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Abstract

Previous studies have made great advances in
RST discourse parsing through neural frame-
works or efficient features, but they usually split
the parsing process into two subtasks and heav-
ily depended on gold segmentation. In this
paper, we introduce an end-to-end method for
sentence-level RST discourse parsing via trans-
forming it into a text-to-text generation task.
Our method unifies the traditional two-stage
parsing and generates the parsing tree directly
from the input text without requiring a compli-
cated model. Moreover, the EDU segmentation
can be simultaneously generated and extracted
from the parsing tree. Experimental results
on the RST Discourse Treebank demonstrate
that our proposed method outperforms existing
methods in both tasks of sentence-level RST
parsing and discourse segmentation. Consid-
ering the lack of annotated data in RST pars-
ing, we also create high-quality augmented data
and implement self-training, which further im-
proves the performance.

1 Introduction

Discourse parsing involves determining the struc-
ture of elementary units forming a discourse and
how they are connected with each other. In a
coherent text, units are often organized logically
and semantically with certain relationships. Early
studies have demonstrated that discourse parsing
can benefit various downstream NLP tasks, includ-
ing sentiment analysis (Polanyi and van den Berg,
2011; Bhatia et al., 2015), summarization (Louis
et al., 2010; Gerani et al., 2014), question answer-
ing (Jansen et al., 2014) and machine translation
evaluation (Joty et al., 2017).

RST parsing based on Rhetorical Structure The-
ory (Mann and Thompson, 1987), is one of the
most common and influential parsing methods in
discourse analysis. According to RST, a text is first
segmented into several clause-like units as leaves of
the corresponding parsing tree, called elementary
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Figure 1: An example from RST Discourse TreeBank.

discourse units (EDUs). Through certain rhetorical
relations among adjacent spans, such as Elabora-
tion and Joint, underlying EDUs or larger text spans
are recursively linked and merged to form their par-
ent nodes, representing the concatenation of them.
Finally, a hierarchical tree structure is constructed.
Besides rhetorical relations, sibling nodes in the
parsing tree contain a kind of nucleus-satellite re-
lations to show who is more central or equal to
the discourse structure. Figure 1 shows an RST
parsing tree for a sentence from the RST Discourse
TreeBank (Carlson and Marcu, 2001), which is the
most common discourse corpus.

In the past, various approaches have been pro-
posed for both document-level and sentence-level
RST parsing, which can be mainly divided into
bottom-up and top-down methods. Earlier work
like transition-based approaches utilized the repre-
sentation learned through manually-designed fea-



tures or neural networks to build shift-reduce
parsers (Ji and Eisenstein, 2014; Yu et al., 2018).
The whole parsing tree is gradually built in a se-
quence of actions, including shift and reduce. Then,
benefiting from the development of neural net-
works, top-down approaches (Lin et al., 2019; Liu
et al., 2019; Zhang et al., 2020) made use of the
pointer network (Vinyals et al., 2015) to segment
text into shorter units recursively until no more
units can be generated.

Although many advances have been made in
RST parsing, the real performance of existing meth-
ods may be far from satisfactory. Most studies
before followed the traditional settings to split the
parsing process into two stages, namely segmenting
EDUs and building parsing trees. They employed
their models only on the second stage and treated
the gold EDU segmentation as a requisite, which
is, however, infeasible in real application scenarios.
The segmenter trained in the first stage can gener-
ate automatic segmentation as a substitute, but the
performance of those parsing methods would drop
a lot accordingly. This may be caused by errors in
segmenters transmitting to the parsing stage. More-
over, previous methods relied on additional features
or complicated frameworks for different parts of
parsing like relation label prediction, which did not
take full advantage of knowledge in the task.

In this paper, we focus on sentence-level RST
parsing and introduce a simple end-to-end method
which can generate the target parsing tree di-
rectly from the corresponding text. It is benefi-
cial since sentence-level discourse analysis has
relatively high accuracy and can be applied to
many NLP tasks like sentence compression (Sori-
cut and Marcu, 2003). Moreover, sentence-level
parsing is essential and serves as a basic step in
some document-level parsers (Wang et al., 2017;
Kobayashi et al., 2020). Therefore, the improve-
ment of sentence-level parsing may promote further
progress in discourse parsing.

