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Abstract

Existing deep-learning based tomographic image reconstruction methods do not provide
accurate uncertainty estimates of their reconstructions, hindering their real-world deployment.
This paper develops a method, termed as linearised deep image prior (DIP), to estimate the
uncertainty associated with reconstructions produced by the DIP with total variation (TV)
regularisation. We endow the DIP with conjugate Gaussian-linear model type error-bars
computed from a local linearisation of the neural network around its optimised parameters.
To preserve conjugacy, we approximate the TV regulariser with a Gaussian surrogate. This
approach provides pixel-wise uncertainty estimates and a marginal likelihood objective for
hyperparameter optimisation. We demonstrate the method on synthetic data and real-
measured high-resolution 2D µCT data, and show that it provides superior calibration of
uncertainty estimates relative to previous probabilistic formulations of the DIP. Our code is
available at https://github.com/educating-dip/bayes_dip.
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Figure 1: X-ray reconstruction (501◊501 px2) of a wal-
nut (left), the absolute error of its CT reconstruction
(top) and pixel-wise uncertainty (bottom).

Inverse problems in imaging aim to recover an un-
known image x œ Rdx from the noisy measurement
y œ Rdy

y = Ax + ÷, (1)

where A œ Rdy◊dx is a linear forward map, and
÷ i.i.d. Gaussian noise, i.e. ÷ ≥ N (0, ‡

2
yI). Many

tomographic reconstruction problems take this form,
e.g. computed tomography (CT). Due to the inherent
ill-posedness of the problem, e.g. dy π dx, suitable
regularisation / prior is crucial for the successful
recovery of x (Tikhonov & Arsenin, 1977; Engl et al.,
1996; Ito & Jin, 2014).
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In recent years, deep-learning based approaches have achieved outstanding performance on a wide variety
of tomographic problems (Arridge et al., 2019; Ongie et al., 2020; Wang et al., 2020). Most deep learning
methods are supervised; they rely on large volumes of paired training data. Alas, these often fail to generalise
out-of-distribution (Antun et al., 2020); small deviations from the distribution of the training data can
lead to severe reconstruction artefacts. Pathologies of this sort call for both unsupervised deep learning
methods—free from training data and thus mitigating hallucinatory artefacts (Bora et al., 2017; Heckel
& Hand, 2019; Tölle et al., 2021)—and uncertainty quantification (Kompa et al., 2021; Vasconcelos et al.,
2022)—informing the user about (un)reliability in reconstructions.

We focus on the deep image prior (DIP), perhaps the most widely adopted unsupervised deep learning
approach (Ulyanov et al., 2018). DIP regularises the reconstructed image x̂ by reparametrising it as the
output of a deep convolutional neural network (CNN). It does not require paired training data, relying solely
on the structural biases induced by the CNN architecture. The DIP has proven e�ective on tasks ranging
from denoising and deblurring to challenging tomographic reconstructions (Liu et al., 2019; Baguer et al.,
2020; Knopp & Grosser, 2022; Darestani & Heckel, 2021; Gong et al., 2019; Cui et al., 2021; Barutcu et al.,
2022). Nonetheless, the DIP only provides point reconstructions without uncertainty estimates.

In this work, we equip DIP reconstructions with reliable uncertainty estimates, which is an under-explored
topic. In literature, there are two notable probabilistic reformulations of the DIP (Cheng et al., 2019; Tölle
et al., 2021), but their focus is on preventing overfitting rather than accurately estimating uncertainty.
Distinctly from these, we only estimate the uncertainty associated with a specific reconstruction, instead
of characterising a full posterior over all candidate images. We achieve this by computing Gaussian-linear
model type error-bars for a local linearisation of the DIP around its mode (Mackay, 1992; Khan et al.,
2019; Immer et al., 2021b), and refer to the method as linearised DIP. Linearised approaches have recently
provided state-of-the-art uncertainty estimates for supervised deep learning models (Daxberger et al., 2021b).
Unfortunately, the total variation (TV) regulariser, ubiquitous in CT reconstruction, makes inference in the
linearised DIP intractable and it does not lend itself to standard Laplace (i.e. local Gaussian) approximations
(Helin et al., 2022). We tackle this issue using predictive complexity prior (PredCP) (Nalisnick et al., 2021)
to construct covariance kernels that induce properties similar to that of the TV prior while preserving
Gaussian-linear conjugacy. Finally, we discuss several techniques to scale the method to large DIP networks
and high-resolution 2D images.

We showcase our approach on high-resolution CT reconstructions of real-measured 2D µCT projection data,
cf. fig. 1. Empirically, the method’s pixel-wise uncertainty estimates predict reconstruction errors more
accurately than existing approaches to uncertainty estimation with the DIP. This is not at the expense of
accuracy in reconstruction: the reconstruction obtained using the standard regularised DIP method (Baguer
et al., 2020) is preserved as the predictive mean, ensuring compatibility with advancements in DIP research.

The contributions of this work can be summarised as follows.

• We propose a novel approach to bestow reconstructions from the TV-regularised DIP with uncer-
tainty estimates, by constructing a local linear model by linearising the DIP around its optimised
reconstruction and providing the model’s error-bars as a surrogate for those of the DIP.

• We give an e�cient implementation of the method, scaling up to high-resolution µCT data, and
yielding far more accurate uncertainty estimation than existing probabilistic formulations of the DIP.

The rest of this paper is organised as follows. Section 2 provides an extended discussion of the related work.
Section 3 recalls preliminaries for the linearised DIP. Section 4 discusses the design of a tractable Gaussian prior
mimicking the TV prior. Section 5 and section 6 present the linearised DIP and its e�cient implementation.
Section 7 presents the experimental investigations on synthetic and real-measured high-resolution µCT data.
Section 8 concludes the article. Fully detailed derivations and additional experimental results are given in the
supplementary material (SM).

