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ABSTRACT

Generating ligand molecules that bind to specific protein targets via generative
models holds substantial promise for advancing structure-based drug design. Exist-
ing methods generate molecules from scratch without reference or template ligands,
which poses challenges in model optimization and may yield suboptimal outcomes.
To address this problem, we propose an innovative prompt-based 3D molecular
diffusion model named PROMPTDIFF to facilitate target-aware molecule generation.
PROMPTDIFF leverages a curated set of ligand prompts, i.e., those with desired
properties such as high binding affinity and synthesizability, to steer the diffusion
model towards synthesizing ligands that satisfy design criteria. Specifically, we
design a geometric protein-molecule interaction network (PMINet), and pretrain it
with binding affinity signals to: (i) retrieve target-aware ligand molecules with high
binding affinity to serve as prompts, and (ii) incorporate essential protein-ligand
binding structures for steering molecular diffusion generation with two effective
prompting mechanisms, i.e., exemplar prompting and self prompting. Empirical
studies on CrossDocked2020 dataset show PROMPTDIFF can generate molecules
with more realistic 3D structures and achieve state-of-the-art binding affinities
towards the protein targets, while maintaining proper molecular properties.

1 INTRODUCTION

Designing ligand molecules that can bind to specific protein targets and modulate their function, also
known as structure-based drug design (SBDD) (Anderson, 2003; Batool et al., 2019), is a fundamental
problem in drug discovery and can lead to significant therapeutic benefits. SBDD requires models
to synthesize drug-like molecules with stable 3D structures and high binding affinities to the target.
Nevertheless, it is challenging and involves massive computational efforts because of the enormous
space of synthetically feasible chemicals (Ragoza et al., 2022a) and freedom degree of both compound
and protein structures (Hawkins, 2017). Recently, several new generative methods have been proposed
for the SBDD task (Li et al., 2021; Luo et al., 2021; Peng et al., 2022; Powers et al., 2022; Ragoza
et al., 2022b; Zhang et al., 2023), which learn to generate ligand molecules by modeling the complex
spatial and chemical interaction features of the binding site. For instance, some methods adopt
autoregressive models (ARMs) (Luo & Ji, 2021; Liu et al., 2022; Peng et al., 2022) and show
promising results in SBDD tasks, which generate 3D molecules by iteratively adding atoms or bonds
based on the target binding site. However, ARMs tend to suffer from error accumulation, and it is
difficult to find an optimal generation order, which are both nontrivial for 3D molecular graphs.

Aiming to address these limitations of ARMs, recent works (Guan et al., 2023a; Schneuing et al.,
2022; Lin et al., 2022) adopt diffusion models (Ho et al., 2020) to model the distribution of atom
types and positions from a standard Gaussian prior with a post-processing to assign bonds. These
diffusion-based SBDD methods develop SE(3)-equivariant diffusion models (Hoogeboom et al.,
2022) to capture both local and global spatial interactions between atoms and have achieved better
performance than previous autoregressive models. Despite the state-of-the-art performance, it is still
difficult for existing diffusion-based methods to generate molecules that satisfies realistic biological
metrics such as binding affinity and synthesizability. Moreover, generating from scratch makes the
generation process hard to optimize and may lead to suboptimal performance.
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Figure 1: Prompting SBDD with the ligands with high
binding affinities towards target protein.

To overcome these challenges, we pro-
pose a novel Prompt-based Diffusion
model (PROMPTDIFF) for SBDD task
as in Figure 1. PROMPTDIFF is in-
spired by the recent significant advance-
ment in machine learning particularly
in natural language generation, called
prompting or in-context learning (Liu
et al., 2023; Gu et al., 2022; Rubin et al.,
2022), which enables (large) language
models (Brown et al., 2020; OpenAI,
2023) to generalize well to previously-
unseen tasks with proper task-specific
prompts. Herein, different from previ-
ous methods that only rely on the generalization capacity of generative models for new target proteins,
PROMPTDIFF explicitly utilizes a small set of target-aware ligand prompts, i.e., molecules with
desirable properties such as high binding affinity and synthesizability, to steer the diffusion model
toward generating ligands that satisfy design criteria. Specifically, we design a geometric protein-
molecule interaction network named PMINet and pretrain it with binding affinity signals, which
is parameterized with SE(3)-equivariant and attention layers to capture both spatial and chemical
interaction information between protein-molecule pairs. Then we utilize the pre-trained PMINet to (1)
retrieve protein-aware ligand molecules with high binding affinity to serve as molecular prompts, and
(2) incorporate essential protein-ligand binding structures for steering molecular diffusion generation
with two effective prompting mechanisms, i.e., exemplar prompting and self prompting, conditioned
on both the ligand prompt set and target protein. Extensive experiments on CrossDocked2020 dataset
demonstrate the effectiveness of our PROMPTDIFF, achieving new state-of-the-art performance
regarding binding-related metrics.

We highlight our main contributions as follows: (i): To the best of our knowledge, we for the first
time propose a prompt-based 3D molecular diffusion model named PROMPTDIFF for SBDD tasks,
steering 3D molecular generation with informative external target-aware prompts. (ii): We design two
novel prompting mechanisms, i.e., exemplar prompting and self prompting, to incorporate essential
protein-ligand binding structures for facilitating target-aware molecular diffusion generation. (iii):
Our PROMPTDIFF can generate ligands that not only bind tightly to target pockets but also maintain
proper molecular properties. Empirical results on the CrossDocked2020 dataset show that our method
achieves -5.86 Avg. Vina Score and 0.53 Avg. QED score, demonstrating a prominent trade-off
between binding-related and property-related metrics.

