DATASET

A new DA dataset can be easily added with the following:

• Create a file with a class called Dataset that inherits from BaseDataset and place it
in the datasets folder.

• This class should implement a get_data() function, which returns a dictionary with keys
X, y, and sample_domain.

We provide below an example of Python implementation to add a new dataset to DA-Bench.
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# Python snippet code to add a dataset

from benchopt import BaseDataset
from sklearn.datasets import make_blobs
import numpy as np

class Dataset(BaseDataset):
name = "example_dataset"

def get_data(self):
X_source, y_source = make_blobs(
n_samples=100, centers=3,
n_features=2, random_state=0
)

X_target, y_target = make_blobs(
n_samples=100, centers=5,
n_features=2, random_state=42
)
# sample_domain is negative for target sampels and positive

for source
sample_domain = np.array([1]*len(X_source) + [-2]*len(

X_target))

return dict(
X=np.concatenate((X_source, X_target), axis=0)
y=np.concatenate((y_source, y_target))
sample_domain=sample_domain

)

By following these guidelines, users can seamlessly integrate their own datasets and DA methods
into DA-Bench. It results in a user-friendly benchmark that enables fast, reproducible, and reliable
comparisons of common and novel DA methods and datasets. We will provide users with precom-
puted result files and utilities, allowing them to run only the new methods or datasets. This will speed
up new comparisons and avoid unnecessary computations.

D BENCHMARK DETAILED RESULTS

D.1 RESULTS PER DATASETS

In Table 2 of the main paper, the reported performance for each method on a given dataset is an
average over the number of shifts, i.e., the number of source-target pairs denoted by #adapt in Table 1.
In this section, we provide additional details on the performance of methods for each shift in each
dataset. These results are presented in separate tables for each dataset

These detailed tables where cell in green denote a gain wrt Train Src (average outside of standard
deviation of Train Src) better illustrate the challenges of domain adaptation (DA) methods. They
show that not all shifts are equivalent within a given dataset. For example, Table 12 reveals that only 3
shifts in the AmazonReview dataset present a DA problem (defined as a > 3% difference in accuracy
between Train Src and Train Tgt). While for the other shifts, we achieve similar performance whether
we train on source or target data. Additionally, some specific shifts present a DA problem that no
method can successfully address. This can be seen in the dsl → amz shift in the Office31 dataset, as
shown in Table 7. Finally, some DA methods perform consistently across all shifts within a dataset,
as demonstrated by the results for the 20Newsgroup dataset in Table 11.
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Table 5: Accuracy score for MNIST/USPS dataset for each shift compared for all the methods. A
white color means the method does not increase the performance compared to Train Src (Train on the
source). Green indicates that the performance improved with the DA methods. The darker the color,
the more significant the change.

M
NIS

T→
USPS

USPS→
M

NIS
T

M
ea

n
Ran

k

Train Src 0.66 ± 0.02 0.43 ± 0.02 0.54 ± 0.02 12.00
Train Tgt 0.96 ± 0.0 0.96 ± 0.01 0.96 ± 0.01 1.00

R
ew

ei
gh

tin
g

Dens. RW 0.66 ± 0.02 0.42 ± 0.02 0.54 ± 0.02 13.25
Disc. RW 0.6 ± 0.02 0.4 ± 0.02 0.5 ± 0.02 19.00
Gauss. RW 0.11 ± 0.01 0.11 ± 0.01 0.11 ± 0.01 20.00
KLIEP 0.66 ± 0.02 0.43 ± 0.02 0.54 ± 0.02 13.25
KMM 0.64 ± 0.02 0.41 ± 0.03 0.52 ± 0.02 18.00
NN RW 0.66 ± 0.02 0.42 ± 0.02 0.54 ± 0.02 12.00
MMDTarS 0.66 ± 0.02 0.42 ± 0.02 0.54 ± 0.02 12.75

M
ap

pi
ng

CORAL 0.74 ± 0.01 0.51 ± 0.01 0.62 ± 0.01 5.50
MapOT 0.69 ± 0.02 0.54 ± 0.02 0.61 ± 0.02 4.00
EntOT 0.66 ± 0.02 0.54 ± 0.02 0.6 ± 0.02 5.00
ClassRegOT 0.66 ± 0.01 0.53 ± 0.06 0.59 ± 0.04 11.50
LinOT 0.74 ± 0.02 0.53 ± 0.02 0.64 ± 0.02 3.25
MMD-LS 0.66 ± 0.02 0.47 ± 0.02 0.56 ± 0.02 8.25

Su
bs

pa
ce JPCA 0.66 ± 0.02 0.43 ± 0.02 0.54 ± 0.02 12.00

SA 0.71 ± 0.03 0.36 ± 0.11 0.54 ± 0.07 12.00
TCA 0.08 ± 0.07 0.11 ± 0.02 0.09 ± 0.05 21.00
TSL 0.66 ± 0.02 0.43 ± 0.02 0.54 ± 0.02 10.50

O
th

er JDOT 0.73 ± 0.02 0.53 ± 0.02 0.63 ± 0.02 3.50
OTLabelProp 0.71 ± 0.03 0.53 ± 0.02 0.62 ± 0.02 6.50

Table 6: Accuracy score for MNIST/USPS dataset for each shift compared for all the Deep DA
methods. A white color means the method does not increase the performance compared to Train Src
(Train on the source). Green indicates that the performance improved with the DA methods. The
darker the color, the more significant the change.