Since this paper’s first appearance, the proposed method was used by Barbano et al. (2022b) to actively
select X-ray scanning angles, resulting in a 30% reduction in angles needed to obtain a given reconstruction
PSNR, and extended by Antoran et al. (2023), scaling it to larger problems by drawing samples with SGD.
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2 Related Work

2.1 Advances in the deep image prior

Since its introduction by Ulyanov et al. (2018; 2020), the DIP has been improved with early stopping (Wang
et al., 2021), TV regularisation (Liu et al., 2019; Baguer et al., 2020) and pretraining (Barbano et al., 2022c;
Knopp & Grosser, 2022; Barbano et al., 2023). We build upon these recent advancements by providing a
scalable method to estimate the error-bars of DIP’s reconstructions. Obtaining reliable uncertainty estimates
for DIP reconstructions is a relatively unexplored topic. Building upon Garriga-Alonso et al. (2019) and
Novak et al. (2019), Cheng et al. (2019) show that in the infinite-channel limit, the DIP converges to a
Gaussian process (GP). In the finite-channel regime, the authors approximate the posterior distribution over
the DIP’s parameters with stochastic gradient Langevin dynamics (SGLD) (Welling & Teh, 2011). Laves
et al. (2020) and Tölle et al. (2021) use factorised Gaussian variational inference (Blundell et al., 2015) and
MC dropout (Hron et al., 2018; Vasconcelos et al., 2022), respectively. These probabilistic treatments of DIP
primarily aim to prevent overfitting, as opposed to accurately estimating uncertainty. While they can deliver
uncertainty estimates, their quality tends to be poor. In fact, obtaining reliable uncertainty estimates from
deep-learning based approaches, like the DIP, largely remains a challenging open problem (Antorán, 2019;
Snoek et al., 2019; Ashukha et al., 2020; Foong et al., 2020; Barbano et al., 2022a; Antorán et al., 2020).
In the present work, we obtain uncertainty estimation by performing Bayesian inference with respect to
the DIP model locally linearised around its optimised parameters. This is distinct from the aforementioned
approaches in that we only model a local mode of the posterior distribution.

2.2 Bayesian inference in linearised neural networks

The Laplace method is first applied to deep learning in (Mackay, 1992). It has seen a recent popularisation
as the best performing approach when it comes to Bayesian reasoning with neural networks (Daxberger et al.,
2021b;a). Specifically, Khan et al. (2019) and Immer et al. (2021b) show that the linearization step improves
the quality of uncertainty estimates. Immer et al. (2021a), Antorán et al. (2022) and Antorán et al. (2022)
explore the linear model’s evidence for model selection. Daxberger et al. (2021b) and Maddox et al. (2021)
introduce subnetwork and finite di�erences approaches, respectively, for scalable inference with linearised
models. Inference in the linearised model is highly attractive compared to alternative approaches because it
is post-hoc and it preserves the reconstruction obtained through the DIP optimisation as the predictive mean.
This line of work is also related to the neural tangent kernel (Jacot et al., 2018; Lee et al., 2019; Novak et al.,
2020), in which NNs are linearised at initialisation.

3 Preliminaries

3.1 Total variation regularisation

The imaging problem given in eq. (1) admits multiple solutions consistent with the observation y. Thus,
regularisation is needed for stable reconstruction. Total variation (TV) is perhaps the most well established
regulariser (Rudin et al., 1992; Chambolle et al., 2010). The anisotropic TV semi-norm of an image vector
x œ Rdx imposes an L

1 constraint on image gradients:

TV(x)=
ÿ

i,j

|Xi,j ≠ Xi+1,j | +
ÿ

i,j

|Xi,j ≠ Xi,j+1|, (2)

where X œ Rh◊w denotes the vector x reshaped into an image of height h by width w, and dx = h · w. This
leads to the regularised reconstruction formulation

x̂ œ argmin
xœRdx

L(x) with L(x) := ÎAx ≠ yÎ
2
2 + ⁄TV(x), (3)

where the hyperparameter ⁄ > 0 determines the strength of the regularisation relative to the fit term.
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3.2 Bayesian inference for inverse problems

The Bayesian framework provides a consistent approach to uncertainty estimation in imaging problems (Kaipio
& Somersalo, 2005; Stuart, 2010; Seeger & Nickisch, 2011). The image to be recovered is treated as a random
variable. Instead of finding a single best reconstruction x̂, we aim to find a posterior distribution p(x|y) that
scores every candidate x œ Rdx according to its agreement with the observation y and prior belief p(x). The
loss in eq. (3) can be viewed as the negative log of an unnormalised posterior, i.e. p(x|y)Ãexp(≠L(x)), and x̂

as its mode, i.e. the maximum a posteriori (MAP) estimate. The least squares loss corresponds to a Gaussian
likelihood p(y|x) = N (y; Ax, I) and the TV regulariser to a prior over images p(x) Ã exp(≠⁄TV(x)).

The posterior is obtained by updating the prior over images with the likelihood as

p(x|y) = p(y)≠1
p(y|x)p(x), (4)

for p(y) =
s

p(y|x)p(x)dx the normalising constant, also known as the marginal likelihood (MLL). This
latter quantity provides an objective for optimising hyperparameters, e.g. the regularisation strength ⁄. The
presence of di�erent reconstructions with high probability under the posterior indicates uncertainty.

Our work partially departs from this framework in that it solely concerns itself with characterising plausible
reconstructions around the mode x̂ (Mackay, 1992). This has two key advantages, i) tractability: the likelihood
induced by NN reconstructions is strongly multi-modal, and both analytically and computationally intractable.
In contrast, the posterior for the local model is Gaussian; ii) interpretablity: even if we could obtain the
full posterior, downstream stakeholders not versed in probability are likely to have little use for it. A single
reconstruction and its pixel-wise uncertainty may be more interpretable to end-users (Bhatt et al., 2021).

3.3 The Deep Image Prior (DIP)

The DIP (Ulyanov et al., 2018; 2020) reparametrises the reconstructed image as the output of a CNN x(◊)
with learnable parameters ◊ œ Rd◊ and a fixed input, which we have omitted from our notation for clarity.
The DIP can be seen as a reparametrisation that provides a favourable structural bias towards natural images.
Penalising the TV of the DIP’s output avoids the need for early stopping and improves reconstruction fidelity
(Liu et al., 2019; Baguer et al., 2020). The resulting optimisation problem is given by

◊̂ œ argmin
◊œRd◊

ÎAx(◊) ≠ yÎ
2
2 + ⁄TV(x(◊)), (5)

and the recovered image is given by x̂ = x(◊̂). U-Net is the standard choice of CNN architecture (Ronneberger
et al., 2015). Although the parameters ◊ must be optimised separately for each new measurement y, we
follow (Barbano et al., 2022c; Knopp & Grosser, 2022) to reduce the cost with task-agnostic pretraining.

