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ABSTRACT

Graphs are one of the most important data structures for representing pairwise re-
lations between objects. Specifically, a graph embedded in a Euclidean space is
essential to solving real problems, such as physical simulations. A crucial require-
ment for applying graphs in Euclidean spaces to physical simulations is learning
and inferring the isometric transformation invariant and equivariant features in
a computationally efficient manner. In this paper, we propose a set of transfor-
mation invariant and equivariant models based on graph convolutional networks,
called IsoGCNs. We demonstrate that the proposed model has a competitive per-
formance compared to state-of-the-art methods on tasks related to geometrical and
physical simulation data. Moreover, the proposed model can scale up to graphs
with 1M vertices and conduct an inference faster than a conventional finite ele-
ment analysis, which the existing equivariant models cannot achieve.

1 INTRODUCTION

Graph-structured data embedded in Euclidean spaces can be utilized in many different fields such
as object detection, structural chemistry analysis, and physical simulations. Graph neural networks
(GNNs) have been introduced to deal with such data. The crucial properties of GNNs include
permutation invariance and equivariance. Besides permutations, isometric transformation invariance
and equivariance must be addressed when considering graphs in Euclidean spaces because many
properties of objects in the Euclidean space do not change under translation and rotation. Due to
such invariance and equivariance, 1) the interpretation of the model is facilitated; 2) the output of
the model is stabilized and predictable; and 3) the training is rendered efficient by eliminating the
necessity of data augmentation as discussed in the literature (Thomas et al.| 2018; [Weiler et al.,
2018 [Fuchs et al., [2020).

Isometric transformation invariance and equivariance are inevitable, especially when applied to
physical simulations, because every physical quantity and physical law is either invariant or equiv-
ariant to such a transformation. Another essential requirement for such applications is computational
efficiency because the primary objective of learning a physical simulation is to replace a computa-
tionally expensive simulation method with a faster machine learning model.

In the present paper, we propose IsoGCNs, a set of simple yet powerful models that provide
computationally-efficient isometric transformation invariance and equivariance based on graph con-
volutional networks (GCNs) (Kipf & Welling| 2017). Specifically, by simply tweaking the definition
of an adjacency matrix, the proposed model can realize isometric transformation invariance. Because
the proposed approach relies on graphs, it can deal with the complex shapes that are usually pre-
sented using mesh or point cloud data structures. Besides, a specific form of the IsoGCN layer can be
regarded as a spatial differential operator that is essential for describing physical laws. In addition,
we have shown that the proposed approach is computationally efficient in terms of processing graphs
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with up to 1M vertices that are often presented in real physical simulations. Moreover, the proposed
model exhibited faster inference compared to a conventional finite element analysis approach at the
same level of accuracy. Therefore, an IsoGCN can suitably replace physical simulations regarding
its power to express physical laws and faster, scalable computation. The corresponding implemen-
tation and the dataset are available onlind']

The main contributions of the present paper can be summarized as follows:

* We construct isometric invariant and equivariant GCNs, called IsoGCNs for the specified
input and output tensor ranks.

* We demonstrate that an Iso0GCN model enjoys competitive performance against state-of-
the-art baseline models on the considered tasks related to physical simulations.

* We confirm that IsoGCNs are scalable to graphs with 1M vertices and achieve inference
considerably faster than conventional finite element analysis.

2 RELATED WORK

Graph neural networks. The concept of a GNN was first proposed by [Baskin et al.[(1997); |Sper-
duti & Starita (1997) and then improved by (Gori et al.,2005; |Scarselli et al.,|2008)). Although many
variants of GNNs have been proposed, these models have been unified under the concept of mes-
sage passing neural networks (Gilmer et al.,[2017). Generally, message passing is computed with
nonlinear neural networks, which can incur a tremendous computational cost. In contrast, the GCN
developed by Kipf & Welling (2017) is a considerable simplification of a GNN, that uses a linear
message passing scheme expressed as

H,. = o(AH,W), (1)

where H;,, (H,,) is an input (output) feature of the [th layer, A is a renormalized adjacency matrix
with self-loops, and W is a trainable weight. A GCN, among the variants of GNNs, is essential to
the present study because the proposed model is based on GCNss for computational efficiency.

Invariant and equivariant neural networks. A function f : X — Y is said to be equivariant
to a group G when f(g-x) = g- f(z), forall g € G and x € X, assuming that group G acts
on both X and Y. In particular, when f(g - ) = f(x), f is said to be invariant to the group G.
Group equivariant convolutional neural networks were first proposed by (Cohen & Welling|(2016])) for
discrete groups. Subsequent studies have categorized such networks into continuous groups (Cohen
et al.,[2018), three-dimensional data (Weiler et al.,2018]), and general manifolds (Cohen et al.;[2019).
These methods are based on CNNs; thus, they cannot handle mesh or point cloud data structures as
is. Specifically, 3D steerable CNNs (Weiler et al.,|2018) uses voxels (regular grids), which though
relatively easy to handle, are not efficient because they represent both occupied and non-occupied
parts of an object (Ahmed et al.,[2018)). In addition, a voxelized object tends to lose the smoothness
of its shape, which can lead to drastically different behavior in a physical simulation, as typically
observed in structural analysis and computational fluid dynamics.

Thomas et al.[(2018]));|Kondor|(2018) discussed how to provide rotation equivariance to point clouds.
Specifically, the tensor field network (TFN) (Thomas et al.,[2018)) is a point cloud based rotation and
translation equivariant neural network the layer of which can be written as

S0 S (D) ~ (k)
Hout,i = w” Hin,i + Z Z Wlk(wj - 2121) Hin7j7 (2)
k>0 j#i
k+1 J
Wh@) = Y flzl) Y Yim(a/|z])QF,, 3)
J=|k—1| m=—J

~(1)
where Hi(n{i (Hézw) is a type-{ input (output) feature at the ith vertex, ¢'F : R>¢ — R is a trainable

function, Y7, is the mth component of the Jth spherical harmonics, and Qljkm is the Clebsch-
Cordan coefficient. The SE(3)-Transformer (Fuchs et al., |2020) is a variant of the TFN with self-
attention. These models achieve high expressibility based on spherical harmonics and message pass-
ing with nonlinear neural networks. However, for this reason, considerable computational resources

'https://github.com/yellowshippo/isogcn-iclr2021
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are required. In contrast, the present study allows a significant reduction in the computational costs
because it eliminates spherical harmonics and nonlinear message passing. From this perspective,
IsoGCNs are also regarded as a simplification of the TFN, as seen in equation |14}

Physical simulations using GNNs. Several related studies, including those by Sanchez-Gonzalez
et al.| (2018; [2019); |Alet et al.| (2019); |Chang & Cheng| (2020) focused on applying GNNs to learn
physical simulations. These approaches allowed the physical information to be introduced to GNNs;
however, addressing isometric transformation equivariance was out of the scope of their research.

In the present study, we incorporate isometric transformation invariance and equivariance into
GCNes, thereby, ensuring the stability of the training and inference under isometric transformation.
Moreover, the proposed approach is efficient in processing large graphs with up to 1M vertices that
have a sufficient number of degrees of freedom to express complex shapes.