Our proposed method converts RST parsing into
a text-to-text generation task by reformulating the
parsing tree into a natural language sequence. The
information contained in text content, hierarchical
structures, and relation labels in the parsing tree can
be integrated and learned together by the generation
model. Experimental results demonstrate that our
method outperforms previous approaches without
using gold segmentation. In addition, our method
can generate the EDU segmentation simultaneously

during parsing, which has even better performance
than other segmenters specifically trained on this
task. In view of the lack of annotated data in RST
parsing, we also attempt to generate high-quality
augmented data to obtain extra enhancement.

Our primary contributions are as follows: (1)
we propose a simple but effective end-to-end ap-
proach to sentence-level RST parsing without using
gold segmentation and additional auxiliary infor-
mation; (2) our method generates the parsing tree
with the EDU segmentation simultaneously and
outperforms previous models on both tasks; (3)
we attempt to generate augmented data for self-
training to further improve the performance. The
code will be released to the community.

2  Our Method

Over the past year, a new paradigm based on pow-
erful pretrained language models has emerged and
brought remarkable improvement in many areas.
Instead of adapting pretrained models to different
downstream tasks through specific network layers
and objective engineering, now downstream tasks
are reformulated close to the pretraining tasks (Liu
et al., 2021). Similar seq2seq methods have also
been applied to parisng tasks like constituent pars-
ing (Liu et al., 2018; Ferndndez-Gonzélez and
Gomez-Rodriguez, 2020). However, it still re-
mains a significant challenge for more complex
and longer data structures, like RST parsing trees.

Motivated by the idea above, we propose a
method to reformulate the parsing tree into the
form of a linear sequence so as to utilize existing
seq2seq models. We show that our new text-to-text
task can make great use of the latent knowledge in
pretrained models like TS5, without additional fea-
tures or neural frameworks. Furthermore, we use
constrained decoding to ensure well-formed out-
put sequences that can be restored and evaluated
through a series of post-processes, yielding more
accurate predictions.

2.1 Linearization

In the original RST Discourse TreeBank, RST pars-
ing trees are stored as a set of text spans together
with their relation labels. Marcu (2000) first for-
mally encoded the RST parsing tree in the form of
a constituent tree, as shown in Figure 2(a), which
was followed by the majority of subsequent parsing
methods. As in previous studies on the RST-DT,
we also construct the constituent tree and then bi-
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Figure 2: The process of reformulation for the RST parsing tree from Figure 1 according to our method.

narize the tree using right-branching, as shown in
Figure 2(b). The binarization has been a common
assumption (Soricut and Marcu, 2003; duVerle and
Prendinger, 2009) and can help reformulate parsing
trees more regularly and suitably for training and
evaluation since more restrictions are imposed.

Then, based on the priority level contained in
brackets, we attempt to represent hierarchical ar-
chitecture by nesting several pairs of brackets. The
linearization is carried out from the bottom up ac-
cording to postorder traversal. We replace each
leaf that represents a single EDU with a sequence
comprised of a left bracket, text content, a right
bracket, and its nuclearity and rhetorical relation
labels. Blank characters are added to each interval
between different elements.

As for intermediate nodes, we perform the same
process except that the concatenation of new rep-
resentations of two child nodes serves as the text
content. Since the root does not contain any la-
bels, it simply merges two child nodes with a pair
of outermost parentheses. The postorder traversal
ensures that intermediate nodes will be processed
after their child nodes are updated, and the root is
the last one to be considered, resulting in the final
linear sequence of the parsing tree.

Different from the linearization method from
Braud et al. (2016), we reformulate the whole pars-
ing tree instead of each single EDU. Moreover,
considering that Paolini et al. (2021) proved and
encouraged the use of the entire input to promote
the performance, our linear sequence is designed

to contain a complete copy of the corresponding
input text. And the full specifications of nuclearity
and rhetorical relation labels are retained to make
full use of the latent knowledge since they must be
learned during pretraining and can be understood
by language models.

Through these steps, the format of reformulated
sequences is unified and normative, with each pair
of inner brackets containing text content followed
by two relation labels. And the postorder traversal
guides the model to understand the text content
before predicting labels, which is in accordance
with the way of humans. Besides, we use square
brackets in linearization to avoid confusion since
the input text itself may contain parentheses. The
target linear sequence of the RST parsing tree in
Figure 2(b) is shown in Figure 2(c).