2 RELATED WORK

Structure-Based Drug Design As the increasing availability of 3D-structure protein-ligand data
(Kinnings et al., 2011), structure-based drug design (SBDD) becomes a hot research area and it aims
to generate diverse molecules with high binding affinity to specific protein targets (Luo et al., 2021;
Yang et al., 2022; Schneuing et al., 2022; Tan et al., 2022). Early attempts learn to generate SMILES
strings or 2D molecular graphs given protein contexts (Skalic et al., 2019; Xu et al., 2021a). However,
it is uncertain whether the resulting compounds with generated strings or graphs could really fit the
geometric landscape of the 3D structural pockets. More works start to involve 3D structures of both
proteins and molecules (Li et al., 2021; Ragoza et al., 2022b; Zhang et al., 2023). Luo et al. (2021),
Liu et al. (2022), and Peng et al. (2022) adopt autoregressive models to generate 3D molecules in
an atom-wise manner. Recently, powerful diffusion models (Sohl-Dickstein et al., 2015; Song &
Ermon, 2019; Ho et al., 2020) begin to play a role in SBDD, and have achieved promising generation
results with non-autoregressive sampling (Lin et al., 2022; Schneuing et al., 2022; Guan et al., 2023a).
TargetDiff (Guan et al., 2023a), DiffBP (Lin et al., 2022), and DiffSBDD (Schneuing et al., 2022)
utilize E(n)-equivariant GNNs (Satorras et al., 2021) to parameterize conditional diffusion models
for protein-aware 3D molecular generation. Despite progress, existing methods mainly generate
molecules from scratch without informative template or reference ligands for unseen target proteins,
which may lead to hard optimization and poor binding affinity. In this paper, PROMPTDIFF for the
first time utilize the external ligands with high binding affinity to steer molecular diffusion generation.

2



Under review as a conference paper at ICLR 2024

Prompt-Based Controllable Generation The concept of prompt has been well studied for exploiting
the generalization ability of generative models, including natural language processing (Liu et al., 2023;
Gu et al., 2022; Rubin et al., 2022), and computer vision (Tsimpoukelli et al., 2021; Alayrac et al.,
2022; Gan et al., 2022; Jia et al., 2022). Numerous works have explored techniques to adapt models
to novel tasks using a few examples as prompts. Some methods (Chen et al., 2022; Rubin et al., 2022)
take input as prompt and retrieve similar examples for prompts augmentation. For example, EPR
(Rubin et al., 2022) utilizes a dense retriever to retrieve training examples as prompts for sequence-to-
sequence generation. Other methods (Alayrac et al., 2022; Brown et al., 2020; Ouyang et al., 2022)
directly construct informative task demonstrations as prompts and perform in-context learning (Min
et al., 2022). For example, Flamingo (Alayrac et al., 2022) organizes interleaved text and images as
task prompt, and effectively advance few/zero-shot visual question answering. Recently, in the field
of drug discovery, RetMol (Wang et al., 2022) employ a retrieval-based framework to control 2D
molecule generation for ligand-based drug design (LBDD) (Bacilieri & Moro, 2006). In contrast, our
pioneering contribution is to discover proper protein-aware 3D molecule prompts for the purpose of
addressing SBDD tasks, which is the first to incorporate complex cross-modal (protein-molecule)
geometric interactions in prompt design, thereby introducing a new dimension to the field.

3 PRELIMINARY

Notations The SBDD task from the perspective of generative models can be defined as generating
ligand molecules which can bind to a given protein binding site. The target (protein) and ligand
molecule can be represented as P = {(x(i)

P ,v
(i)
P )}NP

i=1 and M = {(x(i)
M ,v

(i)
M )}NM

i=1 , respectively.
Here NP (resp. NM ) refers to the number of atoms of the protein P (resp. the ligand molecule M).
x ∈ R3 and v ∈ RK denote the position and type of the atom respectively. In the sequel, matrices
are denoted by uppercase boldface. For a matrix X, xi denotes the vector on its i-th row, and X1:N

denotes the submatrix comprising its 1-st to N -th rows. For brevity, the ligand molecule is denoted
as M = [XM ,VM ] where XM ∈ RNM×3 and VM ∈ RNM×K , and the protein is denoted as
P = [XP ,VP ] where XP ∈ RNP×3 and VP ∈ RNP×K . The task can be formulated as modeling
the conditional distribution p(M|P).

DDPMs in SBDD Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020) equipped
with SE(3)-invariant prior and SE(3)-equivariant transition kernel have been applied on the SBDD
task (Guan et al., 2023a; Schneuing et al., 2022; Lin et al., 2022). More specifically, the types and
positions of the ligand molecule are modeled by DDPM, while the number of atoms NM is usually
sampled from an empirical distribution (Hoogeboom et al., 2022; Guan et al., 2023a) or predicted by
a neural network (Lin et al., 2022), and the bonds are determined as post-processing. More concrete
details about diffusion models in SBDD can be found in Appendix B.

4 METHODS

We propose PROMPTDIFF, a novel prompt-based diffusion framework (as demonstrated in Figure 2)
for target-aware 3D molecule generation. We first design PMINet with equivariant and attention
layers to capture complex 3D geometric interaction information between proteins and ligands, and
pretrain it by binding affinity signals (Sec. 4.1). Then, we discover protein-aware ligand prompts
with the pre-trained PMINet in the molecular database (Sec. 4.2). Finally, we propose self prompting
and exemplar prompting to utilize the ligand prompts with the pre-trained PMINet for facilitating
protein-aware 3D molecular generation (Sec. 4.3).

4.1 MODELING PROTEIN-LIGAND INTERACTIONS WITH PMINET

To capture the interactions between proteins and ligand molecules, we introduce a 3D protein-ligand
interaction network (namely PMINet) to model the binding affinity of protein-ligand pairs, consisting
of SE(3)-equivariant neural networks (Satorras et al., 2021) and cross-attention layers (Borgeaud et al.,
2022; Hou et al., 2019). Two shallow SE(3)-equivariant neural networks are applied on the graphs
of the protein GP and ligand molecule GM , respectively, to extract both chemical and geometric
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Figure 2: The overall schematic diagram of PROMPTDIFF. It first utilizes the pre-trained PMINet (in
Sec. 4.1) to retrieve binding-aware ligand prompts (in Sec. 4.2), and then steers the target-aware 3D
molecular diffusion generation with self and exemplar prompting (in Sec. 4.3). (IntMpred

t+1
, IntP )

and {(IntMi
, IntP )}ki=1 are binding-specific molecular and protein embeddings enhanced by PMINet.

information. Given a ligand graph GM , the l-th SE(3)-equivariant layer works as follows:

hl+1
M,i = hl

M,i +
∑

j∈NM (i)

f l
M,h

(∥∥∥xl
M,i − xl

M,j

∥∥∥ ,hl
M,i,h

l
M,j

)
, (1)

xl+1
M,i = xl

M,i +
∑

j∈NM (i)

(
xl
M,i − xl

M,j

)
f l
M,x

(∥∥∥xl
M,i − xl

M,j

∥∥∥ ,hl+1
M,i,h

l+1
M,j

)
, (2)

where hl+1
M,i ∈ Rd and xl+1

M,i ∈ R3 are the SE(3)-invariant and SE(3)-equivariant hidden states of the
atom i of the ligand after the l-th SE(3)-equivariant layer, respectively. NM (i) stands for the set of
neighbors of atom i on GM , and the initial hidden state h0

M,i is obtained by an embedding layer that
encodes atom information. Given a protein graph GP , hl

P,i and xl
P,i can be derived in the same way.

