
Sentence-Level Discourse Parsing as Text-to-Text Generation

Anonymous ACL submission

Abstract

Previous studies have made great advances in001
RST discourse parsing through neural frame-002
works or efficient features, but they usually split003
the parsing process into two subtasks and heav-004
ily depended on gold segmentation. In this005
paper, we introduce an end-to-end method for006
sentence-level RST discourse parsing via trans-007
forming it into a text-to-text generation task.008
Our method unifies the traditional two-stage009
parsing and generates the parsing tree directly010
from the input text without requiring a compli-011
cated model. Moreover, the EDU segmentation012
can be simultaneously generated and extracted013
from the parsing tree. Experimental results014
on the RST Discourse Treebank demonstrate015
that our proposed method outperforms existing016
methods in both tasks of sentence-level RST017
parsing and discourse segmentation. Consid-018
ering the lack of annotated data in RST pars-019
ing, we also create high-quality augmented data020
and implement self-training, which further im-021
proves the performance.022

1 Introduction023

Discourse parsing involves determining the struc-024

ture of elementary units forming a discourse and025

how they are connected with each other. In a026

coherent text, units are often organized logically027

and semantically with certain relationships. Early028

studies have demonstrated that discourse parsing029

can benefit various downstream NLP tasks, includ-030

ing sentiment analysis (Polanyi and van den Berg,031

2011; Bhatia et al., 2015), summarization (Louis032

et al., 2010; Gerani et al., 2014), question answer-033

ing (Jansen et al., 2014) and machine translation034

evaluation (Joty et al., 2017).035

RST parsing based on Rhetorical Structure The-036

ory (Mann and Thompson, 1987), is one of the037

most common and influential parsing methods in038

discourse analysis. According to RST, a text is first039

segmented into several clause-like units as leaves of040

the corresponding parsing tree, called elementary041
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RST Parsing Tree

Government lending was not intended to be a way to 

obfuscate spending figures, hide fraudulent activity, or 

provide large subsidies.
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EDU1: Government lending was not intended to be a way

EDU2: to obfuscate spending figures,

EDU3: hide fraudulent activity,

EDU4: or provide large subsidies.

Figure 1: An example from RST Discourse TreeBank.

discourse units (EDUs). Through certain rhetorical 042

relations among adjacent spans, such as Elabora- 043

tion and Joint, underlying EDUs or larger text spans 044

are recursively linked and merged to form their par- 045

ent nodes, representing the concatenation of them. 046

Finally, a hierarchical tree structure is constructed. 047

Besides rhetorical relations, sibling nodes in the 048

parsing tree contain a kind of nucleus-satellite re- 049

lations to show who is more central or equal to 050

the discourse structure. Figure 1 shows an RST 051

parsing tree for a sentence from the RST Discourse 052

TreeBank (Carlson and Marcu, 2001), which is the 053

most common discourse corpus. 054

In the past, various approaches have been pro- 055

posed for both document-level and sentence-level 056

RST parsing, which can be mainly divided into 057

bottom-up and top-down methods. Earlier work 058

like transition-based approaches utilized the repre- 059

sentation learned through manually-designed fea- 060
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tures or neural networks to build shift-reduce061