3 ISOMETRIC TRANSFORMATION INVARIANT AND EQUIVARIANT GRAPH
CONVOLUTIONAL LAYERS

In this section, we discuss how to construct IsoGCN layers that correspond to the isometric invariant
and equivariant GCN layers. To formulate a model, we assume that: 1) only attributes associated
with vertices and not edges; and 2) graphs do not contain self-loops. Here, G = (V, £) denotes a
graph and d denotes the dimension of a Euclidean space. In this paper, we refer to tensor as geomet-
ric tensors, and we consider a (discrete) rank-p tensor field H® € RVIXI*d” \where |V| denotes
the number of vertices and f € Z* (Z™ denotes the positive integers). Here, f denotes the number
of features (channels) of H® ), as shown in Figure |1{(a). With the indices, we denote Hl(’;) kika..ky?
where ¢ permutes under the permutation of vertices and k1, ..., k, refers to the Euclidean repre-

: : . ) (p)
sentation. Thus, under the permutation, 7 : Hi;g;klkg...k:p — Hﬁ(i);g;klh___kp, and under orthogonal

. . y®) (p)
transformation, U : Hi;g;klk%‘kp — le,lz,...,lp Uky1, Ugyty - - - Ukpl;nHi;g;lllz.“lp'

3.1 CONSTRUCTION OF AN ISOMETRIC ADJACENCY MATRIX

Before constructing an IsoGCN, an isometric
adjacency matrix (IsoAM), which is at the

core of the IsoGCN concept must be defined. (CL)
The proof of each proposition can be found in

Appendix
An IsoAM G € RIVIXIVIXd ig defined as:

R? > Gyj.. := Z Tijri(zr — 1), (4)
klEV k£l

where G;;... is a slice in the spatial index of G, o

x; € R? is the position of the ith vertex (rank- Figure 1: Slchematlc diagrams of (a) rank-1 ten-
1 tensor), and T} € R9%4 is an untrainable sor field H™ with the number of features equal-
transformation invariant and orthogonal trans- ing 2 and (b) the simplest case of Gij;;. =
formation equivariant rank-2 tensor. Note that SudjrAijI(zr — 1) = Aij(xj — T)).

we denote G;;,;, to be consistent with the no-

tation of Hi(f;); kika...ky because ¢ and j permutes under the vertex permutation and k represents the
spatial index while the number of features is always 1. The IsoAM can be viewed as a weighted ad-
jacency matrix for each direction and reflects spatial information while the usual weighted adjacency
matrix cannot because a graph has only one adjacency matrix. If the size of the set {G;j,.. # 0};
is greater than or equal to d, then it can be deemed to be a frame, which is a generalization of a
basis. For the simplest case, one can define T;j; = 03101 As51 (Figure(b)), where d;; is the Kro-
necker delta, A is the adjacency matrix of the graph, and I is the identity matrix that is the simplest
rank-2 tensor. In another case, T};i; can be determined from the geometry of a graph, as defined
in equation @} Nevertheless, in the bulk of this section, we retain T;;,; abstract to cover various
forms of interaction, such as position-aware GNNs (You et al.,[2019). Here, G is composed of only
untrainable parameters and thus can be determined before training.
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Proposition 3.1. IsoAM defined in equationH|is both translation invariant and orthogonal trans-
formation equivariant, i.e., for any isometric transformation ¥t € R®*, U € O(d),T : ¢ — Ux +t,

T: Gij;;k — ZUleij;;l~ )
l

Based on the definition of the GCN layer in the equation |1} let G * H® e RIVIXFfxd denote the
convolution between G and the rank-0 tensor field H® € RVIxf (f € ZT) as follows:

(G+H?), _Zc;.”,khﬂO (6)

With a rank-1 tensor field H") € RIVI¥/%d 1et G © HY € RIVI*/ and G ® G € RIVI*IVI denote
the contractions which are defined as follows:

(GoHW), ZG” WHY L (GeG), ZG” & Gijtik- (7)

The contraction of [so)AMs G ® G can be interpreted as the inner product of each component in the
IsoAMs. Thus, the subsequent proposition follows.

Proposition 3.2. The contraction of IsoAMs G © G is isometric transformation invariant, i.e., for
any isometric transformation ¥t € R3,U € O(d), T :x — Uz +t, GO G+— GO G.

With a rank-p tensor field H?) € RIVIXFx@” 1ot GeH®P) € RIVIXfxd"™" and GG € RIVIXVIxd®
denote the tensor products defined as follows:

(G ® H(p))i;g;kmlmQ...mp . Z GZL ik _](,pq),mlmg My (8)

(G ®G) ek, : ZGU, k1 Gjlsiea 9

The tensor product of IsoAMs G ® G can be mterpreted as the tensor product of each of the IsoAMs
components. Thus, the subsequent proposition follows:

Proposition 3.3. The tensor product of the IsoAMs G ® G is isometric transformation equivariant
in terms of the rank-2 tensor; i.e., for any isometric transformation Vt € R3, U € O(d),T : x
Ux -+t andVi,jel,..., ‘V|, (G ® G)ij;;klkz — Uklh Uk212 (G ® G)ij;:hlz'
This proposition is easily generalized to the tensors of higher ranks by defining the pth tensor power
of G as follows: ®°G =1, ®"'G =G, and ®’G = ®" ' G ® G. Namely, ®" G is isometric
transformation equivariant in terms of rank-p tensor. Therefore, one can see that (RQ* G) @ H'Y =
(®" ' G) ® (G ® H?). Moreover, the convolution can be generalized for ®” G and the rank-0
tensor field H®) € RVI*/ as follows:

(é G) «H©

The contraction can be generalized for Q) G and the rank-q tensor field H@ ¢ RVIXIxd® (p > )
as specified below:

(&) owe

For the case p < ¢, the contraction can be defined similarly.

P
(@) ommw
i;g;klkg...kp ] ij;;klk‘g...k

p
_ (a)
- Z <® G> Hj;g;mlmz---mq'
Mg ij3sk1ka.kp_gmima..my

i;9;k1ka.. . kp_g Jymi,ma,...,
(11

3.2 CONSTRUCTION OF ISOGCN

Using the operations defined above, we can construct IsoGCN layers, which take the tensor field of
any rank as input, and output the tensor field of any rank, which can differ from those of the input.
In addition, one can show that these layers are also equivariant under the vertex permutation, as
discussed in Maron et al.| (2018).
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3.2.1 ISOMETRIC TRANSFORMATION INVARIANT LAYER

As can be seen in Proposition [3.1] the contraction of IsoOAMs is isometric transformation invari-
ant. Therefore, for the isometric transformation invariant layer with a rank-0 input tensor field

f o RVIXfin 5 Hi(r?) — Hf)ﬂ)t e RIVIXfou (£ fous € Z71), the activation function o, and the
trainable parameter matrix W € R/in*/feut can be constructed as H, c()?l)t =0 <(G ©G)H, (O)W).

By defining L := G © G € RVIXIVI it can be simplified as H'°) = o (LHi(I?)W), which has the
same form as a GCN (equation , with the exception that Ais replaced with L.

An isometric transformation invariant layer with the rank-p input tensor field Hi(f:) € RIVIXfinxd?
can be formulated as H'") = F,_o(H?) = & ([@p Go Hi(f:)} W) - If p = 1, such approaches

out —

utilize the inner products of the vectors in R?, these operations correspond to the extractions of a
relative distance and an angle of each pair of vertices, which are employed in |Klicpera et al.[(2020).