In PMINet, an atom-wise cross-attention based interaction layer is proposed to learn the inter-
molecule interactions between protein-ligand pairs, which essentially accounts for the binding affinity.
Due to the unknown binding poses in practice, only the SE(3)-invariant features HL

M ∈ RNM×d

and HL
P ∈ RNP×d (whose i-th rows are hL

M,i and hL
P,i respectively) are used as inputs to the

cross-attention (Vaswani et al., 2017) layer for extracting binding-aware interactive representations:

IntM = softmax((WQH
L
M )(WKHL

P )
T )WV H

L
P , (3)

IntP = softmax((WQH
L
P )(WKHL

M )T )WV H
L
M , (4)

where WQ,WK ,WV are learnable projection matrices. The enhanced representations of the protein
and molecule (i.e., IntP and IntM ) are further aggregated into a global feature to predict their binding
affinity: SAff(M,P) := PMINet(M,P). Please refer to Appendix D.1 for pre-training details.

4.2 CONSTRUCTING TARGET-AWARE LIGAND PROMPTS

Inspired by the recent success of prompt-based controllable generation (Liu et al., 2023), we hope
to design an effective prompting strategy for structure-based drug design to guide the generation
of target-aware ligands with desired properties. Therefore, we leverage the structure-based protein-
ligand interaction prior learned by PMINet to select the top candidates (i.e., ligands with high-binding
affinity) most suitable for prompting the later target-aware molecule design.

More concretely, given a target P and an external database of ligands D := {Mi}Ni=1, we use the
pre-trained PMINet(·, P) introduced in Sec. 4.1 to scan the database and retrieve the ligands with
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top-k high predicted binding affinity to this target as prompts:

D(P, k) := topk({Mi}Ni=1,PMINet(·, P)). (5)

Here we denote the prompt pool as D(P, k). The ligand molecules in the external database are
real, so they are expected to provide some valid substructures as references and thus promote the
validity of the generated ligand molecules. For example, the ligands in the prompt pool can be viewed
as probes to explore how the target interacts with ligands, which is supposed to offer useful clues
for molecule generation. Due to their high binding affinity, they can potentially reveal the critical
locations (e.g., promising hydrogen donors or acceptors) to support strong inter-molecular forces.

At time step t, we extend the prompt pool to {Mpred
t+1 }∪D(P, k), where Mpred

t+1 denotes the predicted
atom positions and types (i.e., estimated [X̂0, V̂0]) at time step t+ 1. This can be regarded as self-
prompting, different from self-conditioning (Chen et al., 2023), which will be described next.

4.3 PROMPT-BASED 3D EQUIVARIANT MOLECULAR DIFFUSION

In this subsection, we describe how to introduce the bingding-aware ligand prompts into the design of
the neural network ϕθ which predicts (i.e., reconstructs) [X0,V0] in the reverse generation process
(we highlight the critical parts of our prompting mechanisms in violet):

[X̂0, V̂0] = ϕθ([Xt,Vt], t,P, {Mpred
t+1 } ∪ D(P, k)). (6)

Self Prompting We first extract atom-wise embeddings HM ∈ RNM×d and HP ∈ RNP×d of the
ligand molecule being generated and target protein, respectively. The molecule being generated,
Mpred

t+1 , itself is supposed to be a candidate ligand with high binding affinity to the target, especially
when t is large (i.e., the generative process nearly ends). To maximize the exploitation of protein-
ligand interaction prior emerged in the reverse diffusion trajectories, we leverage the enhanced
molecular atom embedding IntMpred

t+1
and protein atom embedding IntP produced by the interaction

layer of PMINet(Mpred
t+1 ,P) to self-prompt the generative process as follows:

Self Prompting : H′
M = MLP

(
[HM , IntMpred

t+1
]
)
, H′

P = MLP ([HP , IntP ]) . (7)

In training, due to the inaccessibility of Mpred
t+1 , we directly use ground truth molecule M to substitute

it in a teacher-forcing fashion. We illustrate more insights about self prompting in Appendix C.

Exemplar Prompting We further propose exemplar prompting to leverage the exemplar ligands for
steering the reverse generation process. The pre-trained PMINet is reused here to extract interactive
structural context information between the target protein P and the ligands in prompt pool D(P, k)
to enhance the target protein representations:

Exemplar Prompting : H′′
P = Pool({MLP([H′

P , IntiP ])}ki=1), (8)

where IntiP is the binding-aware protein feature produced by the interaction layer of PMINet(Mi,P)
(as Equation (4)) and Mi is the i-th exemplar ligand in the prompt pool D(M, k).

Besides, in order to prompt the molecular diffusion generation with possible binding structures in
exemplar ligands, we merge the enhanced embeddings of exemplar ligands and generated molecules
with a trainable cross attention mechanism:

Exemplar Prompting : H′′
M = Pool({softmax((WQH

′
M )(WKIntMi)

T )WV IntMi}ki=1), (9)

where IntMi is the binding-aware exemplar ligand feature produced by the interaction layer of
PMINet(Mi,P) (as Equation (3)). Our PROMPTDIFF uses self prompting and exemplar prompting
to sufficiently leverage both the informative binding prior in external ligands and the protein-aware
interaction context for facilitating 3D equivariant molecular diffusion generation.