parsers (Ji and Eisenstein, 2014; Yu et al., 2018).062

The whole parsing tree is gradually built in a se-063

quence of actions, including shift and reduce. Then,064

benefiting from the development of neural net-065

works, top-down approaches (Lin et al., 2019; Liu066

et al., 2019; Zhang et al., 2020) made use of the067

pointer network (Vinyals et al., 2015) to segment068

text into shorter units recursively until no more069

units can be generated.070

Although many advances have been made in071

RST parsing, the real performance of existing meth-072

ods may be far from satisfactory. Most studies073

before followed the traditional settings to split the074

parsing process into two stages, namely segmenting075

EDUs and building parsing trees. They employed076

their models only on the second stage and treated077

the gold EDU segmentation as a requisite, which078

is, however, infeasible in real application scenarios.079

The segmenter trained in the first stage can gener-080

ate automatic segmentation as a substitute, but the081

performance of those parsing methods would drop082

a lot accordingly. This may be caused by errors in083

segmenters transmitting to the parsing stage. More-084

over, previous methods relied on additional features085

or complicated frameworks for different parts of086

parsing like relation label prediction, which did not087

take full advantage of knowledge in the task.088

In this paper, we focus on sentence-level RST089

parsing and introduce a simple end-to-end method090

which can generate the target parsing tree di-091

rectly from the corresponding text. It is benefi-092

cial since sentence-level discourse analysis has093

relatively high accuracy and can be applied to094

many NLP tasks like sentence compression (Sori-095

cut and Marcu, 2003). Moreover, sentence-level096

parsing is essential and serves as a basic step in097

some document-level parsers (Wang et al., 2017;098

Kobayashi et al., 2020). Therefore, the improve-099

ment of sentence-level parsing may promote further100

progress in discourse parsing.101

Our proposed method converts RST parsing into102

a text-to-text generation task by reformulating the103

parsing tree into a natural language sequence. The104

information contained in text content, hierarchical105

structures, and relation labels in the parsing tree can106

be integrated and learned together by the generation107

model. Experimental results demonstrate that our108

method outperforms previous approaches without109

using gold segmentation. In addition, our method110

can generate the EDU segmentation simultaneously111

during parsing, which has even better performance 112

than other segmenters specifically trained on this 113

task. In view of the lack of annotated data in RST 114

parsing, we also attempt to generate high-quality 115

augmented data to obtain extra enhancement. 116

Our primary contributions are as follows: (1) 117

we propose a simple but effective end-to-end ap- 118

proach to sentence-level RST parsing without using 119

gold segmentation and additional auxiliary infor- 120

mation; (2) our method generates the parsing tree 121

with the EDU segmentation simultaneously and 122

outperforms previous models on both tasks; (3) 123

we attempt to generate augmented data for self- 124

training to further improve the performance. The 125

code will be released to the community. 126

2 Our Method 127

Over the past year, a new paradigm based on pow- 128

erful pretrained language models has emerged and 129

brought remarkable improvement in many areas. 130

Instead of adapting pretrained models to different 131

downstream tasks through specific network layers 132

and objective engineering, now downstream tasks 133

are reformulated close to the pretraining tasks (Liu 134

et al., 2021). Similar seq2seq methods have also 135

been applied to parisng tasks like constituent pars- 136

ing (Liu et al., 2018; Fernández-González and 137

Gómez-Rodríguez, 2020). However, it still re- 138

mains a significant challenge for more complex 139

and longer data structures, like RST parsing trees. 140

Motivated by the idea above, we propose a 141

method to reformulate the parsing tree into the 142

form of a linear sequence so as to utilize existing 143

seq2seq models. We show that our new text-to-text 144

task can make great use of the latent knowledge in 145

pretrained models like T5, without additional fea- 146

tures or neural frameworks. Furthermore, we use 147

constrained decoding to ensure well-formed out- 148

put sequences that can be restored and evaluated 149

through a series of post-processes, yielding more 150

accurate predictions. 151

2.1 Linearization 152

In the original RST Discourse TreeBank, RST pars- 153

ing trees are stored as a set of text spans together 154

with their relation labels. Marcu (2000) first for- 155

mally encoded the RST parsing tree in the form of 156

a constituent tree, as shown in Figure 2(a), which 157

was followed by the majority of subsequent parsing 158

methods. As in previous studies on the RST-DT, 159

we also construct the constituent tree and then bi- 160
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EDU1

(b) Binarization

(c) Linearization

Figure 2: The process of reformulation for the RST parsing tree from Figure 1 according to our method.