M
NIS

T→
USPS

USPS→
M

NIS
T

M
ea

n
Ran

k

Train Src 0.94 0.76 0.85 5.0
Train Tgt 0.99 0.99 0.99 1.0
DANN 0.94 0.88 0.91 4.0
DeepCORAL 0.97 0.89 0.93 2.5
DeepJDOT 0.96 0.9 0.93 2.5
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Table 8: Accuracy score for Office31 dataset for each shift compared for all the deep DA methods. A
white color means the method does not increase the performance compared to Train Src (Train on the
source). Green indicates that the performance improved with the DA methods. The darker the color,
the more significant the change.
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l

am
z→

web

ds
l→

am
z

ds
l→

web

web
→

am
z

web
→

ds
l

M
ea

n
Ran

k

Train Src 0.72 0.75 0.61 0.94 0.63 0.99 0.77 4.17
Train Tgt 0.99 1.0 0.87 0.99 0.88 0.99 0.95 1.25
DANN 0.75 0.8 0.64 0.96 0.62 0.98 0.79 3.75
DeepCORAL 0.77 0.77 0.61 0.98 0.63 0.99 0.79 3.33
DeepJDOT 0.79 0.8 0.68 0.97 0.69 1.0 0.82 2.17
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Table 10: Accuracy score for OfficeHome dataset for each shift compared for all the deep DA
methods. A white color means the method does not increase the performance compared to Train Src
(Train on the source). Green indicates that the performance improved with the DA methods. The
darker the color, the more significant the change.

art
→

cli
pa

rt

art
→

pro
du

ct

art
→

rea
lw

orl
d

cli
pa

rt→
art

cli
pa

rt→
pro

du
ct

cli
pa

rt→
rea

lw
orl

d

pro
du

ct→
art

pro
du

ct→
cli

pa
rt

pro
du

ct→
rea

lw
orl

d

rea
lw

orl
d→

art

rea
lw

orl
d→

cli
pa

rt

rea
lw

orl
d→

pro
du

ct

M
ea

n
Ran

k

Train Src 0.42 0.62 0.75 0.53 0.6 0.62 0.52 0.31 0.73 0.67 0.41 0.76 0.58 4.83
Train Tgt 0.78 0.91 0.86 0.8 0.93 0.85 0.8 0.78 0.86 0.78 0.76 0.92 0.83 1.00
DANN 0.44 0.63 0.73 0.58 0.61 0.62 0.54 0.38 0.75 0.67 0.44 0.76 0.6 4.25
DeepCORAL 0.47 0.64 0.75 0.63 0.59 0.65 0.59 0.39 0.76 0.7 0.45 0.78 0.62 3.00
DeepJDOT 0.47 0.65 0.74 0.63 0.65 0.66 0.59 0.44 0.77 0.71 0.47 0.79 0.63 2.33
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Table 13: Accuracy score for Mushrooms dataset for each shift compared for all the methods. A
white color means the method does not increase the performance compared to Train Src (Train on the
source). Green indicates that the performance improved with the DA methods. The darker the color,
the more significant the change.
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Table 14: Accuracy score for Phishing dataset for each shift compared for all the methods. A white
color means the method does not increase the performance compared to Train Src (Train on the
source). Green indicates that the performance improved with the DA methods. The darker the color,
the more significant the change.
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Table 16: Accuracy score for BCI dataset for each shift compared for all the deep DA methods. A
white color means the method does not increase the performance compared to Train Src (Train on the
source). Green indicates that the performance improved with the DA methods. The darker the color,
the more significant the change.

1 2 3 4 5 6 7 8 9 M
ea

n
Ran

k

Train Src 0.59 0.29 0.67 0.43 0.38 0.29 0.67 0.76 0.67 0.53 2.61
Train Tgt 0.57 0.43 0.71 0.53 0.34 0.29 0.62 0.69 0.79 0.55 2.17
DANN 0.52 0.24 0.55 0.38 0.4 0.22 0.38 0.66 0.64 0.44 4.44
DeepCORAL 0.55 0.26 0.66 0.36 0.48 0.33 0.57 0.72 0.66 0.51 2.72
DeepJDOT 0.53 0.34 0.64 0.43 0.43 0.43 0.57 0.62 0.6 0.51 3.17

D.2 IMPACT OF THE BASE ESTIMATORS ON THE SIMULATED DATASETS

As mentioned in the main paper, it is possible to partly compensate for the shift by choosing the
right base estimator. In this part, we provide the results on the Simulated dataset for three different
base estimators: Logistic Regression (LR) in Table 17, SVM in Table 18, and XGBoost in Table 19.
Observing the two first rows for covariate shift, we see that with LR (Table 17), there is a significant
drop in performance between training on the source v.s. training on the target (∼ 10%), while using
SVC (Table 18) only leads to a drop (∼ 3%). Finally, using XGBoost (Table 19) maintains the
performance. The reweighting DA methods help compensate for the shift when using a simpler LR
estimator. However when using an SVC, as shown in the main paper, the reweighting does not help to
compensate for the covariate shift. If we look at the other shifts, the problem is harder. The subspace
methods help with subspace shift, and the mapping methods help with the conditional shift.