2.2 Seq2seq Training

Since the input and new output of the task are both
sequences, RST parsing can thus be trained or fine-
tuned on any generation model as a text-to-text
generation task. Pretrained seq2seq models like
T5 (Raffel et al., 2020) are able to transfer the re-
lated latent knowledge to our new RST parsing task,
since the reformulated sequences are designed to
be close to natural language text. Despite the lack
of annotated data in the parsing task, our method
works well without extra complicated frameworks
or features. In the meantime, the subtasks of EDU
segmentation and prediction of structure and rela-
tions are all integrated into the single process of text



generation, which is superior to other approaches
in terms of efficiency.

2.3 Constrained Decoding

During the process of inference, the seq2seq model
should generate the target output token-by-token
according to the probability distribution. However,
since our output sequence is supposed to observe
the linearization formats that we designed before,
traditional greedy decoding or beam search algo-
rithms will inevitably lead to format errors includ-
ing wrong content and mismatched brackets or re-
lation labels.

To eliminate the above problems, we employ the
constrained decoding methods (Hokamp and Liu,
2017; Post and Vilar, 2018; Chen et al., 2020) to
constrain the selection of tokens in each inference
step. Specifically, we dynamically modify the can-
didate vocabulary set in beam search according to
the current generated state and sequence. For ex-
ample, a token of rhetorical relations and nuclearity
relations must be followed by a nuclearity relation
and a close bracket, respectively. And if the current
token belongs to a word in the original sentence,
then the next token has to be a close bracket to
indicate the end of an EDU or the next word in the
original sentence.

In addition, we also consider controlling the
ending of generated sequences. Because EDUs
in our linearization are always inside the innermost
brackets, the reformulated sequence must contain
(2n — 1) pairs of brackets and (2n — 2) pairs of re-
lation labels if the number of EDUs is n. So we can
count up the number of close brackets to decide
whether the end token <eos> should be selected
next step if the current token is a close bracket. The
only problem left is the uncontrollable number of
open brackets because there are no corresponding
restrictions that can be imposed. However, through
our restoration algorithm in the next section, they
will not influence the following revaluation.

2.4 Postprocessing

In the postprocessing, we employ a recursive al-
gorithm on the generated sequence based on the
designed format in reformulation to reconstruct the
constituent tree through continually merging bot-
tom text spans until only the root remains.
Benefiting from the binarization, it is clear that
each combination will only involve two leaf spans.
In our experiments, no more than 2% of the out-
put sequences have format errors (namely the mis-

matched open brackets), and they do not affect our
algorithm because the open bracket is only used to
judge whether the current sequence unit contains
the text content. More details are shown in Algo-
rithm 1. The sequence is finally converted into the
set of connected constituents for evaluation without
using ground truth parsing trees.

Algorithm 1 Restore the constituent tree

Input: Target sequence S, input sentence I
1: Initialization: T =[], nodes =[],i=0

2: Seq_unit = S.split(’]’)

3: Uy = Seq_unit[k].split(’[*), 0 < k < len(Seq_unit)
4: repeat

5 if ’[’ in Seq_unit[i] then

6: cur_label = U;11[0]

7 cur_text = U;[-1]

8 push(nodes, (cur_text, cur_label))

9 else if len(nodes) > 1 then

10: (texty, label;) = pop(nodes)

11: (texta, labels) = pop(nodes)

12: push(T, (texty, labely, textz, labelz))
13: cur_label = U;4+1[0]

14: cur_text = text; +° ’ + texts

15: push(nodes, (cur_text, cur_label))
16: end if

17: i=i+1

18: until I = top(nodes).text
Output: T as the set of connected constituents in the con-
stituent tree

3 Experiments

In this section, we introduce the dataset and set-
tings in our experiments and present the results of
our end-to-end method for both sentence-level RST
parsing and discourse segmentation. The improve-
ment of the augmented data we create is demon-
strated as well.

3.1 Datasets

We implement our experiments on the RST Dis-
course TreeBank (Carlson et al., 2001), which is
the standard dataset also used by other studies. It is
the largest available discourse corpus and contains
385 Wall Street Journal English articles selected
from the Penn Treebank (Marcus et al., 1993), 347
documents (7673 sentences) for training and 38
documents (991 sentences) for testing.