narize the tree using right-branching, as shown in161

Figure 2(b). The binarization has been a common162

assumption (Soricut and Marcu, 2003; duVerle and163

Prendinger, 2009) and can help reformulate parsing164

trees more regularly and suitably for training and165

evaluation since more restrictions are imposed.166

Then, based on the priority level contained in167

brackets, we attempt to represent hierarchical ar-168

chitecture by nesting several pairs of brackets. The169

linearization is carried out from the bottom up ac-170

cording to postorder traversal. We replace each171

leaf that represents a single EDU with a sequence172

comprised of a left bracket, text content, a right173

bracket, and its nuclearity and rhetorical relation174

labels. Blank characters are added to each interval175

between different elements.176

As for intermediate nodes, we perform the same177

process except that the concatenation of new rep-178

resentations of two child nodes serves as the text179

content. Since the root does not contain any la-180

bels, it simply merges two child nodes with a pair181

of outermost parentheses. The postorder traversal182

ensures that intermediate nodes will be processed183

after their child nodes are updated, and the root is184

the last one to be considered, resulting in the final185

linear sequence of the parsing tree.186

Different from the linearization method from187

Braud et al. (2016), we reformulate the whole pars-188

ing tree instead of each single EDU. Moreover,189

considering that Paolini et al. (2021) proved and190

encouraged the use of the entire input to promote191

the performance, our linear sequence is designed192

to contain a complete copy of the corresponding 193

input text. And the full specifications of nuclearity 194

and rhetorical relation labels are retained to make 195

full use of the latent knowledge since they must be 196

learned during pretraining and can be understood 197

by language models. 198

Through these steps, the format of reformulated 199

sequences is unified and normative, with each pair 200

of inner brackets containing text content followed 201

by two relation labels. And the postorder traversal 202

guides the model to understand the text content 203

before predicting labels, which is in accordance 204

with the way of humans. Besides, we use square 205

brackets in linearization to avoid confusion since 206

the input text itself may contain parentheses. The 207

target linear sequence of the RST parsing tree in 208

Figure 2(b) is shown in Figure 2(c). 209

2.2 Seq2seq Training 210

Since the input and new output of the task are both 211

sequences, RST parsing can thus be trained or fine- 212

tuned on any generation model as a text-to-text 213

generation task. Pretrained seq2seq models like 214

T5 (Raffel et al., 2020) are able to transfer the re- 215

lated latent knowledge to our new RST parsing task, 216

since the reformulated sequences are designed to 217

be close to natural language text. Despite the lack 218

of annotated data in the parsing task, our method 219

works well without extra complicated frameworks 220

or features. In the meantime, the subtasks of EDU 221

segmentation and prediction of structure and rela- 222

tions are all integrated into the single process of text 223
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generation, which is superior to other approaches224

in terms of efficiency.225

2.3 Constrained Decoding226

During the process of inference, the seq2seq model227

should generate the target output token-by-token228

according to the probability distribution. However,229

since our output sequence is supposed to observe230

the linearization formats that we designed before,231

traditional greedy decoding or beam search algo-232

rithms will inevitably lead to format errors includ-233

ing wrong content and mismatched brackets or re-234

lation labels.235

To eliminate the above problems, we employ the236

constrained decoding methods (Hokamp and Liu,237

2017; Post and Vilar, 2018; Chen et al., 2020) to238

constrain the selection of tokens in each inference239

step. Specifically, we dynamically modify the can-240

didate vocabulary set in beam search according to241

the current generated state and sequence. For ex-242

ample, a token of rhetorical relations and nuclearity243

relations must be followed by a nuclearity relation244

and a close bracket, respectively. And if the current245

token belongs to a word in the original sentence,246

then the next token has to be a close bracket to247

indicate the end of an EDU or the next word in the248

original sentence.249

In addition, we also consider controlling the250

ending of generated sequences. Because EDUs251

in our linearization are always inside the innermost252

brackets, the reformulated sequence must contain253

(2n− 1) pairs of brackets and (2n− 2) pairs of re-254

lation labels if the number of EDUs is n. So we can255

count up the number of close brackets to decide256

whether the end token <eos> should be selected257

next step if the current token is a close bracket. The258

only problem left is the uncontrollable number of259

open brackets because there are no corresponding260

restrictions that can be imposed. However, through261

our restoration algorithm in the next section, they262

will not influence the following revaluation.263

2.4 Postprocessing264

In the postprocessing, we employ a recursive al-265

gorithm on the generated sequence based on the266

designed format in reformulation to reconstruct the267

constituent tree through continually merging bot-268

tom text spans until only the root remains.269

Benefiting from the binarization, it is clear that270

each combination will only involve two leaf spans.271

In our experiments, no more than 2% of the out-272

put sequences have format errors (namely the mis-273

matched open brackets), and they do not affect our 274

algorithm because the open bracket is only used to 275

judge whether the current sequence unit contains 276

the text content. More details are shown in Algo- 277

rithm 1. The sequence is finally converted into the 278

set of connected constituents for evaluation without 279

using ground truth parsing trees. 280

Algorithm 1 Restore the constituent tree
Input: Target sequence S, input sentence I
1: Initialization: T = [], nodes = [], i = 0
2: Seq_unit = S.split(’]’)
3: Uk = Seq_unit[k].split(’[’), 0 ≤ k < len(Seq_unit)
4: repeat
5: if ’[’ in Seq_unit[i] then
6: cur_label = Ui+1[0]
7: cur_text = Ui[-1]
8: push(nodes, (cur_text, cur_label))
9: else if len(nodes) > 1 then