These Tables show the importance of choosing the right base estimator. It is clear that choosing an
appropriate base estimator can partially compensate for some shifts.

Table 17: Accuracy score for simulated datasets compared for all the methods with LR. A white color
means the method does not increase the performance compared to Train Src (Train on the source).
Green indicates that the performance improved with the DA methods. The darker the color, the more
significant the change.

Cov
. sh

ift

Tar.
sh

ift

Con
d.

sh
ift

Sub
. sh

ift

M
ea

n
Ran

k

Train Src 0.8 ± 0.02 0.81 ± 0.03 0.68 ± 0.03 0.06 ± 0.01 0.59 ± 0.02 10.50
Train Tgt 0.91 ± 0.02 0.92 ± 0.01 0.79 ± 0.03 0.97 ± 0.01 0.9 ± 0.02 2.00

R
ew

ei
gh

tin
g

Dens. RW 0.88 ± 0.03 0.84 ± 0.04 0.66 ± 0.03 0.07 ± 0.02 0.61 ± 0.03 7.50
Disc. RW 0.55 ± 0.02 0.78 ± 0.05 0.7 ± 0.04 0.06 ± 0.01 0.52 ± 0.03 13.25
Gauss. RW 0.89 ± 0.02 0.85 ± 0.03 0.64 ± 0.03 0.06 ± 0.01 0.61 ± 0.02 8.00
KLIEP 0.8 ± 0.02 0.81 ± 0.04 0.69 ± 0.03 0.07 ± 0.02 0.59 ± 0.03 8.25
KMM 0.84 ± 0.03 0.82 ± 0.05 0.66 ± 0.04 0.07 ± 0.02 0.6 ± 0.04 7.88
NN RW 0.81 ± 0.02 0.82 ± 0.04 0.67 ± 0.03 0.07 ± 0.01 0.59 ± 0.03 7.75
MMDTarS 0.8 ± 0.02 0.84 ± 0.04 0.66 ± 0.03 0.07 ± 0.02 0.59 ± 0.03 10.75

M
ap

pi
ng

CORAL 0.73 ± 0.05 0.68 ± 0.11 0.75 ± 0.08 0.04 ± 0.02 0.55 ± 0.06 12.25
MapOT 0.73 ± 0.03 0.6 ± 0.04 0.79 ± 0.03 0.03 ± 0.01 0.54 ± 0.03 13.75
EntOT 0.72 ± 0.05 0.61 ± 0.04 0.79 ± 0.03 0.03 ± 0.01 0.54 ± 0.03 12.50
ClassRegOT 0.87 ± 0.08 0.59 ± 0.04 0.79 ± 0.03 0.03 ± 0.01 0.57 ± 0.04 11.50
LinOT 0.77 ± 0.03 0.65 ± 0.06 0.76 ± 0.04 0.04 ± 0.02 0.56 ± 0.04 12.00
MMD-LS 0.7 ± 0.1 0.64 ± 0.06 0.78 ± 0.04 0.38 ± 0.22 0.63 ± 0.1 10.75

Su
bs

pa
ce JPCA 0.8 ± 0.02 0.81 ± 0.03 0.68 ± 0.03 0.06 ± 0.01 0.59 ± 0.02 11.25

SA 0.8 ± 0.02 0.62 ± 0.04 0.78 ± 0.03 0.04 ± 0.02 0.56 ± 0.03 11.25
TCA 0.44 ± 0.29 0.49 ± 0.06 0.54 ± 0.11 0.54 ± 0.23 0.5 ± 0.17 15.50
TSL 0.8 ± 0.02 0.81 ± 0.03 0.68 ± 0.03 0.06 ± 0.01 0.59 ± 0.02 11.00

O
th

er

OTLabelProp 0.73 ± 0.03 0.59 ± 0.04 0.79 ± 0.03 0.03 ± 0.01 0.53 ± 0.03 13.50

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table 18: Accuracy score for simulated datasets compared for all the methods with SVC. A white
color means the method does not increase the performance compared to Train Src (Train on the
source). Green indicates that the performance improved with the DA methods. The darker the color,
the more significant the change.

Cov
. sh

ift

Tar.
sh

ift

Con
d.

sh
ift

Sub
. sh

ift

M
ea

n
Ran

k

Train Src 0.88 ± 0.03 0.85 ± 0.04 0.66 ± 0.02 0.19 ± 0.03 0.65 ± 0.03 9.38
Train Tgt 0.92 ± 0.02 0.93 ± 0.02 0.82 ± 0.03 0.98 ± 0.01 0.91 ± 0.02 1.25

R
ew

ei
gh

tin
g

Dens. RW 0.88 ± 0.03 0.86 ± 0.04 0.66 ± 0.02 0.18 ± 0.04 0.64 ± 0.03 8.88
Disc. RW 0.85 ± 0.04 0.83 ± 0.04 0.72 ± 0.04 0.18 ± 0.03 0.64 ± 0.04 10.75
Gauss. RW 0.89 ± 0.03 0.86 ± 0.04 0.65 ± 0.02 0.21 ± 0.04 0.65 ± 0.03 7.00
KLIEP 0.88 ± 0.03 0.86 ± 0.04 0.66 ± 0.02 0.19 ± 0.03 0.65 ± 0.03 8.12
KMM 0.89 ± 0.03 0.87 ± 0.04 0.64 ± 0.04 0.15 ± 0.05 0.64 ± 0.04 9.50
NN RW 0.89 ± 0.03 0.86 ± 0.04 0.67 ± 0.02 0.15 ± 0.04 0.64 ± 0.03 9.12
MMDTarS 0.88 ± 0.03 0.86 ± 0.04 0.64 ± 0.03 0.2 ± 0.04 0.65 ± 0.03 9.12