To construct the dataset for sentence-level RST
parsing, we follow the same preprocessing step
as Joty et al. (2012); Liu et al. (2019); Lin et al.
(2019) to select sentences that consist of several



Dataset #Training  #Test
Doc-level RST-DT 347 38
Sent-level RST-DT 7321 951
Discourse Segmentation / 991

Table 1: The statistics of datasets for different tasks in
our experiments.

EDUs and form the subtrees of document-level
parsing trees. In all, we obtain 7321 sentences for
training and 951 for testing, together with their
parsing trees for the RST parsing task, which is the
same scale as reported in previous studies.

As for discourse segmentation, we directly ex-
tract the segmentation predictions from the se-
quences generated by the trained parsing model,
so there is no need for a training set. During
evaluation, we keep the test set the same as Lin
et al. (2019) to use the full 991 sentences. It is
worth noting that we indeed only utilize the infor-
mation from 7321 sentences in our segmentation
task, while other works especially trained their seg-
menters with the entire 7673 sentences. For both
tasks, we randomly select 10% of the training data
for hyperparameter tuning. An overview of these
datasets is shown in Table 1.

3.2 Model and Settings

In our experiments, we select T5-base (Raffel et al.,
2020) as the pretrained model. The family of T5
models is the encoder-decoder model pretrained on
various tasks converted into the text-to-text format,
which caters to our method. We also attempt the
byte-level ByT5 (Xue et al., 2021) and other gen-
erative pretrained models, such as BART (Lewis
et al., 2020), but they are less effective.

In the training process, we set the batch size to
16, and the maximum input and output sequence
length to that of the longest sequence, which is not
longer than 512. The training epoch is set to 50
in end-to-end parsing and 40 in experiments with
augmented data. The Adamw optimizer is used
with a initial learning rate of 3e-4 together with
the cosine learning rate decay scheduler, and the
warmup rate is set to 0.1.

During inference, we employ beam search with
a beam size of 24 and our constrained decoding
methods. To achieve stable decoding performance,
we average the model parameters over the last five
epochs. All the experiments are repeated at least
five times with different random seeds, and the

average results are reported.

3.3 Evaluation Metric

To evaluate the performance of our method, we fol-
low RST-Parseval metrics (Marcu, 2000), contain-
ing micro-averaged F1-scores of unlabeled (Span)
and labeled (Nuclearity, Relation). For fair compar-
ison, we use 18 rhetorical relations defined in Carl-
son and Marcu (2001), same as other sentence-level
RST parsing studies (Liu et al., 2019; Lin et al.,
2019).

In the task of discourse segmentation, we evalu-
ate the performance only with respect to the intra-
sentential segment boundaries and report the results
of precision, recall, and micro-averaged F1-score
to keep the same with Wang et al. (2018).

3.4 Data Augmentation

Before demonstrating the experiment results, we in-
troduce our data augmentation strategies. The lack
of annotated RST parsing trees has been hinder-
ing research on discourse parsing since annotators
must be experts in discourse analysis and the man-
ual designed for the annotation is quite complicated.
From this point, we intend to expand the training
set with the augmented data, which is generated
and filtered according to our designed rules.

Considering that the RST-DT consists of only
a small part of the documents in the WSJ corpus
and the rest remain without annotation, we can use
them to create silver data which keeps the same
domain as the RST-DT. First, the documents in the
WSJ corpus that are not selected for annotation
in RST-DT are extracted and split into sentences
similarly. We choose three parsers trained by our
end-to-end method with different random seeds and
utilize them to generate candidate output sequences
for each sentence we have selected. In this way, we
can get the initial and promiscuous instances for
parsing, each instance with an input sentence and
three plausible output sequences.

To obtain the high-quality data, we check these
sequences according to the format we design in the
reformulation. And the rule of annotation for RST
parsing is also taken into consideration. Consid-
ering our constrained decoding methods, we only
need to discard the sequences that have mismatched
numbers of open brackets. For the rest of the se-
quences, we employ Algorithm 1 on each of them
to restore the constituent information and check
whether the relation labels follow the rule of anno-
tation. When nucleus and satellite relations appear



Dataset #Sentence #Avg EDU #Avg word
Training set 7321 248 20.31
Initial silver data 41387 2.79 26.77
+ filtering rules 36266 247 24.55

Table 2: The statistics of original training set and our
augmented dataset.