10: (text1, label1) = pop(nodes)
11: (text2, label2) = pop(nodes)
12: push(T, (text1, label1, text2, label2))
13: cur_label = Ui+1[0]
14: cur_text = text1 + ’ ’ + text2
15: push(nodes, (cur_text, cur_label))
16: end if
17: i = i + 1
18: until I = top(nodes).text
Output: T as the set of connected constituents in the con-

stituent tree

3 Experiments 281

In this section, we introduce the dataset and set- 282

tings in our experiments and present the results of 283

our end-to-end method for both sentence-level RST 284

parsing and discourse segmentation. The improve- 285

ment of the augmented data we create is demon- 286

strated as well. 287

3.1 Datasets 288

We implement our experiments on the RST Dis- 289

course TreeBank (Carlson et al., 2001), which is 290

the standard dataset also used by other studies. It is 291

the largest available discourse corpus and contains 292

385 Wall Street Journal English articles selected 293

from the Penn Treebank (Marcus et al., 1993), 347 294

documents (7673 sentences) for training and 38 295

documents (991 sentences) for testing. 296

To construct the dataset for sentence-level RST 297

parsing, we follow the same preprocessing step 298

as Joty et al. (2012); Liu et al. (2019); Lin et al. 299

(2019) to select sentences that consist of several 300

4



Dataset #Training #Test

Doc-level RST-DT 347 38
Sent-level RST-DT 7321 951
Discourse Segmentation / 991

Table 1: The statistics of datasets for different tasks in
our experiments.