M
ap

pi
ng

CORAL 0.74 ± 0.04 0.7 ± 0.11 0.76 ± 0.08 0.18 ± 0.04 0.59 ± 0.07 11.50
MapOT 0.72 ± 0.04 0.57 ± 0.04 0.82 ± 0.03 0.02 ± 0.01 0.53 ± 0.03 14.25
EntOT 0.71 ± 0.04 0.6 ± 0.04 0.82 ± 0.03 0.12 ± 0.06 0.56 ± 0.05 12.75
ClassRegOT 0.74 ± 0.09 0.58 ± 0.04 0.81 ± 0.03 0.11 ± 0.06 0.56 ± 0.06 12.75
LinOT 0.73 ± 0.05 0.73 ± 0.08 0.76 ± 0.06 0.18 ± 0.04 0.6 ± 0.06 11.75
MMD-LS 0.65 ± 0.08 0.68 ± 0.11 0.79 ± 0.05 0.55 ± 0.31 0.67 ± 0.14 10.75

Su
bs

pa
ce JPCA 0.88 ± 0.03 0.85 ± 0.04 0.66 ± 0.02 0.15 ± 0.05 0.64 ± 0.04 11.25

SA 0.74 ± 0.04 0.68 ± 0.04 0.8 ± 0.03 0.11 ± 0.03 0.58 ± 0.03 12.50
TCA 0.46 ± 0.21 0.48 ± 0.09 0.55 ± 0.11 0.56 ± 0.2 0.51 ± 0.15 15.62
TSL 0.88 ± 0.03 0.85 ± 0.04 0.66 ± 0.02 0.19 ± 0.03 0.65 ± 0.03 9.62

O
th

er

OTLabelProp 0.72 ± 0.04 0.58 ± 0.04 0.81 ± 0.04 0.04 ± 0.05 0.54 ± 0.04 14.00
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Table 19: Accuracy score for simulated datasets compared for all the methods with XGBoost. A
white color means the method does not increase the performance compared to Train Src (Train on the
source). Green indicates that the performance improved with the DA methods. The darker the color,
the more significant the change.

Cov
. sh

ift

Tar.
sh

ift

Con
d.

sh
ift

Sub
. sh

ift

M
ea

n
Ran

k

Train Src 0.89 ± 0.02 0.84 ± 0.04 0.66 ± 0.03 0.21 ± 0.03 0.65 ± 0.03 9.25
Train Tgt 0.89 ± 0.02 0.93 ± 0.02 0.77 ± 0.03 0.98 ± 0.01 0.89 ± 0.02 2.25

R
ew

ei
gh

tin
g

Dens. RW 0.88 ± 0.03 0.84 ± 0.03 0.67 ± 0.03 0.22 ± 0.04 0.65 ± 0.03 8.25
Disc. RW 0.68 ± 0.06 0.84 ± 0.03 0.66 ± 0.03 0.2 ± 0.03 0.6 ± 0.04 12.25
Gauss. RW 0.87 ± 0.03 0.84 ± 0.03 0.67 ± 0.03 0.22 ± 0.03 0.65 ± 0.03 9.12
KLIEP 0.88 ± 0.03 0.84 ± 0.03 0.67 ± 0.03 0.21 ± 0.03 0.65 ± 0.03 7.12
KMM 0.87 ± 0.04 0.84 ± 0.04 0.67 ± 0.04 0.22 ± 0.04 0.65 ± 0.04 7.62
NN RW 0.88 ± 0.03 0.84 ± 0.04 0.66 ± 0.03 0.2 ± 0.03 0.65 ± 0.03 10.50
MMDTarS 0.88 ± 0.03 0.86 ± 0.04 0.63 ± 0.03 0.22 ± 0.03 0.65 ± 0.03 7.50

M
ap

pi
ng

CORAL 0.71 ± 0.04 0.71 ± 0.11 0.74 ± 0.08 0.17 ± 0.05 0.58 ± 0.07 12.75
MapOT 0.7 ± 0.04 0.59 ± 0.03 0.8 ± 0.03 0.17 ± 0.05 0.56 ± 0.04 13.25
EntOT 0.69 ± 0.05 0.61 ± 0.04 0.8 ± 0.03 0.2 ± 0.02 0.57 ± 0.04 12.25
ClassRegOT 0.82 ± 0.11 0.59 ± 0.03 0.8 ± 0.03 0.16 ± 0.04 0.59 ± 0.05 12.00
LinOT 0.72 ± 0.04 0.68 ± 0.06 0.76 ± 0.04 0.19 ± 0.04 0.59 ± 0.05 12.00
MMD-LS 0.64 ± 0.07 0.68 ± 0.08 0.78 ± 0.04 0.59 ± 0.25 0.67 ± 0.11 10.25