3.4 Bayesian inference with linearised neural networks

Adopting the DIP parametrisation of the reconstructed image, as in section 3.3, makes the Bayesian posterior
in eq. (4) intractable. Instead, this work only characterises the uncertainty associated with a specific
regularised reconstruction x̂, obtained via eq. (5). To this end, we take a tangent linear model of the CNN
x(◊) around its optimised parameters ◊̂ (Mackay, 1992; Khan et al., 2019; Immer et al., 2021b),

h(◊) := x(◊̂) + J(◊ ≠ ◊̂), (6)

where J := ˆx(◊)
ˆ◊ |◊=◊̂ œRdx◊d◊ is the Jacobian of the CNN function x(◊) with respect to its parameters ◊

evaluated at ◊̂. We obtain error-bars for the DIP reconstruction x(◊̂) using h(◊). For Gaussian noise and a
Gaussian prior on ◊, we have a conjugate setting; the posterior over the linearised model’s reconstructions
is a Gaussian N (x; x(◊̂), �x|y), and the marginal likelihood of the linearised model can be used to tune
hyperparameters (Mackay, 1992; Immer et al., 2021a; Antorán et al., 2022; Antorán et al., 2022).

Computing both the posterior covariance �x|y and the marginal likelihood naively has cost O(d3
◊). For large

U-Nets, this is impracticable (Daxberger et al., 2021b). In section 5 and section 6, we derive a dual approach
with a cost O(d3

y) and detail an e�cient implementation. Furthermore, when using the (non-quadratic) TV
regulariser, conjugacy is lost. Indeed, the TV regulariser does not admit a Laplace (quadratic) approximation.
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4 The total variation as a conditionally Gaussian prior

First, we study the construction of tractable non-DIP-based priors for CT reconstruction. The gained
understanding sheds insights into incorporating the TV-based priors into the linearised DIP framework.
The regularised loss in eq. (3) can be interpreted as the negative log of an unnormalised posterior over
reconstructions. In this context, the TV regulariser corresponds to the prior

p(x) = Z
≠1
⁄ exp(≠⁄TV(x)), (7)

where Z⁄ =
s

exp(≠⁄TV(x)) dx is its normalisation constant (the prior is improper, since constant vectors
are in the null space of the derivative operator). Working with the prior p(x) is intractable since Z⁄ does not
admit a closed form. The Laplace method, which consists of a locally quadratic approximation, does not
solve the issue because the second derivative of the TV regulariser is zero everywhere it is defined.

To enforce local smoothness in the reconstruction, we construct a Gaussian prior N (x; µ, �xx) with mean
µ œ Rdx and covariance �xx œ Rdx◊dx given by the Matern-1/2 kernel

[�xx]ij,iÕjÕ = ‡
2 exp

3
≠d(i ≠ i

Õ
, j ≠ j

Õ)
¸

4
, (8)

where i, j index the spatial locations of pixels of x, as in eq. (2), and d(a, b) =
Ô

a2 + b2. The hyperparameter
‡

2
œ R+ informs the pixel amplitude while the lengthscale parameter ¸ œ R+ determines the correlation

strength between nearby pixels. The expected TV associated with our Gaussian prior is

Ÿ := Ex≥N (µ,�xx)[TV(x)] = c‡


1 ≠ exp(≠¸≠1), (9)

with c a constant. See appendix A for a derivation. Below we may omit the dependence of Ÿ on (¸, ‡
2) from

the notation. For fixed pixel amplitude ‡
2, the expected reconstruction TV Ÿ is a bijection of the lengthscale

¸. We leverage this fact within the PredCP framework of Nalisnick et al. (2021) to construct a prior over ¸

that favours reconstructions with low expected TV

p(¸) = Exp(Ÿ) |ˆŸ/ˆ¸| , (10)

where Exp is the density of the exponential distribution. The resulting hierarchical prior over images

x|¸ ≥ N (µ, �xx), ¸ ≥ Exp(Ÿ) |ˆŸ/ˆ¸| (11)

is Gaussian for fixed ¸, and thus the prior is conditionally conjugate to Gaussian-linear likelihoods. Figure 2
shows agreement between samples, drawn with Hamiltonian Monte Carlo, from the described TV-PredCP
prior and the intractable TV prior, both qualitatively and in terms of distribution over image TV. The TV
prior produces samples with more correlated nearby pixel values than the factorised prior. The TV-PredCP
prior captures this e�ect and produces even smoother samples, likely due to the presence of longer range
correlation in the Matern-1/2 covariance.

5 The linearised DIP

In this section, we build a probabilistic model to characterise posterior reconstructions around ◊̂, a mode of
the regularised DIP objective (obtained using eq. (5)). Section 5.1 describes the construction of a linearised
surrogate for the DIP reconstruction. Section 5.2 describes how to compute the surrogate model’s error-bars
and use them to augment the DIP reconstruction. Section 5.3 discusses how we include the e�ects of TV
regularisation into the surrogate model. Finally, in section 5.4, we describe a strategy to choose the surrogate
model’s prior hyperparameters using a marginal likelihood objective.

5.1 From a prior over parameters to a prior over images

After training the DIP to an optimal TV-regularised setting x̂ = x(◊̂) using eq. (5), we linearise the network
around ◊̂ by applying eq. (6), and obtain the a�ne-in-◊ function h(◊). The error-bars obtained from Bayesian
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Figure 2: Samples from priors. From left to right. Plot 1 shows a histogram of the average sample TV
reporting an overlap between the TV and TV-PredCP priors. The factorised Gaussian prior results in larger
TV values. Plot 2 shows an analogous histogram using samples from the linearised DIP (lin.-DIP) fitted
to a KMNIST image, where the hyperparameters (¸, ‡

2) have been optimised both with and without the
TV-PredCP term. The TV-PredCP term in the DIP hyperparameter optimisation leads to smoother samples
with less artefacts. Plots 3-5 show samples from the TV, TV-PredCP, and factorised Gaussian priors proposed
in section 4, drawn using Hamiltonian Monte Carlo (HMC). Plots 6-7 show prior samples from the linearised
DIP, which produces samples containing the structure of the KMNIST image used to train the network.

inference with h(◊) will tell us about the uncertainty in x̂. To this end, consider the hierarchical model,

y|◊ ≥ N (Ah(◊), ‡
2
yI), ◊|¸ ≥ N (0, �◊◊(¸)), ¸ ≥ p(¸) with h(◊) := x(◊̂) + J(◊ ≠ ◊̂), (12)

where we place a Gaussian prior over the parameters ◊ that, in turn, depends on the lengthscale ¸. Conditioned
on the value of ¸, this is a conjugate Gaussian-linear model and thus the posterior distribution over ◊ has a
closed Gaussian form. Learning the lengthscale ¸ will allow us to incorporate TV constraints into the computed
error-bars, cf. section 5.3. We have introduced the noise variance ‡

2
y as an additional hyperparameter which

we will learn using the marginal likelihood (cf. section 5.4).