EDUs and form the subtrees of document-level301

parsing trees. In all, we obtain 7321 sentences for302

training and 951 for testing, together with their303

parsing trees for the RST parsing task, which is the304

same scale as reported in previous studies.305

As for discourse segmentation, we directly ex-306

tract the segmentation predictions from the se-307

quences generated by the trained parsing model,308

so there is no need for a training set. During309

evaluation, we keep the test set the same as Lin310

et al. (2019) to use the full 991 sentences. It is311

worth noting that we indeed only utilize the infor-312

mation from 7321 sentences in our segmentation313

task, while other works especially trained their seg-314

menters with the entire 7673 sentences. For both315

tasks, we randomly select 10% of the training data316

for hyperparameter tuning. An overview of these317

datasets is shown in Table 1.318

3.2 Model and Settings319

In our experiments, we select T5-base (Raffel et al.,320

2020) as the pretrained model. The family of T5321

models is the encoder-decoder model pretrained on322

various tasks converted into the text-to-text format,323

which caters to our method. We also attempt the324

byte-level ByT5 (Xue et al., 2021) and other gen-325

erative pretrained models, such as BART (Lewis326

et al., 2020), but they are less effective.327

In the training process, we set the batch size to328

16, and the maximum input and output sequence329

length to that of the longest sequence, which is not330

longer than 512. The training epoch is set to 50331

in end-to-end parsing and 40 in experiments with332

augmented data. The Adamw optimizer is used333

with a initial learning rate of 3e-4 together with334

the cosine learning rate decay scheduler, and the335

warmup rate is set to 0.1.336

During inference, we employ beam search with337

a beam size of 24 and our constrained decoding338

methods. To achieve stable decoding performance,339

we average the model parameters over the last five340

epochs. All the experiments are repeated at least341

five times with different random seeds, and the342

average results are reported. 343

3.3 Evaluation Metric 344

To evaluate the performance of our method, we fol- 345

low RST-Parseval metrics (Marcu, 2000), contain- 346

ing micro-averaged F1-scores of unlabeled (Span) 347

and labeled (Nuclearity, Relation). For fair compar- 348

ison, we use 18 rhetorical relations defined in Carl- 349

son and Marcu (2001), same as other sentence-level 350

RST parsing studies (Liu et al., 2019; Lin et al., 351

2019). 352

In the task of discourse segmentation, we evalu- 353

ate the performance only with respect to the intra- 354

sentential segment boundaries and report the results 355

of precision, recall, and micro-averaged F1-score 356

to keep the same with Wang et al. (2018). 357

3.4 Data Augmentation 358

Before demonstrating the experiment results, we in- 359

troduce our data augmentation strategies. The lack 360

of annotated RST parsing trees has been hinder- 361

ing research on discourse parsing since annotators 362

must be experts in discourse analysis and the man- 363

ual designed for the annotation is quite complicated. 364

From this point, we intend to expand the training 365

set with the augmented data, which is generated 366

and filtered according to our designed rules. 367

Considering that the RST-DT consists of only 368

a small part of the documents in the WSJ corpus 369

and the rest remain without annotation, we can use 370

them to create silver data which keeps the same 371

domain as the RST-DT. First, the documents in the 372

WSJ corpus that are not selected for annotation 373

in RST-DT are extracted and split into sentences 374

similarly. We choose three parsers trained by our 375

end-to-end method with different random seeds and 376

utilize them to generate candidate output sequences 377

for each sentence we have selected. In this way, we 378

can get the initial and promiscuous instances for 379

parsing, each instance with an input sentence and 380

three plausible output sequences. 381

To obtain the high-quality data, we check these 382

sequences according to the format we design in the 383

reformulation. And the rule of annotation for RST 384

parsing is also taken into consideration. Consid- 385

ering our constrained decoding methods, we only 386

need to discard the sequences that have mismatched 387

numbers of open brackets. For the rest of the se- 388

quences, we employ Algorithm 1 on each of them 389

to restore the constituent information and check 390

whether the relation labels follow the rule of anno- 391

tation. When nucleus and satellite relations appear 392
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Dataset #Sentence #Avg EDU #Avg word

Training set 7321 2.48 20.31
Initial silver data 41387 2.79 26.77
+ filtering rules 36266 2.47 24.55

Table 2: The statistics of original training set and our
augmented dataset.

Approach S N R

Soricut and Marcu (2003) 76.70 70.20 58.00
Joty et al. (2012) 82.40 76.60 67.50
Lin et al. (2019) (ELMo) 91.14 85.80 76.94
Lin et al. (2019) (Joint) 91.75 86.38 77.52

Our Method
End-to-end parser 92.89 88.04 80.11
+ constrained decoding 93.27 88.47 80.55
+ constrained decoding
with data augmentation 93.51 88.90 81.28

Table 3: Results for sentence-level RST parsing without
gold EDU segmentation. The columns of S, N and R
indicate the micro-averaged F1-scores of Span, Nucle-
arity and Relation respectively.

together, they should be assigned the label Span393

and a rhetorical relation label, respectively. And394

two nucleus relations should use the same relation395

labels other than the label Span.396

Through the strategies above, we get those well-397

formed sequences that follow the labeling rules398

and have no format errors. If an input sentence399

still pairs with more than one candidate output se-400

quence, we decide the target sequence via majority401

voting. The details of our augmented dataset with402

filtering rules are shown in Table 2. It can be found403

that the average numbers of EDUs and words in the404

augmented dataset approach those of the training405

set after filtering, which helps to reduce the distri-406

bution difference between the two datasets. Finally,407

we add this high-quality silver data into the original408

training set to train our paring model.409

3.5 Experimental Results410

We evaluate our method on both tasks: (a) sentence-411

level RST parsing; (b) discourse segmentation.412

Benefiting from our end-to-end method, the parsing413

tree can be directly built from the corresponding414

input text without using gold EDU segmentation.415

And the EDU segmentation is predicted simultane-416

ously during parsing and can be extracted from the417

generated parsing tree as the attached results.418
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Figure 3: The performance variation curve with differ-
ent portions of the training set.