3D Equivariant Molecular Diffusion We then apply an SE(3)-equivariant neural network on the
k-nn graph of the protein-ligand complex (denoted as C = JM,PK, where J·K denotes concatenation
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along the first dimension) to learn the atom-wise protein-molecule interactions in generative process.
The SE(3)-invariant hidden state HC and SE(3)-equivariant positions XC are updated as follows:

hl+1
C,i = hl

C,i +
∑

j∈NC(i)

f l
C,h

(∥∥∥xl
C,i − xl

C,j

∥∥∥ ,hl
C,i,h

l
C,j , eC,ij

)
(10)

xl+1
C,i = xl

C,i +
∑

j∈NC(i)

(
xl
C,i − xl

C,j

)
f l
C,x

(∥∥∥xl
C,i − xl

C,j

∥∥∥ ,hl+1
C,i ,h

l+1
C,j , eC,ij

)
· 1mol (11)

where NC(i) stands for the set of k-nearest neighbors of atom i on the protein-ligand complex graph,
eC,ij indicates the atom i and atom j are both protein atoms or both ligand atoms or one protein
atom and one ligand atom, and 1mol is the ligand atom mask since the protein atom coordinates
are known and thus supposed to remain unchanged during this update. We let H0

C := JH′′
M ,H′′

P K
to incorporate the information contained in the prompt pool {M∗

t+1} ∪ D(P, k). Finally, we use
V̂0 = softmax(MLP(HL

C,1:NM
)) and X̂0 = XL

C,1:NM
as the final prediction. Shifting the Center of

Mass (CoM) of protein atoms to zero (Xu et al., 2021b; Hoogeboom et al., 2022; Guan et al., 2023a)
and the design of EGNN (Satorras et al., 2021) ensure SE(3)-equivariance of the reverse transition
kernel pθ(Xt−1|Xt,XP ). Prompting the generative process only augments the SE(3)-invariant
hidden states without breaking SE(3)-equivariance.

Training and Sampling We leave the details about the loss function and summarize the training
procedure of PROMPTDIFF in Appendix A. Given a protein P , the ligand molecules can be sampled
as Algorithm 1. The differences from previous molecular diffusion models, are highlighted in violet.

Algorithm 1 Sampling Procedure of PROMPTDIFF

Input: The protein binding site P , the learned model ϕθ, external databse D, pre-trained PMINet,
number of exemplar ligands in each prompt pool k

Output: Generated ligand molecule M that binds to the protein pocket P
1: Sample the number of atoms NM of the ligand molecule M as described in Sec. 3
2: Move CoM of protein atoms to zero
3: Sample initial ligand atom coordinates xT and atom types vT

4: Let M∗ := [0,0]
5: Embed VP into HP

6: for t in T, T − 1, . . . , 1 do
7: Embed Vt into HM

8: Obtain features H′
M and H′

P with self-prompting based on M∗ (Equation (7))
9: Obtain enhanced protein atom feature H′′

P prompted by D(P, k) (Equation (8))
10: Obtain enhanced ligand atom feature H′′

M prompted by D(P, k) (Equation (9))
11: Predict [X̂0, V̂0] from [Xt,H

′′
M ] and [XP ,H

′′
P ] (Equations (10) and (11))

12: Sample Xt−1 and Vt−1 from the posterior pθ(Mt−1|Mt,P) (Equation (16))
13: Let M∗ := [X̂0, V̂0]
14: end for

5 EXPERIMENTS

Datasets and Baseline Methods To pretrain PMINet with binding affinity signals, we use the
PDBbind v2016 dataset (Liu et al., 2015), which is most frequently used in binding-affinity prediction
tasks. Specifically, 3767 complexes are selected as training set, and the other 290 complexes are
selected as testing set. As for molecular generation, following the previous work (Luo et al., 2021;
Peng et al., 2022; Guan et al., 2023a), we train and evaluate PROMPTDIFF on the CrossDocked2020
dataset (Francoeur et al., 2020). We follow the same data preparation and splitting as (Luo et al.,
2021), where the 22.5 million docked binding complexes are refined to high-quality docking poses
(RMSD between the docked pose and the ground truth < 1Å) and diverse proteins (sequence identity
< 30%). This produces 100, 000 protein-ligand pairs for training and 100 proteins for testing.

We randomly choose 128 ligands from training set for retrieval, and select the ligand of top-1 predicted
binding affinity as prompt for each protein. We compare our model with recent representative methods
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Figure 3: Comparing the distribution for dis-
tances of all-atom for reference molecules in the
test set (blue) and model generated molecules
(color). Jensen-Shannon divergence (JSD) be-
tween two distributions is reported.

Bond liGAN AR Pocket2
Mol

Target
Diff

Decomp
Diff ours

C−C 0.601 0.609 0.496 0.369 0.359 0.396
C=C 0.665 0.620 0.561 0.505 0.537 0.249
C−N 0.634 0.474 0.416 0.363 0.344 0.307
C=N 0.749 0.635 0.629 0.550 0.584 0.280
C−O 0.656 0.492 0.454 0.421 0.376 0.373
C=O 0.661 0.558 0.516 0.461 0.374 0.442
C:C 0.497 0.451 0.416 0.263 0.251 0.213
C:N 0.638 0.552 0.487 0.235 0.269 0.264

Table 1: Jensen-Shannon divergence between
bond distance distributions of the reference
molecules and the generated molecules, and
lower values indicate better performances. “-
”, “=”, and “:” represent single, double, and
aromatic bonds, respectively.

for SBDD. LiGAN (Ragoza et al., 2022a) is a conditional VAE model trained on an atomic density
grid representation of protein-ligand structures. AR (Luo et al., 2021) and Pocket2Mol (Peng et al.,
2022) are autoregressive schemes that generate 3D molecules atoms conditioned on the protein pocket
and previous generated atoms. TargetDiff (Guan et al., 2023a) and DecomposeDiff (Guan et al.,
2023b) are recent state-of-the-art non-autoregressive diffusion-based molecular diffusion models.