To provide intuition about the linearised model, we push samples from ◊ ≥ N (◊; 0, �◊◊), through h. The
resulting reconstruction samples are drawn from a Gaussian distribution with covariance �xx œ Rdx◊dx given
by J�◊◊J

€ and are shown in fig. 2. Here, the Jacobian J introduces structure from the NN function around
the linearisation point ◊̂. It introduces features from the KMNIST character that the DIP was trained on.

5.2 E�cient posterior predictive computation

We augment the DIP reconstruction x̂ with Gaussian predictive error-bars computed with the linearised
model h described in eq. (12), yielding N (x; x̂, �x|y). The posterior covariance �x|y is given by

�x|y = J(‡≠2
y J

€A€AJ + �≠1
◊◊ )≠1

J
€ = �xx ≠ �xy�≠1

yy �€
xy, (13)

which is derived in appendix B. Here, �xx = J�◊◊J
€, �xy = �xxA

€ and �yy = A�xxA
€ + ‡

2
yI. The

constant-in-◊ terms in h do not a�ect the uncertainty estimates, and thus the error-bars match those of the
simple linear model J◊. Importantly, eq. (13) depends on the inverse of the observation space covariance �≠1

yy ,
as opposed to the covariance over reconstructions, or parameters. Equation (13) scales as O(dxd

2
y) as opposed

to O(d3
x) or O(d3

◊) for the more-standard-in-the-literature output (reconstruction) space or parameter space
approaches, respectively (Immer et al., 2021b; Daxberger et al., 2021a).

5.3 Incorporating TV-smoothness into our model as a prior

We impose constraints on h’s error-bars, such that the model only considers low TV reconstructions as
plausible. For this, we place a block-diagonal Matern-1/2 covariance Gaussian prior on the linearised model’s
weights, similarly to Fortuin et al. (2021). We introduce dependencies between parameters in the same CNN
convolutional filter as

[�◊◊]kij,kÕiÕjÕ = ‡
2
d exp

1
≠d(i ≠ i

Õ
, j ≠ j

Õ)
¸d

2
”kkÕ , (14)

where k indexes the convolutional filters in the CNN, ”kkÕ denotes Kronecker symbol, and (i, j) index the
spatial locations of specific parameters within a filter. The lengthscale ¸d regulates the filter smoothness.
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Intuitively, an image generated from convolutions with smoother filters will present lower TV. Indeed,
in appendix C we show a bijective relationship between this quantity and the filter lengthscale. The
hyperparameter ‡

2
d determines the marginal prior variance. Both parameters are defined per architectural

block d œ {1, 2, . . . , D} in the U-Net and we write ¸ = [¸1, ¸2, . . . , ¸D] and ‡
2 = [‡2

1 , ‡
2
2 , . . . , ‡

2
D]. The chosen

U-Net architecture is fully convolutional and thus eq. (14) applies to all parameters, reducing to a diagonal
covariance for 1 ◊ 1 convolutions. A U-Net diagram highlighting these prior blocks is in fig. 3.

To enforce TV-smoothness, we adopt the strategy given in section 4. Since choosing a large ¸ enforces
smoothness in the output, a prior placed over the filter lengthscales ¸ can act as a surrogate for the TV prior.

To make this connection explicit, we construct a TV-PredCP (Nalisnick et al., 2021)

p(¸) =
DŸ

d=1
p(¸d) =

DŸ

d=1
Exp(Ÿd)

----
ˆŸd

ˆ¸d

---- , (15)

with Ÿd := E
◊≥N (◊̂d,�◊d◊d

)
rD

i=1,i”=d
”(◊i≠◊̂i) [⁄TV(h(◊))] (16)

being the expected TV of the CNN output over the prior uncertainty in the parameters of block d when all
other entries of ◊ are fixed to ◊̂.
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Figure 3: A schematic of the U-Net architecture used
in the numerical experiments on Walnut data (see sec-
tion 7.2). For KMNIST, we use a reduced, 3-scale
U-Net without group norm layers (see fig. 20). Each
light-blue rectangle corresponds to a multi-channel fea-
ture map. We highlight the architectural components
corresponding to each block 1, . . . , D for which a sepa-
rate prior is defined with red and yellow boxes.

We relate the expected TV Ÿd to the filter lengthscale
¸d via the change of variables formula. The indepen-
dence across blocks of p(¸) ensures dimensionality
preservation, formally needed in changing variables.
It follows from the triangle inequality that

q
d Ÿd

is an upper bound on the expectation under the
distribution E◊≥N (◊̂,�◊◊)[TV(h(◊))], cf. appendix C.

Note that eq. (15) can be computed analytically.
However, its direct computation is costly and we
instead rely on numerical methods described in sec-
tion 6. In fig. 2 (cf. plot 2 and plots 6-7), we show
samples from N (x; 0, �xx) where ¸ is chosen using
the marginal likelihood with TV-PredCP constraints
(cf. also section 5.4). Incorporating the TV-PredCP
leads to smoother samples with less discontinuities.