RST parsing Since our end-to-end method uni- 419

fies the traditional two stages of RST parsing, we 420

compare our results with the models that also do 421

not make use of gold EDU segmentation (Soricut 422

and Marcu, 2003; Joty et al., 2012; Lin et al., 2019). 423

These methods utilized extra trained automatic seg- 424

menters to generate imprecise segmentation and 425

send it to their parsing models to build the pars- 426

ing tree. Besides the pattern of the pipeline, Lin 427

et al. (2019) proposed jointly training the segment- 428

ing and parsing models and used the contextual 429

embedding from ELMo (Peters et al., 2018) and 430

BERT (Devlin et al., 2019) to further improve the 431

performance on both tasks. 432

We demonstrate the results in Table 3. The 433

performance of our end-to-end method with con- 434

strained decoding is substantially better than pre- 435

vious models, with the improvement of approxi- 436

mately 1.5, 2.1 and 3.0 absolute points in Span, 437

Nuclearity and Relation respectively. The obvious 438

advancement in Nuclearity and Relation illustrates 439

that the integration of relation labels and input text 440

can be learned more effectively through our re- 441

formulation, compared with the traditional form 442

of classification tasks with separate frameworks. 443

Moreover, our constrained decoding method also 444

has a major improvement in Nuclearity and Rela- 445

tion since the restrictions imposed mainly affect 446

the label prediction. 447

To further explore the influence of the scale of 448

training data, we also experiment with 50%, 60%, 449

70%, 80% and 90% of the training set. The re- 450

sults in Figure 3 show that our method can out- 451

perform the model from Lin et al. (2019) by only 452

using half of the training set. And the performance 453

curve indicates that more instances may still be able 454
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Approach P R F1

Human Agreement 98.50 98.20 98.30

Soricut and Marcu (2003) 83.80 86.80 85.20
Joty et al. (2012) 88.00 92.30 90.10
Li et al. (2018) 91.08 91.03 91.05
Wang et al. (2018) 92.04 94.41 93.21
Lin et al. (2019) (BERT) 92.05 95.03 93.51
Lin et al. (2019) (ELMo) 94.12 96.63 95.35
Lin et al. (2019) (Joint) 93.34 97.88 95.55
Gessler et al. (2021) 96.80 95.92 96.35

Our Method
Extraction from parsing 95.42 96.77 96.09
+ constrained decoding 95.58 97.00 96.29
+ constrained decoding
with data augmentation 95.86 97.11 96.48

Table 4: Results for discourse segmentation. The
columns of P, R and F1 indicate the Precision, Recall
and micro-averaged F1-score respectively.

to promote the performance of the parser. Then455

we combine the original training set with our aug-456

mented data and repeat the training process simi-457

larly. The results of our end-to-end parser with the458

constrained decoding and augmented data can also459

be found in Table 3, which gets further enhance-460

ment in all aspects, particularly the Relation.461

Discourse segmentation In fact, a parsing tree462

itself contains the EDU segmentation of the corre-463

sponding text because it is EDUs that serve as the464

leaves of the tree structure. Since we built the pars-465

ing tree from the input sentence without gold EDU466

segmentation, we equivalently perform the segmen-467

tation task at the same time through extracting the468

EDU segmentation from the generated parsing tree.469

We evaluate the performance and show the results470

in Table 4.471

Generally, our segmentation prediction extracted472

from parsing trees performs better than previous473

studies, with the highest F1-score. The constrained474

decoding method and augmented data also help475

to further improve the performance, but are less476

effective than in the parsing task. With higher ac-477

curacy, the segmenter may generate fewer wrong478

EDUs that do not exist in the gold segmentation479

set, reducing the error accumulation. Moreover,480

considering that we utilize a smaller training set481

compared with other studies and they trained their482

models specifically for this task, our method shows483

superiority in terms of efficiency.484
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Figure 4: Performances on Span, Nuclearity and Rela-
tion, together with the portion of instances containing
format errors with different numbers of EDUs.