Evaluation We comprehensively evaluate the generated molecules from three perspectives: molecu-
lar structures, target binding affinity and molecular properties. In terms of molecular structures,
we calculate the Jensen-Shannon divergences (JSD) in empirical distributions of atom/bond distances
between the generated molecules and the reference ones. To estimate the target binding affinity,
following previous work (Luo et al., 2021; Ragoza et al., 2022b; Guan et al., 2023a), we adopt
AutoDock Vina (Eberhardt et al., 2021) to compute and report the mean and median of binding-
related metrics, including Vina Score, Vina Min, Vina Dock and High Affinity. Vina Score directly
estimates the binding affinity based on the generated 3D molecules; Vina Min performs a local
structure minimization before estimation; Vina Dock involves an additional re-docking process and
reflects the best possible binding affinity; High affinity measures the ratio of how many generated
molecules binds better than the reference molecule per test protein. To evaluate molecular properties,
we utilize the QED, SA, Diversity as metrics following (Luo et al., 2021; Ragoza et al., 2022a). QED
is a simple quantitative estimation of drug-likeness combining several desirable molecular properties;
SA (synthesize accessibility) is a measure estimation of the difficulty of synthesizing the ligands;
Diversity is computed as average pairwise dissimilarity between all generated ligands.

5.1 MAIN RESULTS

Generated Molecular Structures We compare our PROMPTDIFF and the representative methods
in terms of molecular structures. We plot the all-atom pairwise distance distribution of the generated
molecules in Figure 3. PROMPTDIFF achieves lowest JSD 0.09 to reference in the all-atom pairwise
distance distribution of the generated molecules, which is better than two strong baseline methods
Pocket2Mol and TargetDiff, indicating it effectively captures real atomic distances. We compute
different bond distributions of the generated molecules and compare them against the corresponding
reference empirical distributions in Tab. 1. Our model has a comparable performance with Decom-
pDiff and substantially outperforms other baselines across most major bond types, indicating the great
potential of PROMPTDIFF for generating stable molecular structures. We attribute this to our prompt
mechanisms which directly provides realistic 3D ligand templates for steering molecule generation.

Target Binding Affinity and Molecule Properties We evaluate the effectiveness of PROMPTDIFF
in terms of binding affinity. We can see in Tab. 2 that our PROMPTDIFF outperforms baselines
in binding-related metrics. Specifically, PROMPTDIFF surpasses strong autoregressive method
Pocket2Mol by a large margin of 14.0% and 38.5% in Avg. and Med. Vina Score, and surpasses
strong diffusion-based method DecompDiff by 3.4% and 7.8% in Avg. and Med. Vina Score.
In terms of high-affinity binder, we find that on average 66.8% of the PROMPTDIFF molecules
show better binding affinity than the reference molecule, which is significantly better than other
baselines. These gains demonstrate that the proposed PROMPTDIFF effectively utilizes the external
protein-ligand interactions to enable generating molecules with higher target binding affinity.
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Table 2: Summary of different properties of reference molecules and molecules generated by our
model and other non-diffusion and diffusion-based baselines. (↑) / (↓) denotes a larger / smaller
number is better. Top 2 results are highlighted with bold text and underlined text, respectively.

Methods
Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑) Diversity (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

Reference -6.36 -6.46 -6.71 -6.49 -7.45 -7.26 - - 0.48 0.47 0.73 0.74 - -

Compare with
Non-Diffusion

LiGAN - - - - -6.33 -6.20 21.1% 11.1% 0.39 0.39 0.59 0.57 0.66 0.67
GraphBP - - - - -4.80 -4.70 14.2% 6.7% 0.43 0.45 0.49 0.48 0.79 0.78

AR -5.75 -5.64 -6.18 -5.88 -6.75 -6.62 37.9% 31.0% 0.51 0.50 0.63 0.63 0.70 0.70
Pocket2Mol -5.14 -4.70 -6.42 -5.82 -7.15 -6.79 48.4% 51.0% 0.56 0.57 0.74 0.75 0.69 0.71

PROMPTDIFF -5.86 -6.51 -7.14 -7.27 -8.33 -8.49 66.8% 73.9% 0.53 0.54 0.58 0.58 0.72 0.72

Compare with
Diffusion

TargetDiff -5.47 -6.30 -6.64 -6.83 -7.80 -7.91 58.1% 59.1% 0.48 0.48 0.58 0.58 0.72 0.71
DecompDiff -5.67 -6.04 -7.04 -7.09 -8.39 -8.43 64.4% 71.0% 0.45 0.43 0.61 0.60 0.68 0.68

PROMPTDIFF -5.86 -6.51 -7.14 -7.27 -8.33 -8.49 66.8% 73.9% 0.53 0.54 0.58 0.58 0.74 0.72

Figure 4: Reference ligands and generated ligand molecules of TargetDiff (Guan et al., 2023a) and
PROMPTDIFF for 3daf (top row) and 4yhj (bottom row). We report QED, SA, and Vina Dock score
for each molecule.

Ideally, using whole training set for retrieval can significantly improve the both binding- and property-
related metrics as demonstrated in Tab. 4, but it would increase computational burden. Thus we
randomly choose 128 ligand molecules for retrieval for all experiments. Moreover, we can see a
trade-off between property-related metrics (QED and SA) and binding-related metrics in previous
methods. TargetDiff and DecompDiff perform better than AR and Pocket2Mol in binding-related
metrics, but fall behind them in QED and SA scores. In contrast, our PROMPTDIFF not only achieves
the state-of-the-art binding-related scores but also maintains proper QED score, achieving a better
trade-off than TargetDiff and DecompDiff. Nevertheless, we put less emphasis on QED and SA
because they are often applied as rough screening metrics in real drug discovery scenarios, and it
would be fine as long as they are within a reasonable range. Figure 4 shows some examples of
generated ligand molecules and their properties. The molecules generated by our model have valid
structures and reasonable binding poses to the target, which are supposed to be promising candidate
ligands. We visualize more examples of generated molecules in Appendix F.

5.2 MODEL ANALYSIS

Influence of Self Prompting and Exemplar Prompting We investigate the impact of self prompt-
ing and exemplar prompting mechanisms of PROMPTDIFF. We showcase the efficacy of self
prompting and exemplar prompting in our PROMPTDIFF, and put the results in Tab. 3. In particular,
we remove our prompting mechanisms from PROMPTDIFF and use it as baseline. We observe that
simply applying prompting mechanism without our pre-trained PMINet even hurt the generation
performance, because it does not include informative protein-ligand interactions for self refinement.
In contrast, our self prompting significantly improve both binding- and property-related metrics due
to the informative interaction knowledge brought by our pre-trained PMINet. Besides, our exemplar
prompting also has a notable improvement over baseline, revealing that the external target-aware
prompts indeed provide a suitable reference and facilitate the optimization for molecular generation.
Exemplar prompting does not help much in property-related metrics, because we only focus on useful
binding structures in exemplars.