Approach ‘ S N R
Soricut and Marcu (2003) 76.70 70.20 58.00
Joty et al. (2012) 82.40 76.60  67.50
Lin et al. (2019) (ELMo) 91.14 8580 76.94
Lin et al. (2019) (Joint) 91.75 8638 7752
Our Method

End-to-end parser 92.89  88.04  80.11
+ constrained decoding 93.27 88.47  80.55
+ constrained decoding | 9351 gggg 8128
with data augmentation

Table 3: Results for sentence-level RST parsing without
gold EDU segmentation. The columns of S, N and R
indicate the micro-averaged F1-scores of Span, Nucle-
arity and Relation respectively.

together, they should be assigned the label Span
and a rhetorical relation label, respectively. And
two nucleus relations should use the same relation
labels other than the label Span.

Through the strategies above, we get those well-
formed sequences that follow the labeling rules
and have no format errors. If an input sentence
still pairs with more than one candidate output se-
quence, we decide the target sequence via majority
voting. The details of our augmented dataset with
filtering rules are shown in Table 2. It can be found
that the average numbers of EDUs and words in the
augmented dataset approach those of the training
set after filtering, which helps to reduce the distri-
bution difference between the two datasets. Finally,
we add this high-quality silver data into the original
training set to train our paring model.

3.5 Experimental Results

We evaluate our method on both tasks: (a) sentence-
level RST parsing; (b) discourse segmentation.
Benefiting from our end-to-end method, the parsing
tree can be directly built from the corresponding
input text without using gold EDU segmentation.
And the EDU segmentation is predicted simultane-
ously during parsing and can be extracted from the
generated parsing tree as the attached results.
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Figure 3: The performance variation curve with differ-
ent portions of the training set.

RST parsing Since our end-to-end method uni-
fies the traditional two stages of RST parsing, we
compare our results with the models that also do
not make use of gold EDU segmentation (Soricut
and Marcu, 2003; Joty et al., 2012; Lin et al., 2019).
These methods utilized extra trained automatic seg-
menters to generate imprecise segmentation and
send it to their parsing models to build the pars-
ing tree. Besides the pattern of the pipeline, Lin
et al. (2019) proposed jointly training the segment-
ing and parsing models and used the contextual
embedding from ELMo (Peters et al., 2018) and
BERT (Devlin et al., 2019) to further improve the
performance on both tasks.

We demonstrate the results in Table 3. The
performance of our end-to-end method with con-
strained decoding is substantially better than pre-
vious models, with the improvement of approxi-
mately 1.5, 2.1 and 3.0 absolute points in Span,
Nuclearity and Relation respectively. The obvious
advancement in Nuclearity and Relation illustrates
that the integration of relation labels and input text
can be learned more effectively through our re-
formulation, compared with the traditional form
of classification tasks with separate frameworks.
Moreover, our constrained decoding method also
has a major improvement in Nuclearity and Rela-
tion since the restrictions imposed mainly affect
the label prediction.

To further explore the influence of the scale of
training data, we also experiment with 50%, 60%,
70%, 80% and 90% of the training set. The re-
sults in Figure 3 show that our method can out-
perform the model from Lin et al. (2019) by only
using half of the training set. And the performance
curve indicates that more instances may still be able



Approach ‘ P R F1
Human Agreement | 9850 9820  98.30
Soricut and Marcu (2003) 83.80 86.80 85.20
Joty et al. (2012) 88.00 9230  90.10
Lietal. (2018) 91.08 91.03 91.05
Wang et al. (2018) 92.04 9441 9321
Lin et al. (2019) (BERT) 92.05 95.03 9351
Lin et al. (2019) (ELMo) 94.12 96.63 9535
Lin et al. (2019) (Joint) 9334 9788 95.55
Gessler et al. (2021) 96.80 9592  96.35
Our Method

Extraction from parsing 9542  96.77  96.09
+ constrained decoding 95.58 97.00  96.29
+ constrained decoding | g5 06 9711 9648
with data augmentation

Table 4: Results for discourse segmentation. The
columns of P, R and F1 indicate the Precision, Recall
and micro-averaged F1-score respectively.

to promote the performance of the parser. Then
we combine the original training set with our aug-
mented data and repeat the training process simi-
larly. The results of our end-to-end parser with the
constrained decoding and augmented data can also
be found in Table 3, which gets further enhance-
ment in all aspects, particularly the Relation.