Su
bs

pa
ce JPCA 0.88 ± 0.03 0.84 ± 0.03 0.67 ± 0.03 0.14 ± 0.05 0.63 ± 0.03 10.50

SA 0.72 ± 0.04 0.69 ± 0.04 0.78 ± 0.03 0.13 ± 0.04 0.58 ± 0.04 11.75
TCA 0.48 ± 0.05 0.5 ± 0.05 0.51 ± 0.05 0.51 ± 0.06 0.5 ± 0.05 15.50
TSL 0.89 ± 0.02 0.84 ± 0.04 0.66 ± 0.03 0.21 ± 0.03 0.65 ± 0.03 9.25

O
th

er

OTLabelProp 0.72 ± 0.05 0.59 ± 0.04 0.81 ± 0.04 0.04 ± 0.05 0.54 ± 0.04 13.00
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D.3 UNREALISTIC VALIDATION WITH SUPERVISED SCORER

Table 20 shows the results when we choose the supervised scorer that is when validating on target
labels. It is important to highlight that this choice is impossible in real life applications due to the
lack of target labels. When using the target labels, the method’s parameters are better validated. This
can be seen by the significant increase in the table (blue values), which are numerous in this table
compared to the one with the selected realistic scorer. For example, the method MMDTarS, which is
made for Target shift, compensates all the shift simulated covariate shifts when we select the model
with a supervised scorer. When looking at the rank, 11 DA methods have a higher rank than Train
Src compared to 9 when using realistic scorer. The findings hold for Deep DA where the accuracy in
Table 21 is overall better than when using unsupervised scorers.

Table 20: Accuracy score for all datasets compared for all the methods for simulated and real-life
datasets. In this table, each DA method is validated with the supervised scorer. The color indicates
the amount of the improvement. A white color means the method is not statistically different from
Train Src (Train on source). Blue indicates that the performance improved with the DA methods,
while red indicates a decrease. The darker the color, the more significant the change.

Cov
. sh

ift

Tar.
sh

ift

Con
d.

sh
ift

Sub
. sh

ift

Offi
ce

31

Offi
ce

Hom
e

M
NIS

T/U
SPS

20
New

sG
rou

ps

Amaz
on

Rev
iew

M
us

hro
om

s

Phis
hin

g

BCI
Ran

k

Train Src 0.88 0.85 0.66 0.19 0.65 0.56 0.54 0.59 0.7 0.72 0.91 0.55 10.66
Train Tgt 0.92 0.93 0.82 0.98 0.89 0.8 0.96 1.0 0.73 1.0 0.97 0.64 1.55

R
ew

ei
gh

tin
g

Dens. RW 0.89 0.87 0.67 0.2 0.65 0.56 0.54 0.59 0.7 0.76 0.91 0.55 12.20
Disc. RW 0.86 0.84 0.73 0.23 0.64 0.54 0.54 0.62 0.69 0.78 0.91 0.56 8.75
Gauss. RW 0.89 0.86 0.65 0.21 0.22 0.44 0.11 0.54 0.55 0.51 0.46 0.25 16.45
KLIEP 0.89 0.88 0.66 0.2 0.65 0.56 0.54 0.58 0.7 0.75 0.92 0.55 10.56
KMM 0.89 0.87 0.67 0.19 0.64 0.55 0.53 0.71 0.66 0.75 0.92 0.54 11.74
NN RW 0.89 0.86 0.67 0.15 0.65 0.55 0.55 0.59 0.66 0.72 0.91 0.54 9.15
MMDTarS 0.88 0.93 0.66 0.27 0.65 0.56 0.54 0.59 0.7 0.74 0.91 0.56 10.81

M
ap

pi
ng

CORAL 0.74 0.84 0.82 0.19 0.66 0.57 0.62 0.75 0.7 0.72 0.92 0.62 5.08
MapOT 0.87 0.63 0.82 0.14 0.6 0.51 0.6 0.77 0.68 0.63 0.84 0.47 10.21
EntOT 0.89 0.61 0.82 0.47 0.66 0.58 0.63 0.88 0.68 0.81 0.87 0.53 9.40
ClassRegOT 0.91 0.59 0.82 0.15 NA 0.59 0.66 0.98 0.68 0.89 0.9 0.52 8.25
LinOT 0.89 0.81 0.81 0.19 0.66 0.58 0.65 0.88 0.71 0.81 0.91 0.61 4.06
MMD-LS 0.88 0.85 0.81 0.73 0.65 0.56 0.56 0.98 0.69 0.89 NA 0.58 8.22

Su
bs

pa
ce JPCA 0.88 0.85 0.66 0.19 0.65 0.56 0.56 0.84 0.7 0.8 0.9 0.55 8.98

SA 0.74 0.81 0.8 0.13 0.66 0.57 0.56 0.93 0.7 0.91 0.89 0.59 7.80
TCA 0.4 0.46 0.5 0.58 0.04 0.02 0.11 0.49 0.61 0.46 0.49 0.27 17.58
TSL 0.88 0.85 0.66 0.86 0.62 0.48 0.45 0.7 0.69 0.57 0.9 0.26 15.09

O
th

er JDOT 0.72 0.57 0.82 0.13 0.61 0.41 0.57 0.8 0.67 0.63 0.8 0.46 11.42
OTLabelProp 0.9 0.76 0.81 0.14 0.66 0.56 0.64 0.89 0.67 0.69 0.86 0.51 10.01
DASVM 0.89 0.86 0.64 0.12 NA NA NA 0.83 NA 0.76 0.86 NA 7.29

Table 21: Accuracy score compared for the Deep methods with the supervised scorer for a selection
of real-life datasets.