3.2.2 ISOMETRIC TRANSFORMATION EQUIVARIANT LAYER

To construct an isometric transformation equivariant layer, one can use linear transformation, con-
volution and tensor product to the input tensors. If both the input and the output tensor ranks are
greater than O, one can apply neither nonlinear activation nor bias addition because these opera-
tions will cause an inappropriate distortion of the isometry because isometric transformation does
not commute with them in general. However, a conversion that uses only a linear transformation,
convolution, and tensor product does not have nonlinearity, which limits the predictive performance
of the model. To add nonlinearity to such a conversion, we can first convert the input tensors to
rank-0 ones, apply nonlinear activations, and then multiply them to the higher rank tensors.

The nonlinear isometric transformation equivariant layer with the rank-m input tensor field Hl(:]n ) e
RIVIXfinxd™ and the rank-I (m < I) output tensor H'Y, € RIVI*fouxd" can be defined as:

HO = Fruso (HE) x P (HE) - Fo (HY) = [ESG

where x denotes multiplication with broadcasting and W™! € Rfin*fout are trainable weight ma-

trices multiplied in the feature direction. If m = 0, we regard G ® H® as G« HO. If m = [, one
can add the residual connection (He et al., 2016) in equation Ifm>1,

= B () < o () s () = [ @0

In general, the nonlinear isometric transformation equivariant layer with the rank-0 to rank-M input
tensor field {Hl(;n J}M_  and the rank-l output tensor field HY

m=0 out

M
m&—HQWffE;@mm<&%w&ﬁBE:)me%(WT), (14)

where fgather denotes a function such as summation, product and concatenation in the feature di-
rection. One can see that this layer is similar to that in the TEN (equation [2), while there are no
spherical harmonics and trainable message passing.

oHYW™ (12)

oH™MwWwm™ . (13)

m

can be defined as:

To be exact, the output of the layer defined above is translation invariant. To output translation
equivariant variables such as the vertex positions after deformation (which change accordingly with
the translation of the input graph), one can first define the reference vertex position e for each
graph, then compute the translation invariant output using equation and finally, add ¢ to the
output. For more detailed information on IsoGCN modeling, see Appendix

3.3 EXAMPLE OF ISOAM

The IsoGCN G is defined in a general form for the propositions to work with various classes
of graph. In this section, we concretize the concept of the IsoAM to apply an IsoGCN
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to mesh structured data. Here, a mesh is regarded as a graph regarding the points in the
mesh as vertices of the graph and assuming two vertices are connected when they share

the same cell. A concrete instance of IsoAM ﬁ,D e RIWVIXIVIXd js defined as follows:

D.. . —D.. . _ .. ) Table 1: Correspondence between the
Dijik = Digie = 33 ZI: D, (15 differential operators and the expres-
Ti — T sions using the IsoAM D.
Dijy: = M ' ==z wi A (m), (16)
ll; — il Differential op. Expression
M,; = Z Ti—Ti o T wi Ay (m), (17)  Gradient Dx«HO
e =zl e — ] Divergence DoHW
Laplacian D®DH

where RIVXVI 5 A(m) := min (3274, A¥,1) is an , ~ 1
adjacency matrix up to m hops and w; é R is an un-  Jacobian I? ® ':I( ) 0
trainable weight between the ith and jth vertices that ~ Hessian DoD+H?

is determined depending on the task§’| By regarding

Tiji = 5i15jkMi_lwiinj (m)/||z; — x;|| in equation one can see that D is qualified as an
IsoAM. Because a linear combination of IsoAMs is also an IsoAM, D is an IsoAM. Thus, they
provide both translation invariance and orthogonal transformation equivariance. D can be obtained
only from the mesh geometry information, thus can be computed in the preprocessing step.

Here, D is designed such that it corresponds to the gradient operator model used in physical sim-
ulations (Tamai & Koshizuka, 2014; [Swartz & Wendroff, |[1969). As presented in Table |l|and Ap-
pendix D is closely related to many differential operators, such as the gradient, divergence, Lapla-
cian, Jacobian, and Hessian. Therefore, the considered IsoAM plays an essential role in constructing
neural network models that are capable of learning differential equations.

4 EXPERIMENT

To test the applicability of the proposed model, we composed the following two datasets: 1) a
differential operator dataset of grid meshes; and 2) an anisotropic nonlinear heat equation dataset
of meshes generated from CAD data. In this section, we discuss our machine learning model, the
definition of the problem, and the results for each dataset.

Using D defined in Section we constructed a neural network model considering an encode-
process-decode configuration (Battaglia et al.| 2018)). The encoder and decoder were comprised of
component-wise MLPs and tensor operations. For each task, we tested m = 2,5 in equation [I6]to
investigate the effect of the number of hops considered. In addition to the GCN (Kipf & Welling,
2017), we chose GIN (Xu et al., 2018)), SGCN (Wu et al., 2019)), Cluster-GCN (Chiang et al.,|2019),
and GCNII (Chen et al., 2020) as GCN variant baseline models. For the equivariant models, we
chose the TFN (Thomas et al.l 2018) and SE(3)-Transformer (Fuchs et al., 2020) as the baseline.
We implemented these models using PyTorch 1.6.0 (Paszke et al., 2019) and PyTorch Geometric
1.6.1 (Fey & Lenssen, 2019). For both the TFN and SE(3)-Transformer, we used implementation
of [Fuchs et al. (2020)because the computation of the TFN is considerably faster than the original
implementation, as claimed in |[Fuchs et al| (2020). For each experiment, we minimized the mean
squared loss using the Adam optimizer (Kingma & Ba, 2014). The corresponding implementa-
tion and the dataset will be made available online. The details of the experiments can be found in

Appendix [E and [/
4.1 DIFFERENTIAL OPERATOR DATASET
To demonstrate the expressive power of IsoGCNs, we created a dataset to learn the differential

operators. We first generated a pseudo-2D grid mesh randomly with only one cell in the Z direction
and 10 to 100 cells in the X and Y directions. We then generated scalar fields on the grid meshes

2M; is invertible when the number of independent vectors in {@&; — @;}; is greater than or equal to the
space dimension d, which is true for common meshes, e.g., a solid mesh in 3D Euclidean space.
*https://github.com/FabianFuchsML/se3-transformer-public
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Figure 2: (Top) the gradient field and (bottom) the error vector between the prediction and the ground
truth of a test data sample. The error vectors are exaggerated by a factor of 2 for clear visualization.

Table 2: Summary of the test losses (mean squared error & the standard error of the mean in the
original scale) of the differential operator dataset: 0 — 1 (the scalar field to the gradient field),
0 — 2 (the scalar field to the Hessian field), 1 — 0 (the gradient field to the Laplacian field), and
1 — 2 (the gradient field to the Hessian field). Here, if “a” is “Yes”, « is also in the input feature.
We show only the best setting for each method except for the equivariant models. For a full table,
see Appendix [El OOM denotes the out-of-memory on the applied GPU (32 GiB).