Furthermore, using both self and exemplar prompting achieves the best binding-related metrics,
demonstrating the effectiveness of the two complementary prompting mechanisms in PROMPTDIFF.
Figures 5 and 6 provide both quantitative and qualitative analyses of the similarity between the
generated ligands and their corresponding prompts, indicating that the prompts indeed serve as

8
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0.0 0.2 0.4 0.6 0.8 1.0

All    (mean:0.25)
Prompt (mean:0.30)

Figure 5: The distributions of Tani-
moto similarity between generated lig-
ands and (a) all ligands in database,
and (b) corresponding prompts.

QED: 0.79
SA: 0.66
Vina: -9.05

Target-aware Prompt (Exemplar Ligand) Generated Ligand

2z3h

Figure 6: Example of a generated ligand molecule and its
corresponding prompt. Important substructures shared by
these two molecules are highlighted in the same colors.

Table 3: Ablation studies of self prompting and exemplar prompting in PROMPTDIFF.

Methods
Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

baseline -5.04 -5.75 -6.38 -6.52 -7.55 -7.72 54.2% 54.1% 0.46 0.46 0.57 0.57
prompt without PMINet -4.14 -5.64 -6.11 -6.36 -7.60 -7.67 54.9% 57.5% 0.47 0.48 0.57 0.57
+ self prompting -4.91 -6.03 -6.53 -6.82 -7.95 -8.14 61.5% 64.4% 0.52 0.53 0.59 0.58
+ exemplar prompting -5.39 -6.28 -6.40 -6.67 -8.14 -8.37 64.0% 71.5% 0.51 0.52 0.57 0.57
+ both prompting -5.86 -6.51 -7.14 -7.27 -8.33 -8.49 66.8% 73.9% 0.53 0.54 0.58 0.58

exemplars and guide the generation. More specifically, Figure 6 shows the model may automatically
select critical substructures for high binding affinity to the target from the exemplar prompt ligands
and reassemble them in proper positions to generate molecules.

Effect of Molecule Retrieval Database We investigate the influence of the 3D molecule database
for retrieval in PROMPTDIFF through ablation study on two variables n and k, where n denotes
the size of the molecule database and k denotes the number of prompt exemplars. From the results
in Tab. 4, we observe that larger n can benefit PROMPTDIFF in terms of binding-related metrics,
because higher diversity allows for more binding-related cues (substructures) that can prompt the
generation process. Simply increasing k does not have an obvious improvement because leveraging
more molecule prompts would also introduce more noises into generation process. Kindly note that
the retrieval database is fixed during both training and testing, and we further evaluate the robustness
of our model to the choices of retrieval database in Appendix E.

Table 4: The effect of the size n of molecule database. (↑) / (↓) denotes a larger / smaller number is
better. Top 2 results are highlighted with bold text and underlined text, respectively.

Methods
Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

n = 32 -5.67 -6.21 -7.01 -7.13 -8.13 -8.30 65.2% 72.0% 0.51 0.52 0.56 0.57
n = 64 -5.74 -6.39 -7.07 -7.19 -8.21 -8.35 65.9% 72.8% 0.52 0.53 0.57 0.58
n = 128 -5.86 -6.51 -7.14 -7.27 -8.33 -8.49 66.8% 73.9% 0.53 0.54 0.58 0.58

k = 1 -5.86 -6.51 -7.14 -7.27 -8.33 -8.49 66.8% 73.9% 0.53 0.54 0.58 0.58
k = 2 -5.88 -6.62 -7.25 -7.29 -8.34 -8.42 66.6% 74.4% 0.53 0.54 0.57 0.56
k = 3 -5.97 -6.57 -7.31 -7.22 -8.40 -8.42 66.2% 73.5% 0.52 0.52 0.58 0.59

6 CONCLUSION

In this work, we for the first time propose a prompt-based 3D molecular diffusion model PROMPTD-
IFF for SBDD. We leverage the target-aware prompt ligands to enhance the 3D molecular diffusion
generation with effective self prompting and exemplar prompting mechanisms, significantly improv-
ing the binding affinity measured by Vina while maintaining proper molecular properties. For future
work, we will incorporate other binding-related information into the generation process.
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A TRAINING PROCEDURE

To train PROMPTDIFF (i.e., optimize the evidence lower bound induced by PROMPTDIFF), we use
the same objective function as Guan et al. (2023a). The atom position loss and atom type loss at time
step t− 1 are defined as follows respectively:

L
(x)
t−1 =

1

2β̃2
t

NM∑
i=1

∥µ̃(xi,t,xi,0)− µ̃(xi,t, x̂i,0)∥2 = γt

NM∑
i=1

∥xi,0 − x̂i,0∥; (12)

L
(v)
t−1 =

NM∑
i=1

K∑
k=1

c̃(vi,t,vi,0)k log
c̃(vi,t,vi,0)k
c̃(vi,t, v̂i,0)k

; (13)

where X̂0 and V̂0 are predicted from Xt and Vt, and γt =
ᾱt−1β

2
t

2β̃2
t (1−ᾱt)2

. Kindly recall that xi,t, vi,t,

x̂i,0, and v̂i,0 correspond to the i-th row of Xt, Vt, X̂0, and V̂0, respectively.

The final loss combines the above two losses with a hyperparameter λ as: L = L
(x)
t−1 + λL

(v)
t−1. We

summarize the training procedure of PROMPTDIFF in Algorithm 2 and highlight the differences from
its counterpart, TargetDiff (Guan et al., 2023a), in violet.