5.4 Type-II MAP learning of hyperparameters

The calibration of the predictive Gaussian error-
bars depends on the choice of the hyperparameters
(‡2

y, ‡
2
, ¸) of the hierarchical model in eq. (12) (An-

torán et al., 2022). For a given ¸, Gaussian-linear
conjugacy yields a closed form marginal likelihood
objective to learn the hyperparameters. In turn, to learn ¸, we combine the above objective with the
TV-PredCP’s log-density, which acts as a regulariser. The resulting expression resembles a Type-II MAP
(Rasmussen & Williams, 2005) objective

log p(y|¸; ‡
2
y, ‡

2) + log p(¸; ‡
2) ¥

≠
1
2‡

≠2
y ||y ≠ Ax(◊̂)||22 ≠

1
2 ◊̂

€
h �≠1

◊◊ (¸, ‡
2)◊̂h ≠

1
2 log |�yy| ≠

Dÿ

d=1
Ÿd(¸, ‡

2) + log
----
ˆŸd(¸, ‡

2)
ˆ¸d

---- + B, (17)

where B is independent of (‡2
y, ‡

2
, ¸) and the vector ◊̂h œ Rd◊ is the posterior mean of the linear model’s

parameters. See appendix B for the detailed derivation. The bottleneck in evaluating eq. (17) is the log-
determinant log |�yy| of �yy, which has a cost O(d3

y). We go on to describe scalable ways to approximate the
log-determinant and other costly quantities required for prediction.
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6 Towards scalable computation

In a typical tomography setting, the dimensionality dx of the image x̂ and dy of the observation y can be
large, e.g. dx > 1e5 and dy > 1e3. Thus holding the input space covariance matrices (e.g. �xx and �x|y) in
memory is infeasible. The latter complicates computing log |�yy| in eq. (17) (or its gradients), and its inverse
in �x|y, cf. eq. (13), which scale as O(d3

y) and O(dxd
2
y), respectively. To scale the approach, we only access

Jacobian and covariance matrices through matrix–vector products (matvecs), i.e. products resembling v
€
x �xx

and v
€
y �yy for vx œ Rdx and vy œ Rdy . We compute vy œ Rdy through successive matvecs as

v
€
y �yy = v

€
y (AJ�◊◊J

€A€ + ‡
2
yI), (18)

and we compute v
€
x �xx similarly. We compute Jacobian vector products v

€
◊ J

€ for v◊ œ Rd◊ using forward
mode automatic di�erentiation (AD) and v

€
x J using backward mode AD, both with the functorch library

(He & Zou, 2021). We compute products with �◊◊ by exploiting its block diagonal structure. All these
operations can be batched using modern numerical libraries and GPUs.

6.1 Conjugate gradient log-determinant gradients

For the Type-II MAP optimisation in eq. (17), we estimate the gradients of log |�yy| with respect to the
parameters of interest „ using the stochastic trace estimator (Gibbs & MacKay, 1996; Gardner et al., 2018)

ˆ log |�yy|

ˆ„
= Tr

3
�≠1

yy
ˆ�yy

ˆ„

4
= Ev≥N (0,P )

5
v

€�≠1
yy

ˆ�yy

ˆ„
P

≠1
v

6
, (19)

where P is a preconditioner matrix. We approximately solve the linear system v
€�≠1

yy for batches of probe
vectors v using the GPyTorch preconditioned conjugate gradient (PCG) implementation (Dong et al., 2017).

The preconditioner P is constructed using r-rank randomised SVD, by approximating AJ�◊◊J
€A€ as Ũ �̃Ũ

€,
using a randomised eigendecomposition algorithm (Halko et al., 2011; Martinsson & Tropp, 2020) with
Ũ œ Rdy◊r and r = 200 π dy. The algorithm is described in detail in appendix E. Since P depends on the
hyperparameters „, we interweave the updates of P with the optimisation of eq. (17).

6.2 Ancestral sampling for TV-PredCP optimisation

For large images, exact evaluation of the expected TV with eq. (16) is intractable. Instead, we estimate the
gradient of Ÿd with respect to „ = (‡2

, ¸) using a Monte-Carlo approximation

ˆŸd

ˆ„
= E◊d≥N (◊̂d,�◊d◊d

)

5
ˆTV(x)

ˆx
Jd

ˆ◊d

ˆ„

6
, (20)

where Jd = ˆx(◊)
ˆ◊d

|◊d=◊̂d
, ˆTV(x)

ˆx is evaluated at the sample x=Jd◊d and ˆ◊d
ˆ„ is the reparametrisation gradient

for ◊d, a prior sample of the weights of CNN block d. Since the second derivative of the TV semi-norm is
almost everywhere zero, the gradient for the change of variables volume ratio is

ˆ
2
Ÿd

ˆ„2 = E◊d≥N (◊̂d,�◊d◊d
)

5
ˆTV(x)

ˆ„
Jd

ˆ
2
◊d

ˆ„2

6
. (21)

6.3 Posterior covariance matrix estimation by sampling

The covariance matrix �x|y is too large to fit into memory for high-resolution tomographic reconstructions.
Instead, we follow Wilson et al. (2021) in drawing samples from N (x; 0, �x|y) via Matheron’s rule

xx|y = x0 + �xy�≠1
yy (‘ ≠ Ax0); x0 = J◊0; ◊0 ≥ N (0, �◊◊); ‘ ≥ N (0, ‡

2
yI). (22)

The biggest cost lies in constructing �yy, which is achieved by applying eq. (18) to the standard basis vectors
�yy = [e1, e2, ... edy ]€�yy. We then perform its Cholesky factorisation as an intermediate step towards matrix
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inversion, both relatively costly operations. Fortunately, we only have to repeat these once, after which the
sampling step in eq. (22) can be evaluated cheaply. Alternatively, as in eq. (19), we can compute the solution
of the linear system, �≠1

yy vy for any vy via PCG, without explicitly assembling (and thus storing in memory)
the measurement covariance matrix, or computing its Cholesky factorisation. This approach allows us to
scale the sampling operation to large measurement spaces, where the matrix �yy may not fit in memory.

Since only nearby pixels of the predictions are expected to be correlated, we estimate cross covariances for
patches of only up to 10 ◊ 10 adjacent pixels. Using larger patches yields no improvements. We use the
stabilised formulation of Maddox et al. (2019): �̂x|y = 1

2k [
qk

j=1 diag(xj)2 + xjx
€
j ] for (xj)k

j=1 samples from
the posterior predictive distribution over a patch. Note that the samples from eq. (22) are zero mean.