M
NIS

T/U
SPS

Offi
ce

31

Offi
ce

Hom
e

BCI
Ran

k

Train Src 0.85 0.77 0.58 0.54 6.19
Train Tgt 0.98 0.96 0.83 0.56 2.07
DeepCORAL 0.93 0.82 0.63 0.54 3.29
DAN 0.91 0.79 0.61 0.55 4.76
DANN 0.9 0.76 0.6 0.42 4.98
DeepJDOT 0.93 0.83 0.63 0.54 2.92
MCC 0.94 0.81 0.66 0.55 2.38
MDD 0.91 0.83 0.58 0.42 4.96
SPA 0.92 0.78 0.56 0.4 5.39
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Table 22: F1 score for all datasets compared for all the shallow methods for simulated and real-life
datasets. The color indicates the amount of the improvement. A white color means the method is
not statistically different from Train Src (Train on source). Blue indicates that the score improved
with the DA methods, while red indicates a decrease. The darker the color, the more significant the
change.
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Dens. RW 0.88 0.88 0.62 0.16 0.61 0.56 0.52 0.55 0.65 0.72 0.91 0.52 IW 12.71
Disc. RW 0.85 0.86 0.7 0.16 0.63 0.53 0.48 0.56 0.63 0.76 0.91 0.54 CircV 8.39
Gauss. RW 0.89 0.88 0.61 0.18 0.15 0.4 0.03 0.43 0.49 0.35 0.29 0.1 CircV 16.53
KLIEP 0.88 0.88 0.62 0.17 0.64 0.55 0.52 0.56 0.65 0.72 0.91 0.52 IW 10.66
KMM 0.89 0.87 0.6 0.15 0.63 0.54 0.51 0.69 0.5 0.74 0.91 0.49 CircV 11.58
NN RW 0.89 0.88 0.63 0.14 0.64 0.55 0.52 0.56 0.64 0.71 0.91 0.5 CircV 8.22
MMDTarS 0.88 0.88 0.6 0.17 0.57 0.56 0.52 0.56 0.65 0.74 0.91 0.53 IW 11.02

M
ap

pi
ng

CORAL 0.74 0.76 0.74 0.16 0.65 0.57 0.62 0.72 0.65 0.72 0.92 0.62 CircV 5.00
MapOT 0.72 0.65 0.82 0.02 0.59 0.5 0.61 0.76 0.59 0.63 0.84 0.47 PE 10.49
EntOT 0.71 0.67 0.82 0.12 0.63 0.57 0.59 0.83 0.49 0.75 0.85 0.53 CircV 10.15
ClassRegOT 0.74 0.66 0.81 0.11 NA 0.53 0.62 0.97 0.67 0.82 0.89 0.52 IW 6.49
LinOT 0.73 0.78 0.75 0.16 0.65 0.57 0.64 0.81 0.65 0.76 0.91 0.61 CircV 4.20
MMD-LS 0.77 0.77 0.75 0.54 0.64 0.56 0.54 0.97 0.6 0.85 NA 0.48 MixVal 7.58

Su
bs

pa
ce JPCA 0.88 0.87 0.62 0.14 0.61 0.47 0.5 0.76 0.61 0.78 0.9 0.51 PE 9.55

SA 0.73 0.74 0.8 0.1 0.64 0.57 0.55 0.88 0.56 0.77 0.89 0.52 CircV 7.95
TCA 0.51 0.56 0.5 0.61 0.0 0.0 0.02 0.53 0.46 0.44 0.47 0.19 DEV 17.94
TSL 0.88 0.87 0.63 0.17 0.63 0.47 0.45 0.59 0.58 0.28 0.9 0.21 PE 15.46

O
th

er JDOT 0.72 0.66 0.82 0.13 0.59 0.41 0.59 0.8 0.61 0.65 0.79 0.46 IW 10.74
OTLabelProp 0.72 0.67 0.8 0.07 0.65 0.54 0.62 0.86 0.58 0.64 0.86 0.49 CircV 10.80
DASVM 0.89 0.88 0.61 0.13 NA NA NA 0.87 NA 0.82 0.85 NA MixVal 7.12

D.4 F1-SCORE OF BENCHMARK

We provide in Table 22 a version of Table 2 where the performance measure reported is the F1-score.
It is interesting to note that the dynamic of which methods work best and are the more robust is very
similar to the accuracy performance which illustrate the robustness of the benchmark.

D.5 COMPARISON OF THE RANK OF DA SCORER

To provide a more detailed assessment of the scorers’ performance, we present a critical difference
diagram of their rankings in Figure 4. The diagram highlights that the unrealistic supervised scorer
significantly outperforms all others. Among the unsupervised scorers, CircV and IW achieve the
best performance, with their rankings being very close and not statistically different according to a
statistical test. Next, we observe a group comprising PE, DEV, and MixVal, where DEV and MixVal
are also not statistically distinguishable. Finally, SND emerges as the worst-performing scorer in the
benchmark.