Lossof 0 -1 Lossof0 —2 Lossofl1 —0 Lossofl — 2

Method #hops x10-5 «10-6 «10-6 «10-6
GIN 5 Yes 14707 2051 4735035 40492 L 1.74 46.18L039
GCNII 5 Yes 151.13+£0.53  31.87+022  280.61 £ 130  39.38 & 0.34
SGCN 5 Yes 151.16 2053 5508 £0.42 12721 £0.63  56.97 & 0.44
GCN 5 Yes 151.14 053 4850 £ 035  54230+2.14  25.37+0.28
Cluster-GCN 5 Yes 14691051  26.60+0.19 18521 +£0.99  18.18 & 0.20

TEN 2 No  247E0.02 OOM 26.69 = 0.24 OOM

5 No OOM OOM OOM OOM

SEG)-T) 2 No  1.79 +0.02 3.50 + 0.04 2.52 +0.02 0OOM

- lrans. 5 No  2.12+0.02 OOM 7.66 % 0.05 OOM
Is0GCN (Ours) 2 No  2.67+0.02 6.37 & 0.07 7.18 & 0.06 1.44 4+ 0.02
$0 urs 5 No 1419+£0.10  21.724+0.25 34.09 & 0.19 8.32 £ 0.09

and analytically calculated the gradient, Laplacian, and Hessian fields. We generated 100 samples
for each train, validation, and test dataset. For simplicity, we set w;; = 1 in equation @ for all
(i,7) € E. To compare the performance with the GCN models, we simply replaced an IsoGCN
layer with a GCN or its variant layers while keeping the number of hops m the same to enable a fair
comparison. We adjusted the hyperparameters for the equivariant models to ensure that the number
of parameters in each was almost the same as that in the IsoGCN model. For more details regarding
the model architecture, see Appendix [E] We conducted the experiments using the following settings:
1) inputting the scalar field and predicting the gradient field (rank-0 — rank-1 tensor); 2) inputting
the scalar field and predicting the Hessian field (rank-0 — rank-2 tensor); 3) inputting the gradient
field and predicting the Laplacian field (rank-1 — rank-0 tensor); and 4) inputting the gradient field
and predicting the Hessian field (rank-1 — rank-2 tensor).

Figure2]and Table[2]present a visualization and comparison of predictive performance, respectively.
The results show that an IsoGCN outperforms other GCN models for all settings. This is because
the IsoGCN model has information on the relative position of the adjacency vertices, and thus un-
derstands the direction of the gradient, whereas the other GCN models cannot distinguish where the
adjacencies are, making it nearly impossible to predict the gradient directions. Adding the vertex po-
sitions to the input feature to other GCN models exhibited a performance improvement, however as
the vertex position is not a translation invariant feature, it could degrade the predictive performance
of the models. Thus, we did not input x as a vertex feature to the [IsoGCN model or other equiv-
ariant models to retain their isometric transformation invariant and equivariant natures. IsoGCNs
perform competitively against other equivariant models with shorter inference time as shown in Ta-



Published as a conference paper at ICLR 2021

TEMPERATURE

Ground truth

Inference - Ground Truth

R
e

SGCN SE(3) Trans. IsoGCN (Ours)
Figure 3: (Top) the temperature field of the ground truth and inference results and (bottom) the error
between the prediction and the ground truth of a test data sample. The error is exaggerated by a
factor of 2 for clear visualization.

ble As mentioned in Section D corresponds to the gradient operator, which is now confirmed
in practice.

4.2  ANISOTROPIC NONLINEAR HEAT EQUATION DATASET

To apply the proposed model to a real problem, we adopted the anisotropic nonlinear heat equation.
We considered the task of predicting the time evolution of the temperature field based on the ini-
tial temperature field, material property, and mesh geometry information as inputs. We randomly
selected 82 CAD shapes from the first 200 shapes of the ABC dataset (Koch et al., 2019), generate
first-order tetrahedral meshes using a mesh generator program, Gmsh (Geuzaine & Remacle, 2009),
randomly set the initial temperature and anisotropic thermal conductivity, and finally conducted a
finite element analysis (FEA) using the FEA program FrontISTR{ (Morita et al., 2016} [[hara et al.}

2017).

For this task, we set w;; = Veffective jjeffective "ywhere 1effective denotes the effective volume of
the ith vertex (equation 46]) Similarly to the differential operator dataset, we tested the number of
hops m = 2, 5. However because we put four [soAM operations in one model, the number of hops
visible from the model is 8 (m = 2) or 20 (m = 5). As is the case with the differential operator
dataset, we replaced an IsoGCN layer accordingly for GCN or its variant models. In the case of
k = 2, we reduced the number of parameters for each of the equivariant models to fewer than the
IsoGCN model because they exceeded the memory of the GPU (NVIDIA Tesla V100 with 32 GiB
memory) with the same number of parameters. In the case of k& = 5, neither the TFN nor the SE(3)-
Transformer fits into the memory of the GPU even with the number of parameters equal to 10. For
more details about the dataset and the model, see Appendix[F

Figure 3] and Table [3] present the results of the qualitative and quantitative comparisons for the test
dataset. The IsoGCN demonstrably outperforms all other baseline models. Moreover, owing to the
computationally efficient isometric transformation invariant nature of IsoGCN:s, it also achieved a
high prediction performance for the meshes that had a significantly larger graph than those con-
sidered in the training dataset. The IsoGCN can scale up to 1M vertices, which is practical and is
considerably greater than that reported in [Sanchez-Gonzalez et al.| (2020). Therefore, we conclude
that IsoGCN models can be trained on relatively smaller meshes’|to save the training time and then
used to apply the inference to larger meshes without observing significant performance deterioration.

Table @] reports the preprocessing and inference computation time using the equivariant models with
m = 2 as the number of hops and FEA using FrontISTR 5.0.0. We varied the time step (At =

*nttps://github.com/Front ISTR/Front ISTR. We applied a private update to FrontISTR to
deal with the anisotropic heat problem, which will be also made available online.
SHowever, it should also be sufficiently large to express sample shapes and fields.
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1.0, 0.5) for the FEA computation to compute the ¢ = 1.0 time evolution thus, resulting in different
computation times and errors compared to an FEA with At = 0.01, which was considered as the
ground truth. Clearly, the IsoGCN is 3- to 5- times faster than the FEA with the same level of
accuracy, while other equivariant models have almost the same speed as FrontISTR with At = 0.5.