6.4 Faster low-rank Jacobian matvecs

Table 1: Wall-clock time on an A100 GPU for the
di�erent steps of our algorithm when applied to high-
resolution CT (details in section 7.2). Computations
reported below the dotted line are in double precision.
The time taken by Jacobian matvecs during sampling
is given in parenthesis.

wall-clock time
DIP optim. (after pretraining (Barbano et al., 2022c)) <0.1 h
Hyperparam. optim. (MLL) 26.2 h
Hyperparam. optim. (TV-MAP) 35.4 h

Assemble �yy 2.7 h
Draw 4096 posterior samples 2.4 h
- (Evaluate 4096 times 2◊ v

€
◊ J

€ + 1◊ v
€
x J) 2.4 h

Draw 4096 posterior samples (J̃ & PCG) 0.3 h
- (Evaluate 4096 times 2◊ v

€
◊ J̃

€ + 1◊ v
€
x J̃) < 0.1 min

Table 1 shows that the Jacobian matvecs—
implemented through forward and backward mode
AD— required for sampling from the posterior pre-
dictive (that is 2◊ v

€
◊ J

€ and 1◊ v
€
x J) take ¥ 100 %

of this step’s computation time (2.4 h). To accelerate
sampling, we construct a low-rank approximation
of the Jacobian J̃ , which we store in memory. We
compute v

€
◊ J̃

€ and v
€
x J̃ via matvec, as opposed to

AD. This allows for fast approximation of v
€
y �yy by

substituting J̃ into eq. (18). This brings the time
needed for sampling from the posterior predictive
down from 2.4 hours to less than a minute. We con-
struct J̃ similarly to the low-rank preconditioner P

(see section 6.1 and appendix E). That is, following
Halko et al. (2011), we build a rank-r approximation to J , by accessing only to matvecs with J and J

€.
While o�ering a well-calibrated alternative to uncertainty quantification within the DIP framework, it incurs
computational overhead (see table 1) when compared to MC dropout, which only require a forward pass
through the network to generate a single sample.

Algorithm 1 summarises image reconstruction and uncertainty estimation with the linearised DIP.

Algorithm 1: Linearised deep image prior (lin.-DIP) inference
Inputs: noisy measurements y, a CNN x(·), probabilistic model’s hyperparameters, whether to use fast

approximate posterior sampling fast_sampling

1 ◊̂ Ω fit_DIP(y, x(◊)) // by minimising eq. (5)
2 ◊̂h Ωfind_linearised_MAP(y, x(◊̂)) // using Algorithm 1 from Antorán et al. (2022)
3 ‡

2
y, {‡

2
d, ¸d}

D
d=1 Ω optimise_hyperparams(y, x(◊̂), ◊̂h) // by maximising eq. (17) with

estimators eqs. (19) to (21) and solving linear systems with PCG
4 if not fast_sampling then
5 �yy Ω assemble_covariance(x(◊̂), ‡

2
y, {‡

2
d, ¸d}

D
d=1) // by applying eq. (18) to rows of Idy

6 �̂x|y Ω posterior_sampling(x(◊̂), {‡
2
d, ¸d}

D
d=1, �yy) // using eq. (22)

7 else
8 J̃ Ω construct_lowrank_Jacobian(x(◊̂)) // by randomised SVD, cf. section 6.4
9 �̂x|y Ω fast_sampling(x(◊̂), ‡

2
y, {‡

2
d, ¸d}

D
d=1, J̃) // using eq. (22) with J̃ and PCG

Output: mean reconstruction x(◊̂), posterior covariance estimate �̂x|y

9
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7 Experiments

Here, we experimentally evaluate: i) the properties of the models and priors discussed in sections 4 and 5, and
whether they lead to accurate reconstructions and calibrated uncertainty; ii) the fidelity of the approximations
described in section 6; and iii) the performance of the proposed method linearised DIP (lin.-DIP) relative to
the previous MC dropout (MCDO) based probabilistic formulation of DIP (Laves et al., 2020). We attempted
to include DIP-SGLD (Cheng et al., 2019) in our analysis, but were unable to get the method to produce
competitive results on tomographic reconstruction problems. For each individual image to be reconstructed,
we employ the following linearised DIP inference procedure: i) optimise the DIP weights via eq. (5), obtaining
x̂ = x(◊̂); ii) optimise prior hyperparameters (‡2

y, ¸, ‡
2) via eq. (17); iii) assemble and Cholesky decompose

�yy with eq. (18) (this step can be accelerated using approximate methods sections 6.3 and 6.4); iv) compute
posterior covariance matrices either via eq. (13), or estimate them via eq. (22); cf. Algorithm 1.

7.1 Small scale ablation analysis: reconstruction of KMNIST digits

The initial analysis uses simulated CT data obtained by applying eq. (1) to 50 images from the test set of the
Kuzushiji-MNIST (KMNIST) dataset: 28 ◊ 28 (dx = 784) grayscale images of Hiragana characters (Clanuwat
et al., 2018). We choose the noise standard deviation to be either 5% or 10% of the mean of Ax, denoted as
÷(5%) or ÷(10%). The forward map A is a discrete Radon transform, assembled via ODL (Adler et al., 2017).
We use a U-Net with 3 scales and 76905 parameters (a down-sized net compared to the one in fig. 3).

7.1.1 Comparing linearised DIP with network-free priors

Table 2: Quantitative results for inference with the
di�erent priors introduced in section 4. We report both
the PSNR of E[x|y], which denotes the posterior mean
reconstruction, and the PSNR of x̂, which denotes the
posterior mode found through optimisation.

log-likelihood E[x|y] x̂

Fact. Gauss. 0.30 ± 0.17 16.15 ± 0.38 14.89 ± 0.38
TV 0.49 ± 0.14 16.32 ± 0.38 16.29 ± 0.41
TV-PredCP 0.65 ± 0.12 16.55 ± 0.39 17.48 ± 0.39
lin.-DIP (MLL) 1.63 ± 0.08 ≠ 19.46 ± 0.52
lin.-DIP (TV-MAP) 1.63 ± 0.09 ≠ 19.46 ± 0.52

We first evaluate the priors in section 4, i.e. TV
prior, TV-PredCP with a Matern-1/2 kernel, and
a factorised Gaussian prior, and perform inference
in the setting where the map A collects 5 angles
(dy = 205) sampled uniformly from 0¶ to 180¶ and
is applied to 50 KMNIST test set images. Here,
10% noise is added. This results in a very ill-posed
reconstruction problem, maximising the relevance of
the prior. We select the ‡

2
y and ⁄ hyperparameters

for the factorised Gaussian prior and the TV prior
respectively such that the posterior mean’s PSNR is maximised across a validation set of 10 images from
the KMNIST training set. We keep the choice of ‡

2
y and ⁄ hyperparameters from the first two models for

our experiments with the third model: Matern-1/2 with TV-PredCP prior over ¸. For all priors, we perform
inference with the NUTS HMC sampler. We run 5 independent chains for each image. We burn these in for
3 ◊ 103 steps each and then proceed to draw 104 samples with a thinning factor of 2.