Algorithm 2 Training Procedure of PROMPTDIFF

Input: Protein-ligand binding dataset {P,M}Ni=1, neural network ϕθ, external database D, pre-
trained PMINet, number of exemplar ligands in each prompt pool k

1: Screen {P,M}Ni=1 and retrieve ligands with top-k high binding affinity from D using PMINet
to obtain {P,M,D(P, k)}Ni=1 as described in Sec. 4.2

2: while ϕθ not converge do
3: Sample diffusion time t ∈ U(0, . . . , T )
4: Move the complex to make CoM of protein atoms zero
5: Perturb [X0,V0] to obtain [Xt,Vt]
6: Embed Vt into H0

M , and embed VP into H0
P

7: Obtain features H′
M and H′

P with self-prompting based on [X0,V0] (Equation (7))
8: Obtain enhanced protein atom feature H′′

P prompted by D(P, k) (Equation (8))
9: Obtain enhanced ligand atom feature H′′

M prompted by D(P, k) (Equation (9))
10: Predict [X̂0, V̂0] from [Xt,H

′′
M ] and [XP ,H

′′
P ] (Equations (10) and (11))

11: Compute loss L with [X̂0, V̂0] and [XM ,VM ] (Equations (12) and (13))
12: Update θ by minimizing L
13: end while

B TARGET-AWARE MOLECULAR DIFFUSION

In the forward diffusion process, a small Gaussian noise is gradually injected into data as a Markov
chain. Because noises are only added on ligand molecules but not proteins in the diffusion process,
we denote the atom positions and types of the ligand molecule at time step t as Xt and Vt and omit
the subscript M without ambiguity. The diffusion transition kernel can be defined as follows:

q(Mt|Mt−1,P) =

NM∏
i=1

N (xi,t;
√
1− βtxi,t−1, βtI) · C(vi,t|(1− βt)vi,t−1 + βt/K), (14)

where N and C stand for the Gaussian and categorical distribution respectively, βt is defined by fixed
variance schedules. The corresponding posterior can be analytically derived as follows:

q(Mt−1|Mt,M0,P) =

NM∏
i=1

N (xi,t−1; µ̃(xi,t,xi,0), β̃tI) · C(vi,t−1|c̃(vi,t,vi,0)), (15)

where µ̃(xi,t,xi,0) =
√
ᾱt−1βt

1−ᾱt
xi,0+

√
αt(1−ᾱt−1)

1−ᾱt
xi,t, β̃t =

1−ᾱt−1

1−ᾱt
βt, αt = 1−βt, ᾱt =

∏t
s=1 αs,

c̃(vi,t,vi,0) =
c∗∑K

k=1 c∗k
, and c∗(vi,t,vi,0) = [αtvi,t + (1− αt)/K]⊙ [ᾱt−1vi,0 + (1− ᾱt−1)/K].
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In the approximated reverse process, also known as the generative process, a neural network param-
eterized by θ learns to recover data by iteratively denoising. The reverse transition kernel can be
approximated with predicted atom types v̂i,0 and atom positions x̂i,0 as follows:

pθ(Mt−1|Mt,P) =

NM∏
i=1

N (xi,t−1; µ̃(xi,t, x̂i,0), β̃tI) · C(vi,t−1|c̃(vi,t, v̂i,0)). (16)

C SELF PROMPTING

Here we offer more insights about self prompting. During sampling, at time step t, we utilize the
protein-ligand interaction information embedded in PMINet(Mpred

t+1 ,P) to guide the generative
process itself. For efficient training, given a protein-ligand pair (P,M), due to inaccessibility of
Mpred

t+1 , we directly replace it with the ground truth ligand molecule M.

Because the training objective is to generate M given P , a straightforward question is whether
using M as input would provide a shortcut signal for the model and lead to its training collapse.
Thanks to the design of PMINet, the model cannot naively rely on the input M to generate M.
More specifically, in PMINet, M and P are first input into two separate EGNNs, and only the
produced SE(3)-invariant features, which are agnostic to the coordinate systems, are further input in
the cross-attention layer to capture the protein-ligand interaction information. Thus, in the output
produced by the cross-attention layer of PMINet, the relative positions and poses between the protein
and ligand molecule in the physical world are eliminated, and only the protein-ligand interaction
information in the feature space is kept. This means no shortcut signal is left for the model during
training and the model still needs to normally learn from the protein context to generate the ligand
molecule.

D IMPLEMENTATION DETAILS

D.1 DETAILS OF PMINET

Input Initialization To represent each protein atom, we use a one-hot element indicator {H, C, N,
O, S, Se} and one-hot amino acid type indicator (20 types). Similarly, we represent each ligand atom
with a one-hot element indicator {C, N, O, F, P, S, Cl}. Additionally, we introduce a one-dimensional
flag to indicate whether the atoms belong to the protein or ligand. Two 1-layer MLPs are used to map
the input protein and ligand into 128-dim latent spaces respectively.

Model Architectures We aim to use PMINet to model the complex 3D interactions between
the atoms of proteins and ligands. To achieve this, we use two shallow SE(3)-equivariant neural
networks for geometric message passing on the fully-connected graphs of the protein and ligand,
respectively. We then apply a cross attention layer to the paired protein-ligand graph for learning the
inter-molecule interactions. Finally, we use a sum-pooling layer to extract a global representation of
the protein-ligand pair by pooling all atom nodes. And a two-layer MLP is introduced to predict the
binding affinity SAff. More details about the model architecture are provided in Tab. 6.

Training Details During the training, we use the Mean Squared Error (MSE) loss with respect
to the difference between the predicted and ground truth binding affinity scores as the optimization
objective. We train PMINet on a single NVIDIA V100 GPU, and we use the Adam as our optimizer
with learning rate 0.001, betas = (0.95, 0.999), batch size 16. The experiments are conducted on
PDBBind v2016 dataset as mentioned in main text.

Evaluation of PMINet We evaluate PMINet’s effectiveness in predicting binding affinity, and
compare it with a baseline model which is specifically designed for binding affinity prediction,
i.e., GraphDTA (Nguyen et al., 2021). Following Li et al. (2021), we select Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), Pearson’s correlation coefficient (R) and the standard
deviation (SD) in regression to measure the prediction error. The testing results are present in Tab. 5,
indicating the rationality of our model design. In PROMPTDIFF, we use PMINet to serve as a
binding-aware ligand retriever and a protein-ligand interaction information extractor.
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Table 5: Performance of PMINet in binding affinity prediction. (↑) / (↓) denotes a larger / smaller
number is better. Top 1 results are highlighted with bold text.