Discourse segmentation In fact, a parsing tree
itself contains the EDU segmentation of the corre-
sponding text because it is EDUs that serve as the
leaves of the tree structure. Since we built the pars-
ing tree from the input sentence without gold EDU
segmentation, we equivalently perform the segmen-
tation task at the same time through extracting the
EDU segmentation from the generated parsing tree.
We evaluate the performance and show the results
in Table 4.

Generally, our segmentation prediction extracted
from parsing trees performs better than previous
studies, with the highest F1-score. The constrained
decoding method and augmented data also help
to further improve the performance, but are less
effective than in the parsing task. With higher ac-
curacy, the segmenter may generate fewer wrong
EDUs that do not exist in the gold segmentation
set, reducing the error accumulation. Moreover,
considering that we utilize a smaller training set
compared with other studies and they trained their
models specifically for this task, our method shows
superiority in terms of efficiency.
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Figure 4: Performances on Span, Nuclearity and Rela-
tion, together with the portion of instances containing
format errors with different numbers of EDUs.

3.6 Error Analysis

In Figure 4, we show the respective performances
of instances with different numbers of EDUs. The
micro Fl-scores of Span and Nuclearity drop as
the number of EDUs increases, while Relation
achieves a low score when the instance only in-
cludes two EDUs. We suppose that the increas-
ing difficulty of parsing longer sentences reduces
the performance of our method since it remains
a challenging problem for the language model to
understand long sequences. In addition, short sen-
tences may not contain sufficient information for
the model to infer the Relation label, considering
that there are 18 rhetorical relations to be identified,
while the nuclearity relations only contain two.

The portion of instances with format errors is
also reported in Figure 4. The gradual growth of
format errors as the number of EDUs increases
shows the difficulty for the model in generating
long sequences precisely in keeping with our lin-
earization formats. It can also be proven by the
decreasing average EDUs of silver data after the
filtering rules. It is challenging but significant for
future research to explore how to improve our end-
to-end method when dealing with long sequences
since it is the main performance bottleneck.

We also show the confusion matrix for eight se-
mantically similar rhetorical relation labels in Fig-
ure 5, some of which are also mentioned in other
studies. Our method fails to effectively distinguish
between Temporal and Joint, Comparison and Con-
trast, but succeeds in Explanation and Elaboration.
An example of our successfully predicted difficult
instances can be found in Appendix A.
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4 Related Work

Discourse parsing describes the hierarchical tree
structure of a text and can be used in quality evalu-
ation like coherence and other downstream appli-
cations. In the past, various approaches on RST
parsing have been proposed, mainly divided into
two classes: top-down and bottom-up paradigms.
In earlier studies, bottom-up methods have been
first purposed since hand-engineered features be-
came mainstream tools. Soricut and Marcu (2003)
first proposed a bottom-up CKY-like approach with
syntactic and lexical features for sentence-level
parsing. Models with CKY-like algorithms (Her-
nault et al., 2010; Joty et al., 2013; Feng and Hirst,
2014; Li et al., 2014) utilized diverse features to
learn the scores for different subtrees and searched
all possible parsing trees to find the most likely one
for a text. Although these methods achieved high
accuracy, they suffered from slow parsing speed.
Another common bottom-up method is the
transition-based parser, which generates the RST
parsing tree during a sequence of shift and reduce
action decisions. Ji and FEisenstein (2014) intro-
duced a neural shift-reduce parser with representa-
tion learning methods. Wang et al. (2017) proposed
a two-stage parser based on SVMs with plenty of
features. Then Yu et al. (2018) trained a transition-
based parser with implicit syntactic features from
dependency parsing and achieved great success.
Despite their good efficiency, these methods lack
sufficient lookahead guidance for each decision and

may not achieve the best result in the long run.

Thanks to the recent advancement of neural
methods, it is possible to represent the text effec-
tively in a global view, which promoted top-down
parsers. Lin et al. (2019) first presented a seq2seq
model for sentence-level RST parsing based on
pointer networks (Vinyals et al., 2015) and Liu
et al. (2019) improved it with hierarchical structure.
Then Zhang et al. (2020) extended their methods
to document-level RST parsing. Kobayashi et al.
(2020) constructed subtrees for three granularity
levels of text and merged them together.