3.6 Error Analysis 485

In Figure 4, we show the respective performances 486

of instances with different numbers of EDUs. The 487

micro F1-scores of Span and Nuclearity drop as 488

the number of EDUs increases, while Relation 489

achieves a low score when the instance only in- 490

cludes two EDUs. We suppose that the increas- 491

ing difficulty of parsing longer sentences reduces 492

the performance of our method since it remains 493

a challenging problem for the language model to 494

understand long sequences. In addition, short sen- 495

tences may not contain sufficient information for 496

the model to infer the Relation label, considering 497

that there are 18 rhetorical relations to be identified, 498

while the nuclearity relations only contain two. 499

The portion of instances with format errors is 500

also reported in Figure 4. The gradual growth of 501

format errors as the number of EDUs increases 502

shows the difficulty for the model in generating 503

long sequences precisely in keeping with our lin- 504

earization formats. It can also be proven by the 505

decreasing average EDUs of silver data after the 506

filtering rules. It is challenging but significant for 507

future research to explore how to improve our end- 508

to-end method when dealing with long sequences 509

since it is the main performance bottleneck. 510

We also show the confusion matrix for eight se- 511

mantically similar rhetorical relation labels in Fig- 512

ure 5, some of which are also mentioned in other 513

studies. Our method fails to effectively distinguish 514

between Temporal and Joint, Comparison and Con- 515

trast, but succeeds in Explanation and Elaboration. 516

An example of our successfully predicted difficult 517

instances can be found in Appendix A. 518
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ral(TEM).

4 Related Work519

Discourse parsing describes the hierarchical tree520

structure of a text and can be used in quality evalu-521

ation like coherence and other downstream appli-522

cations. In the past, various approaches on RST523

parsing have been proposed, mainly divided into524

two classes: top-down and bottom-up paradigms.525

In earlier studies, bottom-up methods have been526

first purposed since hand-engineered features be-527

came mainstream tools. Soricut and Marcu (2003)528

first proposed a bottom-up CKY-like approach with529

syntactic and lexical features for sentence-level530

parsing. Models with CKY-like algorithms (Her-531

nault et al., 2010; Joty et al., 2013; Feng and Hirst,532

2014; Li et al., 2014) utilized diverse features to533

learn the scores for different subtrees and searched534

all possible parsing trees to find the most likely one535

for a text. Although these methods achieved high536

accuracy, they suffered from slow parsing speed.537

Another common bottom-up method is the538

transition-based parser, which generates the RST539

parsing tree during a sequence of shift and reduce540

action decisions. Ji and Eisenstein (2014) intro-541

duced a neural shift-reduce parser with representa-542

tion learning methods. Wang et al. (2017) proposed543

a two-stage parser based on SVMs with plenty of544

features. Then Yu et al. (2018) trained a transition-545

based parser with implicit syntactic features from546

dependency parsing and achieved great success.547

Despite their good efficiency, these methods lack548

sufficient lookahead guidance for each decision and549

may not achieve the best result in the long run. 550

Thanks to the recent advancement of neural 551

methods, it is possible to represent the text effec- 552

tively in a global view, which promoted top-down 553

parsers. Lin et al. (2019) first presented a seq2seq 554

model for sentence-level RST parsing based on 555

pointer networks (Vinyals et al., 2015) and Liu 556

et al. (2019) improved it with hierarchical structure. 557

Then Zhang et al. (2020) extended their methods 558

to document-level RST parsing. Kobayashi et al. 559

(2020) constructed subtrees for three granularity 560

levels of text and merged them together. 561

Despite the success of top-down models, most 562

of them still utilized gold EDU segmentation as a 563

necessity and dropped a lot in performance when 564

using automatic segmenters. However, it is more 565

practical that the parsing tree should be constructed 566

directly from the input text. And the two-stage pro- 567

cess may lead to error accumulation from segment- 568

ing to parsing. Nguyen et al. (2021) introduced an 569

end-to-end parsing model, but it relied on differ- 570

ent frameworks for structure and label prediction 571

and improved with the help of artificial sentence 572

guidance. In addition, we find contemporaneous 573

work of Zhang et al. (2021) before our submis- 574

sion. They introduced a complicated system with 575

rerankers and we follow ACL’s policy and do not 576

make comparisons with this work. Our end-to-end 577

approach, on the other hand, transforms RST pars- 578

ing into a text generation task, eliminating the need 579

for additional knowledge and specific frameworks. 580

5 Conclusions 581

In this paper, we propose a simple but effective 582

end-to-end method for sentence-level RST parsing 583

to generate the parsing tree directly from the in- 584

put text. We convert RST parsing into text-to-text 585

generation by reformulating each parsing tree into 586

an equivalent linear sequence. Benefiting from 587

the latent knowledge in pretrained models, our 588

method does not require additional features or neu- 589

ral frameworks and can simultaneously perform 590

the discourse segmentation during parsing. Experi- 591

mental results show that our method outperforms 592

existing approaches on both tasks. Furthermore, 593

we create high-quality augmented data to alleviate 594

the lack of annotated RST parsing trees and further 595

improve the performance of our method. In future 596

research, we will explore how to better deal with 597

long sequences and effectively apply our method 598

to document-level RST parsing. 599
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A Example Demonstration 899