Methods RMSE (↓) MAE (↓) SD (↓) R (↑)

GraphDTA 1.562 1.191 1.558 0.697
PMINet 1.554 1.193 1.520 0.716

D.2 DETAILS OF PROMPT-BASED DIFFUSION MODEL

Input Initialization For balancing the computational burden and the generation performance, we
construct the retrieval 3D molecule database by randomly sampling 128 ligand molecules from the
training set of CrossDocked2020, and the database is fixed in both training and testing. Then for each
target protein, we use PMINet to scan the retrieval database and only select one ligand with the top-1
binding affinity predicted as the prompt molecule. To represent each protein atom, we use a one-hot
element indicator {H, C, N, O, S, Se} and one-hot amino acid type indicator (20 types). Similarly, we
represent each ligand atom using a one-hot element indicator {C, N, O, F, P, S, Cl}. Additionally, we
introduce a one-dimensional flag to indicate whether the atoms belong to the protein or ligand. Two
1-layer MLPs are introduced to map the inputs of protein and ligand into 128-dim spaces respectively.
For representing the connection between atoms, we introduce a 4-dim one-hot vector to indicate four
bond types: bond between protein atoms, ligand atoms, protein-ligand atoms or ligand-protein atoms.
And we introduce distance embeddings by using the distance with radial basis functions located at 20
centers between 0 Å and 10 Å. Finally we calculate the outer products of distance embedding and
bond types to obtain the edge features.

Model Architectures At the l-th layer, we dynamically construct the protein-ligand complex with
a k-nearest neighbors (knn) graph based on coordinates of the given protein and the ligand from
previous layer. In practice, we set the number of neighbors kn = 32. As mentioned in Sec. 4.3,
we apply an SE(3)-equivariant neural network for message passing. The 9-layer equivariant neural
network consists of Transformer layers with 128-dim hidden layer and 16 attention heads. Following
Guan et al. (2023a), in the diffusion process, we select the fixed sigmoid β schedule with β1 = 1e−7
and βT = 2e−3 as variance schedule for atom coordinates, and the cosine β schedule with s = 0.01
for atom types. The number of diffusion steps are set to 1000.

Training Details We use the Adam as our optimizer with learning rate 0.001, betas = (0.95, 0.999),
batch size 4 and clipped gradient norm 8. We balance the atom type loss and atom position loss by
multiplying a scaling factor λ = 100 on the atom type loss. We train the parameterized diffusion
denoising model of our PROMPTDIFF on a single NVIDIA V100 GPU, and it could converge within
200k steps.

Table 6: Details of both PMINet and Prompt-based Diffusion Model in our PROMPTDIFF

Network Module Backbone Input Dimensions Output Dimensions Blocks

PMINet
Protein Encoder EGNN NP × 128 NP × 128 2
Ligand Encoder EGNN NM × 128 NM × 128 2
Interaction Layer Graph Attention Layer (NP +NM )× 128 (NP +NM )× 128 1
Pooling Sum-pooling (NP +NM )× 128 1× 128 1

Prompt-based
Diffusion Model

Position Dynamics Transformer (NP +NM )× 3 (NP +NM )× 3 9
Atom Type Dynamics Transformer (NP +NM )× 128 (NP +NM )× 128 9
Protein Fusion Layer MLP NP × (128 + 128) NP × 128 1
Ligand Fusion Layer CrossAttention {NM × 128, Nprompt × 128} NM × 128 1

E ABLATION STUDY

Robustness to The Choice of Retrieval Dataset In our experiments, we use the same 3D molecule
database for searching target-aware molecular prompts in training and testing. Here we randomly
choose two molecule databases for training and testing, and investigate how well our PROMPTDIFF
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adapts to novel prompts in testing stage. To simplify the experiments, we set the size of the molecule
database to 128 and set the number of ligand prompts to 1. As presented in Tab. 7, even with a new
molecule database in testing phase, PROMPTDIFF can still find useful ligand prompts and achieve the
same promising generation results. It reveals that our PROMPTDIFF has an excellent generalization
ability and is not reliant on a specific molecule database for molecule retrieval.

In addition, we want to investigate whether reselecting a different molecular database would have an
impact on the generation results. We randomly choose another two set of molecules and use them to
train our PROMPTDIFF. As demonstrated in Tab. 7, reselecting a different molecular database does
not have an obvious impact on the generation results, because PROMPTDIFF only focuses on useful
substructures in prompts not the whole structure, demonstrating the robustness of our method.

Table 7: Results of evaluating the model robustness. (↑) / (↓) denotes a larger / smaller number is
better. Top 2 results are highlighted with bold text and underlined text, respectively. "reselect-1" and
"reselect-2" denote two reselected molecular databases.

Methods
Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑) Diversity (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

PROMPTDIFF -5.86 -6.51 -7.14 -7.27 -8.33 -8.49 66.8% 73.9% 0.53 0.54 0.58 0.58 0.72 0.72
with novel set -5.83 -6.55 -7.16 -7.19 -8.26 -8.45 66.2% 73.3% 0.53 0.54 0.60 0.59 0.72 0.71
reselect-1 -5.85 -6.53 -7.21 -7.23 -8.33 -8.44 66.5% 73.5% 0.52 0.53 0.61 0.61 0.71 0.72
reselect-2 -5.84 -6.49 -7.16 -7.25 -8.34 -8.47 66.6% 74.1% 0.53 0.54 0.58 0.58 0.72 0.73

F MORE VISUALIZATION RESULTS

We provide the visualization of more ligand molecules generated by PROMPTDIFF, comparing to
both reference and TargetDiff (Guan et al., 2023a), as shown in Figure 7.

We provide the source files containing generated molecules and the evaluation code that can reproduce
the results in Tab. 2 in the supplementary material.

We are committed to open source the code of training and inference as well as the pre-trained model
upon paper acceptance.
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Figure 7: Examples of generated ligands. Carbon atoms in reference ligands, ligands generated by
TargetDiff (Guan et al., 2023a) and our model are visualized in green, cyan, and orange respectively.
We report QED, SA, and Vina Dock score for each molecule.
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