5 CONCLUSION

In this study, we proposed the GCN-

based isometric transformation in-  Taple 3: Summary of the test losses (mean squared error 4
variant and equivariant models called  the standard error of the mean in the original scale) of the
IsoGCN. We discussed an exam-  gapisotropic nonlinear heat dataset. Here, if “a” is “Yes”,
ple of an isometric adjacency ma- g also in the input feature. We show only the best setting for
trix (IsoAM) that was closely re- each method except for the equivariant models. For the full
lated to the essential differential op-  (aple, see Appendix[E} OOM denotes the out-of-memory on

erators. The experiment results con-  the applied GPU (32 GiB).
firmed that the proposed model lever-

aged the spatial structures and can Loss
deal with large-scale graphs. The Method #hops z %1073
compuation time Iththe I;"Gcﬁ\f GIN 2 No 16921 % 0.040
model s significantly shorter than the GCN 2 No 10427 +0.028
FEA, which other equivariant models

hi Theref s0GCN GCNII 5 No 8377 +0.024
Ca“nog ach 1eﬁve' N ere "rf’ S0 N Gluster-GCN 2 No 7.266 + 0.021
?nul“ be tle first e to catn phys- SGCN 5  No 642640018
ical simulations because of its com- 5 No 15.661 £ 0.019
putational efficiency as well as iso- TFN

: 7 . 5 No OOM

metric transformation invariance and ) N 14.164 + 0.018
equivariance. Our demonstrations SE(3)-Trans. 0 : :
were conducted on the mesh struc- 5 No OOM
tured dataset based on the FEA re- IsoGCN (Ours) 2 No 4.674 £0.014
sults. However, we expect IsoGCNs 5 No  2.470 4+ 0.008

to be applied to various domains,
such as object detection, molecular property prediction, and physical simulations using particles.
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Table 4: Comparison of computation time. To generate the test data, we sampled CAD data from
the test dataset and then generated the mesh for the graph to expand while retaining the element
volume at almost the same size. The initial temperature field and the material properties are set
randomly using the same methodology as the dataset sample generation. For a fair comparison,
each computation was run on the same CPU (Intel Xeon E5-2695 v2@2.40GHz) using one core,
and we excluded file I/O time from the measured time. OOM denotes the out-of-memory (500
GiB).

V| =21,289  |V|=155,019 |V|=1,011,301

Method xﬁ%s—s‘* Time [s] Xl‘l‘g)si Time [s] X]‘l%s_s4 Time [s]
FrontISTR (Af = 1.0) __ 10.9 16.7 6.1 1817 29 1656.5
FrontISTR (At = 0.5) 0.8 30.5 0.4 288.0 0.2 2884.2
TFN 77.9 46.1 301 4009 OOM  OOM
SE(3)-Transformer 1114 31.2 80.3 271.1 OOM OOM
IsoGCN (Ours) 8.1 7.4 49 84.1 3.9 648.4
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A NOTATION

g A graph
1% A vertex set
[V] The number of vertices
& An edge set
VAl The positive integers
d The dimension of the Euclidean space
x; The position of the ith vertex
Tik Element k of x;
G e RIVIxIVIxd The isometric adjacency matrix (IsoAM) (equation )
Gij.. €R? Slice of G in the spatial index (equation |
Gi.x €R Element (4, j, k) of G
H®) ¢ RIVIX/*d" A rank-p tensor field tensor (f, p € ZT)
fg);klkzmkp Element. (495 k1, ko, ..., kp) of H®_  refers to the permutation rep-
resentation, kq, ... k, refer to the Euclidean representation, and g de-
) ) notes the feature index (See section .
é G| «H® Convolution of the pth power of G and rank-0 tensor field H®) (equa-
L tion @, equation

® G| ®H@ Contraction of the pth power of G and rank-q tensor fields (equation ,

L i equation

p

® G| ®HY Tensor product of the pth power of G and rank-q tensor fields H@
L ] (equation @
Hi(fl’ ) The rank-p input tensor field of the considered layer
Hgi)t The rank-p output tensor field of the considered layer
o The activation function
w The trainable parameter matrix
A e RVIXIVI An adjacency matrix
0ij The Kronecker delta
yeffective The effective volume of the ith vertex (equation
ymean The mean volume of the ith vertex (equation
D e RVIXIVI A concrete instance of [SoAM (equation |

12
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B PROOFS OF PROPOSITIONS

In this section, we present the proofs of the propositions described in Section 3]  Let
R?® > g(z,xr) = (xp — x;). Note that G is expressed using g(zi, x;) as Gjj,..
> kievrz Ligg(@n, ).

B.1 PROOF OF PROPOSITION[3.1]

Proof. First, we demonstrate the invariance with respect to the translation with V¢ € R%. g(x;, = i)
is transformed invariantly as follows under translation:

g(a:i +t,x; —|—t) = [a:j +t— (IL’l +t)]
= (@ — )
= g(x;, x;). (18)
By definition, T, is also translation invariant. Thus,

> Tyugm+tap+t)= > Tjugla,z)
k,IEV kAL k1EV k]

== Gij;;:~ (19)

We then show an equivariance regarding the orthogonal transformation with VU € O(d). g(z;, ;)
is transformed as follows by orthogonal transformation:

gUx;,Ux;) =Ux; —Ux;
=Ug(x;, x;). (20)

By definition, T, is transformed to UT}; « U1 by orthogonal transformation. Thus,

UT,;u U 'gUx,Uzy) = Y UTyuU 'Ug(w,xx)

klEV k£l eV, k£l
~UG,,.. 1)
Therefore, G is both translation invariant and an orthogonal transformation equivariant. O

B.2 PROOF OF PROPOSITION[3.2]

Proof. Here, G ® G is translation invariant because G is translation invariant. We prove rotation
invariance under an orthogonal transformation YU € O(n). In addition, G ® G is transformed under
U as follows:

§ Gij;;ijl;;k — E Ukaij;;mUknGjl;;n
Jik J,k,m,n

= Z UkmUkn Gij;;m Gﬂ??"

Jik,m,n

= Z U, Uin Gijiim Gjtsin

Jik,m,n

= Z Omn Gijsm Gjtyin (.- property of the orthogonal matrix)

J,m,n

= Z Gij;im Gjtsm
J

= Z GijiikGjisie- (" Change the dummy index m — k) (22)
Jik

Therefore, G ® G is isometric transformation invariant. O

13
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B.3 PROOF OF PROPOSITION

Proof. G ® G is transformed under VU € O(n) as follows:

ZGZ] ijl im ZUk"nGZ] nUmoG]l ;0

n,o

= Z UknGij:,;nGjl;;o om* (23)

n,0

By regarding G;;..,Gji..o as one matrix H,,, it follows the coordinate transformation of rank-2
tensor UHUT for each i, j, and [. O

C PHYSICAL INTUITION OF D

In this section, we discuss the connection between the concrete IsoAM example D and the dif-
ferential operators such as the gradient, divergence, the Laplacian, the Jacobian, and the Hessian
operators.

Let ¢; € R denote a rank-0 tensor (scalar) at the ith vertex. Let us assume a partial derivative model
of a rank-0 tensor ¢ at the ith vertex regarding the kth axis (0¢/0x); € R (k € {1,...,d}), that
is based on the gradient model in the least squares moving particle semi-implicit method (Tamai &
Koshizukal, 2014)).

8¢> M- i Tjk — Tik
= : wi; Ag;(m (24
(axk anfwzn T, — ] VoA (™)
:ZDijk bj — i), (25)
T — Ty
M,; = A . 26
anz—wzu T — ] A (m) 20

Although one could define w;; as a function of the distance ||x; — x;||, w;; was kept constant with
respect to the distance required to maintain the simplicity of the model with fewer hyperparameters.

C.1 GRADIENT

D can be viewed as a Laplacian matrix based on D; however, D « H® can be interpreted as the
gradient within the Euclidean space. Let V HO ¢ RIVIX/*d pe an approximation of the gradient
of HO. Using equation the gradient model can be expressed as follows:

OH.Y)
vH®) = g 27
( )i;g;k al'k ( )
= Diji(Hyy, — High. (28)

14
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Using this gradient model, we can confirm that (D * H(O))i;g;k =(V H(O))i;glk because
(D<H®) = 2 D, (29)

J

= > (Dijax =85y Duac) Hj
j 1
r ,

= Z Dii%;’fHa(‘?) Z D1 z(%)

= zj: Dij;;kHj(.?g); - Z Dij;;kHi;g); (*. Change the dummy index [ — j)

- Z Dusie (g, = Hig)

- (v H© ) " (30)

1395

Therefore, Dx can be interpreted as the gradient operator within a Euclidean space.