To give a more detailed perspective, we present a visualization in Figure 5, showing the rank of
each scorer for each DA method. In the right part of the figure, the supervised scorer (in pink) is
consistently the top-ranked, as expected, across all methods. Similarly, CircV (in red) and IW (in
orange) consistently outperform other scorers.

D.6 COMPARISONS BETWEEN SUPERVISED AND UNSUPERVISED SCORERS

Impact on the cross-validation score. We observe in Figure 6 the cross-validation score as a
function of the final accuracy for various DA methods type and for both supervised and unsupervised
scorers. As expected, we observe a good correlation between accuracy and cross-validation score
with the supervised scorer. An important remark is that the Circular Validation (CircV) (Bruzzone &
Marconcini, 2010b) shows some correlation between accuracy and cross-validation score. It indicates
that this unsupervised scorer might be the most suitable choice for hyperparameter selection. This is
supported by our extended experimental results in Table 2 for which the CircV is selected as the best
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Figure 4: Critical difference diagram of average ranks for scorers, computed across shallow methods
and shifts (lower ranks indicate better performance). Black lines between scorers indicate pairs that
are not statistically different based on the Wilcoxon test.

Dens. RWDisc. RW

Gauss. RW

KLIEP

KMM

NN RW

MMDTarS

CORAL

MapOT

EntOTClassRegOTLinOT

MMD-LS

JPCA

SA

TCA

TSL

JDOT

OTLabelProp

DASVM

0.2

0.4

0.6

0.8

1.0
OfficeHome
Office31
BCI
Mushrooms
20NewsGroups
Phishing
MNIST/USPS
AmazonReview

Dens. RWDisc. RW

Gauss. RW

KLIEP

KMM

NN RW

MMDTarS

CORAL

MapOT

EntOTClassRegOTLinOT

MMD-LS

JPCA

SA

TCA

TSL

JDOT

OTLabelProp

DASVM
2

3

4

5

6

7

DEV
CircV
PE
IW
MixVal
SND
Supervised

Figure 5: Illustrations as spider plots for all methods of the accuracy on each dataset (left) and the
scorers rankings (right). For methods with no accuracy results (NA in Table 2) we replace the value
by 0. We provide both spider plot in the same Figure to allow a comparison of the scorer ranking
while having the possibility to check the performance for each method.

scorer the most often. A similar trend can be observed for the Importance Weighted (IW) (Sugiyama
et al., 2007a) which is also confirmed in Table 2.
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Figure 6: Cross-val score as a function of the accuracy for various DA methods and different
supervised and unsupervised scorers. Each point represents an inner split with a DA method (color of
the points) and a dataset. A good scorer should have a score that correlates with the target accuracy.
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Figure 7: Change of accuracy of the DA methods with the best realistic unsupervised scorer (Table 2)
w.r.t. the supervised scorer.

Supervised scorer v.s. the best realistic unsupervised scorer. We plot the loss in performance of
the DA methods with the best realistic unsupervised scorer compared to using the supervised scorers
in Figure 7.

Supervised scorer v.s. realistic unsupervised scorers. We present a scatter plot in Figure 8 and
Figure 9 , the accuracy of different DA methods using both supervised scorer and unsupervised
scorer. In this figure, points below the diagonal indicate a decrease in performance when using
the unsupervised scorer compared to the supervised one. The colors represent different types of
DA methods. We can see that the SND, DEV and PE scorers all lead to a large performance loss
compared to the supervised scorer. While IW and CircV results are much more concentrated near the
diagonal, indicating a small loss in performance. This concentration explains why these two scorers
have been selected as the best scorers for most of the methods in Table 2.
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Figure 8: Accuracy of the DA methods using unsupervised scorers as a function of the accuracy with
the supervised scorer. Colors represent the type of DA methods.
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Figure 9: Accuracy of the DA methods using unsupervised scorers as a function of the accuracy with
the supervised scorer for the different types of DA methods. Points below the diagonal represent a
decrease in performance when using the unsupervised scorer compared to the supervised one. Colors
represent the dataset on which the DA method is applied.

D.7 COMPUTATIONAL EFFICIENCY OF THE DA METHODS

Figure 10 shows the average computation time for training and testing each method. These results
are based on one outer split, while we ran the benchmarks for five outer splits. Each method has a
different time complexity. Interestingly, more time-consuming methods are not necessarily more
performant than others. For instance, the highest-ranked methods—LinOT, CORAL, and SA—also
have some of the lowest training and testing times. It’s also worth noting that during the experiments,
we enforced a 4-hour timeout. Thus, the more time-intensive methods might have been even slower
without this timeout.
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Figure 10: Mean computing time to train and test each method for every experiment outer split.

D.8 HYPERPARAMETERS GRID SEARCH FOR THE DA METHODS AND NEURAL NETWORKS
TRAINING

In this section, we first report the grids of hyperparameters used in our grid search for each DA
method.

We also detail the configuration and hyperparameter grids for training neural networks in our Deep
DA benchmark. We provide an overview of the key settings for each dataset, including batch sizes,
optimizer parameters, learning rates, and the number of training epochs. Additionally, we outline the
hyperparameter grids used for grid search across the Deep DA methods.
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Table 23: Hyperparameter grids used in the grid search for each DA method. The hyperparameter
grids were designed to be minimal yet expressive, allowing each method to perform optimally. We
selected parameters based on what seemed most reasonable, according to our best knowledge.