We evaluate test log-likelihood using Gaussian Kernel Density Estimation (KDE) (Silverman, 1986). The
kernel bandwidth is chosen using cross-validation on 10 images from the training set. The results in table 2
show that the TV-PredCP performs best in terms of the test log-likelihood and both posterior mean and
posterior mode PSNR, followed by the TV and then the factorised Gaussian. This is somewhat surprising
considering that this prior was designed as an approximation to the intractable TV prior. We hypothesise
that this may be due to the Matern model allowing for faster transitions in the image than the TV prior,
while still capturing local correlations, as shown qualitatively in fig. 2. This property may be well-suited
to the KMNIST datasets, where most pixels either present large amplitudes or are close to 0. DIP-based
predictions provide 2dB higher PSNR reconstructions than the non-DIP based priors, thus linearised DIP
handily obtains a better test log-likelihood than the more-traditional methods.

7.1.2 Comparing calibration with DIP uncertainty quantification baselines

Using KMNIST, we construct test cases of di�erent ill-posedness by simulating the observation y with four
di�erent angle sub-sampling settings for the linear operator A: 30 (dy=1230), 20 (dy=820), 10 (dy=410) and
5 (dy=205) angles are taken uniformly from the range 0¶ to 180¶. We consider two noise configurations by
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Figure 4: Exemplary character recovered from y (using 5 angles and ÷(5%)) with lin.-DIP and DIP-MCDO
along with respective uncertainty estimates. lin.-DIP provides vastly improved uncertainty calibration.
For lin.-DIP, the colour-map is shared between |x̂ ≠ x| and std-dev, and TV-MAP refers to Type-II MAP
optimisation of hyperparameters.

adding either 5% or 10% noise to the exact data Ax. We evaluate all DIP-based methods using the same
50 randomly chosen KMNIST test set images. To ensure a best-case showing of the methods, we choose
appropriate hyperparameters for each number of angles and white noise percentage setting by applying
grid-search cross-validation, using 50 images from the KMNIST training dataset. Specifically, we tune the
TV strength ⁄ and the number of optimisation iterations for the DIP. Due to the reduced image size, we
apply linearised DIP as in section 5, without approximate computations. As an ablation study, we include
additional baselines: linearised DIP without the TV-PredCP prior over hyperparameters (labelled MLL), and
DIP reconstruction with a simple Gaussian noise model consisting of the back-projected observation noise
N (x; x̂, ‡

2
AI), with ‡

2
A = ‡

2
yTr((A€A)†)d≠1

x where ‡
2
y=1 (labelled ‡

2
y=1). Note that non-dropout methods

share the same DIP parameters ◊̂, and thus the same mean reconstruction. Hence, higher values in log-density
indicate better uncertainty calibration, i.e. the predictive standard deviation better matches the empirical
reconstruction error. DIP-MCDO does not provide an explicit likelihood function over the reconstructed
image. We model its uncertainty with a Gaussian predictive distribution with covariance estimated from 214

samples. MNIST images are quantised to 256 bins, but our models make predictions over continuous pixel
values. Thus, we simulate a de-quantisation of KMNIST images by adding a noise jitter term of variance
approximately matching that of a uniform distribution over the quantisation step (Hoogeboom et al., 2020).

Table 3: Mean and std-err of test log-likelihood computed over 50 KMNIST test images.
÷ (5%) #angles: 5 10 20 30
DIP (‡2

y = 1) 0.68 ± 0.14 1.57 ± 0.02 1.85 ± 0.02 2.02 ± 0.02
DIP-MCDO 0.74 ± 0.13 1.60 ± 0.02 1.87 ± 0.02 2.05 ± 0.02
lin.-DIP (MLL) 1.90 ± 0.14 2.57 ± 0.09 2.94 ± 0.10 3.09 ± 0.12
lin.-DIP (TV-MAP) 1.88 ± 0.15 2.59 ± 0.10 2.96 ± 0.10 3.11 ± 0.12

÷ (10%) #angles: 5 10 20 30
DIP (‡2

y = 1) 0.27 ± 0.17 1.31 ± 0.04 1.62 ± 0.03 1.76 ± 0.04
DIP-MCDO 0.42 ± 0.14 1.39 ± 0.04 1.70 ± 0.03 1.85 ± 0.04
lin.-DIP (MLL) 1.63 ± 0.08 2.11 ± 0.07 2.43 ± 0.07 2.59 ± 0.08
lin.-DIP (TV-MAP) 1.63 ± 0.09 2.13 ± 0.07 2.45 ± 0.08 2.61 ± 0.08

Table 4: PSNR [dB] / SSIM of the reconstruction posterior mean, averaged over 50 KMNIST test images.

÷ (5%) #angles: 5 10 20 30
DIP 21.42/ 0.890 27.92/ 0.977 31.21/ 0.988 32.93/ 0.991
DIP-MCDO 20.95/0.882 28.26/ 0.977 31.65/0.986 33.45/0.990

÷ (10%) #angles: 5 10 20 30
DIP 19.46/ 0.846 24.56/ 0.956 27.27/ 0.974 28.57/ 0.980
DIP-MCDO 18.91/0.830 24.76/0.953 27.72/0.972 29.09/0.978

Table 3 shows the test log-likelihood for all the methods and experimental settings under consideration. The
peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) index of posterior mean reconstructions are
given in table 4. All methods show similar PSNR with the standard DIP (with TV regularisation) obtaining
better PSNR in the very ill-posed setting (5 angles) and MCDO obtaining marginally better reconstruction in
all others. Despite this, the linearised DIP provides significantly better uncertainty calibration, outperforming
all baselines in terms of test log-likelihood in all settings. Figure 4 shows an exemplary character recovered
from a simulated observation y (using 20 angles and 5% noise) with both linearised DIP and DIP-MCDO along
with their associated uncertainty maps and calibration plots. DIP-MCDO systematically underestimates
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Figure 5: Reconstruction of a 501 ◊ 501 px2 slice of a scanned Walnut using lin.-DIP and DIP-MCDO along
with their respective uncertainty estimates. The zoomed regions (outlined in red) are given in top-left.

uncertainty for pixels on which the error is large, explaining its poor test log-likelihood. The pixel-wise
standard deviation provided by linearised DIP (TV-MAP) better correlates with the reconstruction error.