C.2 DIVERGENCE

We show that D ® HV) corresponds to the divergence. Using D, the divergence model V - HY ¢
RIVIX/ is expressed as follows:

) B OHW
(V.H 1 )m _ (Z,; ) 31)
395

= Dijur(H — HY). (32)

Jigsk 339k

Then, D ® H® is
(D © H(l))i;g; = Z Isij;;kH y
7,k

1
_Z ( Zj,, (SszD) Hl(g)k
_ZDU kngk ZDzl k:Hng
= Z Djix( j(lg)k - HZ Z)k) (. Change the dummy index [ — 5)

- (v AHW), (33)

;9
C.3 LAPLACIAN OPERATOR
We prove that DoD corresponds to the Laplacian operator within a Euclidean space.

15
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Using equation the Laplacian model V2 H©® ¢ RVI*/ can be expressed as follows:

© - o (oH
<V2 H® )i;g; '_Z {&mg (333k> ] ig;

-ou|(51),, - (5n).,

= Z Dij;;lc Z D.jl;;k(Hl(;[;); o HJ(O Z D” k H(O 1(1(;);)

= Z Dw, Jl”k Dil;:,k)(Hz(;(;); - H(9)~)- (34)

7395
Ji.k,l

(D® 6)H(0))i;g; = Z Dij;;kbjl;;kHl(;g);
3.kl

- (Dij;;k - 5ij Z Dim;;k) < Jlyk — 5]l Z Djn k> l;g;
7.kl m

= Z Dij,,k:Djl k (O) - Z Dij;;ijn;;kHJ('?g;

3.kl Jik,m

- Z Dzm szl ik (7(;)1 + Z Dim;;kDin;;kHi(;(;);

k,l,m k,m,n

=2 Dijse Dyt iy = 3~ i DimHy

.kl j:.kn
- Z Dij;;kDil;;kHl(;(;); + Z Dij;;kDin;;kHi(;%);
kg k,j,n
(". Change the dummy index m — j for the third and fourth terms)

= > Diji(Djia — D) (Hig, — Hi3))

72395
ikl

S
b

(*.- Change the dummy index n — [ for the second and fourth terms)
= (V2 H?) . (35)
i39;

C.4 JACOBIAN AND HESSIAN OPERATORS

Considering a similar discussion, we can show the following dependencies. For the Jacobian model,
J[H(l)] c RV ><f><d><d’

9 H(l)
(J[H(l)])- -kl - ( ox ) (36)
;93 l isgik
1
- Z Dija(HS) — H L) (37)
= (D @HW), (38)
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For the Hessian model, Hess[H(?)] € RIVIx/xdxd

o 0
() _ (.9 9 0
(HeSS[H ])i;g;kl B (33«% Iz H )i'g; N
— Z Dij.:xl 7m,,l(H(0) _ H(O)) Dim;;l(Hr(r?;)g; - Hi(;(;);)] (40)
jTYI
i;9;kl

D ISOGCN MODELING DETAILS

To achieve isometric transformation invariance and equivariance, there are several rules to follow.
Here, we describe the desired focus when constructing an Iso0GCN model. In this section, a rank-p
tensor denotes a tensor the rank of which is p > 1 and o denotes a nonlinear activation function. W
is a trainable weight matrix and b is a trainable bias.

D.1 ACTIVATION AND BIAS

As the nonlinear activation function is not isometric transformation equivariant, nonlinear activation
to rank-p tensors cannot be applied, while one can apply any activation to rank-0 tensors. In addition,
adding bias is also not isometric transformation equivariant, one cannot add bias when performing
an affine transformation to rank-p tensors. Again, one can add bias to rank-0 tensors.

Thus, for instance, if one converts from rank-0 tensors H® to rank-1 tensors using IsoAM G,
Gxo(HYW +b) and (Gxo(H®))W are isometric equivariant functions, however (G+H® )W +b
and o ((G * O'(H(O)))W) are not due to the bias and the nonlinear activation, respectively. Like-

wise, regarding a conversion from rank-1 tensors H™ to rank-0 tensors, o ((G ® H(l))W + b) and

o (G ® (H(l)W)) are isometric transformation invariant functions; however, G ©® (HYW + b)
and (G ® o(HV))W + b are not.

To convert rank-p tensors to rank-q tensors (¢ > 1), one can apply neither bias nor nonlinear ac-
tivation. To add nonlinearity to such a conversion, we can multiply the converted rank-0 tensors

o((®” G ® HP )W + b) with the input tensors H'?) or the output tensors H?.

D.2 PREPROCESSING OF INPUT FEATURE

Similarly to the discussion regarding the biases, we have to take care of the preprocessing of
rank-p tensors to retain isometric transformation invariance because adding a constant array and
component-wise scaling could distort the tensors, resulting in broken isometric transformation
equivariance.

For instance, H®) /Stdan [H(p )} is a valid transformation to retain isometric transformation equiv-
ariance, assuming Std,) [H(p )} € R is a standard deviation of all components of H®), However,
conversions such as H® )/ Stdcomponent [H(p )} and H”) — Mean [H(p )} are not isometric trans-

formation equivariant, assuming that Stdcomponent [H(”)} € R% is a component-wise standard

deviation.

D.3 SCALING

Because the concrete instance of IsoAM D corresponds to the differential operator, the scale of
the output after operations regarding D can be huge. Thus, we rescale D using the scaling factor
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. . . 1/2
[Meansample,i(Dfi;;l + D2, + D7:21;;;3>} , where Meangample,; denotes the mean over the samples

i35

and vertices.

D.4 IMPLEMENTATION

Because an adjacency matrix A is usually a sparse matrix for a regular mesh, A(m) in equation
is also a sparse matrix for a sufficiently small m. Thus, we can leverage sparse matrix multiplica-
tion in the IsoGCN computation. This is one major reason why IsoGCNs can compute rapidly. If
the multiplication (tensor product or contraction) of IsoAMs must be computed multiple times the
associative property of the IsoAM can be utilized.

For instance, it is apparent that [@k G] +H? = Ge(G®. .. (GxH)). Assuming that the number

of nonzero elements in A(m) equals n and H® e RVIX/ | then the computational complexity of
the right-hand side is O(n|V|fd*). This is an exponential order regarding d. However, d and k
are usually small numbers (typically d = 3 and & < 4). Therefore one can compute an IsoGCN
layer with a realistic spatial dimension d and tensor rank £ fast and memory efficiently. In our
implementation, both a sparse matrix operation and associative property are utilized to realize fast
computation.