Method Hyperparameter Grid
KLIEP ’cv’: [5],

’gamma’: [0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0, ’auto’, ’scale’],
’max_iter’: [1000],
’n_centers’: [100],
’random_state’: [0],
’tol’: [1e-06]

KMM ’B’: [1000.0],
’gamma’: [0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0, None],
’max_iter’: [1000],
’smooth_weights’: [False],
’tol’: [1e-06]

NN RW ’laplace_smoothing’: [True, False]
MapOT ’max_iter’: [1000000],

’metric’: [’sqeuclidean’, ’cosine’, ’cityblock’],
’norm’: [’median’]

JPCA ’n_components’: [1, 2, 5, 10, 20, 50, 100]
SA ’n_components’: [1, 2, 5, 10, 20, 50, 100]
TCA ’kernel’: [’rbf’],

’mu’: [10, 100],
’n_components’: [1, 2, 5, 10, 20, 50, 100]

CORAL ’assume_centered’: [False, True],
’reg’: [’auto’]

MMDTarS ’gamma’: [0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0, None],
’max_iter’: [1000],
’reg’: [1e-06],
’tol’: [1e-06]

ClassRegOT ’max_inner_iter’: [1000],
’max_iter’: [10],
’metric’: [’sqeuclidean’, ’cosine’, ’cityblock’],
’norm’: [’lpl1’],
’tol’: [1e-06],
’(reg_cl, reg_e)’: [([0.1], [0.1]), ([0.5], [0.5]), ([1.0], [1.0])]

Dens. RW ’bandwidth’: [0.01, 0.1, 1.0, 10.0, 100.0, ’scott’, ’silverman’]
Disc. RW ’domain_classifier’: [’LR’, ’SVC’, ’XGB’]
Gauss. RW ’reg’: [’auto’]
DASVM ’max_iter’: [200]
JDOT ’alpha’: [0.1, 0.3, 0.5, 0.7, 0.9],

’n_iter_max’: [100],
’thr_weights’: [1e-07],
’tol’: [1e-06]

EntOT ’max_iter’: [1000],
’metric’: [’sqeuclidean’, ’cosine’, ’cityblock’],
’norm’: [’median’],
’reg_e’: [0.1, 0.5, 1.0],
’tol’: [1e-06]

LinOT ’bias’: [True, False],
’reg’: [1e-08, 1e-06, 0.1, 1, 10]

TSL ’base_method’: [’flda’],
’length_scale’: [2],
’max_iter’: [300],
’mu’: [0.1, 1, 10],
’n_components’: [1, 2, 5, 10, 20, 50, 100],
’reg’: [0.0001],
’tol’: [0.0001]

MMD-LS ’gamma’: [0.01, 0.1, 1, 10, 100],
’max_iter’: [20],
’reg_k’: [1e-08],
’reg_m’: [1e-08],
’tol’: [1e-05]

OTLabelProp ’metric’: [’sqeuclidean’, ’cosine’, ’cityblock’],
’(n_iter_max, reg)’: [([10000], [None]), ([100], [0.1, 1])]
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Table 24: Configuration of Deep learning models for each dataset. This includes recommended Batch
sizes, optimizer settings, learning rates, and maximum epochs.

Dataset Configuration
mnist_usps

• Neural net: 2-layer CNN

• Batch size: 256

• Optimizer: SGD, momentum=0.6,
weight_decay=1e-5

• Learning rate: 0.1

• Epochs: 20

• Learning rate scheduler: LRSched-
uler(StepLR, step_size=10, gamma=0.2)

office31
• Neural net: ResNet50

• Batch size: 128

• Optimizer: SGD, momentum=0.2,
weight_decay=1e-5

• Learning rate: 0.5

• Epochs: 30

• Learning rate scheduler: StepLR,
step_size=10, gamma=0.2

officehome
• Neural net: ResNet50

• Batch size: 128

• Optimizer: SGD, momentum=0.6,
weight_decay=1e-5

• Learning rate: 0.05

• Epochs: 20

• Learning rate scheduler: StepLR,
step_size=10, gamma=0.2

bci
• Neural net: FBCSPNet

• Batch size: 64

• Optimizer: AdamW

• Learning rate: 0.000625

• Epochs: 200

• Learning rate scheduler: CosineAnneal-
ingLR
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Table 25: Hyperparameter grids used in the grid search for each Deep DA method. The hyperparame-
ter grids were designed to be minimal yet expressive, allowing each method to perform optimally.
We selected parameters based on what seemed most reasonable, according to our best knowledge.

Method Hyperparameter Grid
DANN ’reg’: [0.001, 0.01, 0.1, 1.0]
DeepCORAL ’reg’: [0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0]
DeepJDOT ’reg_cl’: [0.0001, 0.001, 0.01]

’reg_dist’: [0.0001, 0.001, 0.01]
DAN ’reg’: [0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0]
MCC ’reg’: [0.01, 0.1, 1]

’temperature’: [1, 2, 3]
MDD ’reg’: [0.001, 0.01, 0.1]

’gamma’: [1, 3]
SPA ’reg’: [0.001, 0.01, 0.1, 1]

’reg_nap’: [0, 1]
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