7.1.3 Evaluating the fidelity of sample-based predictive covariance matrix estimation

We evaluate the accuracy of the sampling, conjugate gradient and low rank approximations to the predictive
covariance �x|y discussed in section 6. We compute the exact predictive covariance with eq. (13) as a reference,
which is tractable for KMNIST, and do not use patch-based approximations or stabilised covariance estimators.
Table 5 shows that estimating �x|y using samples does not decrease the performance. Using a low-rank
approximation to J and computing linear solves with PCG lose at most 0.32 nats in test log-likelihood with
respect to the exact one, but result in almost an order of magnitude speedup at prediction time.

Table 5: Evaluation of our approximate covariance
estimation methods in terms of test log-likelihood
over 10 KMNIST test images considering the 20 angle
(dy = 820) setting and using lin.-DIP (MLL).

÷ (%)
exact

cov. eq. (13)
sampled

cov. eq. (22)
sampled

cov. (J̃) eq. (22)
sampled cov.

(J̃ & PCG) eq. (22)
5 2.80 ± 0.06 2.80 ± 0.06 2.68 ± 0.09 2.62 ± 0.09
10 2.26 ± 0.06 2.26 ± 0.06 2.21 ± 0.06 2.22 ± 0.06

Table 6: Test log-likelihood, PSNR and structural
similarity (SSIM) on the Walnut. We compare all
lin.-DIP variants with DIP-MCDO.

1 ◊ 1 2 ◊ 2 10 ◊ 10 PSNR [dB] SSIM
DIP-MCDO 0.03 1.68 2.47 23.49 0.730
lin.-DIP (MLL) 2.09 2.25 2.43 26.35 0.789
lin.-DIP (MLL, J̃ & PCG) 1.88 2.05 2.24 ≠ ≠

lin.-DIP (TV-MAP) 2.21 2.40 2.60 ≠ ≠

lin.-DIP (TV-MAP, J̃ & PCG) 2.24 2.46 2.65 ≠ ≠

7.2 Linearised DIP for high-resolution CT

We now demonstrate the approach on real-measured cone-beam µCT data of a walnut (Der Sarkissian et al.,
2019). We reconstruct a 501 ◊ 501 px2 slice (dx = 251 001) using a sparse subset of measurements taken from
60 angles and 128 detector rows (dy = 7680), using the U-Net in fig. 3 which has about 3 million parameters.
Here, �xx is too large to store in memory and �yy too expensive to assemble repeatedly, and we use the full
suite of approximations in section 6. Since the Walnut data is not quantised, jitter correction is not needed.

During MLL and Type-II MAP optimisation, many layers’ prior variance goes to ‡
2
d ¥ 0, cf. appendix D. This

phenomenon is known as “automatic relevance determination” (Mackay, 1996; Tipping, 2001), and simplifies
our linearised network, preventing uncertainty overestimation. We did not observe this e�ect when working
with KMNIST images and smaller networks. We display the MLL and MAP optimisation profiles for the
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Figure 7: The comparison of uncertainty calibration: the pixel-wise error |x̂≠x| overlaps with the uncertainties
provided by the lin.-DIP. DIP-MCDO, instead, severely underestimates uncertainty. The scale of the pixel-wise
standard deviation (std-dev) obtained including the TV-PredCP matches the absolute error more closely
than when the hyperparameters are optimised without. Using J̃ & PCG results in overestimating uncertainty
in the tails. LL stands for test log-likelihood.

active layers (i.e. layers with high ‡
2
d) in fig. 6. Type-II MAP hyperparameters optimisation drives ‡

2 to
smaller values, compared to MLL. This restricts the linearised DIP prior, and thus the induced posterior,
to functions that are smooth in a TV sense, leading to smaller error-bars, cf. fig. 7. As the optimisation of
eq. (17) progresses, ¸1, ¸11 fall into basins of new minima corresponding to larger lengthscales. This results in
more correlated dimensions in the prior, further simplifying the model.
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Figure 6: Optimisation trajectories for hyperparam-
eters of the U-Net’s first and last 3 ◊ 3 convolutions
(¸1, ‡

2
1 , ¸11, ‡

2
11), last 1 ◊ 1 convolution (‡2

1◊1,3) and
noise variance ‡

2
y for the Walnut data.

Density estimation described in section 6.3, is con-
ducted in double precision (64 bit floating point)
since single precision led to numerical instability in
the assembly of �yy, and also in the estimation of
o�-diagonal covariance terms for larger patches. In
table 6, we report test log-likelihood computed using
a Gaussian predictive distribution with covariance
patches of sizes 1 ◊ 1, 2 ◊ 2 and 10 ◊ 10 pixels. Mean
reconstruction metrics are also reported. Figure 5
displays reconstructed images, uncertainty maps and
calibration plots. In this more challenging task, DIP-
MCDO performs poorly relative to the standard DIP
formulation eq. (5) in terms of PSNR. DIP-MCDO
underestimates uncertainty, and its uncertainty map
is blurred across large sections of the image, placing
large uncertainty in well-reconstructed regions and
vice-versa. In contrast, the uncertainty map provided
by linearised DIP is fine-grained, concentrating on
regions of increased reconstruction error. Linearised DIP provides over 2.06 nats per pixel improvement in
terms of test log-likelihood and more calibrated uncertainty estimates, as reflected in the Q-Q plot in fig. 7.
Furthermore, the use of TV-PredCP prior for MAP optimisation yields a 0.12 nat per pixel improvement
over the MLL approach. Interestingly, using low-rank Jacobians and PCG for sampling provides a small
performance boost when using the TV-PredCP prior. Figure 7 reveals that these approximations result
in uncertainty overestimation (a known issue (Antoran et al., 2023)) which is compensated by the more
restrictive TV-PredCP prior.

8 Conclusion

We have proposed a probabilistic formulation of the deep image prior (DIP) that utilises a linearisation
of the DIP network around the mode of the loss and a Gaussian-linear hierarchical prior on the network
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parameters mimicking the total variation prior (constructed via the predictive complexity prior framework).
The approach yields well-calibrated uncertainty estimates on tomographic reconstruction tasks based on
simulated observations and real-measured µCT data. The empirical results suggest that both the DIP
reparametrisation and the TV regulariser provide good inductive biases for high-quality reconstructions and
well-calibrated uncertainty estimates. The method is shown to provide by far more calibrated uncertainty
estimates than existing MC dropout approaches to uncertainty estimation with the DIP. However, this comes
at a larger computational cost. Fortunately, since the first appearance of this work, Antoran et al. (2023)
have developed techniques that reduce the cost of our linearised DIP inference by two orders of magnitude.
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