E EXPERIMENT DETAILS: DIFFERENTIAL OPERATOR DATASET

E.1 MODEL ARCHITECTURES

(a) IsoGCN
MLP i~ ines
¢ | 11,864 D o) Vo
[tanh, tanh] [64,64] [Identity]
i [Identity] i
(b)
MLP = ISO(}CN Linear
DeD®— )
¢ [La[a,llil? ’gﬂm [64,64] [Iﬁililt]y] =Y @ Ve
L [Identity]
(©) ,
IBOGCN MLP
6 496;] bl [64,64,64,64]
e It derltity] [tanh, tanh, Identity] W Is0GON —
Do - N 2
Vo [I[dlejn?:lt]v] (64,64 ™) [Igii}}rlv] o Ve
- [Identity] i
@
IEO iON MLP
[ 64“' 6 [ 164646464
T i dcr;tity'] [tanh, tanh, Identity] 1 Is0GON T
D - g
Vo |- L6 ~ foron M 641 HV®Ve
[Identity] ‘ (dentity] [Identity]
l I Il |
Encoder Propagation Decoder

Figure 4: The IsoGCN model used for (a) the scalar field to the gradient field, (b) the scalar field to
the Hessian field, (c) the gradient field to the Laplacian field, (d) the gradient field to the Hessian field
of the gradient operator dataset. The numbers in each box denote the number of units. Below the
unit numbers, the activation function used for each layer is also shown. & denotes the multiplication
in the feature direction.
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Table 5: Summary of the hyperparameter setting for both the TFN and SE(3)-Transformer. For
the parameters not in the table, we used the default setting in the implementation of https://
github.com/FabianFuchsML/se3-transformer-public.

0—-1 0—-2 1—0 1—2

# hidden layers 1 1 1 1
# NL layers in the self-interaction 1 1 1 1
# channels 24 20 24 24
# maximum rank of the hidden layers 1 2 1 2
# nodes in the radial function 16 8 16 22

Figure [ represents the IsoGCN model used for the differential operator dataset. We used the tanh
activation function as a nonlinear activation function because we expect the target temperature field
to be smooth. Therefore, we avoid using non-differentiable activation functions such as the rectified
linear unit (ReLLU) (Nair & Hinton,|2010). For GCN and its variants, we simply replaced the IsoGCN
layers with the corresponding ones. We stacked m (= 2,5) layers for GCN, GIN, GCNII, and
Cluster-GCN. We used an m hop adjacency matrix for SGCN.

For the TFN and SE(3)-Transformer, we set the hyperparameters to have almost the same number
of parameters as in the [sSo0GCN model. The settings of the hyperparameters are shown in Table 3]

E.2 RESULT DETAILS

Table [6] represents the detailed comparison of training results. The results show that an IsoGCN
outperforms other GCN models for all settings. Compared to other equivariant models, IsoGCN has
competitive performance compared to equivariant models with shorter inference time as shown in
Table [/| Therefore, it can be found out the proposed model has a strong expressive power to ex-
press differential regarding space with less computation resources compared to the TFN and SE(3)-
Transformer.

F EXPERIMENTS DETAILS: ANISOTROPIC NONLINEAR HEAT EQUATION
DATASET

F.1 DATASET

The purpose of the experiment was to solve the anisotropic nonlinear heat diffusion under an adia-
batic boundary condition. The governing equation is defined as follows:

QCR?, @)

% = V- C(T(2.t))VT(z,1),inQ, “3)

T(w,t=0) = Too(x),in O, (44)

VT (2,t)| =z, - n(x) = 0,0n 09, 45)

where T is the temperature field, Ty g is the initial temperature field, C € R?*? is an anisotropic
diffusion tensor and m(x;) is the normal vector at x;, € 92. Here, C depends on temperature
thus the equation is nonlinear. We randomly generate C' (1" = —1) for it to be a positive semidef-
inite symmetric tensor with eigenvalues varying from 0.0 to 0.02. Then, we defined the linear
temperature dependency the slope of which is —C(T" = —1)/4. The function of the anisotropic
diffusion tensor is uniform for each sample. The task is defined to predict the temperature field at
t =0.2,0.4,0.6,1.0 (To.2,70.4,T0.6,10.8, T1.0) from the given initial temperature field, material
property, and mesh geometry. However, the performance is evaluated only with 77  to focus on the
predictive performance. We inserted other output features to stabilize the trainings. Accordingly,
the diffusion number of this problem is CAt/(Ax)? ~ 10.0* assuming Az ~ 10.073.

Figure [5|represents the process of generating the dataset. We generated up to 9 FEA results for each
CAD shape. To avoid data leakage in terms of the CAD shapes, we first split them into training,
validation, and test datasets, and then applied the following process.
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Table 6: Summary of the test losses (mean squared error £ the standard error of the mean in the
original scale) of the differential operator dataset: 0 — 1 (the scalar field to the gradient field),
0 — 2 (the scalar field to the Hessian field), 1 — O (the gradient field to the Laplacian field), and
1 — 2 (the gradient field to the Hessian field). Here, if “z” is “Yes”, « is also in the input feature.

Lossof 0 > 1 Lossof0 —2 Lossofl1 —0 Lossofl — 2
x107° x10~6 x10~6 x1076
No 151.19 £ 0.53 49.10 £ 0.36 542.52 +2.14 59.65 + 0.46
Yes 147.10 £0.51 47.56 £+ 0.35 463.79 + 2.08 50.73 + 0.40

Method # hops

GIN No 151.18 £0.53 48.99 £ 0.36 54254 £2.14  59.64 £ 0.46
Yes 147.07 £0.51 47.35 £0.35 40492 £1.74  46.18 £0.39
No 151.18 £0.53 43.08 £0.31 54274 £2.14  59.65 £ 0.46
GCNII Yes 151.14 £0.53 40.72 £ 0.29 194.65 £1.00 4543 +£0.36
No 151.11 £0.53 32.85+£0.23 542.65 £2.14  59.66 + 0.46
Yes 151.13 £ 0.53 31.87+£0.22 280.61 + 1.30 39.38 £ 0.34
No 151.17 £0.53 50.26 + 0.38 54290 £2.14  59.65 + 0.46
SGCN Yes 151.124+0.53 49.96 £ 0.37 353.29 + 1.49 59.61 + 0.46
No 151.12+0.53 55.02 £ 0.42 54273 £2.14  59.64 £ 0.46
Yes 151.16 +£0.53 55.08 +0.42 127.21 £ 0.63 56.97 + 0.44
No 151.23 +£0.53 49.59 £ 0.37 54254 £2.14  59.64 + 0.46
GCN Yes 151.14 £0.53 4791 £0.35 542.68 £2.14  59.60 + 0.46

No 151.18 £0.53 50.58 +0.38 54253 £2.14  59.64 £ 0.46
Yes 151.14+0.53  48.50 £ 0.35 54230+ 2.14 2537 +0.28
No 151.19 £0.53 33394+0.24 54254 +2.14  59.66 £ 0.46
Yes 147.23 £0.51 3229 +£0.24 167.73 £ 0.83 17.72 £ 0.17
No 151.15+0.53 28.79 £ 0.21 54251 +£2.14  59.66 + 0.46
Yes 14691 £0.51 26.60 + 0.19 185.21 £ 0.99 18.18 +0.20

Cluster-GCN

TEN No 2.47£0.02 OOM 26.69 + 0.24 OOM
No OOM OOM OOM OOM

SE(3)-Trans No 1.79 £ 0.02 3.50 +=0.04 2.52 +£0.02 OOM
) No 2.12+£0.02 OOM 7.66 = 0.05 OOM

No 2.67£0.02 6.37 £0.07 7.18 £ 0.06 1.44 £ 0.02

IsoGCN (Ours) No 14194010 21724025 34094019  832+009

NI N N N L B N L DO N L L O N Lt L O N L L D BN

Table 7: Summary of the inference time on the test dataset. 0 — 1 corresponds to the scalar field to
the gradient field, and 0 — 2 corresponds to the scalar field to the Hessian field. Each computation
was run on the same GPU (NVIDIA Tesla V100 with 32 GiB memory). OOM denotes the out-of-
memory of the GPU.