Despite the success of top-down models, most
of them still utilized gold EDU segmentation as a
necessity and dropped a lot in performance when
using automatic segmenters. However, it is more
practical that the parsing tree should be constructed
directly from the input text. And the two-stage pro-
cess may lead to error accumulation from segment-
ing to parsing. Nguyen et al. (2021) introduced an
end-to-end parsing model, but it relied on differ-
ent frameworks for structure and label prediction
and improved with the help of artificial sentence
guidance. In addition, we find contemporaneous
work of Zhang et al. (2021) before our submis-
sion. They introduced a complicated system with
rerankers and we follow ACL’s policy and do not
make comparisons with this work. Our end-to-end
approach, on the other hand, transforms RST pars-
ing into a text generation task, eliminating the need
for additional knowledge and specific frameworks.

5 Conclusions

In this paper, we propose a simple but effective
end-to-end method for sentence-level RST parsing
to generate the parsing tree directly from the in-
put text. We convert RST parsing into text-to-text
generation by reformulating each parsing tree into
an equivalent linear sequence. Benefiting from
the latent knowledge in pretrained models, our
method does not require additional features or neu-
ral frameworks and can simultaneously perform
the discourse segmentation during parsing. Experi-
mental results show that our method outperforms
existing approaches on both tasks. Furthermore,
we create high-quality augmented data to alleviate
the lack of annotated RST parsing trees and further
improve the performance of our method. In future
research, we will explore how to better deal with
long sequences and effectively apply our method
to document-level RST parsing.
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A Example Demonstration

Figure 6 shows an instance mistakenly la-
beled Summary as Elaboration by the other
parser Nguyen et al. (2021), but is successfully
predicted by our method. We also demonstrate the
corresponding output sequence from our method
together with the restored parsing tree and the ex-
tracted EDU segmentation.
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((a) Input Sentence )

The natural resources development concern said proceeds will be used to repay long-term debt, which stood at 598 million Canadian dollars
(US$510.6 million) at the end of 1988.

((b) Output Sequence )

[ [ The natural resources development concern said ] Satellite attribution [ [ proceeds will be used ] Nucleus span [ [ to repay long-term debt, ]
Nucleus span [ [ [ which stood at 598 million Canadian dollars ] Nucleus span [ (US$510.6 million) ] Satellite summary ] Nucleus same-unit [ at
the end of 1988. ] Nucleus same-unit ] Satellite elaboration ] Satellite enablement ] Nucleus span ]

((c) Restored Constituents )

(which stood at 598 million Canadian dollars Nucleus span (US$510.6 million) Satellite summary)

(which stood at 598 million Canadian dollars (US$510.6 million) Nucleus same-unit at the end of 1988. Nucleus same-unit)

(to repay long-term debt, Nucleus span which stood at 598 million Canadian dollars (US$510.6 million) at the end of 1988. Satellite elaboration)
(proceeds will be used Nucleus span to repay long-term debt, which stood at 598 million Canadian dollars (US$510.6 million) at the end of 1988.
Satellite enablement)

(The natural resources development concern said Satellite attribution proceeds will be used to repay long-term debt, which stood at 598 million
Canadian dollars (US$510.6 million) at the end of 1988. Nucleus span)

((d) Parsing Tree ) ((e) EDU Segmentation )
Root EDU;: The natural resources development concern said
/\ EDU,: proceeds will be used
EDUj: to repay long-term debt,
(Satellite attribution) (Nucleus span) EDU,: which stood at 598 million Canadian dollars

EDUq: (US$510.6 million)

(Nucleus span) (Satellite enablement) EDUg: at the end of 1988.

(Nucleus span) (Satellite elaboration)

(_(f) Mistaken Label )

EDU, EDU, EDU; (Nucleus same-unit) (Nucleus same-unit)

Summary [Elaboration]
A /7('//,,7»*/‘\ - >

(Nucleus span) (Satellite summary) which stood at 598 million Canadian dollars ( US$ 510.6 million ).

EDU, EDU,  EDU,

Figure 6: An example of the output sequence and postprocessing using our method. The red part shows we correctly
predict Summary while the other parser mistakenly labels Elaboration. The blue part represents the labels for the
text spans before them.
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