Figure 6 shows an instance mistakenly la- 900

beled Summary as Elaboration by the other 901

parser Nguyen et al. (2021), but is successfully 902

predicted by our method. We also demonstrate the 903

corresponding output sequence from our method 904

together with the restored parsing tree and the ex- 905

tracted EDU segmentation. 906

11

https://doi.org/10.18653/v1/n18-1119
https://doi.org/10.18653/v1/n18-1119
https://doi.org/10.18653/v1/n18-1119
https://doi.org/10.18653/v1/n18-1119
https://doi.org/10.18653/v1/n18-1119
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/N03-1030/
https://aclanthology.org/N03-1030/
https://aclanthology.org/N03-1030/
https://aclanthology.org/N03-1030/
https://aclanthology.org/N03-1030/
https://proceedings.neurips.cc/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-Abstract.html
https://doi.org/10.18653/v1/P17-2029
https://doi.org/10.18653/v1/P17-2029
https://doi.org/10.18653/v1/P17-2029
https://doi.org/10.18653/v1/d18-1116
https://doi.org/10.18653/v1/d18-1116
https://doi.org/10.18653/v1/d18-1116
http://arxiv.org/abs/2105.13626
http://arxiv.org/abs/2105.13626
http://arxiv.org/abs/2105.13626
https://aclanthology.org/C18-1047/
https://aclanthology.org/C18-1047/
https://aclanthology.org/C18-1047/
https://doi.org/10.18653/v1/2020.acl-main.569
https://doi.org/10.18653/v1/2020.acl-main.569
https://doi.org/10.18653/v1/2020.acl-main.569
https://doi.org/10.18653/v1/2020.acl-main.569
https://doi.org/10.18653/v1/2020.acl-main.569
https://aclanthology.org/2021.emnlp-main.188
https://aclanthology.org/2021.emnlp-main.188
https://aclanthology.org/2021.emnlp-main.188


(a) Input Sentence

The natural resources development concern said proceeds will be used to repay long-term debt, which stood at 598 million Canadian dollars 

(US$510.6 million) at the end of 1988.

(b) Output Sequence

[ [ The natural resources development concern said ] Satellite attribution [ [ proceeds will be used ] Nucleus span [ [ to repay long-term debt, ] 

Nucleus span [ [ [ which stood at 598 million Canadian dollars ] Nucleus span [ (US$510.6 million) ] Satellite summary ] Nucleus same-unit [ at 

the end of 1988. ] Nucleus same-unit ] Satellite elaboration ] Satellite enablement ] Nucleus span ]

(c) Restored Constituents

(which stood at 598 million Canadian dollars Nucleus span (US$510.6 million) Satellite summary)

(which stood at 598 million Canadian dollars (US$510.6 million) Nucleus same-unit at the end of 1988. Nucleus same-unit)

(to repay long-term debt, Nucleus span which stood at 598 million Canadian dollars (US$510.6 million) at the end of 1988. Satellite elaboration)

(proceeds will be used Nucleus span to repay long-term debt, which stood at 598 million Canadian dollars (US$510.6 million) at the end of 1988. 

Satellite enablement)

(The natural resources development concern said Satellite attribution proceeds will be used to repay long-term debt, which stood at 598 million 

Canadian dollars (US$510.6 million) at the end of 1988. Nucleus span)

(d) Parsing Tree

Root

(Satellite attribution)

EDU2 EDU3

(Nucleus span)

(Satellite elaboration)

(Nucleus span)

(Nucleus span)

(Satellite enablement)

EDU1 (Nucleus same-unit)(Nucleus same-unit)

(Satellite summary)(Nucleus span)

EDU4 EDU5 EDU6

(f) Mistaken Label

(e) EDU Segmentation

EDU1: The natural resources development concern said 

EDU2: proceeds will be used 

EDU3: to repay long-term debt, 

EDU4: which stood at 598 million Canadian dollars 

EDU5: (US$510.6 million) 

EDU6: at the end of 1988. 

Figure 6: An example of the output sequence and postprocessing using our method. The red part shows we correctly
predict Summary while the other parser mistakenly labels Elaboration. The blue part represents the labels for the
text spans before them.
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