0—1 0—2
Method # parameters Inference time [s] # parameters Inference time [s]
TFN 5264 3.8 5220 OOM
SE(3)-Trans. 5392 4.0 5265 9.2
IsoGCN (Ours) 4816 0.4 4816 0.7

Using one CAD shape, we generated up to three meshes using clscale (a control parameter of the
mesh characteristic lengths) = 0.20, 0.25, and 0.30. To facilitate the training process, we scaled the
meshes to fit into a cube with an edge length equal to 1.

Using one mesh, we generated three initial conditions randomly using a Fourier series of the 2nd
to 10th orders. We then applied an FEA to each initial condition and material property determined
randomly as described above. We applied an implicit method to solve time evolutions and a direct
method to solve the linear equations. The FEA time step At was set to 0.01.

During this process, some of the meshes or FEA results may not have been available due to excessive
computation time or non-convergence. Therefore, the size of the dataset was not exactly equal to
the number multiplied by 9. Finally, we obtained 439 FEA results for the training dataset, 143 FEA
results for the validation dataset, and 140 FEA results for the test dataset.
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Initial condition
CAD Mesh Material property FEA results

clscale = 0.30

clscale = 0.25

clscale = 0.20

TEMPERATURE
-1.0e+00 -0.6-0.4-02 0 0.2 04 0.6 1.0e+00

Figure 5: The process of generating the dataset. A smaller clscale parameter generates smaller
meshes.
F.2 INPUT FEATURES

To express the geometry information, we extracted the effective volume of the ith vertex Veffective
and the mean volume of the ith vertex V;"***", which are defined as follows:

: 1
V;ef‘fectlve — E Z%a (46)
eeENF
ZeeNe Ve
p/mean _ i , 47
l N7 “

where J\ff is the set of elements, including the ¢th vertex.

For GCN or its variant models, we tested several combinations of input vertex features Tj o, C,
reffective "y mean a5 g (Table E[) For the IsoGCN model, inputs were Ty, C, Veffective and

Vmean

F.3 MODEL ARCHITECTURES

Figure [6] represents the IsoGCN model used for the anisotropic nonlinear heat equation dataset. We
used the tanh activation function as a nonlinear activation function because we expect the target tem-
perature field to be smooth. Therefore, we avoid using non-differentiable activation functions such as
the rectified linear unit (ReLU) (Nair & Hinton), 2010). Although the model looks complicated, one
propagation block corresponds to the first-order Taylor expansion T'(t+ At) ~ VC o VT (t)+T(t)

because the propagation block is expressed as D ® C ® MLP(T)D « T + T, where T denotes the
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IsoGCN IsoGCN
Do D
[512,512] [512,512] Too
MLP [Identity] W [Identity] ] MLP Tos

3,128,512]
[tanh, tanh)]

[512,512,128,1] B Toe
[tanh, tanh, Identity]| To.s
Tio

MLP
[512,512]
[tanh]

MLP J
512,512

[tanh]

IsoGCN
Do

[512,512]
Identity]

Linear
[1,512]
[Identity]

Encoder Propagation 1 Propagation 2 Decoder

Figure 6: The IsoGCN model used for the anisotropic nonlinear heat equation dataset. The numbers
in each box denote the number of units. Below the unit numbers, the activation function used for
each layer is also shown. ® denotes multiplication in the feature direction, ® denotes the contraction,
and @ denotes the addition in the feature direction.

Table 8: Summary of the hyperparameter setting for both the TFN and SE(3)-Transformer. For the
parameters not written in the table, we used the default setting in the implementation of https:
//github.com/FabianFuchsML/se3-transformer—-public.

# hidden layers 1
# NL layers in the self-interaction 1
# channels 16
# maximum rank of the hidden layers 2
# nodes in the radial function 32

rank-0 tensor input to the propagation block. By stacking this propagation block p times, we can
approximate the pth order Taylor expansion of the anisotropic nonlinear heat equation.

For GCN and its variants, we simply replaced the IsoGCN layers with the corresponding ones. We
stacked m (= 2, 5) layers for GCN, GIN, GCNII, and Cluster-GCN. We used an m hop adjacency
matrix for SGCN.

For the TFN and SE(3)-Transformer, we set the hyperparameters to as many parameters as possible
that would fit on the GPU because the TFN and SE(3)-Transformer with almost the same number
of parameters as in IsoGCN did not fit on the GPU we used (NVIDIA Tesla V100 with 32 GiB
memory). The settings of the hyperparameters are shown in Table[8]

F.4 RESULT DETAILS

Table 9] shows a detailed comparison of the training results. The inclusion of  in the input features
of the baseline models did not improve the performance. In addition, if & is included in the input
features, a loss of the generalization capacity for larger shapes compared to the training dataset
may result as it extrapolates. The proposed model achieved the best performance compared to the
baseline models considered. Therefore, we concluded that the essential features regarding the mesh

shapes are included in D. Besides, IsoGCN can scale up to meshes with 1M vertices as shown in
Figure[7]
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Table 9: Summary of the test losses (mean squared error & the standard error of the mean in the

6,9

original scale) of the anisotropic nonlinear heat dataset. Here, if “x” is “Yes”, « is also in the input
feature. OOM denotes the out-of-memory on the applied GPU (32 GiB).

Loss

Method # hops T " 10_3
2 No 16.921 £ 0.040
Yes 18.483 + 0.025
O No 22961 4+ 0.056
Yes 17.637 + 0.046
No 10.427 £+ 0.028
Yes 11.610 +=0.032
OCN No 12.139 £ 0.031
Yes 11.404 +0.032
No  9.595 4 0.026
GCNII Yes 9.789 £ 0.028

No 8377 +£0.024
Yes 9.172 £0.028
No  7.266 + 0.021
Yes 8.532+0.023
No  8.680 +0.024
Yes 10.712 £+ 0.030
No 7.317 £0.021
Yes  9.083 £ 0.026

Cluster-GCN

SGEN No 6.426 £0.018
Yes  6.519 £+ 0.020
No 15.661 +£0.019
TEN No OOM
No 14.164 £0.018
SE(3)-Trans. No OOM

No 4.674 +£0.014

IsoGCN (Ours) No  2.470 + 0.008

(S0 SRV, B SRRV, I (S} RV, BV, B\ I (O] L, BNV, B NI S ) RO, BV, B \S I \O ) RV, BNV, B (O I S RV, BV B \S]
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Ground Truth (FEA) - : IsoGCN (Ours)

TEMPERATURE

Training samples

Figure 7: Comparison between (left) samples in the training dataset, (center) ground truth computed
through FEA, and (right) IsoGCN inference result. For both the ground truth and inference result,
[V| = 1,011, 301. One can see that [IsoGCN can predict the temperature field for a mesh, which is
much larger than these in the training dataset.
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